
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 1

Alternative Tower Field Construction for Quantum
Implementation of the AES S-box

Doyoung Chung, Seungkwang Lee, Dooho Choi, and Jooyoung Lee

Abstract—Grover’s search algorithm allows a quantum adversary to find a k-bit secret key of a block cipher by making O(2k/2) block
cipher queries. Resistance of a block cipher to such an attack is evaluated by quantum resources required to implement Grover’s oracle
for the target cipher. The quantum resources are typically estimated by the T -depth of its circuit implementation and the number of
qubits used by the circuit (width). Since the AES S-box is the only component which requires T -gates in a quantum implementation
of AES, recent research has put its focus on efficient implementation of the AES S-box. However, any efficient implementation with
low T -depth will not be practical in the real world without considering qubit consumption of the implementation. In this work, we
propose four methods of trade-off between time and space for the quantum implementation of the AES S-box. In particular, one of
our methods turns out to use the smallest number of qubits among the existing methods, significantly reducing its T -depth.

Index Terms—Quantum implementation, quantum cryptanalysis, Grover’s algorithm, AES, multiplicative inversion

F

1 Introduction

Most cryptographic primitives are under new threats
with the advent of quantum computers. Public key

cryptosystems such as RSA, ECDSA, and ECDH will be
completely broken by Shor’s algorithm [1], a quantum algo-
rithm that solves the order finding problem in polynomial
time. When it comes to symmetric key cryptography, an
exhaustive key search using Grover’s algorithm [2] is becoming
a new threat. For example, Grover’s search algorithm allows a
quantum adversary to find a k-bit secret key of a block cipher
by making O(2k/2) block cipher queries. Resistance of a block
cipher to such an attack is evaluated by quantum resources
required to implement Grover’s oracle for the target cipher.
The quantum resources are typically estimated by the circuit
depth of the circuit implementation and the number of qubits
used by the circuit (width) [3], [4], [5].

Quantum circuits involve error-prone qubits, and fault-
tolerant quantum computation (FTQC) is made possible by
using error correcting codes, where the surface code is one
of the most feasible candidates for this purpose. Since T -
gates are exceptionally expensive in the implementation of the
surface code, T -depth, counting the number of sequential T -
gates, dominates the overall efficiency of the quantum circuit
in terms of the processing time [6]. For this reason, T -depth
is widely used as a metric to estimate the time complexity of
a quantum circuit.

There have been a number of works on lightweight imple-
mentation of AES in quantum computing environments [4],

• D. Chung and J. Lee are with the School of Computing, KAIST,
Daejeon, 34141, Korea.
E-mail: wordspqr@kaist.ac.kr, hicalf@kaist.ac.kr

• D. Chung and S. Lee are with Information Security Research
Division, ETRI, Daejeon, 34129, Korea.
E-mail: thisisdoyoung@etri.re.kr, skwang@etri.re.kr

• D. Choi is with Department of AI Cyber Security, Korea Univer-
sity Sejong, Sejong, 30019, Korea.
E-mail: doohochoi@korea.ac.kr

• D. Choi and J. Lee are corresponding authors

Manuscript received April 19, 2005; revised August 26, 2015.

[5], [7]. The only component of AES that requires T -gates
for its quantum implementation is the multiplicative inversion
used in the AES S-box [7]. Therefore, recent research [3], [4],
[5], [8] has put its main focus on lightweight implementation
of the multiplicative inversion, using tower field constructions
of the underlying finite field GF(28). However, any efficient
implementation with low T -depth will not be practical in the
real world without considering its qubit consumption since
qubits are arguably considered as the most valuable resources
in quantum computation.

A classical implementation of the AES S-box based on a
tower-field construction of GF(28) consists of XOR and AND
gates. An XOR gate in a classical circuit can be converted to
a CNOT gate in the corresponding quantum circuit, while an
AND gate is converted to a Toffoli gate or a quantum AND
gate. Since both gates are built on T -gates, the T -depth of
the quantum circuit is determined by the AND-depth of the
classical circuit.

1.1 Our Contribution
In this work, we propose three methods of trade-off between
T -depth (time) and width (space) for quantum implementa-
tion of the AES S-box. In particular, one of our methods turns
out to use the smallest number of qubits among the existing
methods, significantly reducing its T -depth. Precisely, it uses
32 qubits in a quantum circuit of T -depth 29. We note that
the implementation by Langenberg et al. [5] also uses the same
number of qubits, while its T -depth is 120.

One of our methods, balancing depth and width in
their quantum implementation, improves on the “balanced”
method proposed by Jaques et al. [4] in terms of both depth
and width; their method uses 41 qubits in a quantum circuit
of T -depth 35, while our methods uses 34 qubits in a quantum
circuit of T -depth 25.

The key idea behind our methods is to adopt efficient
tower-field constructions studied in [9] to reduce the AND-
depth of multiplicative inversion over GF(28). In order to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 2

further optimize the T -depth of the quantum implementa-
tion of the multiplicative inversion, we decompose the 8-bit
inversion into three 4-bit multiplications, one 4-bit inversion
and other minor operations; we apply a different quantum im-
plementation to each sub-field operation, carefully recycling
ancilla qubits, and hence reducing the overall depth-width of
the resulting circuit. The cost of our methods is summarized
in Table 1.

1.2 Related Work
The first quantum implementation of AES was proposed by
Grassl et al. [3]. They showed that every AES operation except
S-box can be implemented by using Clifford gates only, and
then evaluated the T -depth of the multiplicative inversion
in the AES S-box. Later, Kim et al. improved on Grassl
et al’s work by reducing the T -depth of the multiplicative
inversion [8]. Based on classical implementations of AES
with low depths of AND gates [10], [11], Langenberg et al.
significantly reduced T -depth in its corresponding quantum
implementation [5].

