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Abstract. Traditional threshold cryptosystems have decentralized core cryptographic primitives like
key generation, decryption and signatures. Most threshold cryptosystems, however, rely on special
purpose protocols that cannot easily be integrated into more complex multiparty protocols.

In this work, we design and implement decentralized versions of lattice-based and elliptic-curve-based
public-key cryptoystems using generic secure multiparty computation (MPC) protocols. These are stan-
dard cryptosystems, so we introduce no additional work for encrypting devices and no new assumptions
beyond those of the generic MPC framework. Both cryptosystems are also additively homomorphic,
which allows for secure additions directly on ciphertexts. By using generic MPC techniques, our multi-
party decryption protocols compute secret-shares of the plaintext, whereas most special-purpose cryp-
tosystems either do not support decryption or must reveal the decryptions in the clear. Our method
allows complex functions to be securely evaluated after decryption, revealing only the results of the
functions and not the plaintexts themselves.

To improve performance, we present a novel oblivious elliptic curve multiplication protocol and a new
noise-masking technique which may be of independent interest. We implemented our protocols using the
SCALE-MAMBA secure multiparty computation platform, which provides security against malicious
adversaries and supports arbitrary numbers of participants.

Keywords: distributed cryptography, key management, threshold cryptography, public-key cryptography,
lattice techniques, elliptic curve cryptosystem

1 Introduction

Threshold cryptography [DF89] is aimed at decentralizing key-generation, decryption and signature algo-
rithms. Decentralizing can improve security by eliminating the risks associated with a single point of failure
and improve applicability by reducing the need for mutual trust between participants.

Threshold key generation protocols allow a group of participants to generate cryptographic keys so that
each party holds a secret-share [Sha79] of the private key. Similarly, threshold decryption protocols allow
participants to use these key shares to decrypt a target ciphertext.

Threshold cryptosystems have many applications, including:

Example 1 (Secure data aggregation). A “committee” will use a distributed key generation protocol to gen-
erate a key pair for an additively homomorphic cryptosystem (e.g. Paillier [Pai99]). Data owners can then
encrypt their data, the committee can use the homomorphic property of the cryptosystem to aggregate
each individual’s contribution, and then use the distributed decryption protocol to decrypt the sum without
revealing any of the intermediate results. This kind of aggregation is a core building block of many secure
voting [BDPSN94,DGS03,Gro04] and federated learning [HLP11,SCR+11,CSS12] protocols.

Example 2 (Decentralized signatures). Digital signatures are used to delegate trust (e.g. in SSL certificates),
and to control funds in cryptocurrency wallets. In these applications, the signing key must be readily ac-
cessible to generate signatures, yet theft of the signing key could have serious financial consequences. Dis-
tributing key-generation, storage, and signing can eliminate the risks associated with a single point of failure
[GJKR96,GGN16,JLE17,Lin17,LNS18,GG18,DKLs19].
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Example 3 (Decentralized auditing). In many situations, such as a web server audit log, information is stored
so that any nefarious activity can be investigated. However, such a log necessarily contains sensitive infor-
mation, and even if it the log is encrypted, a single entity with access to the key can decrypt it. Encrypting
the data under a distributed key would give strong privacy guarantees, but still allow a group of authorized
individuals to jointly perform an audit when needed.

Example 4 (Privacy in the age of mass surveillance). Law Enforcement and the court system could engage
in a decentralized key generation protocol, and encrypt surveillance data under this shared key. This is
a special case of Example 3, but one that is worth highlighting because controlling access to surveillance
data in a way that sufficiently law enforcement but protects against abuse in an important issue in modern
societies. When it becomes necessary to access data to aid in a criminal investigation, the judiciary system
could participate in a threshold decryption protocol to decrypt the relevant video footage from the location
and time of the crime. The data would therefore be accessible when needed for court cases, and it would be
guaranteed that it was not being used for any other purposes.

We discuss these examples (as well as several others) in more detail in Appendix A. Unfortunately,
most existing threshold cryptosystems are too limited to address these problems effectively. For example,
most threshold encryption only schemes provide a decentralized key-generation protocol and a decentralized
decryption protocol, forcing the plaintext to be revealed. Similarly, most threshold signature schemes provide
a decentralized key-generation protocol and a decentralized signature protocol.

Some of these limitations are nicely highlighted by the examples above. In the case of Secure Data
Aggregation (Example 1), what if the aggregator should only release the results if they satisfy some property?
In the case of Decentralized Signatures (Example 2), the committee may wish to perform a “partially-blinded”
threshold signature [CHYC05] of a client’s message, i.e., a signature protocol where the committee learns
that the message satisfies some property but learns nothing else. Partially-blinded threshold signatures
can be constructed for arbitrary message conditions by the client secret-sharing the message between the
committee and the committee checking the condition and the signature inside of an MPC. In the case of
Decentralized Auditing (Example 3), how can the auditors identify and decrypt only the records of interest,
while maintaining the privacy of the others? For example, how can the auditors decrypt only those records
pertaining to a specific user, if the usernames are also encrypted? Similarly, in the case of Mass Surveillance
(Example 4), law-enforcments agents may want to search within the encrypted surveillance data, e.g. law-
enforcement agents may want all surveillance camera footage that contains the suspect’s face, or all phone
logs that contain certain keywords. This type of advanced functionality is not supported by simple threshold
encryption schemes, and more complex cryptographic tools are needed.

In these situations, simple threshold signature schemes may be insufficient, and more powerful tools from
Secure Multiparty Computation (MPC) are needed. The use-cases above could be addressed by generic MPC
protocols by secret-sharing the input data among the MPC parties. However, this approach forces the data-
provider to securely send each MPC party a share of the data. In practice this requires the data-provider
encrypting data under a public key for each MPC party. When there are π parties, this increases the public
key size, ciphertext size and encryption time by a factor of π. Furthermore, it requires the encrypting entity
to know the public keys of the parties involved in the MPC. If these parties change, the encrypting entity
needs to be alerted of this fact and receive new keys. If not only the involved parties, but also the access
structure of the MPC changes (e.g. the number of parties or the threshold to a secret sharing scheme), then
the code run by the encrypting entity needs to be updated.

These problems can be seen to be serious issues by examining the examples above. In many of these
applications (e.g. Example 3) the number of ciphertexts is huge, so a significant increase in the ciphertext
sizes would be prohibitive. Having complicated, and changing, encryption routines for the data-providers is
extremely cumbersome or potentially impossible when the data-providers are geographically disperse, simple
IoT devices, such as security cameras in Example 4. Our approach avoids these problems by making the
system behave exactly like a standard public key cryptosystem from the data-provider’s perspective.

In this paper, we design and implement decentralized cryptographic protocols using generic secure mul-
tiparty computation techniques. Although our focus is on key generation and decryption, most of our tech-
niques could be easily adapted to other cryptographic primitives (e.g. signatures). Our generic approach has
many benefits:



– Versatility: As highlighted in several of the examples above, the simple key-generation, decryption and
signing algorithms provided by most threshold cryptosystems may be insufficient for many practical
applications. Using MPC techniques provides significantly more versatility, allowing participants to com-
pute on data before revealing it (or signing it). Additionally, since the encryption schemes are additively
homomorphic, any linear computation can be performed on the input before decrypting it in the MPC.

