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Abstract. Differential analysis is an important cryptanalytic technique
on block ciphers. In one form, this measures the probability of occurrence
of the differences between certain inputs vectors and the corresponding
outputs vectors. For this analysis, the constituent S-boxes of Block ci-
pher need to be studied carefully. In this direction, we derive further
cryptographic properties of inverse function, especially higher-order dif-
ferential properties here. This improves certain results of Boukerrou et
al [ToSC 2020(1)]. We prove that inverse function defined over Fa» has
an error (bias) in its second-oder differential spectrum with probability
2%2» and that error occurs in more than one places. To the best of our
knowledge, this result was not known earlier. Further, for the first time,
we analyze the Gowers uniformity norm of S-boxes which is also a mea-
sure of resistance to higher order approximations. Finally, the bounds
related to the nonlinearity profile of multiplicative inverse function are
derived using both Gowers Us norm and Walsh—-Hadamard spectrum.
Some of our findings provide slightly improved bounds over the work of
Carlet [IEEE-IT, 2008]. All our results might have implications towards
non-randomness of a block cipher where the inverse function is used as
a primitive.
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formity norm, Nonlinearity, S-box.

1 Introduction

Towards designing secure symmetric ciphers, especially block ciphers, S-boxes
are used as the basic building blocks. Cryptanalysis on such ciphers are broadly
considered in two directions. One is differential cryptanalysis [2], and the other
one is linear cryptanalysis [27]. The basic idea of differential cryptanalysis of
a cipher E is to measure the probability of occurance of input messages M
satisfying E(M)+ E(M + A) = §, where A and ¢ are inputs and corresponding
outputs differences, respectively. This probability with significant value is hard



to find for some ciphers when we consider a certain rounds. That is, well defined
ciphers may not have an “easy to find” differential path.

One of the most important attacks on block ciphers is the boomerang attack [36],
and recently, Cid et al. [12] significantly improved this attack by introducing the
boomerang connectivity table (BCT) on bijective S-boxes. Boukerrou et al. [5]
extended this idea to Feistal ciphers, where the S-boxes may not be bijective, and
introduced the Feistal Boomerang connectivity table (FBCT). The coefficient of
FBCT is related to the number of vanishing second-order derivative of S-boxes
used in the cipher. Here, the authors consider the inputs vectors that have zero
second-order derivative. However, there are some particular cases where we do
not get discover such distinguisher, that is, the number of input vectors that have
zero second-order derivative at non trivial points is very low or may be zero. For
example, if we consider an APN S-box, all the non trivial coefficients at FBCT
is 0, and for inverse function in even variables, it is 4. However, it might happen
that we get a sufficiently larger value at the extended FBCT table by consid-
ering non zero second-order derivatives. In this direction, Nyberg [29] extended
the boomerang connectivity table by considering all 2 BCTs. Langford and
Hellman [24] first proposed the differential-linear cryptanalysis which is a com-
bination of differential and linear distinguishers. Many block ciphers [4[T3/18/25]
are attacked using this cryptanalytic approach. Bar-On et al. [I] proposed a new
connectivity table of S-boxes, differential-linear connectivity table (DLCT), to
obtain a good differential-linear distinguisher. Recently, a new class of S-boxes
with very low differential-linear uniformity has been constructed [35], i.e., those
functions should have supposedly good resistance against the differential-linear
cryptanalysis. Very recently, Boukerrou et al. [5] derived a relation between the
DLCT and Feistel Boomerang connectivity table (FBCT). To provide related
references, Daemen et al. [14] introduced the concept of integral distinguisher to
evaluate the security of a block cipher SQUARE. Later Knudsen et al. [I9] for-
malized this concept and proved that AES has the 4-round integral distinguishers
with 232 chosen plaintexts. To identify integral distinguisher for a block cipher,
we first consider a set of chosen plaintexts that contains all possible values for
some bits and constant value for the other bits. Then the corresponding cipher-
texts are calculated from plaintexts in the set by using an encryption oracle. If
the XOR of the corresponding ciphertexts always becomes 0, we say that this ci-
pher has an integral distinguisher. Thus, it involves the higher derivatives of the
underlying S-box. Todo [34] generalized the concept of integral and higher-order
differential distinguisher, and discovered a new distinguishing property against
block ciphers, called the division property. This property was used to present
new generic distinguishers against both SPN and Feistel constructions. All these
distinguishers are mainly dependent on the derivatives of the functions or the
S-boxes. A summary of related results are presented below.

The basic idea of such cryptanalysis comes from the fundamental concept of
Shannon [30]. Shannon [30] introduced two basic properties of symmetric ci-
phers, called confusion and diffusion, which are related to their nonlinearity and



‘Distinguisher/ Tool/ Remark ‘year ‘Author ‘Paper‘

Differential 1990|Biham et al. 2]

Differential (Attack on DES full rounds) 1992|Biham et al. [3]

Higher-order differential 1994 |Lai [38]
Truncated differential 1994|Knudsen [20]
Integral 1997|Daemen et al. |[14]
Impossible differential 1998|Knudsen [21]
Impossible differential (Rump Session, Crypto’98) 1998|Shamir [31]
Division property 2015| Todo [34]
Boomerang 1999| Wagner [36]
BCT 2018|Cid et al. 2]
Results on Boomerang uniformity 2018|Boura et al. [6]

Boomerang switch 2019|Wang et al. 37
FBCT 2020|Boukerrou et al.|[5]

Differential-linear 1994|Langford et al. |[24]
DLCT 2019|Bar-On et al.  |[1]

Construction of S-boxes resisting differential-linear attack|2019|Tang et al. [35]
Extended BCT 2019|Nyberg [29]

autocorrelation, respectively. A secure cryptosystem must have high nonlinear-
ity, low autocorrelation spectrum and a flat differential spectrum. Nyberg [28]
proved that the inverse function is an APN permutation for odd n, and if n is
even, differential uniformity of inverse function is 4. In particular, for a nonzero
fixed input difference of inverse function, we have exactly one output difference
that have four solutions when n is even. Thus, it is difficult to explore a differen-
tial path with good probability in a block cipher that uses the inverse function as
a primitive. In this direction, it is important to identify the higher-order differen-
tial properties of S-boxes to resist different variants of differential attack. In this
paper we look at the most popular S-box, called the inverse function, and derive
its higher-order cryptographic properties. We identify an error in second-order
spectrum of such function and that error occurs in several places. This error
might be useful to identify some second-order differential paths in a block cipher
that uses the inverse function as a primitive. In this direction, we introduce the
Gowers uniformity norms of vectorial Boolean functions that can be exploited
as a measure of resistance against higher order approximate. The Gowers Uj
norm of inverse functions are derived and subsequently we show that this norm
value is larger than optimal Gowers Us norm for a vectorial Boolean function.
This implies that the correlation, between the components of the inverse func-
tion and certain quadratic Boolean functions, is higher than the optimal case.
Finally, we derive the nonlinearity bounds of inverse function using both Gowers
uniformity norm and Walsh—-Hadamard spectrum. In particular, we check that
our bounds on second-order and third-order nonlinearity are slightly improved
than that bounds provided by Carlet in [g].

1.1 Contribution and Organization

We mainly focus on two properties, the k-th order differential spectrum and the
nonlinearity profile of the inverse function. This is used in Advanced Encryption



Standard (AES) with input length is 8. These properties are dependent on the
properties of its component functions. To start with, some basic definitions and
notations are presented in Section [2] We also introduce the definition of Gow-
ers uniformity norm of S-boxes. The contributory sections of this paper are as
follows.

— The second-order differential spectrum of multiplicative inverse function are
calculated in Section and prove that there are many tuples (1, v,w) in F3,
such that the second-order spectrum value is 8. We also derive a relation
between second-order differential spectrum and difference distribution table
of multiplicative inverse function.

From [ Table 2|, we know that for inverse function the value of N (v, 7,0),
defined in , is 0 when n is odd, for all v,n € F3. with v # n. When
n is even, there exist v, € Fi. with v # n such that N (vy,n,0) = 4.
Thus, there exist v,n € Fi. with v # 7 having probability Pr[{z € Fan :
14 ﬁ + :viin + m = 0}] = 7=%, which is an optimal value.

Instead of 0, if we consider a nonzero w, then from Lemma[7] and Theorem 3]
we have the maximum value of N (y,n,w) is 8. Thus, there exist v, n,w € Fj,
with v # n having probability Pr[{z € Fan : 1 + lerv + %4’77 + ﬁ =
w}] = 525. So, we get an error in second-order spectrum of inverse function
with probability 5-—z. Thus, O(2"7?) (p = 5=z and ¢ = 1 since 525 =
7z (1+1), so O(p(lf) = O(2"~?%)) many inputs are required to identify this
error with a success probability significantly higher that half. This might be
exploited to identify weaknesses of a block cipher where the inverse function

is used as a primitive.