An AND gate can be converted into a Toffoli gate or a
quantum AND gate in its quantum implementation. So far,
the most shallow implementations of a Toffoli gate and a
quantum AND gate were known to have T -depth 3 [12] and
T -depth 1 [4], [13], respectively. Afterwards, Jaques et al.
further improved on Langenberg et al.’s implementation in
terms of T -depth. Specifically, they proposed two quantum
circuits with different cost advantages. The first one, based
on [10], reduces T -depth balancing time and space, while
the other, based on [11], minimizes the depth of the circuit
without considering space limit.

2 Preliminaries
2.1 S-box of AES
The AES S-box is an 8-bit permutation used in the nonlinear
confusion layer of AES, where the set of 8-bit strings is
identified with a finite field GF(28) = GF(2)[x]/(x8 + x4 +
x3 + x + 1). This permutation can also be represented by a
polynomial over GF(2); the input to this S-box is mapped
to its multiplicative inverse in GF(28) (with zero mapped
to itself by definition), followed by an affine transformation.
Precisely, the S-box can be defined in the matrix form as
follow:

s7
s6
s5
s4
s3
s2
s1
s0

=

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

b7
b6
b5
b4
b3
b2
b1
b0

+

0
1
1
0
0
0
1
1

where
[
s7, ..., s0

]
is the output of S-box and

[
b7, ..., b0

]
is the

multiplicative inversion of the input of S-Box as a vector.
In classical computing environment, an 8-bit to 8-bit

lookup table is generally used for S-box in most of software
implementation of AES. However, in quantum computing
environment, it is efficient to perform the multiplicative
inversion and the affine transformation due to the limited

number of qubits. The affine transformation which follows the
multiplicative inversion can be computed in-place with only
X - and CNOT gates. So, it does not consume additional T -
depth and qubits.

For this reason, the main issue in implementing the AES
S-box quantum circuit is how to implement multiplicative
inversion efficiently. The following explains a technique of
tower-field construction to perform this operation efficiently.

2.2 Tower-field construction
A tower of fields is an extension sequence of some fields, F.
The tower-field construction for the implementation of the
AES S-box is representing the operations over F22k with op-
erations over F2k recursively. The computational cost of AES
operations that are performed on GF(28) can be reduced by
using isomorphic composite fields which are generated by the
tower-field construction. When using sub-field arithmetic, it
is costly to convert the original into the isomorphic composite
field and vice-versa. Such conversion and re-conversion can
be implemented with only CNOT gates in quantum circuits
by using PLU decomposition. One of the known tower-field
representations is defined as follows [10]:
1) Construct GF(22) by adjoining a rootW of a polynomial

p1(x) = x2 + x+ 1 over GF(2).
2) Construct GF(24) by adjoining a root Z of a polynomial

p2(x) = x2 + x+W 2 over GF(22).
3) Construct GF(28) by adjoining a root Y of a polynomial

p3(x) = x2 + x+WZ over GF(24).
In this work, we will present a new tower-field representa-
tion suitable for lightweight quantum implementation of the
multiplicative inversion in the AES S-box. This tower-field
construction reduces AND-depth, imposing a dominant effect
on the execution time of a quantum circuit.

2.3 Grover’s algorithm
For a Boolean function f : {0, 1}k 7−→ {0, 1}, Grover’s
algorithm is based on Grover’s Oracle, denoted by Uf , that
implements |x〉|y〉 → |x〉|y ⊕ f(x)〉 for x ∈ {0, 1}k and
y ∈ {0, 1}. Basically, Grover’s algorithm finds an element x0
such that f(x0) = 1 by repeatedly applying a Grover iteration

Q
def= −H⊗k(I − 2|0〉〈0|)H⊗kUf

to the initial state |ψ〉 = H⊗k|0〉. If the number of iterations
is bπ4

√
K
N c, then a solution to the equation f(x) = 1 is found

with probability at least 1 − (N/K), where K is the total
number of candidates (K = 2k), and N is the number of
solutions, namely, N = |{x : f(x) = 1}|.

Brittanney et al. [14] analyzed that dk/128e known
plaintext-ciphertext pairs are sufficient to avoid a false pos-
itive in an exhaustive key search for AES-k, where k ∈
{128, 192, 256}. In order to build Uf , each plaintext-ciphertext
pair requires AES and its inverse. This implies that the
number of AES instances should be twice as many as the
number of plaintext-ciphertext pairs, namely,

• 2 AES instances for k = 128;
• 4 AES instances for k = 192;
• 4 AES instances for k = 256.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 3

method type width T -depth T -DW -cost # CNOT # 1qCliff # T # M

Grassl et al. [3] 44 217 9548 8683 1028 3584 0
Langenberg et al. [5] 32 120 3840 314 4 385 0

Jaques et al. [4] balanced 41 35 1435 818 264 164 41
minimum depth 137 6 822 654 184 136 34

this work
minimum width 32 29 928 962 366 250 40

balanced 34 25 850 1016 408 232 46
minimum depth 54 17 918 1032 408 232 46

Table 1: Comparison of our methods with the existing ones.

5

2.3 Grover’s algorithm
For a Boolean function f : {0, 1}k 7−→ {0, 1}, Grover’s algorithm takes a Grover’s
Oracle, Uf , that implements |x〉|y〉 → |x〉|y ⊕ f(x)〉, where x ∈ {0, 1}k and
y ∈ {0, 1}. Basically, Grover’s algorithm finds an element x0 such that f(x0) =
1 by repeatedly applying a Grover iteration defined below to the initial state
|ψ〉 = H⊗k|0〉.

Q = −H⊗k(I − 2|0〉〈0|)H⊗kUf
After applying bπ4

√
K
N c iterations on the initial state, a solution x0 will be found

with at least 1 − (N/K) probability by measuring the entire quantum register,
where K is the total number of candidates (K = 2k), and N is the number of
solutions (N = |{x : f(x) = 1}|).

