
Wolverine: Fast, Scalable, and Communication-Efficient
Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

Chenkai Weng
Northwestern University

ckweng@u.northwestern.edu

Kang Yang
State Key Laboratory of Cryptology

yangk@sklc.org

Jonathan Katz†∗

University of Maryland

jkatz2@gmail.com

Xiao Wang
Northwestern University

wangxiao@cs.northwestern.edu

January 13, 2021

Abstract

Efficient zero-knowledge (ZK) proofs for arbitrary boolean or arithmetic circuits have re-
cently attracted much attention. Existing solutions suffer from either significant prover over-
head (i.e., high memory usage) or relatively high communication complexity (at least κ bits
per gate, for computational security parameter κ). In this paper, we propose a new proto-
col for constant-round interactive ZK proofs that simultaneously allows for an efficient prover
with asymptotically optimal memory usage and significantly lower communication compared to
protocols with similar memory efficiency. Specifically:

• The prover in our ZK protocol has linear running time and, perhaps more importantly, mem-
ory usage linear in the memory needed to evaluate the circuit non-cryptographically. This
allows our proof system to scale easily to very large circuits.

• For statistical security parameter ρ = 40, our ZK protocol communicates roughly 9 bits/gate
for boolean circuits and 2–4 field elements/gate for arithmetic circuits over large fields.

Using 5 threads, 400 MB of memory, and a 200 Mbps network to evaluate a circuit with hundreds
of billions of gates, our implementation (ρ = 40, κ = 128) runs at a rate of 0.45 µs/gate in the
boolean case, and 1.6 µs/gate for an arithmetic circuit over a 61-bit field.

We also present an improved subfield Vector Oblivious Linear Evaluation (sVOLE) protocol
with malicious security that is of independent interest.

1 Introduction

Zero-knowledge (ZK) proofs (of knowledge) [GMR85, GMW91] are a fundamental cryptographic
tool. They allow a prover P to convince a verifier V, who holds a circuit C, that the prover knows a
witness w for which C(w) = 1, without leaking any extra information. While ZK proofs for arbitrary
circuits are possible [GMW91], until recently such proofs were inefficient as they relied on reduc-
tions to generic NP-complete problems. Over the past decade, however, several ZK proof systems
have been developed that yield far more efficient protocols. These include zero-knowledge suc-
cinct non-interactive arguments of knowledge (zk-SNARKs) [Gro10, GGPR13, BCG+13, BCTV14,
BCC+16, BBB+18, WTS+18, BCR+19, BBHR19, Set20], ZK proofs based on Interactive Oracle

∗†Work done as a consultant for Stealth Software Technologies, Inc.

1

Proofs (IOPs) and techniques from the setting of verifiable outsourcing [GKR08, XZZ+19, BFS20,
ZXZS20], ZK proofs following the “MPC-in-the-head” approach [IKOS07, GMO16, CDG+17, AHIV17,
KKW18, dDOS19], and a line of work constructing ZK proofs from garbled circuits (ZKGC) [JKO13,
FNO15, ZRE15, HK20]. Each of these works offers different tradeoffs between underlying assump-
tions (both computational hardness assumptions as well as setup assumptions), round complexity
(in particular, whether the proof requires interaction or can be made non-interactive), expressive-
ness (e.g., whether the scheme natively handles boolean or arithmetic circuits), and efficiency. With
regard to efficiency, measures of interest include the prover complexity (including time complexity
and memory requirements), the verifier complexity, and the communication as a function of the
circuit size.

One important factor is the memory overhead of ZK protocols. In particular, high memory
requirements can impose a hard limit on the maximum circuit size that a protocol can support
in practice. As shown in Table 1, prior ZK proof systems can be characterized roughly as either
(1) having short proofs (e.g., sublinear in the circuit size, or even sublinear in the length of a witness)
but significant memory overhead for the prover as in the case of zk-SNARKs, IOP-based schemes,
and some schemes following the MPC-in-the-head paradigm, or (2) imposing low memory overhead
for the prover but having high communication complexity, as in the case of ZKGC schemes.

In this paper, we propose a new approach to ZK proofs that enables an extremely efficient
prover in both running time and memory usage while having lower communication compared to
the ZKGC approach that offers similar prover efficiency. As in the ZKGC approach, we obtain
prover complexity—in terms of both time and memory usage—linear in the complexity required to
evaluate the circuit non-cryptographically; this allows our ZK protocol to scale easily to very large
circuits. At the same time, we achieve communication complexity that is more than an order of
magnitude lower than what can be achieved using the ZKGC approach, while natively supporting
boolean or arithmetic circuits. As compared to the other work in Table 1, the main drawback of
our protocol—shared by the ZKGC approach—is that it requires interaction. Our protocol does,
however, offer a non-interactive online phase following an interactive offline phase that can be
executed by the parties before the circuit is known.

1.1 Outline of Our Solution

Our ZK protocol (named Wolverine) can be separated into two phases: an interactive offline phase
that can be executed by the prover and verifier before both the circuit and the witness are known,
and an online phase that can be made non-interactive in the random-oracle model. We view the
online phase as our main conceptual contribution, though we offer efficiency improvements for the
offline phase as well.

Online phase. The online phase of our protocol can be viewed as adapting the core idea of the
ZKGC approach by viewing a ZK proof as a special case of secure two-party computation (2PC)
where one party has no input. We differ from the ZKGC approach in the underlying 2PC protocol
we use as our starting point: rather than using garbled circuits, we instead rely on a “GMW-style”
approach [GMW87] using authenticated multiplication triples [Bea92, NNOB12] (whose values are
known to the prover) generated during the offline phase. A drawback of GMW-style protocols in
the context of generic 2PC is that they have round complexity linear in the depth of the circuit
being evaluated. Crucially, in the ZK context, we can exploit the fact that only one party has
input to obtain an online phase that runs in constant rounds (or can even be non-interactive in the
random-oracle model).

The prover and verifier run in linear time since they each make only one pass over the circuit.
Moreover, they can evaluate the circuit “on-the-fly” (i.e., with memory overhead linear in what is

Protocol Spartan [Set20] Virgo [ZXZS20] Ligero [AHIV17] [HK20] Wolverine
Type zk-SNARK IOP-based MPC-in-the-head ZKGC sVOLE-based

Prover time 55 s 53 s 400 s 7.3 s 11 s
Merkle tree Verifier time < 0.1 s < 0.1 s < 0.1 s 7.3 s 11 s

(boolean circuit) Overall time 55 s 53 s 400 s 7.3 s 11 s
Communication ≤ 100 KB 253 KB 1.5 MB 182.2 MB 12.4 MB
Prover memory ≈ 7 GB ≈ 1 GB ≈ 5 GB ≤ 400 MB ≤ 400 MB

Prover time 677 s 64 s − − 320 s
Verifier time < 0.1 s < 0.1 s − − 320 s

Matrix mult. Overall time 677 s 64 s − − 320 s
(arithmetic circuit) Communication ≤ 100 KB ≈ 200 KB − − 4.2 GB

Prover memory ≈ 86 GB ≈ 18 GB − − ≤ 400 MB

Table 1: Comparing our ZK protocol with prior work. The first example proves knowledge of 256
leaves that hash to a public root of a Merkle tree based on SHA-256 (511 hash-function evaluations). The
second example proves knowledge of two 512 × 512 matrices over a 61-bit field whose product is a public
matrix (roughly 134 million field multiplications). Performance of our protocol (ρ = 40, κ = 128) is measured
by running the prover and verifier on two machines, each using 1 thread, connected via a 200 Mbps network,
and is the total running time of both the offline and online phases. For ZKGC and Wolverine, the prover
and verifier can execute the protocol in a pipelined fashion, which is why the overall time is the maximum of
the prover and verifier times. Spartan uses a 256-bit field while Virgo and Wolverine use a 61-bit field. See
Section 6 for details.

needed to evaluate the circuit non-cryptographically), which allows our protocol to scale easily to
very large circuits. Our approach is communication-efficient as well: for a circuit with C multipli-
cation gates over an arbitrary finite field Fp, the marginal communication complexity is only either
3ρ/ logC + 1 elements per gate for small fields or 2–4 elements per gate for large fields.

Instantiating the offline phase. During the offline phase we set up authenticated multiplication
triples (over the relevant field Fp) between the prover and verifier using subfield Vector Oblivious
Linear Evaluation (sVOLE) [BCGI18, BCG+19b]. For boolean circuits (i.e., p = 2), we use the
recent work by Yang et al. [YWL+20] to generate an initial pool of authenticated bits, and then use
those authenticated bits to generate authenticated triples as in prior work [NO09]. For p > 2, we
extend the protocol of Yang et al. to obtain an efficient sVOLE protocol for arbitrary fields (which
we believe to be of independent interest). We defer further details to Section 4.

1.2 Performance and Comparison to Prior Work

We have implemented Wolverine for both boolean and arithmetic circuits. Running over a 200 Mbps
network, Wolverine processes boolean circuits at the rate of 2,000,000 AND gates per second (XOR
gates are free), and arithmetic circuits over a 61-bit large field at the rate of 600,000 multipli-
cation gates per second (addition gates are free). In Table 1 we provide benchmarks comparing
Wolverine to prior work for two examples: proving knowledge of the leaves that hash to a Merkle-
tree root (naturally represented as a boolean circuit) and proving knowledge of the inputs to matrix
multiplication over a large field (naturally represented as an arithmetic circuit). In the boolean
setting, Wolverine uses 15× less communication than ZKGC [HK20] along with lower running time;
Wolverine outperforms all other work in terms of overall time and memory usage. In the arithmetic
setting, Wolverine is 5× slower than Virgo [ZXZS20] but needs only 3% of the memory. The ad-
vantage in memory usage would be even larger for larger circuits, and would enable Wolverine to
scale to circuits larger than what can be feasibly handled by Virgo.

Comparison to ZK proofs based on VOLE/OT. Boyle et al. [BCGI18, BCG+19b] also pro-

posed a framework for ZK proofs in which an offline phase is used to set up correlated randomness
between the prover and verifier, and the subsequent online phase is non-interactive. With regard
to the online phase, the primary advantages of their work are that the online phase can be non-
interactive without the random-oracle model, and can be run any polynomial number of times
following a single execution of the offline phase (that is, the offline phase is reusable). An advan-
tage of our work is that it applies to circuits over arbitrary fields, whereas the work of Boyle et al.
applies either to boolean circuits [BCG+19b] or arithmetic circuits over large fields [BCGI18]. More
to the point, the focus of our work is concrete efficiency, which was not investigated by Boyle et al.
For boolean circuits, the ZK protocol of Boyle et al. [BCG+19b] based on oblivious transfer requires
communicating over 100,000 bits per gate when ρ = 40, which is four orders of magnitude larger
than our protocol. For large fields, the VOLE-based ZK protocol of Boyle et al. [BCGI18] requires
communication of at least 16 elements per gate, whereas our protocol sends only 2–4 elements per
gate. We also offer concrete efficiency improvements for the offline phase in the large-field case. In
particular, our sVOLE protocol avoids the generic, maliciously secure two-party computation used
by Boyle et al. [BCGI18].

Comparison to zk-SNARKs. Our ZK protocol occupies a different portion of the solution space
than (existing) zk-SNARKs. Existing zk-SNARKs impose concretely high memory requirements
on the prover (cf. Table 1), even when the memory requirements are linear in the circuit size.
(While there are zk-SNARKs in which the prover asymptotically uses sublinear memory [COS20],
such schemes are currently ≈ 200× slower than state-of-the-art zk-SNARKs that uses linear mem-
ory [Set20].) The prover memory in Wolverine is significantly lower, allowing Wolverine to scale to
very large circuits. On the other hand, zk-SNARKs have many advantages: they are non-interactive
and have lower communication. They also have better efficiency for the verifier, although their
overall time (i.e., including the time for the prover to generate the proof) might be longer.

In independent and concurrent work, Dittmer, Ishai, and Ostrovsky [DIO20] have also developed
a ZK protocol based on VOLE. They focus on communication complexity rather than concrete
performance; their protocol only considers the case of large fields, and has lower communication
complexity than our protocol in that case. Subsequent to our work, Baum, Malozemoff, Rosen and
Scholl [BMRS20] have also proposed a different VOLE-based ZK protocol.

Organization of the paper. After reviewing some preliminaries in Section 2, we describe the
online phase of our ZK proof in Section 3. In Section 4 we describe the details of our sVOLE
construction used in the offline phase of our ZK proof. We provide experimental results in Section 6.

2 Preliminaries

We use κ and ρ to denote the computational and statistical security parameters, respectively. We
let negl(·) denote a negligible function, and use log to denote logarithms in base 2. We write x← S
to denote sampling x uniformly from a set S, and x ← D to denote sampling x according to a
distribution D. We define [a, b) = {a, . . . , b − 1} and write [n] = {1, . . . , n}. We use bold lower-
case letters like a for row vectors, and bold upper-case letters like A for matrices. We let a[i]
denote the ith component of a (with a[0] the first entry), and let a[i : j) represent the subvector
(a[i], . . . ,a[j − 1]).

A circuit C over a field Fp is defined by a set of input wires Iin and output wires Iout, along
with a list of gates of the form (α, β, γ, T), where α, β are the indices of the input wires of the gate,
γ is the index of the output wire of the gate, and T ∈ {Add,Mult} is the type of the gate. If p = 2,
then C is a boolean circuit with Add = ⊕ and Mult = ∧. If p > 2 is prime, then C is an arithmetic

circuit where Add/Mult correspond to addition/multiplication in Fp. We let C denote the number
of Mult gates in the circuit.

When we work in an extension field Fpr of Fp, we fix some monic, irreducible polynomial f(X)
of degree r and so Fpr ∼= Fp[X]/f(X). We let X ∈ Fpr denote the element corresponding to
X ∈ Fp[X]/f(X); thus, every w ∈ Fpr can be written uniquely as w =

∑r−1
i=0 wi · Xi with wi ∈ Fp

for all i, and we may view elements of Fpr equivalently as vectors in Frp. When we write arithmetic
expressions involving both elements of Fp and elements of Fpr , it is understood that values in Fp
are viewed as lying in Fpr in the natural way. We let F∗ denote the nonzero elements of a field F.

2.1 Information-Theoretic MACs and Batch Opening

We use information-theoretic message authentication codes (IT-MACs) [NNOB12, DPSZ12] to au-
thenticate values in a finite field Fp using an extension field Fpr ⊇ Fp. In more detail, let ∆ ∈ Fpr
be a global key, sampled uniformly, that is known only by one party PB. A value x ∈ Fp known by
the other party PA can be authenticated by giving PB a uniform key K[x] ∈ Fpr and giving PA the
corresponding MAC tag

M[x] = K[x] + ∆ · x ∈ Fpr .

We denote such an authenticated value by [x]. Authenticated values are additively homomorphic,
i.e., if PA and PB hold authenticated values [x], [x′] then they can locally compute [x′′] = [x + x′]
by having PA set x′′ := x+ x′ and M[x′′] := M[x] + M[x′] and having PB set K[x′′] := K[x] + K[x′].
Similarly, for a public value b ∈ Fp, the parties can locally compute [y] = [x+ b] or [z] = [bx]. We
denote these operations by [x′′] = [x] + [x′], [y] = [x] + b, and [z] = b · [x], respectively.