Our findings improve the results given in [5] related to the higher-order
profiles of an inverse function.

— We further calculate the Gowers uniformity norm, in particular Gowers Us
norm, for inverse function in Section The main result is presented in
Theorem [5| This norm is related to the correlation between the components
of the inverse function and certain quadratic Boolean functions. We note that
this is higher than the optimal case. This is the first time the Gowers norm
is studied in detail in analysing a vector Boolean function, and in particular
for the inverse function.

— The bounds of nonlinearity profile of multiplicative inverse function are
derived in Section [pl In this case we consider Walsh—-Hadamard spectrum
of higher order derivatives. With the help of computer, we check that our
bounds on second-order and third-order nonlinearity are slightly improved
than the bounds provided by Carlet in [§]. The Gowers norm is also used to
study higher order nonlinearity.

Section [6] concludes the paper.



Our results in this paper provide more detailed understanding about the inverse
function, which is used as S-box in many block cipher designs, most importantly
in AES. Thus, these results will have importance in understanding the strength
and weaknesses of block ciphers better where inverse functions are used.

Before proceeding further let us present some background material.

2 Preliminaries

For any positive integer n, we denote by F4 the vector space of n-tuples over the
finite field Fo = {0, 1}, and by Faon the finite field of order 2™. For simplicity, we
denote by F5* the set Fy \ {(0,0,...,0)}, and F3,. denotes the set Fan \ {0}. Tt
is known that the vector space Fj is isomorphic to the finite field Fan through
the choice of some basis of Fon over Fo. Indeed, if (A1, Ag,...,\,) is a basis of
Fon over Fg, then every vector x = (x1,...,x,) of F} can be identified with
the element x1A\1 + 22X + - -+ + 2, A\, € Fan. The finite field Fo» can then be
viewed as an n-dimensional vector space over Fy. The Hamming weight of an
element = € F3, denoted by wit(z), is defined by wt(x) = >_1 ; z;, the sum is
over integer. The cardinality of any set A is denoted by #A. The inner product
of x,y € F§ is defined by = -y = z1y1 + x2y2 + - -+ + TpYn.

2.1 S-boxes over vector space F7 and finite field Fan

An n x m S-box F : Fy — FJ', which is often called an (n, m)-function or a
vectorial Boolean function if the values n and m are omitted, can be considered as
the parallelization of m Boolean functions f; : F§ — Fy, where 1 <14 < m, such
that F(z) = (f1(z), fa(x),..., fm(z)) for all x € FZ. In addition, the Boolean
functions f;’s are called the coordinate functions of F. Further, the Boolean
functions, which are the linear combinations with non all-zero coefficients of the
coordinate functions of F', are called component functions of F'. The component
functions of F' can be expressed as v - F', denoted by F,, where v € F3**. If we
identify every element of F5* with an element of finite field Fam , then the nonzero
component functions F,, of F' can be expressed as Try"(vF'), where v € F3,. and

m m—1 i
e (z) = Y0, 2%

2.2 Cryptographic properties of S-boxes

We now briefly review the basic definitions regarding to the cryptographic prop-
erties of Boolean functions and then extend those definitions to S-boxes by using
component functions.



We represent the set of all n-variable Boolean functions by B,. Any Boolean
function f € B, can be expressed by its truth table, i.e.,

f=1r0,...,0,0), f(0,...,0,1),..., f(1,...,1,1)].

We say that a Boolean function f € B, is balanced if its truth table contains
an equal number of ones and zeros, that is, if its Hamming weight equals 2771,
where the Hamming weight of f is defined as the size of the support of f in
which the support of f is defined as supp(f) = {z € Fy : f(z) # 0}. Given two
Boolean functions f and ¢ in n variables, the Hamming distance between f and
g is defined as dy (f, g9) = {x € F5 : f(z) # g(z)}|. Any Boolean function f in n

variables can also be expressed in terms of a polynomial in Fo[xz1, ..., 2,]/(2? +
Ty, 22+ a):
n
fx1,.. xm) = Z au<Hx;”) = Z ayx,
u€lry" Jj=1 u€Ry"

where a,, € Fy. This representation is called the algebraic normal form (ANF) of
f. The algebraic degree, denoted by deg(f), is the maximal value of wg (u) such
that a,, # 0, where wy(u) denotes the Hamming weight of u which is defined
as the number of nonzero coordinates of u € Fy. Recall that Fa» is isomorphic
as a Fy-vector space to F5. The Boolean functions defined over Fon can also be
uniquely expressed by a univariate polynomial over Fon [z]/ (22" + )

2" —1

flz) = Z agx’,
i=0

where ag, agn 1 € Fa, a; € Fon for 1 <4 < 2™ — 1 such that a; = a2; mod 2n—1)-
The algebraic degree deg(f) under this representation is equal to max{wg (%) :
a; # 0,0 < i < 2™}, where i is the binary expansion of i (see e.g. [9]). The
rth-order nonlinearity of a Boolean function f € BB, is defined as its minimum
Hamming distance from f to all the n-variable Boolean functions of degree at
most 7,

nl,.(f) = gesmrgirgl(g)gr(dff(f,g))-

The nonlinearity profile of a function f is the sequence of those values nl.(f)
for r ranging from integers 1 to n — 1. The first-order nonlinearity of f is simply
called the nonlinearity of f and is denoted by nl(f). The nonlinearity nl(f) is
the minimum Hamming distance between f and all the functions with algebraic
degree at most 1. The nonlinearity of f can also be expressed by means of its
Walsh-Hadamard transform. Let © = (21, 22,...,2,) and w = (w1, w2, ..., wn)
both belong to F4 and let x - w be the usual inner product in Fg, then the
Walsh-Hadamard transform of f € ,, at point w is defined by

flw)= 3 (-1,

z€Fp



The multiset constituted by the values of the Walsh-Hadamard transform is
called the Walsh-Hadamard spectrum of f. Over Faon, the Walsh-Hadamard
transform of f at point « can be defined by

fla) = Z (—1)f @+Tr(a)

zEFon

It can be easily seen that, for any Boolean function f € B, its nonlinearity can
be computed as
1 ~

nl(f)=2"""- 5 max |f(w)l,

when f is defined over FZ, and its nonlinearity can be computed as

1 ~
nl(f) =2""! — = max |f(« 1
() S s |fia)] 1)
when f is defined over Fan. The nonlinearity of an (n, m)-function F is dependent
on its component functions, and is defined by the minimum nonlineartiy of its
all component functions, that is,

l(F) = min {a-F} =21~ 1 max o F(B).

acFy* 2 BEFY,acF*

The nonlinearity nl(F) is upper bounded by 2"~ — 2”7 when m = n. This
upper bound is tight for odd n = m. For even m = n, the best known value of
the nonlinearity of (n,n)-functions is 2"~! — 2%. The rth order nonlinearity of
an (n, m)-function F' is the minimum rth order nonlineartiy of its all component
functions.

The derivative of f € B,, with respect to a € Fy, denoted by D, f, is defined by
Daof(z) = f(x+a)+ f(z).

By successively taking derivatives with respect to any k linearly independent
vectors in FJ we obtain the kth-derivative of f € B,. Suppose ui,...,u; are
linearly independent vectors of F5 generating the subspace V of F3. The kth-
derivative of f € B,, with respect to uq,...,ug, or alternatively with respect to
the subspace V, is defined as

Dy f(z)=Duy o f@)= Y  flr+aw+-+au) = flz+v).
(a1,...,a1)EFE vEV

It can be easily seen that Dy f is independent of the choice of basis for V.

2.3 Gowers uniformity norms

In this section we introduce Gowers uniformity norms. Let f : V' — R be any
function on a finite set V and B C V. Then E,cp[f(z)] = ﬁ Yowen f(x) is
defined as the average of f over B. Gowers [I5] introduced a new measure of
Boolean functions, called Gowers uniformity norms.



Definition 1 ([11], Definition 2.2.1). Let f : F} — R. For every k € Z*, we
define the kth-dimension Gowers uniformity norm (the Uy norm) of f to be

ﬁ
Hf”Uk = Ew,ul,...,ukng H f <JI + Zul> . (2)
k}

SC{1,2,..., =

It is semi-norm k& = 1, and for other £ > 2 Gowers norms satisfied all the
norm properties. Gowers norms for k = 1,2, 3 are explicitly presented below (see
[11133]).