– Unbalanced participants: In many of the applications described above, the parties given charge of
shares of the secret key may have unbalanced processing power, networking bandwidth or other con-
straints. Most threshold cryptographic schemes place an equal load on all participants. Using generic
MPC allows modifying the MPC backend (e.g. to use garbled circuits) to be appropriate to the compu-
tational balance and network setup of the participants.

– Changing access structures: Most threshold cryptosystems support only threshold access structures
(e.g. k-out-of-n participants are required for decryption). Using generic MPC techniques allows us to
support arbitrary numbers of participants and arbitrary access structures. It also makes it easy to change
the access structure. Changing access structures are necessary for rotating committees (e.g. [RNHH19]).
They are also essential in IoT deployments where the data processors change over time but the encrypting
devices are hard to update.

– Strong security models: Many special-purpose threshold cryptosystems only provide security against
passive adversaries. By using generic MPC protocols, we can choose MPC protocols that are secure
against malicious adversaries, giving the threshold cryptosystem this security level. Indeed our imple-
mentations use such a maliciously-secure MPC backend.

– Standard Encryption Protocols: Threshold secret-sharing schemes are heavily customized. There-
fore it becomes much more likely that developers of data-provider software incorrectly implement the
encryption scheme, especially if the data-sources are heterogenous and developed by different organiza-
tions, such as IoT devices. Furthermore, standard protocols often have useful well-understood properties.
For instance ElGamal encryptions are identical to Pedersen commitments, provided the committer does
not know the secret key. Systems can therefore take advantage of, for instance, zero-knowledge range
proofs for Pedersen commitments to make data providers prove the validity of plaintexts [BBB+18]. Our
techniques allow the data-provider to use a standard encryption protocol, while allowing for a variety of
different MPC back-ends, based on performance and security requirements.

2 Our Contribution

We demonstrate two new systems for performing key generation and decryption under MPC. The first is
elliptic-curve ElGamal; the second is a variant of the FV lattice-based cryptosystem [FV12]. Performing key
generation under MPC immediately makes our implementations threshold cryptosystems, but performing
decryption (rather than traditional threshold decryption) gives our schemes significantly more flexibility.
The primary advantage of this design is composability. By performing decryption (either LWE- or EC-
based) under a generic MPC, the participants can learn secret-shares of the decryption rather than the raw
values, and these secret-shares can be fed into further (secure) computations. Similarly, by using generic
MPC techniques, our schemes are easily extensible. For example, implementing threshold ECDSA signatures
is trivial using our framework because all of the tools are in place to do elliptic curve arithmetic under MPC.

In the process of developing these schemes, we applied several optimizations, which we believe are of
independent interest. We developed a branching-free method for elliptic curve point multiplication (Section
4.1) by forcing elliptic curve additions to be of a certain type. We also discovered a novel method for securely
computing the discrete log algorithm by solving a related problem in the clear that has been noised by a
carefully-chosen distribution (Section 4.1). This is the first case we are aware of where adding this type of
noise allows a secure computation to be made much more efficient by solving the noised problem in the clear.
We also analyze the noise growth for our lattice-based cryptosystem to determine appropriate parameters
(Section 4.2).

We have fully implemented these schemes using the SCALE-MAMBA MPC compiler [AKR+19]. SCALE-
MAMBA provides security against malicious adversaries in the honest majority setting, i.e., it is secure



against up to k = bn−12 c malicious adversaries. 1 We have built our cryptosystems such that they can be
used as SCALE-MAMBA libraries in larger systems. We also provide testing scripts to facilitate reproduction
of our results. We test key generation and decryption on AWS instances with up to 17 parties in the
honest majority setting. Our results (Section 6) show trade-offs between the ElGamal and lattice-based
cryptosystems. For instance, with 3 parties, ElGamal key generation and decryption on small plaintexts
each take about 10 seconds and require about 30MB of communication per party. The lattice-based scheme
requires longer key generation time (about 30s), and requires a large ciphertext to store a small plaintext;
however, the amortized cost of performing many decryptions is dramatically lower, only requiring about 20
KB of communication and 40ms per decryption.

3 Prior work

3.1 Threshold Cryptography

A threshold cryptosystem [DF89] allows a group of participants to collaboratively generate a public key to-
gether with secret shares of the corresponding secret key that could be used in a secure multiparty decryption
protocol. Threshold cryptography built on the idea of group-oriented cryptography [Des87].

Early works focused on thresholding ElGamal. An ElGamal keypair consists of a private key a, and a
public key, h = ga mod q. Encryption is perfomed as E(m) = (gr mod q, hr · gm mod q), and decryption
is done by calculating gm = c2 · c−a1 mod q. The main observation when thresholdizing ElGamal is that if
the secret key, a, is additively secret shared a =

∑
i ai, then decryption can be performed having each party

locally compute c−ai1 , and calculating gm = c2 ·
∏
i c
−ai
1 mod q. The initial work [DF89] assumed that the

secret key, a, was generated by a trusted dealer, who distributed the shares, ai, to the participants who would
then “blow itself up.”2 Subsequent work [Hwa90] observed that the shares, ai, could be generated locally
(eliminating the need for a trusted dealer). If the shares are generated locally by the players, commitments
can be used to ensure that each player’s share cannot be used to influence the final public key [Ped91].

These early works spawned a rich literature examining threshold variants of many common cryptosystems.
We review some of the most relevant work below.

3.2 RSA Keygen

Generating keys for the RSA or Paillier cryptosystems requires generating moduli N = pq, where p and q
are primes. This is particularly challenging in the threshold setting because traditional primality tests are
not “MPC-friendly.” Nevertheless, several distributed RSA key-generation protocols have been developed
[Coc97,Coc98,FMY98,MWB99,Gil99,BF01,ACS02,DM10,NS10,HMRT12,VAS19].

Under RSA, threshold decryption is rather straightforward, however, Paillier decryption (which requires
modular inversion and integer division) is not straightforward to implement in the distributed setting
[NS10,VAS19].

The techniques for distributed RSA key generation and decryption are fundamentally different than
those in the systems we consider (i.e., those based on discrete-log or LWE). For completeness, however, we
summarize distributed RSA key-generation protocols in Appendix B.

3.3 Elliptic Curve Keygen

In principle, key generation for discrete-log based cryptosystems is straightforward, since (unlike in RSA)
the private keys are uniformly distributed in an interval, and deriving the public key from a private key
requires only group operations. [GJKR99] gave a template for secure multiparty key-generation protocols for
discrete-log-based cryptosystems that provides security in the malicious model.

Consider two simple methods for generating a key pair for an elliptic curve discrete-log cryptosystem.
The users will fix a curve C and a generator G of order n. Each player can generate a share of the secret

key, by uniformly and independently sampling ai
$← [n].

1 SCALE-MAMBA supports most of the functionality for full-threshold computation. In the current version (V1.7),
however, the key-generation step has not been implemented and thus our implementations only provide security
in the honest-majority setting.

2 This appears to be an early term for a “secure deletion.”



– Method 1: Each player locally computes aiG. The players reveal aiG, and compute the public key

pk
def
=
∑
i aiG. Even though the players learn the intermediate values aiG that are not revealed by an

ideal functionality, this scheme is nonetheless secure [GJKR99].
– Method 2: Each player locally computes aiG . The players secret share aiG (using an additive secret-

sharing scheme over the curve C). Then pk
def
=
∑
i aiG can be computed securely using the linearity of

the secret-sharing scheme. This approach was taken in [SA19].

The generic DL-based multiparty key generation protocol of [GJKR99] can be specialized to the case of
elliptic curves [Tan05].