In [5], the authors analyzed that rk = dk/128e known plaintext-ciphertext
pairs are sufficient to avoid false positives in an exhaustive key search for AES-k,
where k ∈ {128, 192, 256}. In order to build Uf , each plaintext-ciphertext pair
requires AES and its inverse. This gives us that the number of AES instances
should be twice as many as the number of plaintext-ciphertext pairs. For each
key size k, the number of Grover’s operations is then given by
– 2 AES instances for k = 128
– 4 AES instances for k = 192
– 4 AES instances for k = 256.

2.4 Quantum AND gate
In [10], the authors used a T -depth 1 circuit for an AND gate which is a com-
bination of Selinger [15], and Gidney [6], and that was designed by Mathias
Soeken.

This gate requires one more ancilla qubit, instead of reducing T -depth
compared to Toffoli gate. It has an assymetric relationship with its dagger gate.
Its dagger gate requires only 3 qubits same as Toffoli gate, but does not include
any T -depth.

The diagrams for the quantum AND gate and AND† gate are depicted in
Fig.1 and Fig.2.

•
•

=

|a〉 • T † • |a〉

|b〉 • T † • |b〉

|0〉 H • • T • • H S |a · b〉

|0〉 T |0〉

Fig. 1: Quantum AND gate.Figure 1: Quantum AND gate with T -depth 1.

Figure 2: Quantum AND(2) gate with T -depth 2.

2.4 Quantum AND gate
Jaques et al. [4] presented a quantum AND gate of T -depth
1 based on a combination of previous methods proposed by
Selinger [15] and Gidney [13]. A quantum AND gate is similar
to a Toffoli gate. Both gates perform a CCNOT operation,
but a qunatum AND gate takes only |0〉 as the input state
to the target register while a Toffoli gate allows both |0〉 and
|1〉. This quantum AND gate reduces T -depth but requires
an additional ancilla qubit than a Toffoli gate [4]. Gidney [13]
also present another implementation of the quantum AND
gate which can be done in T -depth 2 with no ancilla qubits.
This gate requires the target register takes a state |T 〉 as
input and it can be produced by TH|0〉. As depicted in Fig.1,
Fig.2 and Fig.3, a quantum AND gate has an asymmetric
relationship with its dagger gate that requires only 3 qubits
(same as Toffoli gate) without T -depth.

3 Improvement on tower-field construction
For our quantum circuit of AES inversion, we consider the
following tower-field structure which was used firstly for the
SCA(Side-Channel Attack) countermeasure implementation
in [9].

In the below structure,

• The field polynomial of GF (22) is φ2 + φ+ 1

Figure 3: Quantum AND† gate.

GF ((24)2) GF (28)

GF (24) GF ((22)2)

GF (22)

'(M)

'(M4)

Figure 4: Tower-field structure

• The field polynomial of GF ((22)2) is z2 + z + φ
• The field polynomial of GF (24) is ω4 + ω + 1
• The field polynomial of GF (((22)2)2) is y2 + y + λ,

where λ = {1100}2
• The field polynomial of GF (28) is x8 + x4 + x3 + x+ 1

Now, it is necessary to determine an isomorphism from
GF (28) to GF (((22)2)2). Firstly, by the similar process
of the section 2.2 of [16], we can determine a matrix M
representing the isomorphism from GF (28) onto GF ((24)2)
and a matrix M4 representing the isomorphism from GF (24)
onto GF ((22)2) as follows:

M =

1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 0 0 0 0 1 1 0
0 1 1 1 0 0 0 1

, M−1 =

1 0 1 1 0 1 0 0
1 0 0 1 1 1 1 0
0 0 1 1 0 1 0 0
1 0 1 1 1 0 1 0
0 1 1 1 0 0 1 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1

,

M4 =

1 0 0 0
1 1 1 0
1 1 0 0
0 0 0 1

 , andM−1

4 =

1 0 0 0
1 0 1 0
0 1 1 0
0 0 0 1

 .

Therefore, by composition of the above two matrices
representing the isomorphisms, a matrix Γ representing the
isomorphism from GF (28) to FG(((22)2)2) is describes as
follows:

Γ =
[
M4 0
0 M4

]
·M =

1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 1 1 0
0 1 1 1 0 0 0 1

.

From now on, we use the following notations for elements
of GF (28), GF (((22)2)2), GF (22), GF ((22)2) and GF ((24)2)
respectively.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 4

• (a7, a6, a5, a4, a3, a2, a1, a0) : an element ofGF (28) and
its polynomial representation is

∑7
i=0 aix

i

• ((bhh1, bhh0, bhl1, bhl0), (blh1, blh0, bll1, bll0)) : an ele-
ment of GF (((22)2)2), where bijk ∈ GF (2), i, j =
h or l and k = 0 or 1

• In the above notation, let bij := (bij1, bij0). Then
bij is in GF (22) and bij1φ + bij0 is its polynomial
representation, where i, j = h or l

• And let bh := bhhz + bhl and bl := blhz + bll. Then
bh and bl represent the elements of GF ((22)2). And
bhy + hl represents an element of GF (((22)2)2)

3.1 Quantum circuit for the isomorphism

The matrix Γ which represents our ismorphism from GF (28)
to GF (((22)2)2) can be implemented with only CNOT gates
in a quantum circuit, since Γ is decomposed by PLU decom-
position as follows:

Γ = P · L · U , where

P =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

, L =

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1

, U =

1 0 1 0 0 0 0 0
0 1 1 1 1 1 1 0
0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

.

Based on the above decomposition, the quantum circuit for
the isomorphism is depicted as in Fig. 5.

Figure 5: Quantum circuit of the isomorphic mapping Γ.