1l =] Ex uery [f(2)f ( +w)] [V2=| Ezery [f(2)] | -
11w, =] Bau upey [f (@) f (2 + ua) (@ + uz) f (@ + w1 4 ug)] [V/*
=| Eu,ery | Every [f(2)f(z +un)] 71
1flvs =1 Ea s ususery [f (@) f (@ + ua) f (@ + u2) f (2 + ur + u2)
X f(x +us)f(x 4+ uy + us) f(x +ug + us) f(z + uy + ug + uz)] |2 .

The connection between the Gowers uniformity norms and correlation of a func-
tion with polynomials with a certain degree bound is described by results ob-
tained by Gowers, Green and Tao [I5I16]. For a survey we refer to Chen [I1].

Theorem 1 ([ILJI5J16]). Let k € ZT, € > 0. Let P : Fy — Fo be a polynomial
of degree at most k, and f : Fy — R. Suppose |Ex[f(x)(—1)P(I)]| > €. Then
||fHUk+l 2> €.

Suppose f € B,. From the above results we get nlx(f) < 2"71(1 —¢) =
[(=1)f||u,,, > €, that is, if kth order nonlinearity of a Boolean function bounded
above by high (low) value, then its Gowers Uy41 norm bounded below by low
(high) value. We know [I6l32] that the converse part of Theorem [I]is also true
for k = 1,2. Samorodnitsky [32] proved that a Boolean function with a large
Gowers Us norm is somewhat close to a quadratic polynomial.

Theorem 2. [32, Theorem 2.3] Let f € B, such that ||[(=1)f||y, > ¢, ¢ > 0.
Then there exists a quadratic Boolean function g such that the distance between
f and g is at most & —¢’, where &' = Q(e‘sfc) for an absolute constant C.

Thus, the second-order nonlinearity of a Boolean function bounded above by high
(low) value if and only if its Gowers Us norm bounded below by low (high) value.
Note that for any n-variable Boolean function g, (—1)9 € {£1} is a two-valued
function. The Gowers norm on Boolean functions first used by Gangopadhyay et
al. [T7], and derived Gowers Uz norms of some classes of Boolean functions with
some properties. Let n be a positive integer and f be an arbitrary n-variable



Boolean function. For the two-valued function (—1)f € {—1,1} C R, we have

1
2|8
H(_l)fHUg —9 % Z Z (_1)f(w)+f(r+f)+f(m+v)+f(m+r+v) . (3)

(r,7)€FZ, \z€Fy

Let us now consider the case of S-boxes. Suppose F' is a S-box of input length n
and output length m, and f; € B,,,1 < ¢ < m, is the coordinate function of F.
Any nonzero component function of F' can be written by a - F', a € FJ**. Let us
first define the Gowers uniformity norms for vectorial Boolean functions.

Definition 2. Let n,m be two positive integers and F be an (n,m)-function.
For any positive integer k, the Gowers Uy, norm of (—1) is defined by

(=1)*" v,

P
117 o, = mane

-

= max (]Ez,ul,...,ukemg (—1)Zscz.., k}“'F(fD+Eies"'i)])

acFy™*

In particular for & = 3, the Gowers Us norm of (—1)% is

(=1)*" v,

1D oy = mae

=27% max Z Z (—1)@ F@)+a-Fetr)+a-Flat+y)+o-Flet+r+7)
ael‘F’!n*
* |(ry)eF2, \z€Fan

Thus, the kth-dimension Gowers uniformity norm of an S-box is determined by
the maximum kth-dimension Gowers uniformity norm among all the component
functions. The algebraic degree of an S-box is defined as the maximum algebraic
degree of the coordinate functions and it is also the maximum algebraic degree
of the component functions. Similar with Boolean functions, we can define kth-
derivative for S-boxes. Let Vi, C F3 be a vector space with dimension k£ and F
be an arbitrary (n,m)-function. The kth-derivative of F' with respect to Vj is
defined as Dy, F' = _ .y F(x + v). Let V be an k dimensional subspace of
F%. The kth order differential of a S-box F' [22], Definition 4.2] is the number of
inputs z € F3 such that

Y F(z+v)=p, BeTF;. (4)

veV

Definition 3. Annxm S-box F is called the kth-order differentially 6y -uniform
if the equation ) . F(z+v) = B has at most dy solutions for all k-dimensional
vector space Vi, and € Fi*. Accordingly, oy is called the kth-order differential
uniformity of F.



It is clear that if © € F5 satisfy , then z + v, v € V are also satisfied. Thus,
the cardinality of the solution spaces of for any k-dimensional subspace of
F2 and 3 € F% is divisible by 2*.

Remark 1. Let d; be the kth-order differential uniformity of a S-box F'. Then
0 =0 (mod 2%).

The first-order differential uniformity 41, simply denoted by J, of F' is well-known
as differential uniformity which was introduced by Nyberg in [2§] for considering
the quality of F' to resist the differential attack [2]. The smaller ¢ is, the better
is the contribution of F' to resist the differential attack. The values of § are
always even since if x is a solution of equation F(z) + F(xz +v) = 8 then z 4+~
is also a solution. This implies that the smallest possible value of § of (n,m)-
functions is 2 and the functions achieving this value are called almost perfect
nonlinear (APN) functions. A cryptographically desirable S-box is required to
have low differential uniformity (6 = 2 is optimal, 6 = 4 is good), which makes
the probability of occurrence of a particular pair of input and output differences
(7, 8) low, and hence provides resistance against differential cryptanalysis. For
every k-dimensional vector space Vi, and every 5 € F3', we denote by 6 (Vi, f)
the size of the set {z € Fy : > . F(z +v) = B} and therefore ), equals
the maximum value of &;(Vj,3). The multi-set [6;(Vi,3) : Vi C F5. 8 € F]
is called the kth-order differential spectrum of F. For k = 1, this spectrum is
represented as a well known table, called difference distribution table (DDT),
and the maximum value of DDT is called differential uniformity of F'.

2.4 The multiplicative inverse function

For any finite field Fon, the multiplicative inverse function of Fon, denoted by I,
is defined as I(z) = 22" 2. In the sequel, we will use z~! or % to denote z2" 2
with the convention that z=1 = % = 0 when & = 0. We can see that, for any
v # 0, I,(x) = Tr} (vz~?!) is a component function of I. The Walsh-Hadamard
transform of /; at any point « is well known as a Kloosterman sum over Fa» at «,
which is usually denoted by K(«), i.e., K(a) = I1(a) = > cp.,., (—l)Tr?(fl*‘”).
In fact, the original Kloosterman sums are generally defined on the multiplica-
tive group Fj.. We extend them to 0 by assuming (—1)° = 1. Regarding the
Kloosterman sums, the following results are well known and we will use them in
the sequel.

Lemma 1 ([7]). For any integer n > 0, I (1) = 1—Zt262j(—1)"_ti("7t)2t.

n—t
Lemma 2 ([23]). For any positive integer n and arbitrary a € F,., the Walsh—

Hadamard spectrum of I (x) defined on Fan can take any value divisible by 4 in
the range [—2"/>+1 1, 27/2+1 4 1],

10



Let n = 2t+1 be odd integer and P be a largest positive integer such that P =0
(mod 4) and P < 201/2 + 1.

Remark 2. The possible maximum absolute value of Walsh-Hadamard spectrum
of I; over Fan is

max |Iy(a)| =

n . .
22+l if n is even
a€F%,

P, if nis odd ’

where P is defined in above.

3 Second-order differential spectrum of the multiplicative
inverse function

The second-order differential spectrum of any (n,m)-function is related to its
second derivatives. Let V;, , = {0,7,v,n + v} C Fan. It is clear that if n = 0 or
v =0o0rn=7,V,, is amultiset and the cardinality of {z € Fon : 3 oy, F(z+
v) = 0} is 69(V;,0) = 2" for all (n,m)-function F. These particular values
of n and v we usually called trivial points. In cryptography we are interested
to calculate the values of §5(V}, ~,0) for all n,v € F3, with n # 7. Recently,
Boukerrou et al. [3] calculated the values of d2(V, ,0) for inverse function. They
proved that the values of d2(V,, ~,0) for inverse function at any nontrivial point
is 0 when n is odd, and if n is even, its only nonzero value is 4. Thus, inverse
function have best known d2(V, ,0) values. In this section we further calculate
the values of d2(V;, 4, 3) at any nontrivial point and 3 € F3,..

Lemma 3 ([26]). For any (o, f) € F5. x Fon, we define a polynomial p(z) =
ax? + Bz + v € Fan[z]. Then the equation p(x) = 0 has 2 solutions if and only
if Te? (B~2a)) = 0.