Using a linear-secret sharing scheme over an elliptic group allows participants to privately compute
elliptic-curve group operations without additional communication, i.e., given secret sharings of two elliptic
curve points P1 and P2, the players can locally compute a sharing of P1 + P2. The challenge is then to
incorporate these elliptic-curve shares with scalar sharings, e.g. given a sharing of x ∈ Fq, and P, compute a
sharing of xP. The work of [SA19] builds on the SPDZ protocol to create an efficient framework for secure
multiparty computations over elliptic curves in the malicious model.

Several works have focused on distributing the Digital Signature Algorithm (DSA) and its elliptic-curve
variant.

The ECDSA algorithm is fairly simple. Given a private key, d, to sign a message, m,

1. Generate a random nonce, k
$← Z/qZ.

2. Compute R = kG. Let (rx, ry) denote the x and y coordinates of R.
3. Set s = k−1(H(m) + r · d) mod q.
4. Output the signature (rx, s).

One of the challenges is computing k−1 (when k is secret-shared). Since the ECDSA protocol requires
both operations on elliptic curve points and operations modulo q, it is not inherently “MPC-friendly.”

[GJKR96] gave a multiparty protocol for generating DSA (and ECDSA) signatures in the multiparty
setting with security against malicious adversaries, but their protocol had an optimality gap. It provided
security against t (out of n) corrupted parties, but required 2t+1 cooperating parties to produce a signature.
This optimality gap was later closed in [GGN16].

Using a combination of secret-sharing, zk-proofs and Paillier encryption, [Lin17] developed an efficient
2-party ECDSA scheme (in the malicious model), and this was later extended to the multiparty setting
[LNS18].

The work of [DKLs18] provided an 2-party ECDSA scheme (in the malicious model), and later extended
it to the multiparty setting [DKLs19].

The DECO protocol [ZMM+19] combines garbled circuits (implemented in EMP [WMK16]) with efficient
distributed ECDSA (implemented with [GG18]) to allow two parties (a prover and verifier) to jointly perform
a TLS handshake with a server. This allows the prover to prove statements about the data received from the
server. For example, provers could prove claims about their bank statements (as well as the origin of the
statements). One of the complexities of their approach is combining the generic MPC computations with
efficient distributed computations on elliptic curves.

3.4 Lattice Keygen

The lattice-based Learning With Errors (LWE) assumption, and specifically the Ring-LWE variant, is the
basis for a number of public-key cryptosystems. These have received much attention because they can be
used to construct additive, leveled, and fully homomorphic encryption schemes and can also be made secure
against quantum attacks.

The indepedent work of [KLO+19] demonstrates an implementation of distributed Ring-LWE in SCALE-
MAMBA that is very similar to ours. One key difference is that we are focused on distributed data aggre-
gation, and thus our goal is to generate public-keys for homomorphic cryptosystems. Since [KLO+19] are



Scheme Cryptosystem Players Malicious Implementation

[GJKR96] ECDSA 3+ Yes No

[GGN16] ECDSA 3+ Yes Yes

[Lin17] ECDSA 2 Yes Yes

[LNS18] ECDSA 2+ Yes Yes

[DKLs18] ECDSA 2 Yes Yes

[GG18] ECDSA 2+ Yes Yes

[DKLs19] ECDSA 2+ Yes Yes

[SJSW19] DL 2+ Yes Yes

Table 1: Distributed ECDSA signing

not interested in using the additive homomorphism that Ring-LWE can provide, they can use much smaller
parameters. In particular, the ring Zq[x]/〈xn + 1〉 can use a smaller ciphertext modulus (q = 40961), which
allows for a smaller polynomial degree (n = 1024).

LWE can also be used to create a “universal-thresholdizer,” i.e., a generic method for converting any
public-key cryptosystem into a threshold version [BGG+18]. Essentially, the idea is to build a threshold
version of FHE (based on the LWE assumption), and then use the threshold FHE scheme to “thresholdize”
an existing scheme. This universal thresholder creates threshold schemes with low round complexity, but is
unlikely to be efficient in practice, and has not been implemented.

[MTPH20] implemented multiparty key-generation and decryption for the lattice-based FHE schemes of
BFV [FV12] and CKKS [CKKS17] in the Go programming language. Unlike ours, their system is designed
as a replacement for traditional MPC protocols. Most MPC protocols have communication complexity that
depends on the complexity of the function being computed, whereas FHE protocols can securely outsource
computation with communication complexity that depends only on the input sizes rather than the circuit
complexity. By contrast, we focus on integrating FHE and MPC, performing some operations under the
encryption scheme, and some under the lattice-based encryption.

3.5 Symmetric key systems

Some works have focused on generated uniformly random secrets, which can then be used for symmetric-
key encryption [NPR99], and some of these schemes have been implemented [KG09,KHG12], but these
applications and techniques are very different from those of decentralized key generation for public-key
cryptosystems we consider here.

3.6 MPC

Threshold cryptosystems typically provide distributed encryption and decryption, but some applications
require more complex functionality. In these settings, it is often necessary to implement encryption [RNHH19]
or digital signatures [ZMM+19] within a full-fledged secure computation protocol.

The DECO [ZMM+19] protocol decentralizes the client side of a TLS handshake. The goal of DECO is
to allow a Prover to certify the provenance of data to a Verifier, e.g. that certain data was obtained from
a specific website (i.e., an https-enabled server). One of the key features of DECO is that the server side
code remains unchanged. This is particularly challenging when only the prover has credentials to access the
data source. At its core DECO is a 3-party TLS handshake, where the server side is unchanged and the
client state is secret-shared between a Prover and a Verifier. The DECO protocol requires piecing together
several cryptographic tools under MPC, EC-DSA signatures, AES-GCM and HMACs. By secrets-sharing the
handshake between the Prover and the Verifier, the Prover can send requests to the server that are hidden
from the verifier, and later prove to the verifier the provenance of the server’s responses.

One of the (many) obstacles faced by DECO was converting between arithmetic representations (used
for EC-DSA) and binary representations (used for AES and HMACs). Our implementation of elliptic-curve
arithmetic under SCALE-MAMBA would significantly streamline future projects of this sort to work, since



SCALE-MAMBA natively supports both arithmetic and boolean operations on secret-shares (and even has
an MPC-friendly implementation of AES).

Honeycrisp [RNHH19] decentralized an additively homomorphic, lattice-based key generation and decryp-
tion in order to support large-scale aggregation of user data. In Honeycrisp, a small “committee” generated
a key-pair for an additively homomorphic cryptosystem, then (potentially billions of) users used this public
key to send encrypted usage statistics to a centralized “aggregator.” Although this type of aggregation is a
common use-case for threshold encryption, Honeycrisp also provided differential privacy via the Sparse Vec-
tor Technique (SVT) [DNR+09,RR10]. The SVT requires computing on the aggregate data before releasing
it, which, in the context of Honeycrisp, required the committee to decrypt the aggregate values under MPC,
then perform computations on it before releasing the plaintext. This additional complexity rules out the
use of traditional threshold cryptosystems (which only allow multiparty encryption and decryption). Both
our protocols could be used as drop-in replacements in the Honeycrisp system to improve performance, or
change the underlying cryptographic assumptions.

These types of applications (which tie lattice or elliptic curve operations into larger protocols) can be
extremely powerful, and our work provides a toolkit (and software library) to facilitate their development
and deployment.