3.2 Inversion method with our composite field

The multiplicative inversion for a composite field GF((2n)m)
can be split into operations in the sub-fields GF(2n) [17]. For
P ∈ GF((2n)m) and r = 2nm−1

2n−1 , it is easy to know that
P−1 = (P r)−1 · P r−1 and P r ∈ GF(2n) [18]. For n = 4
and m = 2, the multiplicative inversion P−1 is represented
by P−1 = (P 17)−1 · P 16. Then P−1 can be calculated by the
following four steps:
1) P r−1 = P 16

2) P r = (P 16) · P
3) Compute (P r)−1 in GF((22)2)
4) Compute (P r)−1 · P r−1 using GF((22)2) arithmetic

Step 1) We need to compute P 16. Let P := bhy + bl.

P 16 = (bhy + bl)16 = bhy
16 + bl

Then P 16 = bhy + (bh + bl), since y16 = y + 1.

Step 2) We need to compute P r = P 16 · P , r = 17. In the
following formula, λ = {1100}2 in GF((22)2).

P r = P 16 · P = (bhy + (bh + bl))(bhy + bl)
= b2

hy
2 + b2

hy + (bh + bl)bl
= b2

h(y + λ) + b2
hy + (bh + bl)bl

= b2
h × λ+ (bh + bl)bl,

To calculate the above equation, squaring, multiplication by
λ, and multiplication in GF((22)2) should be implemented in
quantum circuits in our composite field.
First, the below equations show how to calculate squaring,
and this is depicted as a quantum circuit in Fig. 6.

(pihz + pil)2 = (pih1φ+ pih0)2z2 + (pil1φ+ pil0)2

= (pih1φ
2 + pih0)z2 + (pil1φ2 + pil0)

= (pih1φ+ (pih1 + pih0))z
+ (pih0 + pil1)φ+ pih1 + pil1 + pil0

:= (qih1φ+ qih0)z + (qil1φ+ qil0),

where i = h or l.

Figure 6: Quantum circuit of the squaring in GF((22)2).

Second, the multiplication by λ(in fact, M4(λ)) can be calcu-
lated as below, and is depicted as Fig. 7.

(pihz + pil)× λ = ((pih0 + pil0)φ+ pih1 + pih0 + pil1 + pil0)z
+pih1φ+ pih0

:= (qih1φ+ qih0)z + (qil1φ+ qil0),

where i = h or l.

Figure 7: Quantum circuit of the multiplication by λ in
GF((22)2).

Both quantum circuits for squaring and multiplication by λ
are implemented using only CNOT gates and wiring. The
rest of arithmetic operations is a multiplication in GF((22)2)
which can be calculated as

(pihz + pil)(qihz + qil) = ((pih + pil)(qih + qil) + pilqil)z
+(pihqihφ+ pilqil)

:= rihz + ril,

where pih, pil, qih, qil, rih, ril are in GF (22), i = h or l.
Based on the classical circuit of multiplication in

GF((22)2) shown in Fig. 8, we will adapt various quantum

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 5

circuits of multiplication in GF((22)2) for minimizing the
depth-width cost in Section 4.

�

�
�

ph

pl

2
●

qh

ql

�

×

×

×φ

×× rh

rl

●

●

●

●

Figure 8: Classical circuit of the multiplication in GF((22)2).
Filled circle in classical diagram: connection. The box labeled
"x" represents multiplication of two input elements in GF(22).

Step 3) We compute (P r)−1 in GF((22)2).
For given pih, pil, qih, qil ∈ GF(22) and (pihz + pil), (qihz +
qil) ∈ GF((22)2), suppose that (pihz + pil)−1 = qihz + qil,
where i = h or l. Then, we have

(pihz + pil)(qihz + qil) = ((pih + pil)(qih + qil) + pilqil)z
+(pihqihφ+ pilqil)

= 1,

and this gives us (pih + pil)qih + pihqil = 0, and
pihqihφ+pilqil = 1. Hence, it is easy to know that qih = pihd

−1

and qil = (pih + pil)d−1, where d = p2
ihφ + pil(pih + pil) and

d−1 = pih(φ+ 1) + pil + pih
2pil

2. The classical circuit is given
in Fig. 9, and we convert it into an efficient quantum circuit
in Section 4.

�

�

2

×

× (φ +1)

�
×

×●

●

●

●

●

ph

pl

qh

ql

x2

Figure 9: Circuit diagram of the multiplicative inversion in
GF((22)2).

Step 4) We compute (P r)−1 · P r−1 in GF((22)2), where
r = 17.

For pi = (pihz + pil) in GF((22)2), where pih, pil ∈ GF(22)
and i = h or l we know

pi · P 16 = pi · (bhy + (bh + bl)),
= pi · bhy + pi · (bh + bl),

because P 16 = bhy + (bh + bl) (see Step 1).

From the step 1 to 4, we can obtain the multiplicative
inversion for our composite field GF(((22)2)2). The classical
circuit for calculating this multiplicative inversion is
illustrated in Fig. 10. The square box marked × means a
multiplication operation in GF((22)2), and the others x2,
x−1, and ×λ represent squaring, multiplicative inversion, and

multiplication by λ in GF((22)2), respectively.

�
�

4

×

×λx2

×

×
●bh

bl

rh

rl

x-1

●

●

●

Figure 10: Circuit diagram of the multiplicative inversion in
GF(((22)2)2)

Summary. A hardware implementation of Galois field
operations generally uses AND and XOR (some NOR) gates in
classical computing environment. An AND gate is converted
into a Toffoli gate or a quantum AND gate [4], and an
XOR gate is converted into a quantum gate as a relatively
inexpensive CNOT gate. So far, a Toffoli gate and a quantum
AND gate are known to have at least T-depth 3 [12] and T-
depth 1 [4], respectively. Because the AND-depth in a classical
computing environment decides the T -depth in a quantum
computing environment, a hardware implementation with a
low AND-depth reduces calculation time when it is converted
into a quantum circuit.