We extend the above notation to vectors of authenticated values as well. In that case, [u] means
that (for some n) PA holds u ∈ Fnp and w ∈ Fnpr , while PB holds v ∈ Fnpr with w = v + ∆ · u. An
authenticated multiplication triple consists of authenticated values [x], [y], [z] where z = x · y.

Batch opening of authenticated values. An authenticated value [x] can be “opened” by

having PA send x ∈ Fp and M[x] ∈ Fpr to PB, who then verifies that M[x]
?
= K[x] + ∆ · x.

This has soundness error 1/pr, and requires sending an additional r log p bits (beyond x itself).
While this can be repeated in parallel when opening multiple authenticated values [x1], . . . , [x`],
communication can be reduced using batching [NNOB12, DPSZ12]. We describe two approaches
in Appendix B. Hereafter, we write Open([x]) to denote a generic batch opening of a vector of
authenticated values. In addition, we write CheckZero([x]) for the special case where all xi are
supposed to be 0 and so need not be sent. We let εopen denote the soundness error (which depends
on the technique used); when using either of the techniques described above, εopen is independent
of the number ` of authenticated values opened.

2.2 Security Model and Functionalities

We use the universal composability (UC) framework [Can01] to prove security in the presence of a
malicious, static adversary. We say that a protocol Π UC-realizes an ideal functionality F if for
any probabilistic polynomial time (PPT) adversary A, there exists a PPT adversary (simulator) S
such that for any PPT environment Z with arbitrary auxiliary input z, the output distribution of
Z in the real-world execution where the parties interact with A and execute Π is computationally
indistinguishable from the output distribution of Z in the ideal-world execution where the parties
interact with S and F.

The protocol that we construct in this work UC-realizes the standard zero-knowledge function-
ality FZK, reproduced in Figure 1 for completeness. (We omit session identifiers in all our ideal

Functionality FZK

Upon receiving (prove, C, w) from a prover P and (verify, C) from a verifier V where the same (boolean
or arithmetic) circuit C is input by both parties, send true to V if C(w) = 1; otherwise, send false to V.

Figure 1: The zero-knowledge functionality.

Functionality Fp,rsVOLE

Initialize: Upon receiving init from PA and PB, sample ∆← Fpr if PB is honest or receive ∆ ∈ Fpr from
the adversary otherwise. Store global key ∆ and send ∆ to PB, and ignore all subsequent init commands.

Extend: This procedure can be run multiple times. Upon receiving (extend, `) from PA and PB, do:

1. If PB is honest, sample K[x]← F`pr . Otherwise, receive K[x] ∈ F`pr from the adversary.

2. If PA is honest, sample x← F`p and compute M[x] := K[x] + ∆ · x ∈ F`pr . Otherwise, receive x ∈ F`p
and M[x] ∈ F`pr from the adversary, and then recompute K[x] := M[x]−∆ · x ∈ F`pr .

3. Send (x,M[x]) to PA and K[x] to PB.

Global-key query: If PA is corrupted, receive (guess,∆′) from the adversary with ∆′ ∈ Fpr . If ∆′ = ∆,
send success to PA and ignore any subsequent global-key query. Otherwise, send abort to both parties
and abort.

Figure 2: Functionality for subfield VOLE.

functionalities for the sake of readability.) Our ZK protocol relies on the subfield Vector Oblivious
Linear Evaluation (sVOLE) functionality (see Figure 2), which is the same as that by Boyle et
al. [BCG+19a], except that the adversary is allowed to make a global-key query on ∆ and would
incur aborting for an incorrect guess. After an initialization that is done once, this functionality
allows two parties to repeatedly generate a vector of authenticated values known to PA. Other
functionalities are given for reference in Appendix A.

3 Our Zero-Knowledge Protocol

In Figure 3, we describe our zero-knowledge protocol ΠZK, which operates in the Fp,rsVOLE-hybrid
model. As noted in Section 1.1, our protocol can be viewed as following a “GMW-style” approach
to secure two-party computation using authenticated multiplication triples [NNOB12, DPSZ12].
In the secure-computation setting, the evaluation of a multiplication gate requires two rounds
of interaction, since the parties hold shares of the values on the input wires, but neither party
knows those values. In the ZK setting, however, the prover P knows the values on all wires; thus,
evaluation of a multiplication gate can be done without any interaction at all.

At a high level, our protocol consists of the following steps:

1. Initialization. The parties prepare authenticated values {[λi]} for the witness, and {[si]} for
each multiplication gate in the circuit. The parties also generate some number of authenticated
multiplication triples {([xi], [yi], [zi])}; a malicious prover may cause some or all of these triples
to be incorrect (i.e., zi 6= xi · yi).

2. Circuit evaluation. Starting with the authenticated values {[wi]} at the input wires, the par-
ties inductively compute authenticated values for all the wires in the circuit. For addition gates,

Protocol ΠZK

Inputs and parameters: The prover P and verifier V hold a circuit C over a finite field Fp with C
multiplication gates; P holds a witness w such that C(w) = 1. Fix parameters B, c, and r, and let
` = C ·B + c.

Offline phase:

1. P (acting as PA) and V (acting as PB) send init to Fp,rsVOLE, which returns a uniform ∆ ∈ Fpr to V.

2. P and V send (extend, |Iin| + 3` + C) to Fp,rsVOLE, which returns authenticated values {[λi]}i∈Iin ,
{([xi], [yi], [ri])}i∈[`], and {[si]}i∈[C] to the parties.
(If V receives abort from Fp,rsVOLE, then it aborts.)

3. For i ∈ [`], P sends di := xi · yi − ri ∈ Fp to V, and then both parties compute [zi] := [ri] + di.

Online phase:

4. For i ∈ Iin, P sends Λi := wi − λi ∈ Fp to V, and then both parties compute [wi] := [λi] + Λi.

5. For each gate (α, β, γ, T) ∈ C, in topological order:

(a) If T = Add, then the two parties locally compute [wγ] := [wα] + [wβ].

(b) If T = Mult and this is the ith multiplication gate, P sends d := wα · wβ − si ∈ Fp to V, and
then both parties compute [wγ] := [si] + d.

6. V samples a random permutation π on {1, . . . , `} and sends it to P. The two parties use π to permute
the {([xi], [yi], [zi])}i∈[`] obtained in step 3.

7. For the ith multiplication gate (α, β, γ,Mult), where the parties obtained ([wα], [wβ], [wγ]) in step 5,
do the following for j = 1, . . . , B:

(a) Let ([x], [y], [z]) be the
(
(i− 1)B + j

)
th authenticated triple (after applying π in step 6).

(b) The parties run δα := Open([wα] − [x]) and δβ := Open([wβ] − [y]). The parties then compute
[µ] := [z]− [wγ] + δβ · [x] + δα · [y] + δα · δβ , and finally run CheckZero([µ]).

8. For each of the remaining c authenticated triples, say ([x], [y], [z]), the parties run x := Open([x]) and
y := Open([y]). They also compute [ν] := [z]− x · y and then run CheckZero([ν]).

9. For the single output wire o ∈ Iout with authenticated value [wo], the parties run CheckZero([wo]−1).

Figure 3: Zero-knowledge proof in the Fp,rsVOLE-hybrid model.

this is easy. For the i-th multiplication gate, the prover uses [si] to enable the verifier to com-
pute its component of the authenticated value for the output wire without revealing information
about the values on the input wires. Specifically, given authenticated values [wα], [wβ] on the
input wires to the ith multiplication gate, the prover sends wα ·wβ−si to the verifier; the prover
and verifier then compute

[wγ] := [si] + (wα · wβ − si)

as the authenticated value of the output wire. All communication here is from the prover to the
verifier, so the entire circuit can be evaluated using only one round of communication.

Once the parties have an authenticated value [wo] for the output wire, the prover simply opens
that value, and the verifier checks that it is equal to 1.

3. Verifying correct behavior. So far, nothing prevents a malicious prover from cheating. To
detect cheating, the verifier needs to check the behavior of the prover at each multiplication gate

using the initial set of authenticated multiplication triples the parties generated. This can be
done in various ways. In the protocol as described in Figure 3, which works for circuits over an
arbitrary field, the verifier checks the behavior of the prover as follows (adapting [ABF+17]):

• The verifier checks a random subset of the authenticated triples to make sure they are correctly
formed. For an authenticated multiplication triple ([x], [y], [z]), this can be done by having
the prover run Open([x]) and Open([y]) followed by CheckZero([z]− x · y).

• The verifier then uses the remaining authenticated triples to check that each multiplication
gate was computed correctly. For a multiplication gate with authenticated values [wα], [wβ] on
the input wires and [wγ] on the output wire, the relation wγ = wαwβ can be checked using an
authenticated multiplication triple ([x], [y], [z]) by having the prover run δα := Open([wα]−[x])
and δβ := Open([wβ]− [y]), followed by

CheckZero
(
[z]− [wγ] + δβ · [x] + δα · [y] + δα · δβ

)
.

Each multiplication gate is checked in this way using B authenticated multiplication triples.

In Section 3.2, we describe other approaches for verifying correct behavior.

Note that the checks for the openings of all the authenticated values (i.e., all the executions of
Open and CheckZero) can be batched together at the end of the protocol.

Non-interactive online phase. The ZK protocol described in Figure 3 can be implemented in
constant rounds. If we use the Fiat-Shamir heuristic both for deriving the permutation π as well as
for non-interactive opening of authenticated values, the online phase can be made non-interactive.

3.1 Proof of Security

Before giving the proof of security for ΠZK, we analyze the procedure used to check correctness of
the multiplication gates. Consider some multiplication gate with authenticated values [wα], [wβ] on
the input wires and [wγ] on the output wire. If P cheated, so wγ 6= wα ·wβ, then this cheating will
be detected in step 7 of the protocol unless all B of the multiplication triples used to check that gate
are incorrect. (We ignore for now the possibility that P is able to successfully cheat when running
Open/CheckZero.) But if too many of the initial multiplication triples are incorrect, then there is
a high probability that P will be caught in step 8. We can analyze the overall probability with
which a cheating P can successfully evade detection by considering an abstract “balls-and-bins”
game with an adversary A, which is based on a similar game considered previously in the context
of secure three-party computation [ABF+17]. The game proceeds as follows:

1. A prepares ` = CB + c balls B1, . . . ,B`, each of which is either good or bad. A also pre-
pares C bins, each of which is either good or bad. The balls {Bi}i∈[`] correspond to the triples
{([xi], [yi], [zi])}i∈[`] defined in step 3 of the protocol, and the bins correspond to the triples
{([wα], [wβ], [wγ])} defined for the multiplication gates during the circuit evaluation.

2. Then, c random balls are chosen. If any of the chosen balls is bad, A loses. Otherwise, the game
proceeds to the next step.

3. The remaining CB balls are randomly partitioned into the C bins, with each bin receiving
exactly B balls.

4. We say that a bin is fully good (resp., fully bad) if it is labeled good and all the balls inside it are
good (resp., labeled bad and all the balls inside it are bad). A wins if and only if there exists at
least one bin that is fully bad, and all other bins are either fully good or fully bad.

Lemma 1. Assume c ≥ B. Then A wins the above game with probability at most
(
CB+c
B

)−1
.

Proof. Assume A makes m bins bad for 1 ≤ m ≤ C. It is easy to see that A can only possibly win
if exactly mB balls among B1, . . . ,B` are bad, and they are exactly placed in the m bins that are
bad. We compute the probability that A wins for some fixed m.

Since exactly mB balls of the ` = CB + c balls are bad, the probability that none of the bad
balls is chosen in step 2 of the game is exactly(

`−mB
c

)(
`
c

) =
(`−mB)! · (`− c)!
`! · (`−mB − c)!

=
(CB + c−mB)! · (CB)!

(CB + c)! · (CB −mB)!
.

Assume that this occurs. We are left with `− c = CB balls, of which mB are bad. The probability
that B bad balls are placed in each bad bin is

p1 =
(mB)! · (CB −mB)!

(CB)!
.

Thus, the probability that A wins is exactly(
`−mB
c

)(
`
c

) · p1 =
(CB + c−mB)! · (mB)!

(CB + c)!
=

(
CB + c

mB

)−1

.

For c ≥ B, 1 ≤ m ≤ C, this is maximized when m = 1.

Now we prove security of protocol ΠZK.

Theorem 1. Let c ≥ B. Protocol ΠZK UC-realizes FZK in the Fp,rsVOLE-hybrid model. In particular,
no environment Z can distinguish the real-world execution from the ideal-world execution except

with probability at most
(
CB+c
B

)−1
+ p−r + εopen.

Proof. We first consider the case of a malicious prover (i.e., soundness) and then consider the case
of a malicious verifier (i.e., zero knowledge). In each case, we construct a PPT simulator S given
access to FZK, and running the PPT adversary A as a subroutine while emulating functionality
Fp,rsVOLE for A. We always implicitly assume that S passes all communication between A and Z.

Malicious prover. S interacts with adversary A as follows:

1. S emulates Fp,rsVOLE for A by choosing uniform ∆ ∈ Fpr and recording all the values {λi}i∈Iin ,
{(xi, yi, ri)}i∈[`], and {si}i∈[C], and their corresponding MAC tags, sent to Fp,rsVOLE by A. These
values define corresponding keys in the natural way.

2. If A makes a global-key query (guess,∆′) to Fp,rsVOLE, then S checks if ∆ = ∆′. If not, S
sends abort to A, sends (prove, C,⊥) to FZK, and aborts. Otherwise, S sends success to A and
continues.

3. When A sends {Λi}i∈Iin in step 4, S sets wi := λi + Λi for i ∈ Iin.

4. S runs the rest of the protocol as an honest verifier, using ∆ and the keys defined in the first
step. If the honest verifier outputs false, then S sends (prove, C,⊥) to FZK and aborts. If the
honest verifier outputs true, then S sends (prove, C, w) to FZK where w is defined as above.

We assume that A does not correctly guess ∆; this is true except with probability at most p−r.
It is clear that the view of A is perfectly simulated by S. Whenever the verifier simulated by S
outputs false, the real verifier outputs false as well (since S sends ⊥ to FZK). It thus only remains
to bound the probability with which the simulated verifier run by S outputs true but the witness
w sent by S to FZK satisfies C(w) = 0. Below, we show that if C(w) = 0 then the probability that

the simulated verifier outputs true is at most
(
CB+c
B

)−1
+ εopen.

If C(w) = 0 then either wo = 0 or else at least one of the triples {([wα], [wβ], [wγ])} defined at
the multiplication gates during the circuit evaluation must be incorrect. In the former case, the
probability that P succeeds when running CheckZero([wo]− 1) is at most εopen. In the latter case,

Lemma 1 shows that the probability that A avoids being “caught” in steps 6–8 is at most
(
CB+c
B

)−1
;

if A is caught, then it succeeds in opening some incorrect value with probability at most εopen. This
completes the proof for the case of a malicious prover.