4 Design

4.1 Elliptic Curve ElGamal

Overview Our secure elliptic-curve ElGamal follows the standard algorithms for elliptic-curve ElGamal,
but uses two significant optimizations.

Firstly, we observe that, in general, elliptic-curve addition requires performing one of 5 different oper-
ations, so oblivious elliptic-curve addition requires executing all 5 of these different computations. Since
multiplication of a point by a secret constant involves many such additions, this incurs significant overhead.
We present a double-and-add algorithm for elliptic curve multiplication that ensures that almost all additions
will be guaranteed to be one of these 5 types, allowing these additions to be executed by only evaluating one
branch.

Secondly, in order to support the additively homomorphic property, a plaintext m must first be embedded
in the group by multiplying the group generator by this value. While this operation is efficient, the process
of unembedding requires solving the discrete logarithm on the message space.3 Furthermore, if the result of
decryption must be secret-shared also, then the discrete logarithm must be solved within a secure compu-
tation. To simply compute the discrete logarithm using standard algorithms within the secure computation
would have a very high overhead. However, we observe that it is possible to securely and efficiently evaluate
the discrete logarithm for plaintext spaces of up to about 220 by adding a carefully-chosen noise and solving
a related discrete-logarithm problem in the clear on a non-sensitive value.

First, we present the general protocol for elliptic-curve ElGamal. We make black-box use of operations to
multiply and compute the discrete log in a group. The algorithm is presented in Algorithm 1. All operations
are performed in an elliptic curve group, with generator G and prime order q. These parameters are implicitly
passed to each function. Encryption and ciphertext addition are executed locally in the clear; all other
operations are executed within a secure computation.

Efficient Oblivious Elliptic Curve multiplication Multiplication of elliptic curve points by constants
can be achieved using the “double-and-add” method. This is presented in Algorithm 2.

In the multiplications that need to be performed for elliptic-curve ElGamal, the group element being
multiplied, P, is always public. Hence, the addition in the doubling step on line 7 can be computed in the
clear.

Unfortunately, the additions in line 6 of Algorithm 2 could be of a variety of different forms. Elliptic-curve
addition is performed one of 5 different ways, depending on the relationship between the points. The types
of addition are as follows:
3 Since, in general, this algorithm is used in groups where the group operation is denoted by multiplication, we refer

to this as the discrete logarithm problem, even though, with the addition notation we are using, it may more aptly
be described as the division problem.



Algorithm 1 Elliptic Curve ElGamal

1: procedure KeyGen

2: ksk
$← [q]

3: kpk ← kskG
4: return (ksk,kpk)
5: end procedure
6:
7: procedure Enc(x, kpk)
8: X← xG
9: r

$← [q]
10: c← rG
11: d← rkpk + X
12: return (c,d)
13: end procedure
14:

15: procedure AddCipher((c1,d1), (c2,d2))
16: ctot ← c1 + c2
17: dtot ← d1 + d2

18: return (ctot,dtot)
19: end procedure
20:
21: procedure Dec((c,d), ksk)
22: X← d− kskc
23: return X
24: end procedure
25:
26: procedure Unembed(X, xmax)
27: x← DiscreteLog(X,G, xmax)
28: return x
29: end procedure

Algorithm 2 Elliptic Curve Multiplication: Double-and-Add algorithm

1: procedure Multiply(x, `, P) . `: bit-length of x
2: X← O
3: t← P
4: for i = 1 to ` do
5: b← x mod 2
6: X← X + mux(b, t,O)
7: t← t+ t
8: x← bx

2
c

9: end for
10: return X
11: end procedure



1. O + P (Left operand is the identity)
2. P + O (Right operand is the identity)
3. P + (−P) (Right operand is negation of left operand)
4. P + P (Operands are equal)
5. Other

In general, adding two points obliviously requires performing the computations for all 5 cases and mul-
tiplexing the results. Furthermore, testing which case is true requires secure equality tests, which are fairly
costly under most MPC frameworks.

To avoid these problems and improve performonce, we present a novel algorithm to compute the multi-
plication which ensures that every addition performed in the loop is a case-5 addition. It does this at the
cost of one extra standard addition and a reduction of the maximum length of the constant, x, by about 2
bits.

Algorithm 3 Elliptic Curve Optimized Multiplication

1: procedure Multiply(x, `, P) . Where ` < log2( q
3
)

2: X← 2`P . Computed in the clear
3: t← P
4: for i = 1 to ` do
5: b← x mod 2
6: X← X + mux(b, t+ t, t)
7: t← t+ t
8: x← bx

2
c

9: end for
10: d← (2`+1 − 1)P . Computed in the clear
11: X← X− d
12: return X
13: end procedure

Theorem 1. Algorithm 3 is correct, i.e., X = xP.

Proof. Some simple arithmetic shows that the value is computed correctly. Let xi represent the ith least
significant bit of x.

X = 2`P +
∑̀
i=1

(
(xi + 1)2i−1P

)
− (2`+1 − 1)P

= 2`P +
∑̀
i=1

(
xi2

i−1P
)

+ (2` − 1)P− (2`+1 − 1)P

=
∑̀
i=1

xi2
i−1P = xP

Theorem 2. The addition on line 6 of Algorithm 3 will always be a case 5 addition.

Proof. First, observe that the minimum value of X when beginning an iteration of the for loop is 2`P and
the maximum value is 2`P +

∑`−1
i=1 2iP or (2 · 2` − 2). Since 2` < q

3 , there will be no wrap-around. We are
therefore assured that the left operand in the addition on line 6 is never the identity, so the addition is never
of type 1.

The right operand is either t + t or t, where t = 2i−1P, and 1 ≤ i ≤ `. Therefore the right operand is
between P and 2`P. Again, 2` < q, so this will not wrap around. This means that the right operand is not
the identity, so the addition is not of type 2.



Likewise, in order to be a type 3 addition, the sum of the two operands would need to be the identity
element. But based on the ranges outlined above, the sum of the two elements is between (2` + 1)P and
(3 · 2` − 2)P. Since 0 < 2` + 1 < 3 · 2` − 2 < q it is impossible for the sum of the operands to be the identity,
so the addition is not of type 3.

Finally, the right operand will always be less 4 than 2`P, except in the last iteration of the loop where it
is at most 2`P and the left operand will always be more than 2`P, except in the first iteration of the loop
where it is exactly 2`P. Therefore, as long as ` > 1, the left operand will always be greater than the right
operand, so they cannot be equal. Therefore, the addition will never be of type 4.

We can conclude that the addition will always be of type 5. ut

Since the addition is always of type 5, this allows us to obliviously compute the addition without evaluating
unnecessary branches and without performing comparisons. We remark that this technique may be useful in
other situations where obliviousness is required, such as side-channel resistant implementations.

Efficient, secure Discrete Log calculations under MPC Solving the discrete logarithm in the unem-
bedding step is innately challenging because the security of the encryption scheme depends on the fact that
the discrete log problem is hard on the chosen elliptic curve. However, the problem is tractible when the
plaintext is restricted to a small domain. Specifically, for the security of the encryption scheme we want to
use a curve for which only generic discrete log algorithms exist, the best of which have computation cost
Θ(
√
xmax) where the solution x satisfies 0 ≤ x < xmax. One such generic algorithm is “Baby Step Giant

Step” [Sha71]. This is described in Algorithm 4. Assuming a dictionary with Θ(1)-cost accesses and Θ(1)-cost
memory per element, the discrete log is computed in time and space Θ(

√
xmax).