Compared to prior work [10], our method reduces the
AND-depth of the multiplicative inversion from 6 to 4. Note
that we only modified the multiplicative inversion; the rest
part of constructing the S-box, including the isomorphic
mapping, its inverse operation, and the affine mapping, can
be implemented with only XOR gates. Therefore, the AND-
depth of the S-box using the proposed multiplicative inversion
remains 4 as before.

4 Proposed Quantum Circuit
In order to build up a shallow implementation of multi-
plicative inversion in GF(28), we should take into account
depth-width trade-offs of the sub-circuits for the arithmetic
operations in GF(22) and GF(24). From now on, we propose
a bottom-up approach for several low-cost quantum circuits of
multiplication inversion in GF(28). Our goal is to provide op-
timal combinations of quantum circuits for composite Galois
field operations under consideration of depth-width trade-offs.

4.1 Quantum circuits for GF(22) arithmetic
Our scheme basically explores the use of multiplication and
its dagger operations in GF(22). For (a1φ+ a0), (b1φ+ b0) ∈
GF(22) = GF(2)[φ]/(φ2+φ+1), the multiplication operation
can be written as below, and can also be implemented as
quantum circuits using CNOT, Toffoli, and quantum AND
gates.

(a1φ+a0)(b1φ+b0) = ((a1+a0)(b1+b0)+a0b0)φ+a1b1+a0b0.

When implementing a multiplication circuit in GF(22), the
cost depends on how the CCNOT operation is constructed
by using Toffoli or quantum AND gates. As explained previ-
ously, the depth-width trade-offs are due to the fact that a
quantum AND gate uses one more qubit temporarily, but it
reduces T -depth compared to a Toffoli gate. For this reason,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 6

quantum circuits for multiplication in GF(22) can be designed
with various depth-width costs. We propose three types of
quantum circuits for multiplication in GF(22) and two types
of quantum circuits for its dagger operation. The former is
summarized in Table 2 and illustrated in Fig. 11, and the
latter is in Table 3 and in Fig. 18, respectively.

(a) X(2),A2.

(b) X(2),A3.

Figure 11: Two quantum circuits for multiplication in GF(22).
Dotted circle: ancilla qubit.

(a) X†(2),A3.

Figure 12: The quantum circuit of multiplication dagger in
GF(22).

4.2 Quantum circuits for GF(24) arithmetic
As explained in Section 3, the arithmetic in GF(24) such
as squaring, constant(λ) multiplication, multiplication, and
multiplicative inversion can be performed in GF((22)2).
Among them, the first two operations implemented by using
only Clifford gates were previously described in Fig. 6 and
Fig. 7, respectively. Now we improve on the quantum circuits
of multiplication and multiplicative inversion in GF(24).

Notation Composition of gates

X(2),A2 AND × 2, Toffoli × 1
X(2),A3 AND × 3, AND† × 1

Table 2: Two quantum circuits of multiplication in GF(22).

Notation Composition of gates

X†(2),A3 AND × 1, AND† × 3

Table 3: The quantum circuit of multiplication dagger in
GF(22).

(a) X(4),A2.

(b) X(4),AA3.

(c) X(4),A3.

Figure 13: Three quantum circuits for multiplication in
GF(24).

Multiplication. As depicted in Fig. 8, multiplication in
GF(24) consists of addition, constant(φ) multiplication, and
three times of multiplication in GF(22). The quantum circuits
for addition and constant multiplication in GF(22) can be
implemented with only CNOT gates. Three times of mul-
tiplication in GF(22) can be performed only in parallel or
in a combination of parallel and series, depending on the
available amount of qubits. Also, the arrangement of the
quantum circuits for multiplication in GF(22) introduced in
Section 4.1 will have an influence on depth-width trade-offs.
By taking advantage of multiplication in GF(22) that can
be performed in parallel, the following suggests cost-effective
quantum circuits for the multiplication in GF(24).

We use three types of quantum circuits for
multiplication in GF(24). Each of them is denoted by
X(4),A2, X(4),AA3, and X(4),A3 as shown in Fig. 13. Note
that each name of the circuits characterizes the type of
multiplication in GF(22) and the arrangement in the circuit.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 7

Figure 14: Quantum circuit of the multiplicative inversion in
GF(24).

The three quantum circuits for multiplication in GF(22)
are arranged to reduce T -depth as much as possible within
the available number of qubits. The quantum circuits for
multiplication in GF(22) aligned in the same column indicate
parallel execution, whereas the circuits placed in different
columns represent operations performed in series. On the
other hand, we use only one type of quantum circuit denoted
by X†(2),A3 for dagger operation of multiplication in GF(22).
This circuit provides the smallest T -depth, and the proposed
quantum circuits for multiplication in GF(24) have enough
qubits to perform it in all circuit design.

Multiplicative inversion. The outputs of the multiplicative
inversion in GF(24) are qh = phd

−1 and ql = (ph + pl)d−1,
where d−1 = ph(φ+ 1) + pl + p2

hp
2
l . To calculate qh and ql, the

quantum circuit of multiplicative inversion in GF(24) requires
three quantum circuits for multiplication in GF(22), where
two of them can be executed in parallel. This quantum circuit
needs additional two qubits for saving d−1 which is required
during clean-up process of the multiplicative inversion in
GF(28).

The quantum circuit for multiplicative inversion in
GF(24) is depicted in Fig.14. Because the quantum circuit
for multiplicative inversion in GF(28) has a sufficient number
of qubits available, X(2),A3 is only used to build the quantum
circuit for multiplicative inversion in GF(24).