Malicious verifier. If S receives false from FZK, then it simply aborts. Otherwise, S interacts
with adversary A as follows:

1. S emulates Fp,rsVOLE by recording the global key ∆, and the keys for all the authenticated values,
sent to the functionality by A. Then, S samples uniform values for {λi}i∈Iin , {(xi, yi, ri)}i∈[`],
and {si}i∈[C], and computes their corresponding MAC tags in the natural way.

2. S executes steps 3–8 of protocol ΠZK by simulating the honest prover with input w = 0|Iin|.

3. In step 9, S computes K[wo] (based on the keys sent to Fp,rsVOLE by A) and then sets M[wo] :=
K[wo] + ∆. Finally, it uses M[wo] to run CheckZero([wo]− 1) with A.

The view of A simulated by S is distributed identically to its view in the real protocol execution.
This completes the proof.

3.2 Other Approaches for Verifying Correct Behavior

Here we describe alternative approaches for checking correctness of multiplication gates for large p
(i.e., log p ≥ ρ).

Approach 1. The first approach can be viewed as a simplified version of the check used by
SPDZ [DPSZ12]. Both parties now prepare a single authenticated multiplication triple ([x], [y], [z])
per multiplication gate (so only C in total), which may be incorrect if P is malicious. To check
correctness of a multiplication gate with authenticated values [wα], [wβ] on the input wires and
[wγ] on the output wire, the verifier sends a uniform η ∈ Fp to the prover, who responds by running
δα := Open(η · [wα]− [x]) and δβ := Open([wβ]− [y]), followed by

CheckZero([z]− η · [wγ] + δβ · [x] + δα · [y] + δα · δβ).

This has soundness error 1/p + εopen. To see this, say wγ = wαwβ + ∆w with ∆w 6= 0, and let
z = xy + ∆z. Then z − η · wγ + δβ · x + δα · y + δα · δβ = 0 iff η = ∆z/∆w, which occurs with
probability 1/p. Note that this checking procedure can be done for all multiplication gates in
parallel using a single value η, and the overall soundness error remains unchanged. It can also be
made non-interactive using the Fiat-Shamir heuristic in the random-oracle model.

Approach 2: Trading off communication and computation. This approach, which is a
simplified and improved variant of the polynomial approach used by SPDZ [DPSZ12], reduces the
communication complexity by roughly half (from 4 to 2 field elements per gate) at the expense

of increased computation. Intuitively, the prover and verifier define polynomials F,G,H that
interpolate to {wiα}, {wiβ}, and {wiγ}, respectively. If wiγ = wiα · wiβ for all i, then H = F ·G, and
this can be verified by checking whether H(ν) = F (ν) · G(ν) at a random point ν ∈ Fpr . Details
follow.

Assume p ≥ 2C − 1. Let ([wiα], [wiβ], [wiγ]) be the authenticated values corresponding to the ith
multiplication gate. The parties additionally compute C − 1 authenticated values {[si]}i∈[C+1,2C);
they also compute an authenticated multiplication triple ([x], [y], [z]) (which may be incorrect if P
is malicious) with x, y, z ∈ Fpr .1 They then do the following:

1. Let F ∈ Fp[X] (resp., G ∈ Fp[X]) be the polynomial of degree at most C−1 such that F (i) = wiα
(resp., G(i) = wiβ) for i ∈ [C]. Note that P can compute F and G explicitly, and P and V can

compute the authenticated value [wkα]
def
= [F (k)] (resp., [wkβ]

def
= [G(k)]) for any k ∈ Fpr using

Lagrange interpolation over the shares {[wiα]}i∈[C] (resp., {[wiβ]}i∈[C]).

2. For k ∈ [C+ 1, 2C), P sends d′k := wkα ·wkβ−sk to V, and both parties compute [wkγ] := [sk] +d′k.

Let H ∈ Fp[X] be the polynomial of degree at most 2C−2 such that H(i) = wiγ for i ∈ [2C−1].
Note that P can compute H explicitly, while P and V can compute the authenticated value
[H(k)] for any k ∈ Fpr using Lagrange interpolation over the shares [wiγ].

3. V sends a uniform ν ∈ Fpr to P. Then the parties compute authenticated values [F (ν)], [G(ν)],
and [H(ν)].

4. Finally, V verifies that F (ν) ·G(ν) = H(ν) as in approach 1, above. That is, V sends a uniform
η ∈ Fpr to P, who responds by running δ := Open(η · [F (ν)]− [x]) and σ := Open([G(ν)]− [y]),
followed by

CheckZero([z]− η · [H(ν)] + σ · [x] + δ · [y] + δ · σ).

This has soundness error (2C − 1)/pr + εopen. To see this, note that if there exists an i ∈ [C] with
wiα ·wiβ 6= wiγ then the polynomials F ·G and H are different, and so agree in at most 2C−2 points.
Thus, F (ν) · G(ν) 6= H(ν) except with probability at most (2C − 2)/pr. When that is the case,
an analysis in the first approach shows that the final check fails except with probability at most
1/pr + εopen.

This approach can also be made non-interactive using the Fiat-Shamir heuristic in the random-
oracle model.

4 Subfield VOLE

In this section, we present an sVOLE protocol that can be used during the offline phase of our ZK
protocol. In Section 5, we first present an sVOLE protocol with linear communication complexity.
Although this already suffices for our ZK protocol, we can obtain much better efficiency using
“sVOLE extension” (by analogy with OT extension), by which we extend a small number of “base”
sVOLE correlations into a larger number of sVOLE correlations. Toward this end, in Section 5.1
we construct a protocol for single-point sVOLE (spsVOLE) in the Fp,rsVOLE-hybrid model, where
spsVOLE is like sVOLE except that the vector of authenticated values has only a single nonzero
entry. Then, in Section 5.2, we present an efficient protocol for “sVOLE extension” using spsVOLE

1A uniform authenticated value [z] with z ∈ Fpr can be generated from r uniform authenticated values [z1], . . . , [zr]
with zi ∈ Fp by setting z =

∑
i zi·X

i. An authenticated multiplication triple can be computed from such authenticated
values in the natural way.

Functionality Fp,rCOPEe

Initialize: Upon receiving init from parties PA, PB, sample ∆← Fpr if PB is honest, and receive ∆ ∈ Fpr
from the adversary otherwise. Store global key ∆, send ∆ to PB, and ignore all subsequent init commands.
Let ∆B ∈ {0, 1}rm be the bit-decomposition of ∆, where m = dlog pe.
Extend: Upon receiving (extend, u) with u ∈ Fp from PA and (extend) from PB, this functionality
operates as follows:

1. Sample v ← Fpr . If PB is corrupted, instead receive v ∈ Fpr from the adversary.

2. Compute w := v + ∆ · u ∈ Fpr .

3. If PA is corrupted, receive w ∈ Fpr and u ∈ Frmp from the adversary, and recompute

v := w − 〈g ∗ u,∆B〉 ∈ Fpr ,

where ∗ denotes the component-wise product.

4. Output (u,w) to PA and v to PB.

Figure 4: Functionality for correlated oblivious product evaluation with errors
(COPEe).

as a subroutine and relying on a variant of the Learning Parity with Noise (LPN) assumption. We
provide some intuition for each protocol in the relevant section. Our implementation shows that
this protocol outperforms all prior work; we discuss its concrete performance in Section 6.1.

5 Base sVOLE Protocol

We present a “base” sVOLE protocol that is based on oblivious transfer (OT) and is inspired
by prior work of Keller et al. [KOS15, KOS16]. Our protocol relies on the correlated oblivious
product evaluation with errors (COPEe) functionality FCOPEe, which extends the analogous func-
tionality introduced by Keller et al. [KOS16] to the subfield case we are interested in. We show in
Appendix B.1 how to UC-realize FCOPEe from OT.

Functionality FCOPEe is described in Figure 4, where m = dlog pe. In FCOPEe, we define a
“gadget vector” g ∈ Frmpr by

g =
(
(1, 2, . . . , 2m−1), (1, 2, . . . , 2m−1) · X, . . . , (1, 2, . . . , 2m−1) · Xr−1

)
.

For a vector x ∈ Frmpr , we define

〈g,x〉 =

r−1∑
i=0

(m−1∑
j=0

x[i ·m+ j] · 2j
)
· Xi ∈ Fpr ,

where the definition can be extended to the cases x ∈ {0, 1}rm or x ∈ Frmp by viewing x as lying in
Frmpr in the natural way. The bit-decomposition of ∆ ∈ Fpr is the string ∆B ∈ {0, 1}rm satisfying
〈g,∆B〉 = ∆.

In Figure 5, we present a protocol Πp,r
base-sVOLE that UC-realizes Fp,rsVOLE in the FCOPEe-hybrid

model. We first describe a sub-protocol Πp,r
base-LsVOLE, which allows two parties to generate sVOLE

correlations with a selective-failure leakage on ∆, meaning that a malicious PA is allowed to guess

Protocol Πp,r
base-sVOLE

Sub-protocol Πp,r
base-LsVOLE with selective-failure leakage:

1. PA and PB send init to Fp,rCOPEe, which returns ∆ to PB.

2. PA samples ui ← Fp for i ∈ [0, n) and ah ← Fp for h ∈ [0, r). For i ∈ [0, n), PA sends (extend, ui) to
Fp,rCOPEe and PB sends (extend) to Fp,rCOPEe, which returns wi ∈ Fpr to PA and vi ∈ Fpr to PB such that
wi = vi + ∆ · ui. For h ∈ [0, r), both parties also call Fp,rCOPEe on respective inputs (extend, ah) and
(extend), following which PA gets ch ∈ Fpr and PB obtains bh ∈ Fpr such that ch = bh + ∆ · ah.

3. PB samples χ0, . . . , χn−1 ← Fpr , and sends them to PA. Then PA computes x :=
∑n−1
i=0 χi · ui +∑r−1

h=0 ah · Xh, z :=
∑n−1
i=0 χi · wi +

∑r−1
h=0 ch · Xh, and sends (x, z) to PB.

4. PB computes y :=
∑n−1
i=0 χi · vi +

∑r−1
h=0 bh · Xh and checks that z = y + ∆ · x. If not, PB aborts.

5. For i ∈ [0, n), PA defines u[i] = ui and w[i] = wi, and PB sets v[i] = vi.

Full protocol without any leakage: Let ` = d2ρ/r log pe+ 1.

1. Both parties execute the above sub-protocol with parameters p and k = ` · r. Then, PA obtains
(u,w) ∈ Fnp × Fnpk and PB gets ∆ ∈ Fpk and v ∈ Fnpk such that w = v + ∆ · u. By viewing an

element in Fpk as a vector in F`pr , two parties obtain {wi}i∈[`] and {(∆i,vi)}i∈[`] respectively such
that wi = vi + u ·∆i, wi,vi ∈ Fnpr and ∆i ∈ Fpr .

2. PB samples α1, . . . , α` ← Fpr and sends them to PA.

PA computes t :=
∑`
i=1 αi·wi; PB computes s :=

∑`
i=1 αi·vi and Γ :=

∑`
i=1 αi·∆i, where t = s+Γ·u.

3. PA outputs u and t; PB outputs Γ and s.

Figure 5: Base sVOLE protocol in the FCOPEe-hybrid model.

a subset of ∆ and the protocol execution aborts for an incorrect guess. In this sub-protocol, PB

performs a correlation check in steps 3 and 4 to verify that the resulting sVOLE correlations are
correct (i.e., w = v + ∆ · u). Then, based on Πp,r

base-LsVOLE, we show how to generate sVOLE
correlations without such leakage using the leftover hash lemma [ILL89]. In protocol Πp,r

base-sVOLE,
all the uniform coefficients (i.e., {χi}, {αi}) can be computed from a random seed and a hash
function modeled as a random oracle.

We prove the following in the full version of our work.

Theorem 2. Protocol Πp,r
base-sVOLE UC-realizes Fp,rsVOLE in the Fp,rCOPEe-hybrid model. In particular,

no PPT environment Z can distinguish the real-world execution from the ideal-world execution,
except with probability at most (r log p)2/pr + 1/2ρ.

Optimization. For many applications (e.g., our protocols) where learning the entire global key ∆ is
necessary in order to violate security of some higher-level protocol, it is unnecessary to eliminate the
selective-failure leakage about ∆. This can be argued as follows. Assume the adversary guesses a set
S (if there are multiple guesses then S is the intersection of all guessed sets) and is caught cheating
if ∆ 6∈ S. The probability that the selective-failure attack is successful is |S|/pr; conditioned on this
event, the min-entropy of ∆ is reduced to log |S|. Therefore, the overall probability for the adversary
to determine ∆ is |S|/pr ·2− log |S| = p−r, which is the same as the probability in the absence of any
leakage. Similar observations have been used in secure-computation protocols [KOS16, CDE+18,
YWZ20].

Functionality Fp,rspsVOLE

Initialize: Upon receiving init from PA and PB, sample ∆← Fpr if PB is honest and receive ∆ ∈ Fpr from
the adversary otherwise. Store global key ∆, send ∆ to PB, and ignore all subsequent init commands.

Extend: Upon receiving (sp-extend, n), where n = 2h for some h ∈ N, from PA and PB, do:

1. If PB is honest, sample v ← Fnpr . Otherwise, receive v ∈ Fnpr from the adversary.

2. If PA is honest, then sample uniform u ∈ Fnp with exactly one nonzero entry, and compute w :=
v + ∆ · u ∈ Fnpr . Otherwise, receive u ∈ Fnp (with at most one nonzero entry) and w ∈ Fnpr from the
adversary, and recompute v := w −∆ · u ∈ Fnpr .

3. If PB is corrupted, receive a set I ⊆ [0, n) from the adversary. Let α ∈ [0, n) be the index of the
nonzero entry of u. If α ∈ I, send success to PB and continue. Otherwise, send abort to both parties
and abort.

4. Send (u,w) to PA and v to PB.

Global-key query: If PA is corrupted, receive (guess,∆′) from the adversary with ∆′ ∈ Fpr . If ∆′ = ∆,
send success to PA and ignore any subsequent global-key query. Otherwise, send abort to both parties
and abort.

Figure 6: Functionality for single-point sVOLE.

5.1 Single-Point sVOLE

Single-point sVOLE is a variant of sVOLE where the vector of authenticated values contains exactly
one nonzero entry. We present the associated functionality Fp,rspsVOLE in Figure 6, where the vector

length n = 2h is assumed to be a power of two for simplicity. In Figure 7, we present a protocol
Πp,r

spsVOLE that UC-realizes Fp,rspsVOLE in the (Fp,rsVOLE,FOT,FEQ)-hybrid model, where FOT is the
standard OT functionality and FEQ corresponds to a weak equality test that reveals PA’s input
to PB. (See Appendix A for formal definitions of both functionalities.) Conceptually, the protocol
can be divided into two steps: (1) the parties run a semi-honest protocol for generating a vector of
authenticated values [u] having a single nonzero entry; then (2) a consistency check is performed
to detect malicious behavior. We explain both steps in what follows.