Algorithm 4 Baby Step Giant Step: Returns x where X = xP for some 0 ≤ x < xmax

1: procedure DiscreteLog(X, P, xmax)
2: w ← d√xmaxe
3: giantSteps← Dictionary.new()
4: stepSize← wP
5: giantStep← 0P
6: for i← 0 to w − 1 do
7: giantSteps.add(giantStep, i)
8: giantStep← giantStep+ stepSize
9: end for

10: babyStep← X
11: for j ← 0 to w − 1 do
12: i← giantSteps.get(babyStep)
13: if i 6= NULL then
14: return wi+ j
15: end if
16: babyStep← babyStep−P
17: end for
18: end procedure

Executing Baby-Step Giant-Step within a secure multiparty computation is expensive. However, if we do
a basic operation and add an appropriate noise distribution, we can solve the secure discrete log problem
by solving a related discrete log problem in the clear such that the advantage of the adversary in seeing the
input of the related problem is negligible. This is presented in detail in Algorithm 5.

We now prove the correctness and security of Algorithm 5.

Theorem 3. Algorithm 5 correctly computes x such that X = xP.

4 By saying point A is less than point B, we mean that A = aP, B = bP, where 0 ≤ a < b < q.



Algorithm 5 Efficient Secure Discrete Log using Triangular Distribution Blinding

1: procedure DiscreteLogSecure(X, P, xmax)
2: Xmax ← xmaxP

3: b
$← {true, false}

4: if b then Y ← Xmax −X else Y ← X

5: r1
$← [2

σ−1
2 xmax]

6: r2
$← [2

σ−1
2 xmax]

7: r ← r1 + r2
8: R← rP
9: Z← Y + R

10: Z.reveal()

11: z ← DiscreteLog(Z,P, 2
σ+1
2 xmax + xmax) . Computed in the clear

12: y ← z − r
13: if b then x← xmax − y else x← y
14: return x
15: end procedure

Proof. Since the DiscreteLog algorithm on line 11 is correct, Z = zP. By calculation R = rP. Therefore, by
the homomorphic property, Y = Z −R = zP − rP = (z − r)P = yP. If b = true, then X = Xmax −Y =
xmaxP− yP = (xmax − y)P = xP. If b = false, then X = Y = yP = xP. ut

Therefore X = xP.

The intuition for why this algorithm is secure is as follows. When a random value, r from a distribution
R, is added to a value x to mask it, the amount of leakage depends on the rate of change of r. Hence, if R is
the uniform distribution, for most values of x+ r nothing is leaked, but at the end points, near where R goes
from 0 to its maximum value, a significant amount of information is leaked. However, if we first randomly
flip x, as in lines 3 to 4 then the leakage no longer comes from regions of R in which the value of R changes,
but rather from regions in which the slope of R changes. If the slope is constant, then the average of R(a−x)
and R(a− (xmax − x)) will not depend on the value of x. In this case, we choose R to maximize the region
for which the slope is constant.

Theorem 4. Algorithm 5 is secure. Speficially, for any two secret values, x1 and x2, the distributions ob-
served by the adversary differ by at most 2−σ.

Proof. The only data that is revealed is Z which, from an information theoretic perspective, is equivalent
to leaking z. We need to show that z leaks a negligible amount of information about x. Let x1, x2 be two
different potential values of x. Let zx(a) be the probability distibution of z for a given x. The amount of
leakage is captured by the maximum L1 norm of the difference between two distributions of zx(a).

∆ = max
x1,x2

∞∑
a=−∞

|zx1
(a)− zx2

(a)|

The leakage is negligible if ∆ ≤ 2−σ for an appropriate statistical security parameter σ.

Let D = 2
σ−1
2 xmax. Let R(a) be the distribution of r. Then R(a) is a triangular distribution with lower

limit 0, upper limit 2D − 2 and mode D − 1. Specifically:

R(a) =


a+1
D2 if a ∈ {0 . . . D − 1}
2
D −

a+1
D2 if a ∈ {D . . . 2D − 2}

0 otherwise

Let gx(a) = R(a − x). This is the probability distribution of zx(a) when b = false. The probability
distribution of zx(a) given b = true is gxmax−x(a). Therefore zx(a) = 1

2 (gx(a) + gxmax−x(a)) = 1
2 (R(a− x) +

R(a− (xmax − x))).
Let us examine these distributions graphically. Figures 1 and 2 show the distributions gx, gxmax−x and zx

when x = 0 and when x = 1
4xmax respectively. The distribution zx is similar to the triangular distribution,



except that it has been slightly “eroded”, the peak has become a plateau and at the bottom the base becomes
slightly wider. We can also see that the extent of this “erosion” is smaller when x is closer to 1

2xmax. In
fact, if x = 1

2xmax then z 1
2xmax

= 1
2 (g 1

2xmax
+ gxmax− 1

2xmax
) = g 1

2xmax
= R(a− 1

2xmax), which is exactly the
triangular distribution.

gx gxmax−x

zx

Fig. 1: x = 0

gx gxmax−x
zx

Fig. 2: x = 1
4xmax

For the majority of values a, zx(a) does not depend on the value of x. This is obviously true for a < 0
and a > 2D − 2 + xmax, where zx(a) is always 0. It is also true when xmax ≤ a < D, where

zx(a) =
1

2
(R(a− x) +R(a− (xmax − x))) =

1

2

(
a− x+ 1

D2
+
a− xmax + x+ 1

D2

)
=

1

2

(
2a+ 2− xmax

D2

)
Similarly, zx does not depend on a when D + xmax ≤ a ≤ 2D − 2, where

zx(a) =
1

2

(
2

D
− a− x+ 1

D2
+

2

D
− a− (xmax − x) + 1

D2

)
=

1

2

(
4

D
− 2a+ 2− xmax

D2

)
Since xmax is much smaller that D, this means that for the vast majority of the distribution the output

of zx(a) does not leak information about x. This is shown in Figure 3. Only the peak and the bases change.
The L1 norm is therefore the maximum difference between the distributions at the peak and base points,

for some x1, x2. From Figure 3 it is apparent that the L1 norm is maximized when x1 = 0 (or equivalently
xmax) and x2 = 1

2xmax. The L1 norm will then be the sum of the shaded areas shown in Figure 4. Since z0
and zxmax both are probability distributions with total area 1, the sum of the green shaded areas must equal
the shaded blue area.5

Therefore the total L1 norm is double the area of the blue triangle. Since the triangle is symmetric, we
can say the total L1 norm is 4 times the area of the left half of the blue triangle.

∆ = 4

D+ 1
2xmax−1∑
a=D

z 1
2xmax

(a)− z0(a)

= 4

D+ 1
2xmax−1∑
a=D

a+ 1− 1
2xmax

D2
− 1

2

(
2

D
− a+ 1

D2
+
a+ 1− xmax

D2

)

= 4

D+ 1
2xmax−1∑
a=D

a+ 1− 1
2xmax

D2
− 1

D
+

1
2xmax

D2

= 4

D+ 1
2xmax−1∑
a=D

a−D + 1

D2
= 4

1
2xmax−1∑
a=0

a+ 1

D2

= 4

(
1
2xmax − 1

)
1
2xmax

2D2
<
x2max
2D2

5 This observation gives some intuition as to whether the triangular distribution is the best distribution for this
problem. We can see that if we were to change the base of the distribution, but leave the peak untouched, we could
not reduce the total L1 norm. Similarly, if we were to modify the shape of the peak, but not the bases, the L1
norm would not decrease since it would still be (at least) the sum of the areas of the green triangles.