Lemma 4. Let n be a positive integer and Ty = {v? +v : v € Fan}. Then we
have

S (TG = Leymoqa),

2
xE€TH
Proof. Note that
3 (1) (&) 4 3 (1) (&) = 3 (—1)™i (&) = o

z€Ty z€Fan \Th zEFan

and

Z(_l)Tr?(wil)_ 3 (1)1 (=)

x€Ty zEFon \To

= Y () - ()™ OL).

zEFon

11



We can obtain that

Z (_1)'1‘1"17(141&) — 1(_1)Tr?(1)]/,1(1).

x€Ty

This completes the proof.

Lemma 5. Let n be a positive integer. We have

I 7’“2 n 71)2 n o~
Z (71)’I‘r1 (U2+v+l) — Z (71)’I‘r1 <v2+t}r1) _ (71)’I‘r1 (1) <11(1) . 2) '
UE]an\]Fz vEFon \]Fz
Proof. Tt can be easily seen that
n v n ’U2
> pMERE = P (MR
vEFan \Fa vEFn \Fa

1)2

by changing v into v+1. We now consider the value of 37 p \F» (—1)Tr?( TTorT)
We have

n v2 n 1
S M EER =Y () oplaing o by o)
UEFQn\FQ ’L}E]an\]Fg

1

=2 Z (—I)TY?(Hl) —2(=1)PTMW  (replacing v? + v by z)
xz€Ty

= ()™ L) = 2(-1)™ = ()™ O (T0) - 2).

where Lemma[4] is used in the last identity. This completes the proof.

Lemma 6. Let n > 4 be an arbitrary integer. We define

n 1 n 02
L#{CEan:Trl <M)Tr1 <c2—~—c-i—1>0}

Then we have L = 2"~2 + %(—1)%?(1).?1(1) + 2 (1= (=1)TTW), where L(1) is
given by Lemma[1}

Proof. For any (i,j,k) € F3, we define L jr) as

1 c? A+1
For : X} | ——— | =4, 0} | ——— | =4, T07 | ———— | =k ;.
#{CG 2 <02+c+1> hh <02—|—c+1) S <02—|—c—|—1) }

.2 2
Note that Tr} (chﬂ) + Tr} (m) = Tr} (%) So we have L =

L(07070) =2" — L(O,l,l) — L(l,O,l) — L(171,0). Note that

S (™) o Y ™ (EE)

c€Fon c€Fgn
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by changing ¢ into ¢ + 1. Then the Hamming weight of Boolean functions
Try (ﬁ;l) and Tr} ( Qi++1) on variables cis equal, that is, wt (Tr1 (ﬁ))

= wt (Tl'l (02+C+1)> . SO we have L(O,Ll) +L(1)170) = L(O,l,l) + L(1’071) and thus

1 1 1. e (ol
Mum:“W@Zﬁ”@w(&+&H)):42-—ZIPD (o)

c€Fan
Note that
62+1 1 Trn( 241 )
L L =wt|Tr} (| 57— =-|2"- —1) T\ e
o thoiy =w < Iy <Cz+c+1)> 5 EZF:( )
ce€Fan

Therefore, we have

L="Loo =2"— Lo, 1) - L(1 0,1) — L(1,1,0)

ey Gyl L Ly apr(E)

CE]an c€Fyn

By Lemma [4] we have

3 (_1)Tr?(ﬁ) = (—1)™ (&) = (—1)TTOF (1),

c€Fgn zeTy

where Ty = {v? + v : v € Fan }. From Lemma we have

> ymHERR) o 5 ™ ERR) M ORa) - ()™

c€Fon c€Fon

So we have L = 2772 4 3(—1)TT (] (1) + 1 (1 — (=1)™T (). This completes
the proof.

Let F be an (n,m)-function. For any v,n € Fon and ,w € Fam, let us define

Ne(v,nw) =#{z €Fon : F(z)+ Flz+7) + Flz+n) + Flz+n+7) =w}.

(5)
It is clear that for v = 0 or n = 0 or v = 5, we have Np(y,n,0) = 2", and
when w # 0, Np(v,n,w) = 0. If F is an inverse function over Fan, we denote

Ni(v,m,w) by N(v,1,w).

Lemma 7. Let n > 3 be a positive integer and N (v,n,w) be defined as (7).
Let v,n be two elements of Fs. such that v # n. Then for any w € Fan, we
have N (v,n,w) € {0,4,8}. Moreover, the number of (vy,n,w) € F3. such that
N(y,n,w) =8 is

(2724 ™ ORQ) - S™0 - DY ).

W~

13



Proof. Let us consider the solutions of equation

1 1 1
~—+ + + =w
y y+vy y+n y+n+vy

(6)

over Fon, where 1,v € F5,. with n # v. If y is a solution of @, then y+n, y+ v
and y + 1 + - are also solutions.

Case 1. Suppose 72 + 72 + wyn? + wny? + yn = 0. Then 0,7, and n + v
are the solution of @ then we have % + % + ﬁ = w which is equivalent to
n? + v2 + wyn? + wny? + yn = 0 since 7,7 are two distinct nonzero elements

of Fon. We can always find w € Fan such that w = % Thus, 62 > 4 for

inverse function.

Case 2. Let % + 42 + wyn? + wny? +yn # 0. It can be easily verified that any
element in {0,v,7,v + n} is not a solution of @ otherwise n? + 2 4+ wyn? +
wny? + yn = 0. So in this case if @ has solutions then every solution belongs
to Fan \ {0,7,7,7 +n}. Then (6) becomes

0 Y
+ =w. (7)
vy vy +n? 4+

Let us define z = y? + yy. We have z # 0 since y € Fan \ {0,7,7,7 + 7}, and
y? +yy +1* +n # 0 when y € Fan \ {0,7,7,7 + 1} since y* +yy+n° +91 =0
has at most two distinct solutions in Fon and we can see that n and v + 7 are
two distinct solutions. Multiplying both sides of by z(z + 1% + vn) yields

wz? 4+ (wn? +wyn)z + (v +4°n) = 0. (8)

We have w # 0 since if w = 0 in @ then we have v = n which contradicts to
our assumption that v, n are two distinct nonzero elements of Fon. Multiplying
both sides of by % gives

m
w

24+ )z + 0. (9)

This leads to

z 2 z m+v2
2 + 2 3 2 _O
n°+n ne+yn  wn®+wyn (10)

2
( o~ ) T ——
n* 4+ n”?+m - wn(n+7)
by multiplying W to both sides of @ It follows from Lemmathat

has no solution if Tr} (m> = 1 and has two solutions, denoted by u and

u+1,ifTr’f(

) = 0. Recall that z = y2 +~vy. We have zzizf] equals u or

v
wn(n+v)

14



w+ 1. It is clear that u # 0, 1, otherwise from ~ = 0. Note that zzijyz =u
is equivalent to

OR(ORORE

u + 1 is equivalent to

2 2
<y) + 4w <") +2) ~o. (12)
Y Y Y Y

Note that Tr} ((u+1)((2)2 + 1)) = T} (u((2)? + 1)) = 0. By Lemma we
have two solutions of and each if Try (u((%)2 + %)) = 0. Suppose
the solutions of are v’ and v’ + 1, and the solutions of are u” and
u" + 1. Then from (1I), we have y = yu' or y = (v’ + 1), and from (12),
we have y = yu” or y = v(u” + 1). From and (12)), we have u/,u” ¢
{0,1, %, % +1} and o' & {u”,u” +1}. Thus, these solutions not belong to the set
{0,7n,v,n + ~}. Thus, if there exist nonzero elements v,n,w € Fon with v # 7
such that Tr} (m) = 0 and Tr} (u((g)2 + g)) =0, has 4 distinct
solutions in this case.

vty _
n?+yn

and

Indeed, if % ++2 +wyn? +wny? +7n = 0, the discussion of (6)) with solutions in
Fon \ {0,7,v,n+~} is the same as Case 2. Thus, form Cases 1 and 2 we can see
that, for any n,v € F5. with n # ~, @ has 0 or 4 solutions if n? + 72 + wyn? +
wny? +n # 0, and has 4 or 8 solutions if n? + v + wyn? + wny? + yn = 0.