PA begins by choosing a uniform β ∈ F∗p and a uniform index α. Letting u ∈ Fnp be the vector
that is 0 everywhere except that u[α] = β, the goal is for the parties to generate [u]. That is, they
want PA to hold w ∈ Fnpr and PB to hold v ∈ Fnpr such that w = v+∆·u. To do so, the parties begin
by generating the authenticated value [β]; this is easy to do using a call to Fp,rsVOLE. Next, they use
a subroutine [BGI15, BGI16, BCG+17] based on the GGM construction [GGM86] to enable PB to
generate v ∈ Fnpr while allowing PA to learn all the components of that vector except for v[α]. This
is done in the following way. Let G : {0, 1}κ → {0, 1}2κ and G′ : {0, 1}κ → F2

pr be pseudorandom
generators (PRGs). PB chooses uniform s ∈ {0, 1}κ and computes all nodes in a GGM tree of depth
h with s at the root: That is, letting sij denote the value at the jth node on the ith level of the tree,

PB defines s0
0 := s and then for i ∈ [1, h) and j ∈ [0, 2i−1) computes

(
si2j , s

i
2j+1

)
:= G(si−1

j); finally,

PB computes a vector v at the leaves as (v[2j],v[2j + 1]) := G′(sh−1
j) for j ∈ [0, 2h−1). Next, PB

lets Ki
0 (resp., Ki

1) be the XOR of the values at the even (resp., odd) nodes on the ith level. (When
i = h we replace XOR with addition in Fpr .) We write(

{vj}j∈[0,n), {(Ki
0,K

i
1)}i∈[h]

)
:= GGM(1n, s)

Protocol Πp,r
spsVOLE

Initialize: This procedure is executed only once.

• PA and PB send init to Fp,rsVOLE, which returns ∆ to PB.

Extend: This procedure can be run multiple times. On input n = 2h, the parties do:

1. PA and PB send (extend, 1) to Fp,rsVOLE, which returns (a, c) ∈ Fp × Fpr to PA and b ∈ Fpr to PB such
that c = b + ∆ · a. Then, PA samples β ← F∗p, sets δ := c, and sends a′ := β − a ∈ Fp to PB, who
computes γ := b−∆ · a′. Note that δ = γ + ∆ · β ∈ Fpr , so the parties now hold [β].

PA samples α← [0, n) and defines u ∈ Fnp as the vector that is 0 everywhere except u[α] = β.

2. PB samples s← {0, 1}κ, runs GGM(1n, s) to obtain
(
{vj}j∈[0,n), {(Ki

0,K
i
1)}i∈[h]

)
, and sets v[j] := vj

for j ∈ [0, n). PA lets ᾱi be the complement of the ith bit of the binary representation of α. For
i ∈ [h], PA sends ᾱi ∈ {0, 1} to FOT and PB sends (Ki

0,K
i
1) to FOT, which returns Ki

ᾱi
to PA. Then

PA runs {vj}j 6=α := GGM′(α, {Ki
ᾱi
}i∈[h]).

3. PB sends d := γ −
∑
i∈[0,n) v[i] ∈ Fpr to PA. Then, PA defines w ∈ Fnpr as the vector with w[i] := vi

for i 6= α and w[α] := δ −
(
d+

∑
i6=αw[i]

)
. Note that w = v + ∆ · u.

Consistency check:

4. Both parties send (extend, r) to Fp,rsVOLE, which returns (x, z) ∈ Frp × Frpr to PA and y∗ ∈ Frpr to PB

such that z = y∗ + ∆ · x.

5. PA samples χi ← Fpr for i ∈ [0, n), and writes χα =
∑r−1
i=0 χα,i ·Xi. Let χα = (χα,0, . . . , χα,r−1) ∈ Frp.

PA then computes x∗ := β · χα − x ∈ Frp and sends
(
{χi}i∈[0,n),x

∗) to PB, who computes y :=
y∗ −∆ · x∗ ∈ Frpr .

6. PA computes Z :=
∑r−1
i=0 z[i] · Xi ∈ Fpr and VA :=

∑n−1
i=0 χi · w[i] − Z ∈ Fpr , while PB computes

Y :=
∑r−1
i=0 y[i] · Xi ∈ Fpr and VB :=

∑n−1
i=0 χi · v[i] − Y ∈ Fpr . Then PA sends VA to FEQ, and PB

sends VB to FEQ. If either party receives false or abort from FEQ, it aborts.

7. PA outputs (u,w) and PB outputs v.

Figure 7: Single-point sVOLE protocol in the (Fp,rsVOLE,FOT,FEQ)-hybrid model.

to denote this computation done by PB. It is easily verified that if PA is given {Ki
ᾱi
}i∈[h] (where

ᾱi is the complement of the ith bit of α), then PA can compute {v[j]}j 6=α, while v[α] remains com-
putationally indistinguishable from uniform given PA’s view. We denote the resulting computation
of PA by {vj}j 6=α := GGM′(α, {Ki

ᾱi
}i∈[h]). (PA can obtain {Ki

ᾱi
}i∈[h] using h OT invocations.)

Following the above, PA sets w[i] := v[i] for i 6= α. Note that w[i] = v[i] + ∆ · u[i] for i 6= α
(since u[i] = 0 for i 6= α), so all that remains is for PA to obtain the missing value w[α] = v[α]+∆·β
(without revealing α, β to PB). Recall the parties already hold [β], meaning that PA holds M[β]
and PB holds K[β] with M[β] = K[β] + ∆ · β. So if PB sends K[β]−

∑
i v[i], then PA can compute

the missing value as

w[α] = M[β]− (K[β]−
∑

i v[i])−
∑

i 6=α v[i]

= M[β]− K[β] + v[α] = v[α] + ∆ · β.

This completes the “semi-honest” portion of the protocol.
To verify correct behavior, we generalize the approach of Yang et al. [YWL+20] that applies

only to the case p = 2. We want to verify that w[i] = v[i] for i 6= α, and w[α] = v[α] + ∆ · β.
Intuitively, the parties do this by having PA choose uniform χ0, . . . , χn−1 ∈ Fpr and then checking

that
n−1∑
i=0

χi ·w[i] =

n−1∑
i=0

χi · v[i] + ∆ · β · χα.

Of course, this must be done without revealing α, β to PB. To do so, PA and PB use Fp,rsVOLE to
compute Z, Y ∈ Fpr , respectively, such that Z = Y + ∆ · β · χα. (We discuss below how this is
done.) They then use FEQ to check if VA =

∑n−1
i=0 χi ·w[i]−Z is equal to VB =

∑n−1
i=0 χi · v[i]− Y .

To complete the description, we show how the parties can generate Z, Y (held by PA, PB,
respectively) such that Z = Y + ∆ · β · χα. (This is like an authenticated value [β · χα], but note
that β · χα lies in Fpr rather than Fp.) PA views χα ∈ Fpr as χα = (χα,0, . . . , χα,r−1) ∈ Frp (i.e.,
χα =

∑
i∈[0,r) χα,i · Xi, where {Xi}i∈[0,r) form a basis for Fpr over Fp), and then the parties use

Fp,rsVOLE to generate the vector of authenticated values [β ·χα]. This means PA holds z and PB holds
y such that z = y + ∆ · β · χα. Let Z =

∑
i∈[0,r) z[i] · Xi and Y =

∑
i∈[0,r) y[i] · Xi. We have that

Z =

r−1∑
i=0

z[i] · Xi =

r−1∑
i=0

(y[i] + ∆ · β · χα[i]) · Xi

=

r−1∑
i=0

y[i] · Xi + ∆ · β ·
r−1∑
i=0

χα[i] · Xi

= Y + ∆ · β · χα,

as desired.
We remark that this check allows a malicious PA to guess ∆, and allows a malicious PB to guess

a subset in which the index α lies. (This will become evident in the proof of security.) Such guesses
are incorporated into the ideal functionality Fp,rspsVOLE.

Theorem 3. If G and G′ are pseudorandom generators, then Πp,r
spsVOLE UC-realizes Fp,rspsVOLE in

the (Fp,rsVOLE,FOT,FEQ)-hybrid model. In particular, no PPT environment Z can distinguish the
real-world execution from the ideal-world execution except with probability at most 1/pr + negl(κ).

The proof of Theorem 3 is given in Appendix B.3.

Optimizations. We discuss various optimizations of the protocol shown in Figure 7:

1. For large p (i.e., log p ≥ ρ), the parties can use the output of Fp,rsVOLE directly as [β] in step 1 of
protocol Πp,r

spsVOLE, since β 6= 0 with overwhelming probability.

2. In the consistency check, PA can send uniform seed ∈ {0, 1}κ to PB, who then derives the {χi}
from seed using a hash function modeled as a random oracle.

3. When t extend executions are needed, we can batch the consistency checks using the ideas of
Yang et al. [YWL+20] to reduce the total number of sVOLE correlations needed from t · (1 + r)
to t+ r. The approach is as follows:

(a) After t executions of the semi-honest portion of the extend phase, the parties hold {(uj ,wj)}tj=1

and {vj}tj=1, respectively, where for all j ∈ [t] we have wj = vj + ∆ · uj with uj a vector
that is 0 everywhere except uj [αj] = βj . Then PA and PB send (extend, r) to Fp,rsVOLE, which
returns (x, z) to PA and y∗ to PB.

(b) For j ∈ [t], PA samples χi,j ← Fpr for i ∈ [0, n), and views χαj ,j as the vector χαj ,j ∈ Frp.
It then computes x∗ :=

∑
j∈[t] βj · χαj ,j − x and sends {χi,j}i∈[0,n),j∈[t] and x∗ to PB, who

computes y := y∗ −∆ · x∗ ∈ Frpr .

(c) PA computes VA :=
∑n−1

i=0

∑t
j=1 χi,j ·wj [i]−

∑r−1
i=0 z[i]·Xi; PB computes VB :=

∑n−1
i=0

∑t
j=1 χi,j ·

vj [i]−
∑r−1

i=0 y[i] · Xi. Then both parties check whether VA = VB by calling FEQ.

5.2 sVOLE Extension

We show here a protocol that can be viewed as a means of performing “sVOLE extension.” That is,
our protocol allows two parties to efficiently extend a small number of sVOLE correlations (created
in a setup phase) to an arbitrary polynomial number of sVOLE correlations. The protocol relies
on spsVOLE as a subroutine, as well as a variant of the LPN assumption that has been used in
prior work [HOSS18, BCG+19a, YWL+20].

Protocol overview. The parties use the base-sVOLE protocol to generate a length-k vector of
authenticated values [u]. They also use spsVOLE to generate t vectors of authenticated values, each
of length n/t and having a single nonzero entry; they let [e] be the concatenation of those vectors.
The parties then use a public matrix A to define the length-n vector of authenticated values [u·A+
e]; by the LPN assumption, the corresponding values (which PA knows) will appear pseudorandom
to PB. This provides a way to extend k random sVOLE correlations to n pseudorandom sVOLE
correlations once. As in prior work [YWL+20], however, we can generate ` = n− k correlations as
many times as desired by simply using this idea to generate n sVOLE correlations and reserving
the first k of those correlations for the next iteration of the extend phase.

LPN assumption. Let Dn,t denote the distribution over an error vector e ∈ Fnp in which e is
divided into t blocks (each of length n/t), and each block of contains exactly one uniform nonzero
entry at a uniform location within that block.

Definition 1 (LPN with static leakage [BCG+19a]). Let G be a polynomial-time algorithm that on
input 1k, 1n, p outputs A ∈ Fk×np . Let parameters k, n, t be implicit functions of security parame-

ter κ. We say that the LPNGk,n,t,p assumption holds if for all PPT algorithms A we have∣∣Pr[LPN-SuccGA(κ) = 1]− 1/2
∣∣ ≤ negl(κ),

where the experiment LPN-SuccGA(κ) is defined as follows:

1. Sample A ← G(1k, 1n, p), u ← Fkp, and e ← Dn,t. Let α1, . . . , αt be the indices of the nonzero
entries in e (each of which is located in a disjoint block of length n/t).

2. A outputs t subsets I1, . . . , It ⊆ [0, n). If αi ∈ Ii for all i ∈ [t], then send success to A; otherwise,
abort the experiment and define b′ := 0.

3. Pick b← {0, 1}. If b = 0, let x := u ·A + e; otherwise, sample x← Fnp . Send x to A, who then
outputs a bit b′ (if the experiment did not abort).

4. The experiment outputs 1 iff b′ = b.

Protocol description. In Figure 8, we present our sVOLE extension protocol in the (Fp,rsVOLE,F
p,r
spsVOLE)-

hybrid model. For simplicity, we assume a public matrix A ∈ Fk×np , output by an efficient algorithm

G(1k, 1n, p), that is fixed at the outset of the protocol. (It is also possible to have PA generate A
and then send it to PB.) We assume that Fp,rspsVOLE and Fp,rsVOLE share the same initialization (i.e.,

use the same global key ∆). This holds, in particular, when we use protocol Πp,r
spsVOLE from the

previous section to UC-realize Fp,rspsVOLE.

Protocol Πp,r
sVOLE

Parameters: Fix n, k, t, and define ` = n − k and m = n/t. Let A ∈ Fk×np be a matrix output by

G(1k, 1n, p).

Initialize: This procedure is executed only once.

1. PA and PB send init to Fp,rsVOLE, which returns ∆ ∈ Fpr to PB.

2. PA and PB send (extend, k) to Fp,rsVOLE, which returns (u,w) to PA and v to PB such that w =
v + ∆ · u ∈ Fkpr .

Extend: This procedure can be executed multiple times.

3. For i ∈ [t], PA and PB send (sp-extend,m) to Fp,rspsVOLE, which returns (ei, ci) to PA and bi to PB such
that ci = bi + ∆ · ei ∈ Fmpr and ei ∈ Fmp has exactly one nonzero entry. If either party receives abort
from Fp,rspsVOLE in any of these spsVOLE executions, it aborts.

4. PA defines e = (e1, . . . , et) ∈ Fnp and c = (c1, . . . , ct) ∈ Fnpr . Then PA computes x := u ·A + e ∈ Fnp
and z := w ·A + c ∈ Fnpr . PB defines b = (b1, . . . , bt) ∈ Fnpr and computes y := v ·A + b ∈ Fnpr .

5. PA updates u,w by setting u := x[0 : k) ∈ Fkp and w := z[0 : k) ∈ Fkpr , and outputs (s,M[s]) :=

(x[k : n), z[k : n)) ∈ F`p×F`pr . PB updates v by setting v := y[0 : k) ∈ Fkpr , and outputs K[s] := y[k :

n) ∈ F`pr .

Figure 8: The sVOLE extension protocol in the (Fp,rsVOLE,F
p,r
spsVOLE)-hybrid model.

Theorem 4. If the LPNGk,n,t,p assumption holds, then Πp,r
sVOLE UC-realizes Fp,rsVOLE in the (Fp,rsVOLE,F

p,r
spsVOLE)-

hybrid model.

A proof of the above can be found in Appendix B.4, where we also describe further optimizations
for protocol Πp,r

sVOLE.