4.3 Quantum circuits for multiplicative inversion in
GF(28)
Multiplicative inversion in GF(28) can be reduced to squar-
ing, constant multiplication (by λ), multiplicative inversion
and multiplications, all in GF(24), as shown in Fig. 10. Here,
squaring and constant multiplication can be implemented by
using only CNOT gates. The quantum circuit for multiplica-
tive inversion in GF(28) requires a clean-up process in order
to reset the qubits holding intermediate values into a certain
state (usually |0〉). This process will improve the reusability of
qubits when the proposed quantum circuit is integrated into
the AES S-box. A clean-up part is similar to the reverse shape
of the circuit. However this operation is not symmetric since
the result of the operation must be maintained through all the
operations.

Our circuits are largely divided into two parts: multi-
plicative inversion in GF(28) in the front part and the clean-

Fi
gu

re
15
:Q

ua
nt
um

ci
rc
ui
tf
or

th
e
m
ul
tip

lic
at
iv
e
in
ve
rs
io
n
in

G
F

(2
8)
,m

in
im

um
w
id
th
.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 8

Fi
gu

re
16
:Q

ua
nt
um

ci
rc
ui
tf
or

th
e
m
ul
tip

lic
at
iv
e
in
ve
rs
io
n
in

G
F

(2
8)
,b

al
an

ce
d.

Fi
gu

re
17
:Q

ua
nt
um

ci
rc
ui
tf
or

th
e
m
ul
tip

lic
at
iv
e
in
ve
rs
io
n
in

G
F

(2
8)
,m

in
im

um
de
pt
h.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 9

up process in the rear part. The front part contains one more
multiplication in GF(24) compared to the classical version of
the circuit given in Fig. 10 since keeping the product bh × bl
reduces T -depth of the circuit including the clean-up process.

By combining multiplication circuits in GF(24) in three
different ways as depicted in Fig. 13, we can obtain three dif-
ferent quantum circuits for multiplicative inversion in GF(28)
as shown in Fig. 15 to Fig. 17; one enjoys the minimum width
(using 32 qubits), another the minimum depth (at the cost
of 54 qubits), and the remaining one is balanced between the
depth and the width.

We depicted GF(24) multiplication as Fig. 18a. An
empty box represents ancilla qubits and dashed line box
emphasizes the target registers. The GF(24) multiplicative
inversion also depicted in similar way as in Fig. 18b. The most
upper rectangle written as → d−1 is not ancilla qubit, this
part takes |0〉 as input then outputs |d−1〉, respectively.

(a) Symbol of GF(24) multiplica-
tion.

(b) Symbol of GF(24) multiplica-
tive inversion.

Figure 18: Symbol of multiplication and multiplicative inver-
sion in GF(24).

We will use the following notations:

• |b, a, ...〉 ← ra|a, b, ...〉 to denote logical rearrangement
of the inputs;

• b← x2(a) to denote squaring;
• b← x2 · λ(a) to denote squaring, and then multiplying

λ;
• c ← X|04, a, b〉 or c ← X|a, b, 04〉 to denote multipli-

cation of a and b in GF(24);
• b← (x−1

(4),A3)|a〉 to denote multiplicative inversion of a
in GF(24).

Here, we can use commas to split a qubit vector into smaller
sub-vectors of different sizes. The rest of computations for the
sub-circuits will follow the same notation style.

For the sake of simplicity, a pair of two CNOT gates is
represented by a single CNOT gate in Fig.15 to Fig.17 since
each horizontal line carry two qubits.

Circuit of the minimum width. The minimum-width
quantum circuit illustrated in Fig. 15. For an 8-bit input,
denoted bhh, bhl, blh, and bll, let bh = bhh||bhl and bl = blh||bll.
After copying bh using two CNOT gates, we change the state
of bh to bh + bl with two CNOT gates. Then we have

|bh + bl, bl, (bh + bl)bl〉 ← X(4),A3|bh + bl, bl, 04〉.

Next, we have

|bl, 08, (bh + bl)bl, 02, bh + bl〉 ←
ra|04, bh + bl, bl, (bh + bl)bl, 06〉,

and
|bhbl, bh, bl〉 ← X(4),A3|04, bh, bl〉.

By applying four CNOT gates, we reset the qubits, namely,
bl ← |0〉⊗4, and compute b2

hλ using squaring, constant multi-
plication by λ. Then we add b2

hλ and (bh + bl)bl by using two
CNOT gates. Let

t = (bh + bl)bl + b2
hλ

Then we have

|02, t〉 ← ra|t, 02〉,
|d−1, q, t〉 ← (x−1

(4),A3)|02, 04, t〉

from top to bottom. The qubits of t become bl by applying
four CNOT gates and x−2. At the same time, we have

bh ← (x2 · λ)†|b2
hλ〉.

We then change bl to |0〉⊗4 by applying four CNOT gates.
Now, rl denotes the lower 4-bit of the result of the multiplica-
tive inversion in GF(28) which is calculated by

|04, q〉 ← ra|q, 04〉,
|rl, q, bh + bl〉 ← X(4),A2|04, q, bh + bl〉,

where bh, rl, q, bh + bl represent 4 qubits, respectively.
In order to compute the higher 4-bit of the result,

denoted rh, we logically rearrange the qubits as follows:

|04, bh, q, bh + bl, 06, rl〉 ← ra|bh, 010, rl, q, bh + bl〉

By applying two CNOT gates, bh+bl becomes bl. Then,
we have

|rh, bh, q〉 ← X(4),T3|04, bh, q〉,

and then, as the result of multiplicative inversion,

r ← rh||rl.

Through the clean-up process in the rear part, all the
qubits except rh, rl, bh, and bl are reset to the initial state.
At the beginning of the clean-up, t is computed by adding
x2 · λ(bh), x2(bl), and bhbl with four CNOT gates. We then
have

|t, q〉 ← ra|q, t〉,
|02, t, 04〉 ← (x−1

(4),A3)†|d−1, t, q〉,

which means that d−1 and q are initialized to |0〉⊗2 and |0〉⊗4.
Next, t becomes b2

l by using four CNOT gates. At the same
time, we have

bh ← (x2 · λ)†|b2
hλ〉

bl ← x−2|b2
l 〉.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 10

The final step is to clean up bhbl. This is done by

|rh, bh, bl, bhbl〉 ← ra|bhbl, rh, bh, bl〉,
|bh, bl, 04〉 ← (x(4),A3)†|bh, bl, bhbl〉.