For D = 2
σ−1
2 xmax, ∆ ≤ 2−σ as required. ut

Fig. 3: z0, z 1
4xmax

and z 1
2xmax

Fig. 4: L1 norm between z0 and z 1
2xmax

4.2 Lattices

We use the two-element Ring LWE scheme of [LPR10]. This uses a polynomial ringRp = Zp[x]/〈xn+1〉, where
p is prime and n is a power of 2.6 We will represent ring elements as arrays of length n and use standard
array notation to refer to elements of these arrays, which correspond to coefficients of the corresponding
polynomial. The secret key, s, public key (a, b) and cipherexts (u, v) are all are composed of these ring
elements: s ∈ Rp, (a, b) ∈ Rp ×Rp and (u, v) ∈ Rp ×Rp. Noise is drawn from a particular error distribution
χ over Rp. Plaintexts will be from a space of size m, where m is a power of 2. It will be convenient to set p
such that p = md+ 1, for some d ∈ N. The Ring LWE cryptosystem is presented in Algorithm 6.

Algorithm 6 Ring LWE

1: procedure KeyGen

2: s
$← χ

3: a
$← Rp

4: e
$← χ

5: b← as+ e
6: return (s, (a, b))
7: end procedure
8:

9: procedure Enc(x, (a, b))

10: f
$← χ

11: g
$← χ

12: h
$← χ

13: u = af + g
14: v = bf + h+ dx
15: return (u, v)
16: end procedure

17:
18: procedure Dec((u, v), s)
19: x̃ = v − us
20: xrounded = bx̃ed . Round to

closest multiple of d.
21: x̄ = xrounded

d

22: return x̄ . Should satisfy
x̄ = x

23: end procedure

Theorem 5. The cryptosystem in Algorithm 6 is correct, provided the noise distribution satisfies |∆| =
|ef + h− gs| < d

2 .

Proof. By definition, x̃ = v−us = (bf+h+dx)−(af+g)s = (as+e)f+h+dx−(afs+gs) = ef+h−gs+dx

Therefore x̃ can be seen as the value of dx with a certain amount of noise, ∆
def
= ef + h − gs, added to

it. As long as this noise satisfies |∆| < d
2 , then bx̃ed = dx, and x̄ = x as required. ut

We can observe that the scheme supports the additively homomorphic property, but that addition of
ciphertexts increases the amount of noise. Let (u1, v1) = (af1 +g1, bf1 +h1 +dx1), (u2, v2) = (af2 +g2, bf2 +
h2 + dx2) be encryptions of x and x2. Then Dec(u1 + u2, v1 + v2) = 1

dbe(f1 + f2) + h1 + h2 − s(g1 + g2) +
d(x1 + x2)ed = 1

db∆1 +∆2 + d(x1 + x2)ed.
6 It is possible to define RingLWE on rings where the cyclotomic ring is not a power of 2, but this is advised against

[ACC+18].



Provided |∆1 +∆2| < d
2 , this equals x1 + x2.

How many additions can be performed and still ensure that decryption is performed correctly?7 Observe
that when two ciphertexts are added, the noise distributions are added as well. In the worst case, this
means that the worst possible noise that could be added increases linearly with the number of ciphertext
additions. However, if we allow for a negligible probability of error, we can choose much tighter bounds on
this distribution.

We prove bounds on this value. Till use the fact that, following [KLO+19], we can approximate a Gaussian
by a centered binomial distribution.

Theorem 6. When Algorithm 6 is instantiated with ring Zp[x]〈xn + 1〉, plaintext space of size m and error
distributions approximated by [B( 1

2 , 2N)−N ]n, decryption of the aggregate of t ciphertexts will be correct if

p ≥ 10mN
√

3tnN , except with probability at most 2−σ, where σ = 40.

Proof. The total noise from adding multiple ciphertexts will be:

∆TOT = e

t∑
i=1

fi +

t∑
i=1

hi − s
t∑
i=1

gi

Where e, fi, gi, hi, s are each chosen from ring elements for which each coefficient is chosen from a centered
binomial distribution. Let B(p, a) be the binomial distribution with probability p and number of trials a.
Let W (u) = B(0.5, 2u) − u be the centered binomial distribution with probability 1

2 which we are using to
approximate a Gaussian. Then:

e, fi, gi, hi, s
$←W (N)n

By the laws of adding independent binomial distributions, we have that:

t∑
i=1

fi
$←W (tN)n;

t∑
i=1

gi
$←W (tN)n;

t∑
i=1

hi
$←W (tN)n

Two ring elements in Zp[x]〈xn + 1〉 are multiplied as follows:

efTOT [k] =

t∑
i=1

e[i]fTOT [k − i mod n]

Therefore the noise in each coefficient of e[i]fTOT [k−i mod n] will be distributed according to the product
of two centered binomials. We can upper bound this by observing that |e[i]| ≤ N . Since fTOT [k−i mod n] is
centered, this means that the distribution e[i]fTOT [k− i mod n] is upper-bounded by NfTOT [k− i mod n].
We say that distribution A is upper-bounded by distribution B if ∀t,

∑∞
i=tA[i] +A[−i] ≤

∑∞
i=tB[i] +B[−i].

We denote this as A ≤U B. This formalizes the idea that A is “narrower” than B.
We can therefore sum the binomial distributions as follows to find an upper bound on the distribu-

tion (efTOT )[k]. This is correct because we are still referencing each coefficient of fTOT only once in this
summation, so the variables are still independent.

(efTOT )[k] ≤U
t∑
i=1

NfTOT [k − i mod n] ≤U N

t∑
i=1

fTOT [i] ≤U NW (tNn)

Similarly s
∑t
i=1 gi[i] ≤U NW (tNn). Therefore:

∆TOT [i] ≤U NW (tnN) +W (tnN) +NW (tNn) ≤U N(3W (tnN)) ≤U NW (3tnN)

7 Note that if x1 + x2 = m + w for some w > 0, then wrap-around will occur modulo m. This will add slightly to
the noise term. In this case d(x1 + x2) mod p = d(m+ w) mod p = dw − 1. Therefore the wrap-around can cause
an additional value of 1 to be added to the absolute value of the noise per addition. For simplicity, we will assume
that the plaintext space has been strictly restricted to size m which implies there is no wrap-around. However, it
is worth noting that if an application does allow wrap-around, the impact of this on the total noise is very small
relative to the other noise terms.



Here we make use of the fact that the distributions fi, gi and hi are all independent, which allows us to
add the binomial distributions.

Hoeffding’s inequality provides good bounds on the distribution of a binomial. If H(a) is a centered
binomial distribution with b fair coin tosses, then it follows from Hoeffding’s inequality that:

P (H(a) ≥ k
√
b) ≤ e−2k

2

Setting b = 3tnN and k = 5 we obtain:

P (W (3tnN) ≥ 5
√

3tnN) ≤ e−50

P (|W (3tnN)| ≥ 5
√

3tnN) ≤ 2e−50

P (∀i ∈ {1 . . . n}|∆TOT [i]| ≥ N5
√

3tnN) ≤ 2ne−50

We set our statistical security parameter σ = 40, considering probabilities below 2−σ to be negligible.
For the values of n we would consider are at most 215, so this probability is at most 216e−50 < 2−40, which
is negligible by our definition.