In what follows, we determine the number of (v, 7, w) € F3, such that N'(vy,n,w) =
8 with 72 + 42 + wyn? + wny? + yn = 0. We can see that any element in
{0,7,v,n + v} is a solution of @ We now consider the solutions of @ in
Fan \{0,n,v,m+~}. Let us denote by n = yc. Then we have v € Fs., ¢ € Fan \Fq
and w = £hetl # 0. Form Case 2, (6) has solutions in Fan \ {0,7,7,7 4+ 7} if

v(c?+c)
and only if Tv} ( =0 and Tr} (u((g)2 + %)) = 0. Note that

.
wn(n+’y))

n Y n 1
m(—" Ve (—— ) =0
E (wn(n+7)> H <62+0+1)

" (u ((”) + Z)) =0 T (u(c® +¢) = 0 & T ((u2 + u)e?) = 0

2 2
—— (”) — 0o T} <20> —0,
wn(n +7) +e+l

where ¢ € Fan for odd n and ¢ € Fan \ Fy for even n since ¢ € Fy will lead to
w = 0. Then by Lemma [f] we can get the number of such c. Note that for any

15



such ¢, v can range over 3., so we can get the number of (v,n,w) € F3. such
that NM(,n,w) = 8 . The proof is completed.

Theorem 3. Let n > 3 be a positive integer. When (y,n,w) ranges over F3,

such that v,n € F3. and v # n, we have

0, 3. 23n—2 _ 22n+1 _ (10(_1)Tr?(1) _ 3(_1)Tr?(l)j\1(1) + 1) . 2n—2
_%(_1)1‘4(1)?1(1) + 2(-1)TTM 4 3 [times] ~

4’ 23n72 _5. 22n72 + (10(_1)Tr{‘(1) o 3(_1)'1‘1{1(1)1’1(1) + 8) . 2n—1
FA(-1) WL (1) - 5(-1) ™ — 3 [times|

8,222 4 (3(71)%’;(1)]1(1) —10(—1)Tr ™ — 7) .gn—2
SEMOR) + 1O + 3 [times

N(y,nw) =

where I;(1) is given by Lemma

Proof. For any v,nm,w € Fan, we have N(y,n,0) = 2" if v = 0 or p = 0
or ¥ = n. So the number of (y,n,w) € F3. such that N(y,7,0) = 2" is
32" — 2. Let us define ¢ = #{(v,n,w) € F3. : N(y,n,w) = 4} and d =
#{(v,n,w) € F3. : N(v,m,w) = 8}. We have 4c + 8d + 27 (3 - 2" — 2) = 23" since
>y mawetyn N (7, 1,w) = 23", Then by Lemma [7 the value of ¢ is

237 97 . (3.27 —2) =8 (2772 4 3(~1)™TW (1) — 3(~1)™TM — )2 — 1)

4
— 23%—2 _ 5 . 22%—2 + (10(_1)Tr?(1) _ 3(_1)Tr1l(1)ﬁ(1) + 8) . 2’!L—1
3 n fa n
+§(—1)Tf1<1>11(1) —5(=1)Tr ) _3

Moreover, the number of (7,7, w) ranging over 3, such that v,n € F3., v # n
and NV(vy,n,w) = 0 is equal to (22" — (32" —2)) - 2" — ¢ — d. This completes the
proof.

Remark 3. When n = 4 and n = 5, there is no (y,n,w) € F3, such that
N(y,mw) =8.

Let n > 3 be an odd positive integer. It is clear that n? + 2 + 7y = 0 where
1,7 € Fan if and only if » = 0 and v = 0. Thus, the above results for odd variables
and w = 0 follow from the result given in [5]. Suppose for an (n, m)-function F,
Ap(a,B) = {z € Fan : F(z) + F(x + «) = 8}. We derive the relation between
Nr(v,m,w), defined as , and the cardinality of some fixed intersection sets
Aj(a, 8) which is generalized of [5] Theorem 3].

Theorem 4. Let n > 3 be a positive integer and F be an (n,m)-function. For
any v,n € F5n with v #n and w € Fam, we have

NF(’%”LM): Z #AF(PYaB)ﬂ(n—’—AF(’%ﬁ—Fw))

BEFom
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Proof. We know that Ap(y,8) N Ap(y,8) =0 for all v € Fan and 3,8’ € Fom
with 8 # 8'. For any v,n € Fi. with v # n and w € Fom,

Ne(y,nw)=#{z €Fan : F(z)+ Flz+v)+ Flz+n)+ Flz+~v+n) =w}
=#{z€Fon: Fla)+ Flz+7)+ Flx+n)+ Flz+v+n) +w}
= # Ugepym { € Fon : F(2) + F(x +7v) = 8}
N{z €Fom : Flz+n)+Flx+v+n) =5+w}
— 4 Upery Ap(1,8) 0 {2+ € Fau s P(z) + Fla 1) = B+ w}
= # Uperm Ar(1,8)N(n+ Ar(7, 8+ w))
= > #Ar(v,8) N+ Ar(v,B+w)).

BEFym

We consider the set Ap(a, 5) at (o, 3) instead of their cardinality in DDT of
an (n,m)-function F, then the value Np(n,v,w) of F dependent on the set
Ap(v,B)N(n+ Ap(y, B +w)) for all B € Fam. Suppose Ap(y,8) = Vg +{0,v}
and Ap(v,8 +w) = Vaqw + {0,7}. From Theorem {4 we have Np(vy,n,w) =
2> gerym #V5NVatw. For example let N (71,71, w1) = 4 for an inverse function
defined over odd number of variables, where v1,m1,w1 € Fi. with 1 # n;.
From Theorem there exist two distinct 81,82 € F3. such that the sets
Ar(v1,81) N (m + Ar(m, 1 4+ wi)) and Ar(yi, B2) N (1 + Ar(y, B2 + wi))
are nonempty. Suppose Ar(y1,81) = x5, + {0, } and m1 + Ar(y1, B1 +wi) =
M + T8, +w; + {0,711} Then zg, + 23, 1w, = m. Here V3, = {zp, } and Vg, 4o, =
{z6,4w, }. Similarly, if Ar(y1,82) = @, +{0,71} and 1 + Ar(y1, B2 + wi) =
M + Tpytw, + {0,711}, then xp, + Tg,4w, = M = Tg, + T +w,- We know that
if F is a bijective function over Fon and v # 0, then Ap(y,0) = 0. Thus,

Ne(v,mw) =3 ser,.. #FAR(Y,B) N (n+ Ar(y, B+ w)).

4 Gowers Uz norm of the multiplicative inverse function

In this section we calculate the Gowers Uz norm of inverse function. Let f € B,
be any quadratic Boolean function. Then deg(f) < 2, so any second derivative
of f is constant. Thus, from we have ||(—1)/ ||y, = 1. We first derive some
results that are used to prove our main claim.

Lemma 8 ([26]). For any n-variable Boolean function f, we have } g, . f2(a)
— 92n,

Lemma 9. Let f be an arbitrary n-variable Boolean function. For any o, €
F3., we have

~

S0~ EDHE Z o ST o) f(5 ).

x€Fon u€Fon
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Proof. For any «, 8 € F5.., we have

Z ]?(a_lu) A(ﬁ_lu) Z Z f(w )+Tr] (« uw) Z 1/)+Tr"(,8 uy)

u€Fon u€Fyn €Fon y€EFan
— Z Z 1)/ @+ W) Z 1) (07 e tB )
z€Fon yeFon u€Fon
—9n Z (=1)f@+F(Ba"z) _ on Z (—1)f(ex)+f(Bx)
zEFyn z€Fan

Lemma 10. Let n be a positive integer and U = {(0,y) € F3. : y € F3.} U
{(z,0) € F3. : 2 € F3.} U{(2,2) € F3. : @ € Fan}. For any (7,7) € F3. \ U, we
have

2

1 Tﬂl(% ler 1+w x+7+w) = Al + ]A Y
- 1
’Y T ,72 - Ty

zEFon
~ 241 (.1
+1 (T(Zy - )) +4 ((—1)T1 (=+4) - 1) :
v+ TY

where y =y~ 1 or y771 4 1.