The non-zero states of qubits in the circuit are then rh, bh, bl,
and rl.

Balanced circuits. We can reduce the depth of the
minimum-width circuit with only a few more qubits if avail-
able. Such quantum circuit is called balanced (using two
additional qubits) and it requires 34 qubits, respectively. We
can replace the last two multipliers in GF(24) with two
multipliers of smaller T -depth. Precisely, as shown in Fig. 16,
the balanced circuits perform

(X(4),A2 , X(4),A2)→ (X(4),A3 , X(4),AA3),

respectively.

Circuit of the minimum depth. If 54 qubits are available
in the circuit, then we can parallelize the first two and the
last two multipliers using the multiplier of the lowest depth,
X(4),A3, as shown in Fig. 15. Several CNOT gates are added to
copy and reset the values used for both parallelized multiplier
pairs, including bl and q.

In Table 1, we summarized depth-width costs of our four
quantum circuits that improve on multiplicative inversion in
GF(28) as follows: 1) The minimum-width circuit reduces T -
depth by 75.83 percent compared to the existing circuit with
the same width. 2) For the balanced circuit, the number of
qubits is reduced by 7 qubits, respectively, and T -depth is
reduced by 10, respectively, compared to the existing balanced
circuit. 3) The last circuit for minimum depth reduces as many
as 83 qubits by adding only T -depth 11.

4.4 Affine transformation quantum circuit
The affine transformation is expressed as

{b} = M{b′} ⊕ {v},

where {b′} = (b′

7, b
′

6, b
′

5, b
′

4, b
′

3, b
′

2, b
′

1, b
′

0) is the result of the
multiplicative inversion for the input to the AES S-box, and
the matrixM and the vector {v} are given below:

M{b′} =

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

b
′

7
b

′

6
b

′

5
b

′

4
b

′

3
b

′

2
b

′

1
b

′

0

and {v} =

0
1
1
0
0
0
1
1

M can be decomposed by PLU decomposition into three
matrices P , L and U that can be implemented in a quantum
circuit with only CNOT gates. On the other hand, the
modular addition of {v} can be implemented in a quantum
circuit with only X -gates. Fig. 19 depicts a quantum circuit
for the affine transformation of the AES S-box consisting
of the above two operations. This circuit can be executed
in-place and does not include T -gate. Therefore, the affine
transformation does not impose additional T -depth or qubits.

Figure 19: Quantum circuit of the Affine transformation.

P :=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0

, L :=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 0 0 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 1 0 0 0 0 1

, U :=

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

.

4.5 Merging inverse of isomorphic mapping and affine
transformation
By combining the inverse of isomorphic mapping and the
affine transformation, the number of CNOT gates of the
quantum circuit can be reduced. The inverse of isomorphic
mapping are represented as the matrix Γ−1 (see Section 3.1):

Γ−1 =

1 0 1 0 0 0 0 0
1 1 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 1 1 1 0 0 0 0
0 0 0 1 0 1 0 0
1 0 0 1 0 0 0 0
1 0 0 1 0 1 1 0
0 1 1 1 0 0 0 1

−1

=

1 1 1 1 1 0 1 0
1 0 0 1 0 1 0 0
0 1 1 1 1 0 1 0
1 1 1 1 1 1 1 0
1 1 0 1 0 1 1 0
1 1 1 1 0 1 1 0
1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1

then we can merge the inverse of isomorphic mapping and the
affine transformation as follow:

M{r} =

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

1 1 1 1 1 0 1 0
1 0 0 1 0 1 0 0
0 1 1 1 1 0 1 0
1 1 1 1 1 1 1 0
1 1 0 1 0 1 1 0
1 1 1 1 0 1 1 0
1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1

r7
r6
r5
r4
r3
r2
r1
r0

⊕

0
1
1
0
0
0
1
1

where {r} = (r7, r6, r5, r4, r3, r2, r1, r0) is the result of the
proposed multiplicative inversion on the isomorphic GF(28).
Here, the multiplication of the first two matrices is as follows:

0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 0 1 1
0 1 1 1 1 0 0 1
1 1 1 1 0 1 0 1
1 1 1 1 1 0 1 1

=

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

1 1 1 1 1 0 1 0
1 0 0 1 0 1 0 0
0 1 1 1 1 0 1 0
1 1 1 1 1 1 1 0
1 1 0 1 0 1 1 0
1 1 1 1 0 1 1 0
1 1 1 1 0 0 0 0
0 0 0 1 0 0 0 1

This matrix can also be decomposed by matrix P , L, and U
by PLU decomposition as follows:

P :=

0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

, L :=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 0 1 0 0 0
0 0 1 0 1 1 0 0
0 0 1 0 1 1 1 0
1 0 0 0 1 1 0 1

, U :=

1 1 1 1 0 1 0 1
0 1 0 1 0 1 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

.

Therefore, we can writeM{r} as

M{r} = P · L · U ·

r7
r6
r5
r4
r3
r2
r1
r0

⊕

0
1
1
0
0
0
1
1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 11

Figure 20: Quantum circuit of merging the inverse of isomor-
phic mapping and affine transformation.

and it can be implemented as a quantum circuit shown in
Fig. 20. This quantum circuit reduces the number of CNOT
gates from 45 to 25, compared to implementing the inverse of
isomorphic mapping and the affine transformation separately.