Therefore, every term of the noise is at most 5N
√

3tnN , except with negligible probability. Decryption
will be correct if 5N

√
3tnN ≤ d, i.e., if p ≥ 10mN

√
3tnN . ut

The Homomorphic Encryption Standard [ACC+18] provides guidelines on appropriate parameter choices
based on the current best attacks against the learning with errors problem.

We choose the following parameters. We set n = 2048, log2(p) = 56 and select s from the error distri-
bution. These parameters are predicted by the Homomorphic Encryption Standard to have 128-bit security.
Following [KLO+19] we approximate the Gaussian error using a zero-centered binomial with 40 trials (i.e.,
N = 20).

Applying these parameters to Theorem 6, we see that correctness of decryption is satisfied, provided
m
√
t ≤ 239. For instance, this is satisfied when m = 232 and t = 214.

5 Implementation

We implemented our protocols using the generic MPC framework SCALE-MAMBA V1.7. This framework
was chosen because it is secure against malicious adversaries and allows an arbitrary number of parties.

SCALE-MAMBA is primarily based on a linear secret sharing scheme where operations occur modulo a
configurable prime. This makes it extremely applicable to both the LWE cryptosystem (by using the prime
of the ring) and elliptic curve ElGamal (by using the prime of the elliptic curve field). We used secp256k1
as the elliptic curve.

Our implementation is publicly available at https://github.com/anonymoushydra/MPC_lwe_elgamal.8

6 Results

We tested our implementation on Amazon Web Service (AWS) instances. The instances were of type t2.small,
running in the same region. We ran SCALE-MAMBA in the highest-threshold honest majority security
setting.

We measure both the communication cost and the runtime. Communication cost will not vary significantly
between different execution environments (LAN, servers in multiple regions etc). Run time varies between
environments and can vary between runs depending on network traffic. Nevertheless, it is an important metric
and in some settings the choice between using LWE and ElGamal depends partly on a trade-off between
communication cost and run time. Specifically, our ElGamal implementation makes use of extensive local
computation for large plaintext spaces.

8 This is a temporary anonymous repository. It will be replaced by a standard repository in the final version of this
paper.

https://github.com/anonymoushydra/MPC_lwe_elgamal


The performance of the system depends on the number of parties involved. Secure computations become
more expensive with more parties. Also, counter-intuitively, the “clear-computation” discrete log can be
parallelized, which means that it is more efficient with more parties. This computation can also be outsourced
to an entirely untrusted party, since it leaks no sensitive information and can efficiently be checked.

The cost of decryption depends on two additional factors. First, for ElGamal, the decryption cost depends
heavily on the size of the plaintext space. Second, the amortized cost of decryption depends significantly on
the number of decryptions performed. In part, this is because the underlying generic MPC frameworks have
improved amortized efficiency for larger work loads. For instance, SCALE-MAMBA generates pre-processing
data in batches which results in efficient amortized cost for large computations but can result in unnecessary
secure computation for small computations. Furthermore, the decryption algorithms themselves can be more
efficient when batched. LWE can store up to n plaintexts without increasing the size of the ciphertext (we
use n = 2048), and much of the computation is required regardless of the number of plaintexts stored in the
ciphertext. For ElGamal, the discrete log can be solved more efficiently when performing many decryptions
because the table of giant steps only needs to be computed once.

We therefore present results for decryption of multiple plaintext sizes and also show separate graphs for
the cost of a single decryption and the amortized cost of multiple decryptions.

Fig. 5: Key Generation
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Fig. 6: Decryption
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Fig. 7: Amortized Decryption: ElGamal (20 runs)
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Fig. 8: Amortized Decryption: LWE (2048 runs)
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We can see from these results that there are trade-offs between the LWE and ElGamal approaches.
ElGamal has cheaper key generation. In communication this is a marginal difference, but the difference in run-
time is significant. The ciphertext sizes for ElGamal are only 64 bytes (2 256-bit elliptic curve points) whereas
LWE requires ciphertexts of size 28 kilobytes (2 vectors, each with 2048 56-bit elements). Furthermore, for
low plaintext spaces and fewer parties, ElGamal outperforms LWE in terms of the time needed to decrypt
a single element. However, the communication cost of decrypting under LWE is significantly cheaper. Since
ElGamal has to solve a discrete log problem in the clear, decryption under LWE is much faster for large
plaintext spaces. We did not show the cost of ElGamal with plaintext space 230 because of the large execution
time and memory required to perform the discrete log problem. Finally, the amortized performance of LWE
far exceeds that of ElGamal. If the system can co-ordinate storing different plaintexts in different ‘slots’ of
the ring, then much of the decryption work need only be done once to decrypt up to n elements. This means
that the amortized LWE ciphertext size would only be 14 bytes. The amortized decryption cost can almost
be 1000 times cheaper than that of ElGamal—observe that the units of most result graphs are megabytes
and seconds, but those of Figure 8 are kilobytes and milliseconds.

In short, ElGamal is good for performing a small number of decryptions from a small plaintext space,
but LWE is better when many decryptions will be performed or the plaintext space is large.



7 Conclusion

We have presented two different protocols for secure key generation and decryption. These systems depart
from previous work in that decrypted results are secret-shared between parties, our systems support a large
number of ciphertext additions, and we have complete implementations. Achieving this performance required
a (to our knowledge) new approach to masking elements to solve the discrete log problem, an optimized
oblivious elliptic curve multiplication protocol, and careful analysis of the growth of LWE noise.

8 Further Work

We found that LWE performs well in the amortized case, while ElGamal performs better when only a single
decryption is performed, provided the plaintext space is small. It is an open question to find schemes that
combine these properties. One could perhaps improve the amortized performance cost of ElGamal by using
other discrete log algorithms, such as Pollard’s kangaroo method [Pol78] and some of its optimizations for
parellization [Tes03] or pre-processing [BL12]. However, we do not to see a way to reduce the amortized cost
of the multiplication in line 22 of the ElGamal decryption algorithm (Algorithm 1).

One option worth exploring, which may provide better trade-offs, is to adapt ElGamal to handle large
plaintext spaces by storing each w-bit word of the plaintext in a separate ciphertext. This would cause a
log2(m)

w increase in the size of the ciphertexts and the number of decryptions required, but each discrete log
problem would only need to be solved on a space of size t2w, where t is the maximum number of additions
performed. Considering that LWE ciphertexts are much larger than ElGamal ciphertexts, this design may
be a good trade-off for a number of settings.

Another avenue worth investigating is whether other additively homomorphic public key schemes could
be efficiently implemented in the MPC setting. Paillier is an appealing option because it is widely used
and supports an arbitrary number of ciphertext additions. However, Paillier key generation requires testing
primality of large secret-shared numbers, which seems to be expensive in MPC settings. Similarly, decryption
requires exponentiations modulo n2, where n is a product of secret primes, which also seems expensive and
cannot take advantage of native prime modulo reductions in the MPC framework.