Proof. For any (1,7) € F3,. \ U

> (yMiGrE ) = 3 ()™ G )

xEFon =t
N Z (= 1)T‘rn(71+ﬁ+mlﬂ+m+v+w) +4(— 1)“?(~YQT?+%>
2E€Fyn \{0,1,y7—1, 1471}
N > (*1)Tr?(T<w21+w>+T<m2+m>+1~27—1+w) + 4(71)Tr?(ﬁ+%)

@E€Fan\{0,1,47~1,1477-1}

Z (—1)Tr?(T<z21+m>+r<z2+z>+172rl+w) — 4(_1)Tr?(?%w> +4(_1)Tfi (WJr )
zE€Fgon

=23 (- Tfl Ft ) 74(71)“1( =) +4(— 1)”(%?*57
z€Tp

where Ty = {z € Fan : Tr}(z) = 0}. Note that

Z(_l)Tr? fi+m)+ Z (_1)T\r?<i+m)

z€Ty z€Fan \Ty

-y (—1)Tr?(n+m) -y (-1)““*%)

z€Fon z€Fgn
~ T Ty ( —=——
= I 2( —1 1 ( 247 ) — 1),
' (72 + 7'7) DT
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where the last identity follows from Theorem [§] Note also that

Z(,l)Tr’f(%+m)f Z (71)Tr?(%+m)

z€Ty ZE]F2TL\TO
T} (L + e +2) T} (34 b +2)
= Z (=1) \FE TR ) = Z (1) T\EFTERT T T
zE€Foyn z€Fon
2 2 n T
_ <Ty ) +1 (T(y i 1)> + 2((—1)Trl () - 1>7
7+ Ty 7+ Ty

where y = 77!

So we have

or y7~'+1, and in the last identity we make use of Theorem

Z(_U“’f(i*m>

z€Ty

1 [~ ~ 2 ~ 241 oz
= = |:Il (T)+Il( Y >_|__[1 <T(y+)>:| —|—2|:(—1)T1(w2+77)_1 .
2 v+ Ty Y2+ Ty V2 + 7y

Then we can obtain our assertion.

We now present the third-dimension Gowers uniformity norm of the two-valued
function (—1)t derived from the multiplicative inverse function.

Theorem 5. For any positive integer n > 4, we have

ool

)

H(_l)h HU:; =27%

3.93n+1 4 ont3 [(_1)%;1(1) (3f1(1) _ 10) _ 6}

where fl(l) is given by Lemma
Proof. Note that F3, = Uverpm\m, (75 07) 0 7 € F3} UU, where U = {(0,y)
€F3. :yeFs.U{(x,0) €F3, :x € F3.} U{(x,2) € F3. : € Fan }. Define

2

Sy = Z Z (71)11(1)+I1(z+7')+11(:1:+7)+11(x+7'+7)
(T,’y)EF%n\U z€Fgn

and

SQ _ Z Z (_1)]1(I)+11($+T)+11(I+’7)+11(w+T+’Y)
(1,7)€U \zE€Fan
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It can be easily seen that F3, \ U = {(1,v7) : v € Fan \ Fo,7 € F3,}. Then by
Lemma [I0] with v = v we have

Zz{ (o) () + (5]
= 2,5 () (<U2fU>T)+ﬂ(M)ﬁ(£L&)
)] 2, 3 [

+1 ( . )
(v? +v)7 vEFan \Fy 7EF},

= 3 3 i (e >+a<@>+a<£m>]
) _

><[(-1) (W* ]

2

U
’U

v
2

It can be easily seen that, for any fixed v € Fon \ Fa, when 7 ranges over F3,, we
have (v2+U)T, (v2+U)T and (Uziv)T range over F5,. Note that ) (—1)Ti =) =
—1 and I;(0) = 0. Then by Lemmawe have

I3 [ () () ()
S (W @+h () + 1 (02 +1)))

vEFyn \]FQ Z€F2n

3 3~(22"—f12(0)) —3.920. (2" _9).

vEFon \Fg

z€F5,

By Lemma [J] we have

Z Z v2 +0) I (V2 + 0)r
vEFn \Fp TEFS,

= Z ZIl )11 (uv?) 11(0) = Z Zh )T (uv?)

vEFyn \]F2 u€lFgn vEFyn \]FQ u€lFgn
n ’()2 n ’U2
= 2”(2n _ 2) Z (_1)Tr1 (2+v) _ 2n<2n _ 2) Z (_1)Tr1 (%) —0.
z€Fon zE€Fyn

Similarly, we have

S % (o) B ()

vEFn \Fp TEFS,

n ‘L)2
=2"(2"~2) 3 (-)MEEE =0

zEFon
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and

> Y () i ()

vEFon \Fp TEFS,

n 1)2 U2
=2 =) 3 (MR

zEFon

‘We have

3 Z[ Porbe+t) _ r

vEFyn \Fa TEF,

- Y Y (i)

vEFyn \Fo TEF,

- Z ) Z Trl (oot %)+2(2 —1)

vEFan \Fa TEF,
= Y (e 3 ™ ER) e o
vEFon \]Fz ’TE]F*
-2 Y (-G 2027 1) |, f n=1 (mod 2)
vEFn \Fa 2€F3,
= ¥ -2 X D™E 4202 -1
UEan\]F4 ZE]F;n
+ > -2 X ()OO 202" ~1)|,if n=0 (mod 2)
vEF4\F2 z€F3n

- (2“ 3 (4)%?(1)) o+l

We can obtain that

Z Z ( v? + )T ) {( l)ﬂn(wz;)ﬁ%) a 1}

vEFn \Fp TEFS,

2

= (5 ) M - ()

vEFyn \Fo \TEF3, TEF,
~ Trn(uv +v+1)
> | X b - > hw
vEFon \Fo \u€Fan u€Fon

S Y (4)”(%) — (2" —2).

vEFon \]Fz
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Similarly, we have

() [

v, TERS, v#£L

=2 ) (—1)“?’(53;)

vEFon \]Fz

—2m(2" —2)

and

S, 5[

vEFon \H“g T€]F;n

— 2n Z (_1)Tr¥(m) _ 2(_1)Tr?(1) _ 2n(2n _ 2)
vEFon

=2" (2 Z (_1)Tr?(mi1) — 2(_1)Tr?(1)> _ 2n(2n - 2)

z€Ty

= 2" (-)MIOL (1) - 2(-) ™) - 2h(2n - 2)

where T is defined by Lemma [4| and we make use of this lemma in the last
identity. Therefore, by Lemma [5| we immediately get

> 2 () 0 () 1 ()
1 2 1 2 1 2

= (V2 4+ V)T (V2 4+ V)T (V2 4+ v)T

Tr?(%"‘%) _ n (1) (T n

(™ (e t7) Z1] =32 [(—1) T (1) —2) - 2 +2)] .
Therefore, we have
81 =3-2.(2"—2)4+2-0416- (2" =3 — (—1)TTM) . gnHl
+8 (3 2°((-) ™D (1) — 2) - 2" +2))]
= 3.2 4 92t 4 [(—1)““”(31}(1) ~10) - 6} sl

We now consider the value of Sy. Recall that U = {(0,y) € F3. : y € F5.} U
{(x,0) € F3, : x € F5.} U {(z,2) € F2, : © € Fon}. We have

2
Sy = Z < Z (_1)f(x)+f(x+7')+f(:c+'y)+f(9c+r+’v))

(r,7)€U ~z€Fan
— Z 2271 + Z 2271 + Z 2271 — 3 . 2371 _ 22n+1.
YEFS, T€F, z€Fon

According to what has been discussed above, it can be concluded that

Sy 4+ Sy =323+ 4 [(—1)“?’(1) (31}(1) - 10) - 6} gn 3,
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Then by we can immediately get our assertion and this completes the proof.

Let g € B,,,n > 4, be any quadratic Boolean function. From above result and
Theorem [2] we get a bound of distant between I; and g. The optimal values of
(=) ||, is 2753 - 2" — 1|5, that is, S; =27 %[3-2" — 1|5 and S, = 0.

Now we prove that the Gowers Us norm of I,,, v € F3,, is same as the the Gowers
Us norm of I. It is clear that Fon = {v7 1z : & € Fa. } for any nonzero v € Fon.

Theorem 6. Let n > 4. For any nonzero v € Fon, we have ||(=1)|y, =
(=D llu, -

Proof. Let v € Fan be any nonzero element and u = v~!. Then we have

1
2|8
||(_1)Iu U, =272 § : E : (_1)11,(m)+lv(m+7')+1u(m+'y)+lu(z+7-+'y)
(7,7)€F2, \z€Fa2n
2|38
—ot| S 30 (cy M )
(1,7)€F2, \z€Fan
1
2|8
1 1 1 1
—9-% Z Z (_]_)Tr?(ﬂ"'uz+u7—+uz+u—y+uz+u¢+u»y)
(7,7)€FZ, \z€Fan
1
2|38
n 1 1 1 1
_ 2—% § § (71)T1"1 <?+:¢/+7‘/+1’+’y/+z/+7/+7/)
(r7)€Fg, \a'EFan

= 1(=1)" Il

where ¢’ = uz, 7’ = ur and v/ = uy.
By Theorem [6] we immediately have the following result.