6 Performance Evaluation

In this section, we report on the performance of our sVOLE protocol and our overall ZK pro-
tocol for both boolean and arithmetic circuits. All our protocols were implemented in the EMP
toolkit [WMK16], and we will release an open-source version of our code. In all our experiments,
we use two Amazon EC2 instances of type m5.4xlarge with 16 vCPUs and 64 GB of RAM, using
5 threads. We artificially limit the network bandwidth as indicated in each experiment. All imple-
mentations achieve the statistical security parameter ρ ≥ 40 and computational security parameter
κ = 128.

6.1 (Subfield) Vector Oblivious Linear Evaluation

We focus here on the performance of protocol Πp,r
sVOLE over large fields; specifically, we fix the

Mersenne prime p = 261 − 1 and set r = 1. (Since r = 1, sVOLE is equivalent to VOLE in this
case.)

Parameter selection. As suggested in prior work [BCGI18, SGRR19, YWL+20], we choose the
public LPN matrix A as a generator of a 10-local linear code, which means that each column of A
contains exactly 10 (uniform) nonzero entries. This is advantageous since it means that computing
each entry of u · A involves reading only 10 positions of u ∈ Fkp. To ensure that reading those

One-time setup Extend execution

k0 n0 t0 k n t

19,870 642,048 2,508 589,760 10,805,248 1,319

Table 2: LPN parameters used in our VOLE protocol.

20 Mbps 50 Mbps 100 Mbps 500 Mbps 1 Gbps

Init. (ms) 1343 640 478 451 438
Extend (ns/VOLE) 101 87 85 85 85

Table 3: Efficiency of our VOLE protocol as a function of network bandwidth. The communication
per VOLE correlation is 0.42 bits; the overall communication of the one-time setup is 1.1 MB.

positions can be done quickly, we set k so that u fits in the L1 CPU cache (i.e., the size of u is
less than 8 MB). With k fixed, for any choice of n > k we can take the smallest t for which all
known attacks on the LPN problem require at least 2128 operations [BCGI18, BCG+19a]. When
we apply the optimizations described at the end of the previous section to our protocol, we see
that using LPN parameters (n, k, t) means that each invocation of the extend procedure results in
n − k − t − 1 usable VOLE correlations. We perform exhaustive search to find the smallest n so
that n− k− t− 1 ≥ 107. For the parameters of the setup phase, we follow the same step as above,
except that we will ensure that n0 − k0 − t0 − 1 ≥ k. This results in the LPN parameters shown in
Table 2.

Performance. We evaluate the efficiency of protocol Πp,r
sVOLE in Table 3. The extend procedure

requires very little communication (less than half a bit per usable VOLE correlation), and its
execution time is largely unaffected by the network bandwidth above 100 Mbps. The one-time
initialization only communicates 1.1 MB and takes roughly 478 milliseconds under a 100 Mbps
network.

In Table 4, we compare our VOLE protocol with the best known protocols that have been
implemented [SGRR19, dCJV20]. Since our protocol needs an one-time setup, that can be amor-
tized over multiple executions, we report our performance both without one-time setup (in case
multiple extensions are executed), and the one with one-time setup (in case only one extension
is executed). We fix the network bandwidth to 500 Mbps to match the experiments of Castro et
al. [dCJV20]. Our protocol outperforms prior work even though prior work is secure only against
semi-honest adversaries, whereas our protocol is secure in the malicious setting. Note in particular
that the communication complexity of our protocol is orders of magnitude lower than prior work.
Boyle et al. [BCG+19a] also proposed a maliciously secure sVOLE protocol but only implemented
their protocol for the special case p = 2, r = 128. Based on their implementation in that case, we
estimate that for our choice of p their protocol would communicate roughly 0.14 bits per sVOLE;

[SGRR19] [dCJV20]
Ours Ours

(w/o setup) (w/ setup)

Communication (bits) 960 160 0.42 1.32
Execution time (ns) 2000 400 85 130

Table 4: Our VOLE protocol vs. prior protocols. We fix the network bandwidth to 500 Mbps
and report the marginal cost per VOLE correlation. Running time for the protocol of Schoppmann et
al. [SGRR19] is the time for communication alone; numbers for the protocol of Castro et al. [dCJV20] are
taken from their paper and are based on the same network and CPU configuration but using 8 threads.

however their computation is much heavier than ours and would take time at least 900 ns per
VOLE correlation. Therefore, we believe that our protocol is still more efficient for most network
bandwidth settings.

6.2 Zero-Knowledge Proofs

We report on the performance of our ZK protocol for boolean and arithmetic circuits. In both
cases, we use pipelining [HEKM11] to streamline the protocol execution. This significantly reduces
the memory usage (from linear in the circuit size to linear in the memory needed to evaluate the
circuit non-cryptographically) and allows us to scale to very large circuits.

To further reduce the memory usage for large circuits, we changed the protocol so that rather
than checking the correctness of all C multiplication gates at the end, we check blocks of C ′ < C
gates at a time. This increases the round complexity to O(C/C ′) but reduces the memory usage
to O(C ′).

6.2.1 Zero-Knowledge Proofs for Boolean Circuits

In the boolean setting, we check correctness of multiplication gates as in Figure 3. Theorem 1
shows that to achieve ρ-bit statistical security we need

(
C′B+c
B

)
> 2ρ. Setting c = B, we have

(
C ′B +B

B

)
=

∏B
i=1(C ′B + i)

B!
=

B−1∏
i=0

(
B

B − i
· C ′ + 1

)
≥ C ′B,

and so we need C ′ ≥ 2ρ/B. For the best efficiency, we set B = 2 when possible. For batched
opening of authenticated values, we use the second approach described in Section 2.1 along with
the Fiat-Shamir heuristic to make it non-interactive. We instantiate Fp,rsVOLE using Ferret [YWL+20]
with p = 2 and r = 128.

Performance. The execution of our protocol can be split into two stages: input processing, whose
cost is proportional to the witness length, and circuit processing, whose cost is proportional to
the number of AND gates. Therefore, we measure the scalability of our ZK protocol by increasing
either the witness length or the circuit size while artificially keeping the other value fixed. The
experimental results in Figure 9 show that the execution time is indeed linear in both the witness
length and the circuit size, with very small marginal cost for each bit of the witness or each AND
gate. For example, under a 50 Mbps network, the marginal time of our protocol is 3.35 µs per bit
of the witness and 0.5 µs per AND gate of the circuit.

The ZKGC approach [JKO13, HK20] is the only previous approach for efficient ZK proofs that
scales to large circuits while using less than 10 GB of memory. The communication complexity
of our protocol is roughly 15× lower than the ZKGC approach. For this reason, our protocol is
particularly well-suited for settings involving a low-bandwidth network.

Example 1: Merkle trees. As a representative example highlighting the efficiency and scalability
of our protocol, we consider proving knowledge of the n = 2d leaves in a complete Merkle tree of
depth d using SHA-256 as the internal hash function, where the root digest is known to both parties.
In Figure 10, we report on the running time and overall memory usage of our protocol for d ranging
from 6 to 19 (totaling 63–524,287 calls to SHA-256). Since the boolean circuit for SHA-256 has
22,573 AND gates, the largest circuit in these experiments contains more than 11 billion gates.

The overall memory consumption of our protocol is about 400 MB; this is dominated by the
initial generation of 107 sVOLE correlations during the offline phase of the execution. During the

224 228 229 230

Bit-length of the witness

0

500

1000

1500

2000
R

un
ni

ng
tim

e
(s

) 10 Mbps, 854 ns/bit
50 Mbps, 185 ns/bit
100 Mbps, 104 ns/bit

224 228 229 230

Number of AND gates in the circuit

0

500

1000

1500

2000

R
un

ni
ng

tim
e

(s
) 10 Mbps, 1.31µs/gate

50 Mbps, 0.50µs/gate
100 Mbps, 0.46µs/gate

Figure 9: Scalability of Wolverine for boolean circuits.

5 7 9 11 13 15 17 19
Depth of Merkle tree

23

27

211

R
un

ni
ng

tim
e

(s
) 10 Mbps

50 Mbps
100 Mbps

6 8 10 12 14 16 18
Depth of Merkle tree

0.00

0.25

0.50

0.75

1.00

M
em

or
y

us
ag

e
(G

B
)

Figure 10: Running time and memory usage of Wolverine when proving knowledge of all leaves
in a Merkle tree of a given depth.

online phase, the Merkle-tree computation is implemented in a post-order, depth-first fashion so
that the additional memory usage at any point corresponds only to authenticated values for O(d)
tree nodes (at most 150 KB). Since this is dominated by the memory usage during the online phase,
the memory usage plotted in Figure 10 is nearly constant even as d increases.

In Table 1, we compare the performance of our protocol to that of the state-of-the-art protocols
for the same problem, in a 200 Mbps network. (There, we report on the performance of our protocol
using only one thread.) We benchmarked all prior work except for Ligero [AHIV17], for which we
obtained performance estimates from the authors. Spartan [Set20] uses the R1CS representation,
so we conservatively assume that each SHA-256 hash requires 22,573 constraints. Virgo [ZXZS20]
does not support free-XOR, and thus for each SHA-256 hash it uses roughly 218 gates. (For this
reason, the running time of Virgo for the Merkle-tree example is close to its running time for
the matrix-multiplication example.) Compared to the ZKGC approach, Wolverine achieves better
running time and about 15× lower communication, which means that it will be up to 15× faster
when running in a low-bandwidth network. Compared to other protocols, we achieve at least a 5×
improvement in execution time while using less memory.

Example 2: Proving existence of a bug in programs. We also apply our system to prove
the existence of a bug in one out of a set of n program snippets in zero knowledge (in particular,
without revealing which snippet contains the bug). This problem was recently studied by Heath
and Kolesnikov [HK20], who showed how to adapt the ZKGC approach using a technique called
stacked garbling so as to obtain communication proportional to the size ` of the largest program
snippet, rather than the total size O(n · `) of all programs snippets.

10 Mbps 100 Mbps

Number of snippets 4 50 200 4 50 200

Stacked garbling (s) 22 22.1 22.2 2.3 2.5 3.18
Our protocol (s) 0.42 5.2 20.8 0.15 1.8 7.2

Table 5: Comparing Wolverine to ZKGC with stacked garbling for proving the existence of a
bug in one of multiple code snippets.

DECO [ZMM+20] Blind CA [WAP+19]

Protocol DECO Wolverine Blind CA Wolverine

Execution time 12.6 s 0.28 s 71 s 3.3 s
Communication 1.7 KB 184 KB 85.1 MB 2.8 MB

Table 6: Using our protocol Wolverine in ZK-enabled applications. All benchmarks are based on a
10 Mbps network and reflect the ZK component only.

We performed experiments using the same programs as in the work of Heath and Kolesnikov.
These result in boolean circuits whose sizes range from 70,869–90,772 AND gates and whose largest
input length is 112 bits. We show the results in Table 5. Wolverine does not use the stacked garbling
optimization,2 and so has communication complexity O(n · `). Nevertheless, for moderate values
of n, Wolverine is still noticeably faster than ZKGC with stacked garbling. The effect is more
pronounced in lower-bandwidth networks.

Example 3: Accelerating ZK-enabled applications. Here we discuss the use of Wolverine in
two recent applications that rely on ZK proofs. Both applications require interaction anyway, and
so there is no real disadvantage to using an interactive ZK proof in these cases. We describe the
applications below, and present the relevant benchmarking results in Table 6.

DECO [ZMM+20] allows third-party proofs of data provenance for TLS connections, i.e., it
allows a client to prove that certain data originated at a particular website. (We confirmed with
the authors that interactive ZK proofs can also be used in their system.) One example considered
by DECO is where a customer proves the existence of price discrimination by proving in zero
knowledge that it was sent a price exceeding a certain threshold. Proving this statement involves a
boolean circuit containing roughly 163,000 AND gates. In the original paper [ZMM+20], a ZK proof
for this statement was implemented using libSNARK; this resulted in a short proof but required
high computational overhead. When running over a 10 Mbps network, Wolverine is able to reduce
the execution time of the ZK-proof component by 45×, resulting in a 9× end-to-end improvement
in the overall DECO protocol.

A blind Certificate Authority (CA) is able to issue a valid certificate binding a party with an as-
sociated public key, without learning the party’s identity. A recent proposal of a blind CA [WAP+19]
required a ZK proof of a statement corresponding to a boolean circuit with roughly 2.5 million AND
gates. The existing implementation used a ZK proof based on the MPC-in-the-head approach; the
proof took more than 70 seconds to execute over a 10 Mbps network. Plugging Wolverine into
their protocol, we improve the communication complexity by 30× and the execution time by 20×,
compared to the original protocol [WAP+19] for CA-proof generation.

2We leave incorporating stacked garbling into Wolverine as a future work.

224 228 229 230

Number of field elements for a witness

0

500

1000

1500

2000
R

un
ni

ng
tim

e
(s

) 50 Mbps, 1.38µs/element
100 Mbps, 1.17µs/element
500 Mbps, 1.10µs/element

222 226 227 228

Number of multiplication gates in a circuit

0

500

1000

1500

2000

R
un

ni
ng

tim
e

(s
) 50 Mbps, 5.52µs/gate

100 Mbps, 2.97µs/gate
500 Mbps, 1.04µs/gate

Figure 11: Performance of Wolverine for arithmetic circuits.

6.2.2 Zero-Knowledge Proofs for Arithmetic Circuits

We also evaluated Wolverine for arithmetic circuits over Fp with p = 261 − 1 using our VOLE
implementation shown in Section 6.1. In this setting we check correctness of multiplication gates
using the first optimization described in Section 3.2, and we use the first approach discussed in
Section 2.1 for batched opening of authenticated values.

Performance. Similar to the boolean case, we study the performance of Wolverine as a function
of the witness length and circuit size; the experimental results are reported in in Figure 11. As
the communication complexity is inherently higher for the arithmetic case than the boolean set-
ting (since each field element is 61 bits long), we benchmarked performance in higher-bandwidth
networks. Wolverine can execute proofs at a rate of about 1 million multiplication gates per second
in a 500 Mbps network, and roughly 200,000 multiplication gates per second in a 50 Mbps.

We are not aware of any memory-efficient ZK protocol that natively works with arithmetic
circuits. While one could always convert an arithmetic circuit to a boolean circuit, this will generally
impose significant overhead.

Example 1: Matrix multiplication. We apply our ZK protocol to prove knowledge of two n×n
matrices whose product is a publicly known matrix. While the problem itself is meaningless, it has
been used as a benchmark in prior work [BCC+16, WTS+18, XZZ+19, ZXZS20]. We experimented
with n ranging from 64–768 (with the witness ranging from 8,192 to over 1 million field elements),
using a matrix-multiplication circuit corresponding to the naive O(n3)-time algorithm. The time
and memory usage of Wolverine are shown in Figure 12. The memory usage of Wolverine grows
slowly as n increases, and never exceeds 350 MB.

As shown in Table 1, our protocol is 2× faster than Spartan but 5× slower than Virgo. Impor-
tantly, however, the prover memory of Wolverine is only 3% of that used by Virgo and 0.5% of that
needed by Spartan.

Example 2: Solutions to lattice problems. Various prior works have explored ZK proofs
for the Short Integer Solution (SIS) problem. Here, we have public A ∈ Zn×mq and t ∈ Znq , and
the prover’s goal is to convince the verifier that it knows a short s such that As = t mod q. We
evaluate Wolverine based on different notions of shortness for s as explained next.