Finally, using our protocols in real systems would provide a better understanding of what metrics (com-
munication cost, run time, ciphertext size, plaintext space, number of additions supported) are most relevant
in different settings. Such systems would also help bring distributed key systems from being a theoretical
construct and to an everyday security measure.
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10 Appendix

A Discussion of examples

A.1 Secure data aggregation

Secure voting is a common example of secure data aggregation, where individual votes need to be (securely)
tallied to determine the outcome of the election. In voting applications, the election committee will run a
decentralized key-generation protocol, and each voter can encrypt his or her vote, and the ciphertexts can be
tallied “under the encryption.” In such systems, the secret key can decrypt individual votes (violating indi-
vidual privacy), and thus it is critical that the each committee member only holds a share of the decryption
key. Distributed key generation and decryption for additively cryptosystems like Paillier is a foundational
primitive used in voting protocols [Gro05]. In practice, however, there are several additional security require-
ments, e.g. voters may need to prove that their vote was valid, and the committee may want to prove that
every individual’s vote made it into the aggregation.

In many situations, however, more complex decentralized protocols are needed. For example, in a dis-
tributed voting protocol, the committee may only want to decrypt the name of the winning candidate
(without revealing the ordering of the others). In the secure aggregation protocol of [RNHH19], the authors
could not use Threshold encryption because the “committee” was charged with decrypting the aggregate
ciphertext only when the plaintext exceeded a certain threshold.

A.2 Decentralized certificate authorities

Several prior works have developed distributed key generation and signature protocols for the Elliptic Curve
Digital Signature Algorithm (ECDSA) [GJKR96,GGN16,JLE17,Lin17,LNS18,GG18,DKLs19]. The ECDSA
algorithm is widely used, both to secure cryptocurrency wallets (e.g. in Bitcoin and Ethereum) and to sign
X.509 certificates.

A.3 Decentralized auditing

A.4 Privacy in the age of mass surveillance

New, digital surveillance technologies have allowed governments (and private corporations) to track individual
behavior with unprecedented accuracy. Although law enforcement need access to surveillance data in order
to gain situational awareness during a crime, aid investigations and acquire evidence for court proceedings,
there is reasonable concern that the proliferation of surveillance technology may be used for inappropriate
purposes, e.g. intelligence agents may abuse their access to learn about the activity of their friends or spouses
[Sel13].

In addition, the surveillance system itself may be vulnerable to hacking, and an adversary who gains
access to a surveillance system may gain huge amounts of information about a city and its security.

Advances in AI technology allow facial recognition, tracking of a target across multiple cameras or
classification of human interactions, and these advances only exacerbate the privacy risks.

Tools that allow for decentralized storage, analysis and auditing of mass surveillance data have the po-
tential to improve individual privacy without imposing an undue burden on law enforcement [GP17,FPS+18]

Significant progress is being made towards efficient machine-learning inside of MPC [MZ17,WGC18,MR18,DMD+18].
These technologies, combined with decentralized key distribution and decryption, could allow law enforce-
ment agencies to effectively search encrypted data feeds for individual suspects or anamolous events, without
the risks associated with decrypting the entire data feed.

A.5 Securing the smart home

IoT security is truly horrific [New18]. Industrial motors [Zet16], Smart TVs [Ste19], Cameras [Uch17,Wei15,CA18],
and medical devices [HHBR+08,Cle15,New19] are just a few of the types of IoT devices that have had high-
profile security vulnerabilities. Compromised devices can be used as part of botnets to store illicit content,



mine cryptocurrency [Nic19] or participate in large-scale spam [Fri14] or DDoS attacks [Fru18]. A home
thermostat may look completely innocent, but in the state of todays IoT security it could easily be being
used without the knowledge of the owner to store child pornography, fund terrorist organizations or launch
attacks against government infrastructure.

To increase security in IoT networks, IoT devices should be restricted to only perform the tasks for which
they were created. For passive sensors (e.g. cameras), it may be sufficient to embed a single public-key into
each device, so the device can send (encrypted) measurements or recordings to a centralized server. Many IoT
devices, however, require two-way communication, and many in-home devices are designed to communicate
with each other (e.g. it is common to control your locks, thermostat and lights through a smart speaker)
[SCR+19]. A potential solution to this would be to require commands to the IoT device be cryptographically
signed using a registered public-key.

Example 5 (Securing the smart home). As individual IoT devices are easily compromised [CLB+17,WJ18]
or spoofed [SCR+19,ZYJ+17,SM17], embedding keys into IoT devices can introduce security vulnerabilities
into the entire network. Instead, secret-sharing keys among several devices in the same home or office can
increase the cost of a successful attack.

A lightweight form of decentralized cryptography would allow a user’s home to remain secure as long as
some fraction of their devices remains uncompromised. For example, in a home IoT, a decryption or signature
operation might require the collaboration of a user’s smartphone, the IoT manufacturer’s server and a home
router.

As IoT devices may have a short lifespan, any such system should allow for key ownership to be reshared
over time, as servers are added and removed or access policies are changed.

A.6 Time-lapse cryptography

Example 6 (Time-Lapse Cryptography).
Time-lapse cryptography[RT06] allows a secret to be sent, such that the reveiver gains no knowledge of

the secret for a fixed period of time but after this time the receiver can learn the secret without any action
by the sender. This can be made possible by a time-lapse cryptography service, which releases a public key
and, after a fixed period of time, reveals the corresponding secret key. These have been used, for instance,
in secrecy-preserving verifiable auctions [PRST08], to seal bids until all bids are received.

Any secure key generation system can be used to implement a time-lapse cryptography service. Rather
than a single body being trusted to generate a key pair, a number of parties can use secure key generation
to generate and reveal a public key. Once the required period of time has elapsed, the parties can reveal
the secret key. The time-lapse cryptography service will then preserve secrecy in the case that up to t of
the parties collude. This application of secure key generation to time-lapse cryptography does not require
decryptions to be performed securely, so only the cost of key generation is relevant.

B RSA Keygen

Distributed RSA key generation, i.e., generating moduli N = pq, where p and q are primes, has received
significant attention.

Traditional RSA key-generation protocols repeatedly generate random p and q until primes are found.
Implementing a similar algorithm in the multiparty setting requires a distributed primality test. In principal,
one could use generic MPC to implement a standard primality test (e.g. Rabin-Miller [Rab80,Mil76] or
Solovay-Strassen [SS77]), but this is extremely inefficient. Instead, special purpose distributed primality
tests have been devised. Rather than generate p and q separately, some protocols generate a random N ,
then use a “bi-primality” test [Coc97,Coc98,BF01,FMY98,MWB99] to test where a candidate key, N , is the
product of two primes.

RSA decryption (and signing) is simply exponentiation by the private exponent, d. Thus, given additive
shares of the decryption exponent, {di}, such that

∑
i di = d, distributed decryption can be obtained easily

having player i calculate cdi mod N , and then multiplying the results to obtain cd = c
∑
i di =

∏
i c
di

mod N .



The RSA cryptosystem is not additively homomorphic, however, and so cannot be used in applications
requiring data aggregation. Unfortunately, decryption under the Paillier cryptosystem is significantly more
complicated (requiring both divisions modulo N , and over Z). Distributed Paillier decryption protocols have
been devised in the malicious setting [NS10] and the semi-honest setting [VAS19].

A survey of different distributed RSA key generation protocols is provided in Table 2.

Scheme Cryptosystem Players Malicious Implementation

[Coc97] RSA 2 No No

[Coc98] RSA 3+ No No

[FMY98] RSA 3+ Yes No

[Gil99] RSA 2 No No

[MWB99] RSA 3+ No Yes

[BF01] RSA 3+ No No

[ACS02] RSA 3+ No No

[DM10] RSA 3+ Yes No

[NS10] RSA 3+ Yes No

[HMRT12] RSA 2 Yes No

[VAS19] Paillier 2+ No Yes

Table 2: Distributed RSA key generation
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