Corollary 1. Let n > 4 be a positive integer. The Gowers Us norm of inverse
function I over Faon is

ool

I oy =278 [3- 22 248 [ ™0 (37,(1) - 10) — ]

)

where I1(1) is given by Lemma ,
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5 On the nonlinearity profile of the multiplicative inverse
function

In this section we derive the nonlinearity profile of inverse function. It is known
that nonlinearity of an n-variable Boolean function f is related to its maximum
absolute Walsh-Hadamard value, that is, nl(f) = 2"~! — 1 max,cp,. |f(a)|. In

the next results we prove that the Walsh-Hadamard spectrum of some deriva-
tives of the component functions I, are invariant over nonzero v € Faon.

Theorem 7. Let n be a positive integer and 7,7v,v € Fs.. Then

—_— — —

D;(I,)(a) = Dy-1,(I1)(aw) and Dy (I,)(c) = Dy-17,-1,(I1)(av),

where a € Fan.

Proof. For any 7,v € F5, and « € Fan, we have

DAT)@) = Y (Mt e o 57y ()
rEFan zEFn
= Z (—I)Tr?(%+y+v1*17+(av)y) = Dml)(av), where y = v 'a.
y€Fon

Similarly, for any 7,v,v € F3. and o € Fan, we have

B = X (st o)
zEFon
L 3 (™ (Et e e e o)
z€Fon
- Z (71)Tr111(%-‘ry-%—vl_l‘r+y+v1_1'y+y+v_171'+v_1'7+(av)y)
yEFan
—_—

= Dy-1,-1,(I1)(av), where y = vl

By Theorem [7] it is sufficient to calculate the Walsh-Hadamard spectrum of
first and second derivative functions of I to derive the nonlinearity of D, I, and

D . I,, respectively, for any 7,v,v € F5..

Theorem 8. For any positive integer n and arbitrary 7 € F5., we have

—— 0, if Tr}(ar) =1
Dr(h)(e) = {ﬁ (£) +h (22) +2((-)™ ) — 1), it T ar) =0

where y is a solution of the equation y? +y + at = 0.
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Proof. Note that for any 7 € 3. we have

DT(Il)(Oé) = Z (,1)Tr7f(ll.+ﬁ+az) _ Z (7]_)Tr711(141r7—+%+01+a7'),

x€Fon x€Fon

o —

where the last identity is obtained replacing « by z+7. Thus we have D, (I;)(«) =
0 if Tr}(ar) = 1. In what follows, we assume that Tr}(a7) = 0. From Lemma
we have the equation % + y + a7 = 0 have two solutions if Tr}(a7) = 0,
otherwise no solution. We have

ﬂ)(a) = Z (—1)Tr?(%+ﬁ+aw) = Z (_1)TT?(%+#+(XT$)
z€Fon 2E€Fan
= Z (71)Tr?(ﬁ+T1+T+m-x)+2(71)Tr§b(%)
2€Fyn\{0,1}
- Y G ey ()

2€Fyn \{0,1}

Il
—
—_
S~—
=
~3
/
2
B
[ [y
e
&
+
Q
S
8
N—
+
[N}
/N
—
\
—_
—
H
]
s
—
A=
—
\
—_
~—

zEFan

= 3 (™) L (™) )

r€Fan

= > (71)T‘r?'(m+(z2+m>y2) 19 ((71)W;(%) _ 1)

r€Fan

9 Z (_1)TF§L(?IZ+?JZZ) +2 ((_1)“?(%) - 1) ,

z€Ty

where Ty = {z € Fan : Tr}(z) = 0} and y is the solution of y? +y + ar = 0.
Note that

Yo (TR 0 S () = 3 ()T ()

z€To zEan\TO z€Fon
- ) g (1),
z€Fon T
and,
S (TG ST M) o 3 ()T ()
z€Ty 2z€Fan \ Ty zE€Fon
n(1 y2+1z o 2 1
_ Z(*l)Trl(ZJr = ):(Il) (y : >
z€Fan

From above two relations we get

2 37 ()T ER) (7)) <y2> @ (y2 + 1> ’

z€Ty
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and using this value we get

o 0, if TrY(ar) =1
Dr(I){e) = {fl (£) + 0 () +2((-)™ @ = 1), i Trf(ar) =0

T

Corollary 2. The nonlinearity of two-values functions D, (I1), T € F5., is

2n=l —23+1 ifn is even
nl(D, (1)) > {2n1 - P, if n is odd ’

where P is defined in Remark[3.

Proof. We know that for any 7 € 3., there always exist a a € Fan such that
Tr] (7o) = 0. From Remark [2f and Theorem [8 we get

_— 25+2 if n is even
wax (D) < {3 nE o

a€lfan

and from (1) we get the claim.

It is clear that D, ,I1(z) = Tri (2 + I}FT + ﬁ + w+i+7) =0for 7 =0or

y=0or7="r,so0 D;(\Il)(a) =D reFom (—1)Tri(e@) = 9n if o = 0, otherwise
0. Thus, we are interested to calculate the Walsh-Hadamard spectrum of D, Iy
for any 7,v € F4,, with 7 # ~.

Theorem 9. Let n be a positive integer and U = {(0,u) € F3. : p € Fi.} U
{(2,0) € F3, : 2 € F3. } U {(z,2) € F3, : x € Fan}. For any (1,7v) € F3. \ U, we
have Dr (I1)(a) =0 if Tr(ar) =1 or Tr(ay) =1, and

2 2 2 2 _—2
— ~ I ~ nr+1 ~ [+ T
D, (I =LH{|l—"—- )+ LH|—— )+ | ——

2 ()(@) ! (727'—1 +7> ! (727'—1 —&—7) ! ( vl 4y )

2 2 _2 n T

of (EET +1 +4<(_1)Tr1 (cez+3) _ 1)
Vrol4y

otherwise, where i is a solution of the equation p? + u+y?y*r =2 +yy?771 =0

in which y is a solution of the equation y*> +y + a1 = 0.

Proof. Note that for any (7,7) € F3. \ U, we have

Doa)(@) = 3 ()M (bt bt bae)
z€Fyn
= Z (71)“?(ﬁ+%+ﬁ+ﬁ+wz+a7)
z€Fyn
LY ()T e e )

rEFan

)
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where the second identity is obtained replacing x by = + 7 and the last one is
obtained replacing = by x + 7. Thus we have D, ,(I1)(a) = 0 if Tr}(ar) =1
or Tr'(ay) = 1. Thus we assume that Tr}(a7) = 0 and Tr}(ay) = 0 in what
follows. We have

1

Doy@)e) = 3 (~1) T (kbbb o)

rEFon
= Z( 1)Tr1 (35 + 7 + 7 7y toT)
xE€Fyn
- 3 (—1)™F (F5+ 7+ 72t T 7 o) +4(_1)Tf?(ﬁ+

wE€Fan \{0,1,571, 14771}

1

T

= Z (—1)’I‘r?(7'(5021+w)+7—(12+z)4,1»y27.71+’y+a7'm) _~_4(_1)Tr?(wz"'?+

x€Fan \{0,1,y7 =1, 14y7 -1}

x€EFon

n 1 1 2
=2) (- T‘l 72t Ty T Z)_

z€TH

(w +w) ( (— 1)T‘"Tf(%)>

)

where Ty = {z € Fan : Tr}(z) = 0} and y is a solution of the equation y* +y +
at = 0. Note that

S ()M (Ermmm ) ¢ 3 ™ (e )

z€To z€Fan \Ty
n '.'/2
= > ™ (H+ o=t %)
z€Fon
0, 1 if TrY(ay) =1
= 2 -~ ne 1
h (3 ) + 0 (#55) +2((-)™ =) - 1) i T (ay) =0

where 1 is a solution of the equation p? + p + v?y%772 + yy?7~1 = 0 and

we make use of Theorem [8]in the last identity with T} ((v27=1 + v)y?77 1) =

Try (V2272 + 2yt 72) = Te} (v2 7 2(y? + y*)) = Tr}(ary). Similarly, we have

) A A DI G e S
z€Ty z€Fon\Ty

= > (fl)Tr?(%m“zflz)
z€Fon

0, if Tri'(ay) =1
= r v? Tr?(ﬁ) : n ’
Il (W)—‘rll (m)—FQ(( ) YETT Ay —1>,lf TI‘l(Oé’}/):O

where v is a solution of the equation v2 + v +~2772(y? + 1) + 7~ (y> +1) = 0.
Note that v = pu+~7~! or v = u+~7~1+1. Therefore, in the case of Tr} () = 0
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D

3 (_1)“?(f(m21+m>ﬂuzﬂ)ﬁwﬁuﬁa") —4(-1)™ (557) +4(-1 )“?(ﬁ%
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and Tr} (ay) = 0 we have

22 ()™ (=) _ (“2> +1 (lﬁﬂ}

2-—1 2-—1
o=t YT Y YT Y

/222 (2422 4 (s
+4 (W) +1 <W> +4((-n™ (#5) - 1),
P4y Y4y

and hence we can immediately get the value of D, .(I1)(a) in the case of

Tri(ar) = 0 and Tr}(ay) = 0. Recall that Dﬁl)(a) =0 if Trf(ar) =1
or Tr}(ary) = 1. This completes the proof.