Baum and Nof [BN20] recently showed a ZK proof for SIS in the case where s ∈ {0, 1}m is
a binary vector. We compare Wolverine to their protocol in Table 7. In our experiments, we
use q ≈ 261, n = 1024, and m = 4096 to align with the parameters used by Baum and Nof;
those parameters are also sufficient for the somewhat homomorphic encryption scheme used for the
SPDZ setup phase [BGV12]. As shown in Table 7, our protocol is over 16× more efficient than the
protocol of Baum and Nof even when run over a much slower network.

0 200 400 600 800
Number of columns

0

1000

2000

3000
R

un
ni

ng
tim

e
(s

) 50 Mbps
100 Mbps
500 Mbps

200 400 600 800
Number of columns

200

250

300

350

400

M
em

or
y

us
ag

e
(M

B
)

Figure 12: Using Wolverine for matrix multiplication.

Our ZK protocol Wolverine (ms) [BN20]

50 Mbps 100 Mbps 500 Mbps 10 Gbps 10 Gbps

74 63 55 55 1228

Table 7: Running time of Wolverine vs. the protocol by Baum and Nof [BN20] for proving
knowledge of an SIS solution. The solution is assumed to be a binary vector.

Protocol BLS [BLS19] Aurora [BCOS20] ENS [ENS20] Ours

Communication 384 KB 233 KB 53 KB 32.8 KB

Table 8: Communication complexity of Wolverine vs. dedicated protocols for proving knowledge
of an SIS solution. The solution is assumed to be a vector over {−1, 0, 1}. Numbers for prior work are
taken from Esgin et al. [ENS20].

In Table 8, we compare Wolverine with other ZK proofs for SIS [BLS19, BCOS20, ENS20] that
apply when s ∈ {−1, 0, 1}m. Here we fix q ≈ 232, n = 2048, and m = 1024 to align with prior work.
We see that Wolverine uses only 60% of the communication compared to the best prior work. (We
are not able to compare the running time, since it was not reported by prior work.)

Acknowledgements

This material is based upon work supported in part by DARPA under Contract No. HR001120C0087.
The views, opinions, and/or findings expressed are those of the author(s) and should not be in-
terpreted as representing the official views or policies of the Department of Defense or the U.S.
Government. Work of Kang Yang is supported by the National Natural Science Foundation of
China (Grant No. 61932019). Distribution Statement “A” (Approved for Public Release, Distribu-
tion Unlimited).

References

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof,
Kazuma Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC
for malicious adversaries - breaking the 1 billion-gate per second barrier. In IEEE
Symp. Security and Privacy 2017, pages 843–862. IEEE, 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without a trusted setup. In ACM
Conf. on Computer and Communications Security (CCS) 2017, pages 2087–2104. ACM
Press, 2017.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In
IEEE Symp. Security and Privacy 2018, pages 315–334. IEEE, 2018.

[BBHR19] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowl-
edge with no trusted setup. In Advances in Cryptology—Crypto 2019, Part III, volume
11694 of LNCS, pages 701–732. Springer, 2019.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting.
In Advances in Cryptology—Eurocrypt 2016, Part II, volume 9666 of LNCS, pages
327–357. Springer, 2016.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: Verifying program executions succinctly and in zero knowledge. In
Advances in Cryptology—Crypto 2013, Part II, volume 8043 of LNCS, pages 90–108.
Springer, 2013.

[BCG+17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrù. Homo-
morphic secret sharing: Optimizations and applications. In ACM Conf. on Computer
and Communications Security (CCS) 2017, pages 2105–2122. ACM Press, 2017.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In ACM Conf. on Computer and Communications Security (CCS) 2019,
pages 291–308. ACM Press, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Advances in Cryptology—Crypto 2019, Part III, volume 11694 of LNCS, pages 489–
518. Springer, 2019.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In ACM Conf. on Computer and Communications Security (CCS) 2018, pages
896–912. ACM Press, 2018.

[BCOS20] Cecilia Boschini, Jan Camenisch, Max Ovsiankin, and Nicholas Spooner. Efficient
post-quantum SNARKs for RSIS and RLWE and their applications to privacy. In
PQCrypto 2020, pages 247–267. Springer, April 9–11 2020.

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Ad-
vances in Cryptology—Eurocrypt 2019, Part I, volume 11476 of LNCS, pages 103–128.
Springer, 2019.

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. In USENIX Security Sym-
posium 2014, pages 781–796. USENIX Association, 2014.

[Bea92] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances
in Cryptology—Crypto 1991, LNCS, pages 420–432. Springer, 1992.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from DARK
compilers. In Advances in Cryptology—Eurocrypt 2020, Part I, volume 12105 of LNCS,
pages 677–706. Springer, 2020.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Advances in
Cryptology—Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 337–367. Springer,
2015.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. In ACM Conf. on Computer and Communications Security (CCS) 2016,
pages 1292–1303. ACM Press, 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomor-
phic encryption without bootstrapping. In ITCS 2012, pages 309–325, Cambridge,
MA, USA, January 8–10, 2012. Association for Computing Machinery.

[BLS19] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for
short(er) exact lattice-based zero-knowledge proofs. In Advances in Cryptology—
Crypto 2019, Part I, volume 11692 of LNCS, pages 176–202. Springer, 2019.

[BMRS20] Carsten Baum, Alex J. Malozemoff, Marc Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for arithmetic circuits with nested disjunctions. Cryptology
ePrint Archive, Report 2020/1410, 2020. https://eprint.iacr.org/2020/1410.

[BN20] Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge arguments for arith-
metic circuits and their application to lattice-based cryptography. In Intl. Conference
on Theory and Practice of Public Key Cryptography 2020, Part I, LNCS, pages 495–
526. Springer, 2020.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 136–145. IEEE, 2001.

[CDE+18] Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, Peter Scholl, and Chaoping Xing.
SPD Z2k : Efficient MPC mod 2k for dishonest majority. In Advances in Cryptology—
Crypto 2018, Part II, volume 10992 of LNCS, pages 769–798. Springer, 2018.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-
knowledge and signatures from symmetric-key primitives. In ACM Conf. on Computer
and Communications Security (CCS) 2017, pages 1825–1842. ACM Press, 2017.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-quantum and trans-
parent recursive proofs from holography. In Advances in Cryptology—Eurocrypt 2020,
Part I, volume 12105 of LNCS, pages 769–793. Springer, 2020.

[dCJV20] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast vector oblivious
linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report
2020/685, 2020. https://eprint.iacr.org/2020/685.

https://eprint.iacr.org/2020/1410
https://eprint.iacr.org/2020/685

[dDOS19] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P. Smart.
BBQ: Using AES in picnic signatures. In Annual International Workshop on Selected
Areas in Cryptography (SAC) 2019, LNCS, pages 669–692. Springer, 2019.

[DIO20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its
applications. Cryptology ePrint Archive, Report 2020/1446, 2020. https://eprint.

iacr.org/2020/1446.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Advances in Cryptology—
Crypto 2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

[ENS20] Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs
from lattices: New techniques to exploit fully-splitting rings, 2020.

[FNO15] Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free gar-
bled circuits with applications to efficient zero-knowledge. In Advances in Cryptology—
Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 191–219. Springer, 2015.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. J. ACM, 33(4):792–807, October 1986.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct NIZKs without PCPs. In Advances in Cryptology—
Eurocrypt 2013, LNCS, pages 626–645. Springer, 2013.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryptology—Crypto 1999,
volume 1666 of LNCS, pages 116–129. Springer, 1999.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: interactive proofs for muggles. In 40th Annual ACM Symposium on Theory of
Computing (STOC), pages 113–122. ACM Press, 2008.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge
for Boolean circuits. In USENIX Security Symposium 2016, pages 1069–1083. USENIX
Association, 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In 17th Annual ACM Symposium on
Theory of Computing (STOC), pages 291–304. ACM Press, 1985.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 218–229. ACM Press, 1987.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. J. ACM,
38(3):691–729, 1991.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Ad-
vances in Cryptology—Asiacrypt 2010, LNCS, pages 321–340. Springer, 2010.

https://eprint.iacr.org/2020/1446
https://eprint.iacr.org/2020/1446

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security Symposium 2011. USENIX
Association, 2011.

[HK20] David Heath and Vladimir Kolesnikov. Stacked garbling for disjunctive zero-knowledge
proofs. In Advances in Cryptology—Eurocrypt 2020, Part III, volume 12107 of LNCS,
pages 569–598. Springer, 2020.

[HOSS18] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez.
TinyKeys: A new approach to efficient multi-party computation. In Advances in
Cryptology—Crypto 2018, Part III, volume 10993 of LNCS, pages 3–33. Springer, 2018.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Advances in Cryptology—Crypto 2003, volume 2729 of LNCS, pages 145–
161. Springer, 2003.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In 39th Annual ACM Symposium on Theory of
Computing (STOC), pages 21–30. ACM Press, 2007.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st Annual ACM Symposium on
Theory of Computing (STOC), pages 12–24. ACM Press, 1989.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In ACM Conf.
on Computer and Communications Security (CCS) 2013, pages 955–966. ACM Press,
2013.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero
knowledge with applications to post-quantum signatures. In ACM Conf. on Computer
and Communications Security (CCS) 2018, pages 525–537. ACM Press, 2018.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension
with optimal overhead. In Advances in Cryptology—Crypto 2015, Part I, volume 9215
of LNCS, pages 724–741. Springer, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In ACM Conf. on Computer and
Communications Security (CCS) 2016, pages 830–842. ACM Press, 2016.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Advances
in Cryptology—Crypto 2012, volume 7417 of LNCS, pages 681–700. Springer, 2012.

[NO09] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In 6th Theory of Cryptography Conference—TCC 2009, volume 5444 of LNCS, pages
368–386. Springer, 2009.

[Set20] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. In Advances in Cryptology—Crypto 2020, Part III, LNCS, pages 704–737.
Springer, 2020.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In ACM Conf. on
Computer and Communications Security (CCS) 2019, pages 1055–1072. ACM Press,
2019.

[WAP+19] Liang Wang, Gilad Asharov, Rafael Pass, Thomas Ristenpart, and Abhi Shelat. Blind
certificate authorities. In IEEE Symp. Security and Privacy 2019, pages 1015–1032.
IEEE, 2019.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient Multi-
Party computation toolkit. https://github.com/emp-toolkit, 2016.

[WTS+18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In IEEE Symp. Security and Pri-
vacy 2018, pages 926–943. IEEE, 2018.

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. Libra: Succinct zero-knowledge proofs with optimal prover computation. In
Advances in Cryptology—Crypto 2019, Part III, volume 11694 of LNCS, pages 733–
764. Springer, 2019.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In ACM Conf. on Computer
and Communications Security (CCS) 2020, pages 1607–1626. ACM Press, 2020.

[YWZ20] Kang Yang, Xiao Wang, and Jiang Zhang. More efficient MPC from improved triple
generation and authenticated garbling. In ACM Conf. on Computer and Communica-
tions Security (CCS) 2020, pages 1627–1646. ACM Press, 2020.

[ZMM+20] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels.
DECO: Liberating web data using decentralized oracles for TLS. In ACM Conf. on
Computer and Communications Security (CCS) 2020, pages 1919–1938. ACM Press,
2020.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reduc-
ing data transfer in garbled circuits using half gates. In Advances in Cryptology—
Eurocrypt 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer, 2015.

[ZXZS20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. Transparent polyno-
mial delegation and its applications to zero knowledge proof. In IEEE Symp. Security
and Privacy 2020, pages 859–876. IEEE, 2020.

A Other Functionalities

We review the standard ideal functionality for oblivious transfer (OT) in Figure 13.
In Figure 14 we define a functionality FEQ implementing a weak equality test that reveals PA’s

input to PB. This functionality can be easily realized as follows: (1) PB commits to VB; (2) PA

sends VA to PB; (3) PB outputs (VA
?
= VB) and aborts if they are not equal, and then opens VB;

(4) if PB opened its commitment to a value VB, then PA outputs (VA
?
= VB); otherwise it aborts.

UC commitments can be realized efficiently in the random-oracle model.

https://github.com/emp-toolkit

Functionality FOT

On receiving (m0,m1) with |m0| = |m1| from a sender PA and b ∈ {0, 1} from a receiver PB, send mb

to PB.

Figure 13: The OT functionality between PA and PB.

Functionality FEQ

Upon receiving VA from PA and VB from PB, send (VA
?
= VB) and VA to PB, and do:

• If PB is honest and VA = VB, or is corrupted and sends continue, then send (VA
?
= VB) to PA.

• If PB is honest and VA 6= VB, or is corrupted and sends abort, then send abort to PA.

Figure 14: Functionality for a weak equality test.

B Methods for Batch Checking

We describe two approaches for batch checking of authenticated values. The first relies on a cryp-
tographic hash function H. Specifically, PA sends (in addition to the values x1, . . . , x` themselves)

a digest h := H(M[x1], . . . ,M[x`]) of all the MAC tags; PB then checks that h
?
= H(K[x1] + ∆ ·

x1, . . . ,K[x`]+∆ ·x`). Modeling H as a random oracle with 2κ-bit output, it is not hard to see that
the soundness error (i.e., the probability that PA can successfully cheat about any value) is upper
bounded by (q2

H + 1)/22κ + 1/pr, where qH denotes the number of queries that PA makes to H. The
communication overhead is only 2κ bits, independent of `.

The second approach, which is information theoretic, works as follows:

1. PA sends x1, . . . , x` ∈ Fp to PB.

2. PB picks uniform χ1, . . . , χ` ∈ Fpr and sends them to PA.

3. PA computes M[x] :=
∑`

i=1 χi ·M[xi], and sends it to PB.

4. PB computes x :=
∑`

i=1 χi · xi ∈ Fpr and K[x] :=
∑`

i=1 χi · K[xi] ∈ Fpr . It accepts the opened
values if and only if M[x] = K[x] + ∆ · x.

The soundness error of this approach is given by Lemma 2.

Lemma 2. Let x1, . . . , x` ∈ Fp and M[x1], . . . ,M[x`] ∈ Fpr be arbitrary values known to PA, and

let ∆ and {K[xi] = M[xi]−∆ · xi}`i=1, for uniform ∆ ∈ Fpr , be given to PB. The probability that
PA can successfully open values (x′1, . . . , x

′
`) 6= (x1, . . . , x`) to PB is at most 2/pr.

Proof. Fix (x′1, . . . , x
′
`) 6= (x1, . . . , x`) sent by PA in the first step. If we let ω

def
=
∑`

i=1 χi · (x′i− xi),
then the probability (over uniform choice of {χi}) that ω = 0 is at most 1/pr.

Protocol Πp,r
COPEe

Let m = dlog pe and PRF be a keyed function.

Initialize: This initialization procedure is executed only once.

1. For i ∈ [rm], PA samples Ki
0,K

i
1 ← {0, 1}

κ
. PB samples ∆ ← Fpr and lets ∆B = (∆1, . . . ,∆rm) ∈

{0, 1}rm be its bit-decomposition.

2. For i ∈ [rm], PA sends (Ki
0,K

i
1) to FOT and PB sends ∆i ∈ {0, 1} to FOT, which returns Ki

∆i
to PB.

Extend: This procedure can be executed multiple times. For the jth input u ∈ Fp from PA, the parties
execute the following:

3. For i ∈ [rm], do the following in parallel:

(a) PA sets wi0 := PRF(Ki
0, j) and wi1 := PRF(Ki

1, j) with wi0, w
i
1 ∈ Fp; PB computes wi∆i

:=

PRF(Ki
∆i
, j).

(b) PA sends τ i := wi0 − wi1 − u ∈ Fp to PB.

(c) PB computes vi := wi∆i
+ ∆i · τ i = wi0 −∆i · u ∈ Fp.

4. Let v = (v1, . . . , vrm) and w = (w1
0, . . . , w

rm
0) such that w = v + u ·∆B ∈ Frmp .

5. PA outputs w = 〈g,w〉 ∈ Fpr and PB outputs v = 〈g,v〉 ∈ Fpr , where w = v + ∆ · u ∈ Fpr .

Figure 15: COPEe protocol in the FOT-hybrid model.

Assume ω 6= 0. If PA sends M ∈ Fpr , then PB accepts only if

M =
∑̀
i=1

χi · K[xi] + ∆ ·
∑̀
i=1

·χi · x′i

=
∑̀
i=1

χi · (M[xi]−∆ · xi) + ∆ ·
∑̀
i=1

χi · x′i

=
∑̀
i=1

χi ·M[xi] + ∆ · ω.

Everything in the final expression is fixed except for ∆. Moreover, PA succeeds iff ∆ = ω−1 · (M−∑`
i=1 χi ·M[xi]), which occurs with probability 1/pr.

We can make the second approach non-interactive, using the Fiat-Shamir heuristic in the
random-oracle model, by computing the coefficients {χi} as the output of a hash function H evalu-
ated on the values {xi} sent by PA in the first step. Adapting the above proof, one can show that
this has soundness error at most (qH + 2)/pr.

B.1 Construction of COPEe

In Figure 15, we present a protocol Πp,r
COPEe that UC-realizes Fp,rCOPEe in the FOT-hybrid model.

This protocol follows the construction of Keller et al. [KOS16], which is in turn based on the IKNP
OT-extension protocol [IKNP03] and Gilboa’s approach [Gil99] for oblivious product evaluation.
The main difference from prior work is that we support the subfield case.

Lemma 3. If PRF is a pseudorandom function, then Πp,r
COPEe UC-realizes Fp,rCOPEe in the FOT-hybrid

model.

The proof of Lemma 3 can be straightforwardly obtained by following the proof of Keller et
al. [KOS16], and is thus omitted.

B.2 Proof of Theorem 2

Recall that our protocol Πp,r
base-sVOLE is established over the sub-protocol Πp,r

base-LsVOLE with a selective-
failure leakage on ∆ (the first part of Figure 5). Thus, we first prove that protocol Πp,r

base-LsVOLE
UC-realizes functionality Fp,rLsVOLE, where Fp,rLsVOLE is the same as Fp,rsVOLE except that the global-key
query is replaced with the following selective-failure queries:

• Wait for the adversary to input (guess, S) where S efficiently describes a subset of Fpr . If ∆ ∈ S,
then send success to the adversary and continue. Otherwise, send abort to both parties and abort.

Based on the leftover hash lemma [ILL89], we can prove that the full protocol (the second part

of Figure 5) UC-realizes Fp,rsVOLE in the Fp,`·rLsVOLE-hybrid model, where the resulting global key Γ
is uniform in Fpr except with probability at most 1/2ρ, as the inner product defines a universal

hash function. Replacing Fp,`·rLsVOLE with sub-protocol Πp,`·r
LsVOLE, we obtain that protocol Πp,r

base-sVOLE
UC-realizes Fp,rsVOLE.

Below, we focus on proving that sub-protocol Πp,r
base-LsVOLE UC-realizes Fp,rLsVOLE. We first consider

the case of a malicious PA and then consider the case of a malicious PB. In each case, we construct
a PPT simulator S that runs a PPT adversary A as a subroutine and emulates Fp,rCOPEe. We always
implicitly assume that S passes all communication between A and environment Z.

Malicious PA. Given access to Fp,rsVOLE,S interacts with A as follows:

1. S emulates Fp,rCOPEe, and receives (wi,ui) for i ∈ [0, n) and (ch,ah) for h ∈ [0, r) from A, where
ui,ah ∈ Frmp and m = dlog pe. (In the honest case, we have that ui = (ui, . . . , ui) for some
ui ∈ Fp and ah = (ah, . . . , ah) for some ah ∈ Fp.)

2. S samples χ0, . . . , χn−1 ← Fpr and sends them to A. Then, S receives x ∈ Fpr and z ∈ Fpr from
A. Next, S computes an adversarially chosen error

ez := z −
n−1∑
i=0

χi · wi −
r−1∑
h=0

ch · Xh ∈ Fpr .

3. S computes a set S∆ as follows:

• Solve the following equation:

〈
g · x− g ∗

n−1∑
i=0

χi · ui − g ∗
r−1∑
h=0

ah · Xh,∆B

〉
= ez (1)

• For each solution ∆B, compute ∆ := 〈g,∆B〉 and add ∆ to the set S∆.

4. S sends (guess, S∆) to Fp,rLsVOLE. If receiving abort from Fp,rLsVOLE, S aborts. Otherwise, S continues
the simulation.

5. S computes another set S̃∆̃ as follows:

• Solve the following equation:

〈
g · x− g ∗

n−1∑
i=0

χi · ui − g ∗
r−1∑
h=0

ah · Xh, ∆̃B

〉
= 0 (2)

• For each solution ∆̃B, compute ∆̃ := 〈g, ∆̃B〉 and add ∆̃ into the set S̃∆̃.

6. If S̃∆̃ only involves a single entry 0, then S aborts. Otherwise, S chooses any nonzero element

∆̃ ∈ S̃∆̃, and then for i ∈ [0, n), computes

ui := ∆̃−1 · 〈g ∗ ui, ∆̃B〉 (3)

where 〈g, ∆̃B〉 = ∆̃. (In the following analysis, we will show that ui is unique over all possible
∆̃ in set S̃∆̃.)

7. For i ∈ [0, n), S computes an adversarially chosen error ei := ui − (ui, . . . , ui) ∈ Frmp , and then
computes w′i := wi − 〈g ∗ ei,∆B〉 ∈ Fpr for any ∆B such that 〈g,∆B〉 ∈ S∆. Then, S sends
u = (u0, . . . , un−1) and w = (w′0, . . . , w

′
n−1) to functionality Fp,rLsVOLE.

The simulation for the protocol transcript is straightforward. Below, we first consider the case of
p = 2, and later discuss the case of a prime p > 2. In the real protocol execution, the correlation
check has the following equation:

x ·∆ = z − y =
n−1∑
i=0

χi · (wi − vi) +
r−1∑
h=0

(ch − bh) · Xh + ez (4)

For a malicious PA, we have that wi − vi = 〈g ∗ ui,∆B〉 for i ∈ [0, n) and ch − bh = 〈g ∗ ah,∆B〉
for h ∈ [0, r). Thus, we can rewrite equation (4) as follows:

x ·∆−
n−1∑
i=0

χi · 〈g ∗ ui,∆B〉 −
r−1∑
h=0

〈g ∗ ah,∆B〉 · Xh = ez

⇔
〈
g · x− g ∗

n−1∑
i=0

χi · ui − g ∗
r−1∑
h=0

ah · Xh,∆B

〉
= ez.

Therefore, the set S∆ corresponds to A’s guess of ∆, and the probability of aborting in the ideal-
world execution is the same as that in the real-world execution.

For any two different solutions ∆,∆′ ∈ S∆, we define ∆̃ = ∆ − ∆′ ∈ Fpr and thus ∆̃B =
∆B−∆′B ∈ {0, 1}

rm. From equation (1), we easily obtain that equation (2) holds. This also shows
that the set S∆ for equation (1) is an affine subspace of Fpr . Note that the set S̃∆̃ from equation (2)

is a linear space parallel to S∆. If there is only one solution for equation (1), then S̃∆̃ includes only
one zero entry. In this case, S aborts, and the probability that the real protocol execution does not
abort is at most 1/pr.

For h ∈ [0, r), we define
ah = ∆̃−1 · 〈g ∗ ah, ∆̃B〉 (5)

where ∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃ is used to compute ui for i ∈ [0, n) in equation (3). Clearly, equations (3)

and (5) provide a solution for x =
∑n−1

i=0 χi ·ui+
∑r−1

h=0 ah ·Xh such that for some ∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃

we have
∑r−1

h=0

〈
g ·ah−g∗ah, ∆̃B

〉
= 0 for all h ∈ [0, r) and

〈
g ·ui−g∗ui, ∆̃B

〉
= 0 for all i ∈ [0, n).

Below, we need to prove that the {ui}i∈[0,n) computed by equation (3) give the unique solution for a

sufficiently large subspace of S̃∆̃. Now, we assume that for some l ∈ N, for each f ∈ [l], there exists a

different set {uf,i}i∈[0,n) along with the set {af,h}h∈[0,r) such that x =
∑n−1

i=0 χi ·uf,i+
∑r−1

h=0 af,h ·Xh
and

〈g · uf,i − g ∗ ui, ∆̃f
B〉 = 0 for all i ∈ [0, n) and

r−1∑
h=0

〈g · af,h − g ∗ ah, ∆̃f
B〉 · X

h = 0, (6)

for all ∆̃f = 〈g, ∆̃f
B〉 ∈ S̃f ⊆ S̃∆̃ such that |S̃f | > 1. The condition of |S̃f | > 1 is required for A to

pass the correlation check with probability more than 1/pr. Since S̃f is a linear space for all f ∈ [l]
and S̃f ∩ S̃f ′ = {0} from the definition, and |S̃∆̃| ≤ p

r by definition, we have that l ≤ r log p.

Let f 6= f ′ ∈ [l]. From equation (2) and x =
∑n−1

i=0 χi · uf ′,i +
∑r−1

h=0 af ′,h · Xh, we have:

n−1∑
i=0

χi · uf ′,i · ∆̃f −
n−1∑
i=0

χi · 〈g ∗ ui, ∆̃f
B〉+

r−1∑
h=0

af ′,h · ∆̃f · Xh −
r−1∑
h=0

〈g ∗ ah, ∆̃f
B〉 · X

h = 0.

Using equation (6), we obtain

n−1∑
i=0

χi · (uf ′,i − uf,i) · ∆̃f +

r−1∑
h=0

(af ′,h − af,h) · ∆̃f · Xh = 0 (7)

By definition, there exists some j ∈ [0, n) such that uf,j 6= uf ′,j . Furthermore, there are at
least two values for ∆̃f ∈ S̃f , and thus we assume that in the above equation ∆̃f 6= 0. Thus,
(uf ′,j − uf,j) · ∆̃f 6= 0. Note that χ0, . . . , χn−1 are sampled uniformly at random and independent
from the other values involved in equation (7). Therefore, equation (7) holds with probability at
most 1/pr. There are fewer than l2 ≤ (r log p)2 pairs f 6= f ′ ∈ [l]. Thus, the overall probability is
bounded by (r log p)2/pr.

We have established that there exists a unique solution ui for i ∈ [0, n). This means that
for all ∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃, we have that 〈g · ui − g ∗ ui, ∆̃B〉 = 0 for i ∈ [0, n). Therefore, we

obtain that 〈g ∗ ei, ∆̃B〉 = 0 for all i ∈ [0, n). If there exists two different ∆,∆′ ∈ S∆ such
that 〈g ∗ ei,∆B〉 6= 〈g ∗ ei,∆′B〉 for some i ∈ [0, n) where 〈g,∆B〉 = ∆ and 〈g,∆′B〉 = ∆′, then
we define ∆̃B := ∆B − ∆′B and have that ∆̃ = 〈g, ∆̃B〉 ∈ S̃∆̃ and 〈g ∗ ei, ∆̃B〉 6= 0. This is

contradict with 〈g ∗ ei, ∆̃B〉 = 0. This concludes that 〈g ∗ ei,∆B〉 is a unique value for all possible
∆ = 〈g,∆B〉 ∈ S∆, and can be computed by the simulator using any ∆ ∈ S∆. In the real protocol
execution, A can compute w′i := wi − 〈g ∗ ei,∆B〉 for i ∈ [0, n) just as that computed by S.
Together with that wi = vi + 〈g ∗ ui,∆B〉, we have that

w′i = vi + 〈g ∗ ui,∆B〉 − 〈g ∗ ei,∆B〉 = vi + ∆ · ui.

We now discuss the case of a prime p > 2. The main difference from the case of p = 2 is that
the canonical maps between ∆ ∈ Fpr and ∆B ∈ {0, 1}rm are not bijective. This implies that the
solutions of equations (1) and (2) are not necessarily vectors of bits rather than elements of Fp.
Following the proof of [KOS16, Lemma 2], we have that if S̃f includes at least two vectors that only
consist of bits, which is necessary for the adversary to pass the correlation check with probability
more than 1/pr, then it has dimension at least 1 for all f ∈ [l]. We also have the fact that S̃∆̃ has

dimension at most r log p and S̃f ∩ S̃f ′ = {0} for f 6= f ′ ∈ [l] by definition. Together, we obtain
that l ≤ r log p as above.

Overall, we have that no environment Z can distinguish the real-world execution from the
ideal-world execution, except with probability at most (r log p)2/pr.

Malicious PB. S is given access to Fp,rLsVOLE, and interacts with adversary A as follows:

1. S emulates Fp,rCOPEe, and receives the values ∆, vi for i ∈ [0, n) and bh for h ∈ [0, r) from A.

2. After receiving coefficients χ1, . . . , χn ∈ Fpr , S samples x ← Fpr , computes y :=
∑n

i=1 χi · vi +∑r
h=1 bh · Xh−1 ∈ Fpr , and computes z := y + x ·∆ ∈ Fpr . Then S sends (x, z) to adversary A.

3. S defines v = (v1, . . . , vn) and sends v ∈ Fnpr to functionality Fp,rLsVOLE.

In the real protocol execution, the elements ah for all h ∈ [0, r) output by Fp,rCOPEe are uniform in Fp.
Therefore,

∑r
h=1 ah ·Xh−1 is uniform in Fpr , and thus x =

∑n
i=1 χi ·ui+

∑r
h=1 ah ·Xh−1 is uniformly

random in Fpr . We obtain that the simulation is perfect. It is easy to see that the outputs of two
parties have the same distribution between the real-world execution and the ideal-world execution.

B.3 Proof of Theorem 3

We first consider the case of a malicious PA and then consider the case of a malicious PB. In each
case, we construct a PPT simulator S given access to Fp,rspsVOLE that runs the PPT adversary A as a

subroutine, and emulates functionalities FOT, Fp,rsVOLE, and FEQ. We always implicitly assume that
S passes all communication between A and environment Z.