From above Theorem and Remark [2| we have

— 25+3 if n is even
< 9
Max [Drq (1) (@)= {4P, if nis odd

where 7,v € F5, with 7 # v, and we get the next result.

Corollary 3. Let n be a positive integer and U = {(0,p) € F2, : p € F3.} U
{(z,0) € F3. : 2 € F3. } U{(z,x) € F3. : € Fan}. For any (7,7) € F3. \ U, the
nonlinearity of two-values functions D, (I1) is

on—1 _ 9&+2 if n is even
> b
nl(D, ,(11))> { on=1_9op, ifn is odd ’

where P is defined in Remark[3.

We now consider lower bounds on the higher-order nonlinearity of the multiplica-
tive inverse function. It is difficult to determine the rth-order nonlinearity of a
general function with algebraic degree no less than r+ 1. In [§], Carlet presented
a method for obtaining a lower bound on the rth-order nonlinearity of an n-
variable Boolean function f, provided that a lower bound on the (r — 1)th-order
nonlinearity of its derivatives D, f(z) = f(z) + f(x + ), v € F3., is known.

Lemma 11 ([8]). Let f be any n-variable Boolean function and r be a positive
integer smaller than n. Then we have

wl(f) > 2 - \/zzn_z S° ul i (D, f).

yEFon

By Corollary [2| and Lemma we can get a lower bound on the second-order
nonlinearity of the multiplicative inverse function.

Theorem 10. For any arbitrary integer n > 4, we have

on—1 _ %\/Q%”r? — 232 1 2n ifn s even
2n=l — L\onHt TP —2P + 27 ifn is odd

Illg([l) Z {

where P is defined in Remark[3.
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Let f € B, be an arbitrary Boolean function, applying two times Lemma[I1] we
can obtain that

nl,(f) =271 — % > W% =2 Y 0l (Dyy(f)) (13)

~yEFon neEFan

Then by Corollary [3] we can get a lower bound on the third-order nonlinearity
of the multiplicative inverse function.

Theorem 11. For any arbitrary integer n > 5, we have

1 \/2n on \/237"+3 +ontl 23+ ifn is even
ng(Il) = )
\/zn o —1)y/20F2P £ 27t — 8P, ifn is odd

where P is defined in Remark[3.

Proof. Let us first consider even n. Note that nl (D, ,(I1)) =0ify=00rn =0
or v =rn. By and Corollary |3[ we have

1
nly(f) > 2" = o S22 =2 )" (D, (1))
~vyEFon neEFan
1
=2t -2 20 o[22 =2 3 nl(D, (1))
YEFS, n€fan

1 n
> 2" - 2\/2” (@ - 1)y/2n—22n - 2) (201 - 2842)

1 3n n
—on—1 _ 2\/2n + (27 — 1) \/2%-&-3 4+ ont+l _9%+4,

Similarly, we can get a lower bound on the third-order nonlinearity of the mul-
tiplicative inverse function for odd n. This completes the proof.

In what follows, we consider the the nonlinearity profile of the multiplicative
inverse function. Let 7,7 € F5,. such that 7 # v and g € B,, be an arbitrary

29



function with algebraic degree at most r. We have

T ()G bt ) = Y ()T (e st ) o)

zEFon zEFan

- Z (= 1)Tw(”+”+*+m+v+m)+9(m)+( )Trll(ﬂlwﬂr%)
2€Fan \{0,1,y771,1+~71}

% ((_1)9(0) (=190 4 (—1)9) 4 (_1)9(T+v)>
= Z (_1)Tr?(7'(m§+m)+T($2+w)+1’v27*1+’v)+g(‘rx) —+ (—1)Tr?<wz:r'yr+%)
2€Fyn \{0,1,y7—1,14+y7 -1}
% ((_1)9(0) (=19 4 (—1)9) 4 (_1)9(T+v)>
= Z (—]_)Tr?(T(m21+:c>+T(12+I)J:72T71+7)+g(Tr) — (_1)Trlb(ﬁ) (1 — (_1)T‘r?(%))

z€Fon

% ((,1)9(0) (=190 4 (—1)9) 4 (fl)g(fﬂ))
—9 Z Tr1 = m)Jrg’(Tz) ( Trl 2+'y‘r (1 Tr;L %))
z€Ty
% ((_1)g(o> F(=1)9) 4 (—1)9) 4 ( g(T—M))

<2y () (s )+ 4 g
yeT}

where Ty = {22 +x : 2 € Fon}, T} = {72 : 2 € Ty}, and ¢'(72) = g(7L(z)) where
L(z) is the root of 22 + x + z = 0 expressed by z which is linear over Fon (see,
e.g. [I0]) and hence both ¢'(7z) and ¢'(y) still have algebraic degree at most r.
Note that

iy (Dry (1), ) = 2 = 2 37 (1) (tsbe ok iy o)
x€Fon
> =1 37 (o)™ (s )@y
y€eT]

It was pointed by Carlet in [8, Proposition 1] that, for any n-variable Boolean
function f and an affine hyperplane H of Fon, the rth-order nonlinearity of the
restriction of f to H (viewed as an (n — 1)-variable function), denoted by f|H,
satisfies nl,.(f|H) > nl,.(f) —2"~2. Note that T} is a hyperplane of Fan and ¢'(y)
has algebraic degree at most r when it restricts to an affine hyperplane (viewed
as an (n — 1)-variable function). Then we have

S (P )

yeT]
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1 1
ol oy (e (o ———— )4y >
H( 1(2/ y+727‘1+7) a2

< 2% 201, (Do (1)|T)
< 2" =2 (1l (D144 (1)) — 2772)
=" _ QHIT(D'yzr*l-«-’y(Il))'

So we have

dir (Drny(11),9) > 20, (D21 (1)) — 2771 — 4.
Moreover, Carlet proved in [§] that, for any a € F5., nl.(Dy(I1)) > 2nl,([,-1) —
2"~1—2 = 2nl,(I;)—2""'—2. Therefore, we have nl,.(D; (I1)) > 2nl,(D.2,-14(I1))

—2n=1 4 > 4nl,(I;) —3-2"~! —8. Thus, we can present a recursive lower bound
on the nonlinearity profile of the multiplicative inverse function.

Theorem 12. Let n > 6 be an arbitrary integer. Then for any 4 <r <mn — 2,
we have

1
nl (1) > 21 — 5\/ on 1 (27 — 1) /2202 — (2073 —16)ul, (1) + 3. 27+1 — 32,

where nly(1;) and nlz([;) are given by Theorems [10] and [11] respectively.

Proof. By we have

nl,(I) > 2" — % o[22 =23 nl_y (D, (1))

yEFon neEFfon

1
=2t o (2 o[22 —2 3 nl_y (D, (1))

YEFS, n€Fan

>onl %\/2" (27— 1) /227 —2(27 — 2) (4nl,_5(I1) — 3 - 27~ — 8)

1
_gn-l §\/2n 4 (27— 1) /2202 — (2093 —16)ul, _o(Ty) + 3271 — 32.

This completes the proof.

Remark 4. With the help of computer, we check that our bounds on second-
order and third-order nonlinearity are little better than that bounds given by
Carlet in []]. For rth-order nonlinearity with r > 4, the expression becomes more
and more complex when r increases.
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6 Conclusion

In this paper we study certain cryptographic properties of S-boxes. We derive
the second-order differential spectrum of the inverse function and prove that the
function defined over Fan have an error (bias) with probability 2%2 and that
error occurs for several values of inputs. These errors (biases) were not iden-
tified in [B], where the authors derived several properties of FBCT of inverse
function. Next, we introduce the Gowers uniformity norm on S-boxes, which is
also dependent on the derivatives of its component functions. Correlation with
degree two functions can be identified in this manner. For the first time, we
used the Gowers norm to study the properties of the inverse function. Further,
the nonlinearity profile of inverse function are presented using Gowers norm and
Walsh—Hadamard spectrum of its component functions and their linear combi-
nations. In certain cases our bounds slightly improve the ones in [8]. Our results
have implications towards Block cipher cryptanalysis where inverse functions are
used as basic components.
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