Malicious PA. Every time the extend procedure is run (on input n), S interacts with A as follows:

1. S emulates Fp,rsVOLE and records the values (a, c) that A sends to Fp,rsVOLE. When A sends the
message a′ ∈ Fp, then S sets β := a′ + a ∈ Fp and δ := c.

2. For i ∈ [1, h), S samples Ki ← {0, 1}κ; it also samples Kh ← Fpr . Then for i ∈ [h], S emulates
FOT by receiving ᾱi ∈ {0, 1} from A, and returning Ki

ᾱi
:= Ki to A. It sets α := α1 · · ·αh and

defines u ∈ Fnp as the vector that is 0 everywhere except that u[α] := β. Next, S computes
{vj}j 6=α := GGM′(α, {Ki

ᾱi
}i∈[h]).

3. S picks d← Fpr and sends it to A. Then, S defines w as the vector of length n with w[i] := vi
for i 6= α and w[α] := δ −

(
d+

∑
i 6=αw[i]

)
.

4. S emulates Fp,rsVOLE by recording (x, z) from A.

5. S receives {χi}i∈[0,n) and x∗ ∈ Frp from A, and sets x′ := x∗ + x ∈ Frp and x′ :=
∑r−1

i=0 x
′[i] · Xi.

6. S records VA ∈ Fpr that A sends to FEQ. It then computes V ′A :=
∑n−1

i=0 χi ·w[i]−
∑r−1

i=0 z[i] ·Xi ∈
Fpr and does:

• If x′ = β · χα, then S checks whether VA = V ′A. If so, S sends true to A, and sends u,w to
Fp,rspsVOLE. Otherwise, S sends abort to A and aborts.

• Otherwise, S computes ∆′ := (V ′A − VA) /(β · χα − x′) ∈ Fpr and sends a global-key query
(guess,∆′) to Fp,rspsVOLE. If Fp,rspsVOLE returns success, S sends true to A, and sends u,w to

Fp,rspsVOLE. Otherwise, S sends abort to A and aborts.

7. Whenever A sends a global-key query (guess, ∆̃) to functionality Fp,rsVOLE, S forwards the query
to Fp,rspsVOLE and returns the answer to A. If the answer is abort, S aborts.

In the above simulation, if A succeeds to guess ∆, then S simulates the A’s view using ∆ without
making any further global-key query to Fp,rspsVOLE.

We claim that the joint distribution of the view of A and the output of the honest PB in the
ideal-world execution above is computationally indistinguishable from their distribution in the real-
world execution. By the standard analysis of the GGM construction, it is not hard to see that d
and the {Ki

ᾱi
} sent to A in the above simulation, as well as the vector v that would be output by

PB when it does not abort, are computationally indistinguishable from the corresponding values in
the real protocol execution. It thus only remains to analyze steps 4–6, which determine whether
PB aborts.

Let β = a′ + a, x′ = x∗ + x, and x′ =
∑r−1

i=0 x
′[i] · Xi, as above. (Note that a′, a,x∗,x are

well-defined in the real-world execution as well.) In the real-world execution, PB computes

VB =
n−1∑
i=0

χi · v[i]−
r−1∑
i=0

y[i] · Xi

=
∑
i 6=α

χi · v[i] + χα · v[α]−
r−1∑
i=0

(z[i]−∆ · x′[i]) · Xi

=
∑
i 6=α

χi · v[i] + χα · (δ −∆ · β − d−
∑
i 6=α

v[i])

−
r−1∑
i=0

z[i] · Xi + ∆ · x′

=
n−1∑
i=0

χi ·w[i]−
r−1∑
i=0

z[i] · Xi −∆ · (β · χα − x′)

= V ′A −∆ · (β · χα − x′).

where w and V ′A are defined as in the description of S above. Say that A sends VA to FEQ. If
x′ = β · χα (as will be the case when A behaves honestly), then FEQ returns true iff VA = V ′A.
Otherwise, FEQ returns true iff ∆ = (V ′A − VA)/(β · χα − x′). We thus see that the ideal-world
behavior of FEQ matches what would occur in the real world.

Malicious PB. Simulator S interacts with A as follows. First, S simulates the initialization step by
recording the global key ∆ ∈ Fpr that A sends to Fp,rsVOLE. Then, every time the extend procedure
is executed (on input n), S does:

1. S records b ∈ Fpr that A sends to Fp,rsVOLE. Then S samples a′ ← Fp and sends it to A. Next, S
computes γ := b−∆ · a′, and then samples β ← F∗p and sets δ := γ + ∆ · β.

2. S records the values {(Ki
0,K

i
1)}i∈[h] sent to FOT by A.

3. S receives d ∈ Fpr from A. Then, for each α ∈ [0, n), it computes a vector wα as follows:

(a) Execute {vαj }j 6=α := GGM′(α, {Ki
ᾱi
}i∈[h]) and set wα[i] = vαi for i 6= α.

(b) Compute wα[α] := δ − (d+
∑

i 6=αwα[i]).

4. S records the vector y∗ sent to Fp,rsVOLE by A.

5. S samples χi ← Fpr for i ∈ [0, n) and x∗ ← Frp, and sends them to A. Then S computes
y := y∗ −∆ · x∗.

6. S computes Y :=
∑r−1

i=0 y[i] · Xi. It then records VB sent to FEQ by A. Next, S computes a set
I ⊆ [0, n) as follows:

(a) For α ∈ [0, n), compute V α
A :=

∑n−1
i=0 χi ·wα[i]−∆ · β · χα − Y .

(b) Define I := {α ∈ [0, n) | V α
A = VB}.

S sends I to Fp,rspsVOLE; if it returns abort, S picks α̃← [0, n)\I, sends
(
false, V α̃

A

)
to A on behalf

of FEQ, and then aborts. Otherwise, S sends (true, VB) to A.

7. S chooses an arbitrary α ∈ I and computes a vector v as follows:

(a) Set v[i] := wα[i] for i ∈ [0, n), i 6= α.

(b) Set v[α] := γ − d−
∑

i 6=α v[i].

S sends v to Fp,rspsVOLE and outputs whatever A outputs.

We first consider the view of adversary A in the ideal-world execution and the real-world execution.
The values a′ and x∗ simulated by S have the same distribution as the real values, which are masked
by a uniform element/vector output by Fp,rsVOLE. The set I extracted by S corresponds to the selective
failure attack on the output index α∗ of PA. If S receives abort from Fp,rspsVOLE, we have that α∗ /∈ I.

In the real protocol execution, if VB 6= V α∗
A , then PA aborts. By previous considerations, this is

equivalent to α∗ /∈ I. Therefore, Fp,rspsVOLE aborts if and only if the real protocol execution aborts.
For an honest PA, the index α∗ ∈ [0, n) is sampled uniformly in both the real-world execution and
the ideal-world execution. If receiving abort from Fp,rspsVOLE, then S needs to send false along with

an element V α̃
A 6= VB to A. Although S does not know the actual index α∗, it can sample a random

index α̃ from the set [0, n)\I and send V α̃
A to A. In the case of aborting, this simulation is perfect,

since Z cannot obtain the output of PA due to aborting, and the dummy index α̃ has the same
distribution as the actual index α∗ under the condition that I is an incorrect guess.

Overall, we have that the adversary’s view is perfectly indistinguishable between the real-
world execution and the ideal-world execution. Below, we prove that except with probability
1/pr, the distribution of PA’s output in the real-world execution is the same as that in the ideal-
world execution. It is easy to see that the output vector u∗ that is 0 everywhere except that
u∗[α∗] = β∗ in the ideal-world execution and the real-world execution have the same distribution,
from the above analysis and that β∗ is perfectly hidden. In the following, we focus on proving
the indistinguishability of w∗ output by PA between the ideal-world execution and the real-world
execution. Firstly, we prove that the vector v ∈ Fnpr computed by S in the step 7 is unique (i.e.,
independent of the choice α ∈ I).

Claim 1. For any α, α′ ∈ [0, n), let vα,vα′ be the vectors computed by S with α, α′ following the
step 7, then we have

Pr
{
vα 6= vα′

∣∣∣ V α
A = V α′

A

}
≤ 1

pr
.

Proof. Since V α
A = V α′

A , we have∑
i∈[0,n)

χi ·wα[i]−∆ · β · χα − Y =
∑
i∈[0,n)

χi ·wα′ [i]−∆ · β · χα′ − Y ⇔∑
i 6=α,α′

χi · (wα[i]−wα′ [i]) + χα · (wα[α]−wα′ [α]−∆ · β) + χα′ · (wα[α′]−wα′ [α
′] + ∆ · β) = 0.

Note that ∆, β, wα and wα′ have already been defined before {χi}i∈[0,n) are sampled. Furthermore,
each coefficient χi is uniform. Therefore, except with probability 1/pr, we have:

wα[i] = wα′ [i] for i ∈ [0, n), i 6= α, α′,

wα[α]−wα′ [α] = wα′ [α
′]−wα[α′] = ∆ · β.

From the first equation, we directly obtain that vα[i] = vα′ [i] for i 6= α, α′. From the definitions of
wα[α] and vα[α], we have that vα[α] = wα[α] −∆ · β. Together with wα[α] = wα′ [α] + ∆ · β, we
further have that vα[α] = wα′ [α] = vα′ [α]. Similarly we also have vα′ [α

′] = vα[α′].

Let w∗,u∗ be the output of PA and v be the input from S (or PB). It is obvious that w∗ =
v + ∆ · u∗ in the ideal-world execution. Now we look at the real-world execution. We define
a vector v∗ as v∗[i] = wα∗ [i] for i 6= α∗ and v∗[α∗] = γ − d −

∑
i 6=α∗ v

∗[i], where recall that
α∗ is the output index of PA. From wα∗ [α

∗] = γ + ∆ · β∗ − (d +
∑

i 6=α∗ wα∗ [i]), we have that
wα∗ [α

∗] = v∗[α∗] + ∆ ·β∗. Therefore, we obtain that w∗ = v∗+ ∆ ·u∗ where w∗ = wα∗ . Note that
v∗ in both the ideal-world execution and the real-world execution are defined in the identical way,
and thus have the same distribution. Based on Claim 1, we know that in the ideal-world execution,
v∗ is indistinguishable from v computed by S, except with probability at most 1/pr. Therefore v
in the ideal-world execution is indistinguishable from v∗ in the real-world execution, which implies
the indistinguishability of the output of PA in the ideal world and the real world.

B.4 Proof of Theorem 4 and Protocol Optimizations

Proof. We first consider the case of a malicious PA and then consider the case of a malicious PB.
In each case, we construct a PPT simulator S given access to Fp,rsVOLE that runs the adversary A as
a subroutine, and emulates functionalities Fp,rsVOLE and Fp,rspsVOLE. We always implicitly assume that
S passes all communication between A and Z.

Malicious PA. S records the vectors (u,w) ∈ Fkp×Fkpr that A sends to Fp,rsVOLE during initialization.
Then in each iteration, S runs as follows:

1. For i ∈ [t], S emulates Fp,rspsVOLE and receives the value ei ∈ Fmp (with at most one nonzero entry)
and ci ∈ Fmpr from A; it then defines e := (e1, . . . , et) ∈ Fnp and c := (c1, . . . , ct) ∈ Fnpr .

2. S computes x := u · A + e ∈ Fnp and z := w · A + c ∈ Fnpr , and sends x[k : n) ∈ F`p and

z[k : n) ∈ F`pr to Fp,rsVOLE. It also locally updates u := x[0 : k) ∈ Fkp and w := z[0 : k) ∈ Fkpr for
the next iteration.

3. If A ever makes a global key query ∆′ to Fp,rspsVOLE, then S forwards that query to Fp,rsVOLE. If

Fp,rsVOLE responds with abort, S aborts; otherwise, it continues.

It is easy to see that the simulation provided by S is perfect.

Malicious PB. S runs G(1k, 1n, p) to generate A ∈ Fk×np . During initialization, S records the values

∆ ∈ Fpr and v ∈ Fkpr that A sends to Fp,rsVOLE, and sends ∆ to Fp,rsVOLE. Then in each iteration, S
runs as follows:

1. For i ∈ [t], S receives the value bi ∈ Fmpr that A sends to Fp,rspsVOLE; it sets b := (b1, . . . , bt) ∈ Fnpr .

2. For i ∈ [t], S receives the set Ii ⊆ [0,m) that A sends to Fp,rspsVOLE. Then S samples e← Dn,t and
defines {α1, . . . , αt} to be the nonzero entries of e. If αi mod m ∈ Ii for all i, then S continues;
otherwise, it aborts.

3. S computes y := v ·A + b ∈ Fnpr , and sends y[k : n) ∈ F`pr to Fp,rsVOLE. It also locally updates

v := y[0 : k) ∈ Fkpr for the next iteration.

The view of A is simulated perfectly, and in both the ideal-world simulation and the ideal-world
execution of the protocol the output (s,M[s]) of PA satisfies y[k, n) = M[s]−∆ ·s. The difference is
that in the ideal world s is uniform, whereas in the real world s = u ·A +e for a uniform vector u.
It is not hard to see that this difference is undetectable if the LPNGk,n,t,p assumption holds.

Optimizations. In each iteration of the extend procedure, protocol Πp,r
sVOLE makes t calls to Fp,rspsVOLE.

If Fp,rspsVOLE is instantiated by protocol Πp,r
spsVOLE from Section 5.1, and we use the optimization de-

scribed at the end of that section, the t calls to Πp,r
spsVOLE require only t+ r calls to Fp,rsVOLE.

Moreover, we can push all the calls to Fp,rsVOLE into the initialization phase, so that the extend
procedure does not invoke Fp,rsVOLE at all. Specifically, if we make n0 = k + t + r calls to Fp,rsVOLE
during initialization, we can run the extend procedure without any additional call to Fp,rsVOLE. Each
time the extend procedure is run, we reserve n0 of the sVOLE correlations that are produced for
the following iteration, and output n− n0 “usable” sVOLE correlations.

We can further optimize the generation of the initial set of n0 sVOLE correlations during
initialization. Let (k0, n0, t0) be another set of LPN parameters. (Note that n0 � n, so we can take
k0 � k and t0 ≈ t while achieving security comparable to what is achieved for the LPN parameters
(n, k, t).) We then make n′0 = k0 + t0 +r calls to the base-sVOLE protocol described in Section 5 to
generate that number of sVOLE correlations, after which we run the extend procedure of Πp,r

sVOLE
once to obtain n0 sVOLE correlations.

	Introduction
	Outline of Our Solution
	Performance and Comparison to Prior Work

	Preliminaries
	Information-Theoretic MACs and Batch Opening
	Security Model and Functionalities

	Our Zero-Knowledge Protocol
	Proof of Security
	Other Approaches for Verifying Correct Behavior

	Subfield VOLE
	Base sVOLE Protocol
	Single-Point sVOLE
	sVOLE Extension

	Performance Evaluation
	(Subfield) Vector Oblivious Linear Evaluation
	Zero-Knowledge Proofs
	Zero-Knowledge Proofs for Boolean Circuits
	Zero-Knowledge Proofs for Arithmetic Circuits

	Other Functionalities
	Methods for Batch Checking
	Construction of COPEe
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4 and Protocol Optimizations