5 Evaluation
We evaluate our proposed method in terms of the number
of qubits and T -depth. To design a quantum circuit that
calculates multiplicative inversion in GF(28), we proposed
quantum circuit designs with various depth-width trade-offs
for smaller Galois fields, GF(22) and GF(24). The depth-
width of the quantum circuits of the multiplicative inversion
in GF(28) can be determined in a trade-off manner depending
on the sub-circuits for the smaller Galois fields.

5.1 Multiplication and dagger in GF(22)

Symbol # qubit T -depth Subcomponents

X(2),A2 6 5 AND(2)× 2, Toffoli × 1
X(2),A3 8 2 AND × 3, AND† × 1
X†(2),A3 10 1 AND × 1, AND† × 3

Table 4: The number of qubits and T -depth of multiplication
and its dagger in GF(22).

As explained in Section 3, the multiplication quantum
circuits in GF(22) have different depth-width costs depending
on the combination of AND gates (and its dagger) and Toffoli
gates. The use of AND gates, compared to Toffoli gates,
increases quibit consumption, but decreases T -depth. Table 4
summarizes the overall cost of multiplication operation in
GF(22) used in our proposed scheme.

Symbol # qubit T -depth Subcomponents

X(4),A2 18 6 X(2),A2× 3, X†(2),A3 × 1
X(4),AA3 20 5 X(2),A3× 2, X(2),A3× 1, X†(2),A3 × 1
X(4),A3 24 3 X(2),A3× 3, X†(2),A3 × 1
X(4),−1 18 4 X(2),A3× 1, X(2),A3 × 2

Table 5: The number of qubits and T -depth of multiplication
and its dagger in GF(24).

5.2 Multiplication in GF(24)
The quantum circuits for multiplication in GF(24) have
different depth-width depending on which quantum circuit

for multiplication in GF(22) is used, and whether the
quantum circuits are arranged in sequential or parallel.
The summary of multiplication cost in GF(22) used in our
proposed scheme is provided in Table 5.

5.3 Multiplicative Inversion in GF(28)
The quantum circuit of multiplicative inversion in GF(28)
has a more complex structure than the circuits of GF(22)
and GF(24). However, the dominant factor on its cost is
which quantum circuits of GF(24) is used and how they are
arranged. Table 1 summarizes the number of qubits and T -
depth of multiplicative inversion in GF(28) for each combina-
tion.

Acknowledgment
This work was supported by Institute for Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (〈Q|Crypton〉,
No.2019-0-00033, Study on Quantum Security Evaluation of
Cryptography based on Computational Quantum Complex-
ity) and also partially supported by a Korea University Grant.

References
[1] P. W. Shor, “Polynomial-time algorithms for prime factorization

and discrete logarithms on a quantum computer,” SIAM review,
vol. 4, no. 2, pp. 303–332, 1999.

[2] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing - STOC ’96, G. L.
Miller, Ed. ACM, 1996, pp. 212–219.

[3] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt,
“Applying Grover’s algorithm to AES: quantum resource esti-
mates,” in Post-Quantum Cryptography - PQCrypto 2016, ser.
LNCS, T. Takagi, Ed., vol. 9606. Springer, 2016, pp. 29–43.

[4] S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implement-
ing Grover oracles for quantum key search on AES and LowMC,”
in Advances in Cryptology - EUROCRYPT 2020 (Proceedings,
Part II), ser. LNCS, A. Canteaut and Y. Ishai, Eds., vol. 12106.
Springer, 2020, pp. 280–310.

[5] B. Langenberg, H. Pham, and R. Steinwandt, “Reducing the
Cost of Implementing the Advanced Encryption Standard as a
Quantum Circuit,” IEEE Transactions on Quantum Engineer-
ing, vol. 1, pp. 1–12, 2020.

[6] F. Austion G., S. Ashley M., and G. Peter, “High-threshold
universal quantum computation on the surface code,” Phys. Rev.
A, vol. 80, no. 5, p. 052312, 2009, full version available at https://
journals.aps.org/pra/cited-by/10.1103/PhysRevA.80.052312.

[7] T. Häner and M. Soeken, “Lowering the T-depth of Quantum
Circuits By Reducing the Multiplicative Depth Of Logic Net-
works,” arXiv:2006.03845 [quant-ph], 2020.

[8] P. Kim, D. Han, and K. C. Jeong, “Time-space complexity of
quantum search algorithms in symmetric cryptanalysis: applying
to AES and SHA-2,” Quantum Information Processing, vol. 17,
no. 12, p. 339, 2018.

[9] J. Kang, D. Choi, Y.-J. Choi, and D.-G. Han, “Secure Hardware
Implementation of ARIA Based on Adaptive Random Masking
Technique,” ETRI Journal, vol. 34, no. 1, 2012.

[10] J. Boyar and R. Peralta, “ANewCombinational Logic Minimiza-
tion Technique with Applications to Cryptology,” in Experimen-
tal Algorithms. SEA 2010, ser. LNCS, P. Festa, Ed., vol. 6049.
Springer, 2010, pp. 178–189.

[11] ——, “A small depth-16 circuit for the AES S-Box,” in Informa-
tion Security and Privacy Research. SEC 2012, ser. IFIPAICT,
D. Gritzalis, S. Furnell, and M. Theoharidou, Eds., vol. 376.
Springer, 2012, pp. 287–298.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2020 12

[12] M. Amy, D. Maslov, M. Mosca, and M. Roetteler, “A meet-in-
the-middle algorithm for fast synthesis of depth-optimal quan-
tum circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 32, no. 6, pp. 818–830,
2013.

[13] C. Gidney, “Halving the cost of quantum addition,” Quantum,
vol. 2, p. 74, 2018.

[14] A.-A. Brittanney, M. Grassl, B. Langenberg, Y.-K. Liu,
E. Schoute, and R. Steinwandt, “Quantum Cryptanalysis of
Block Ciphers: A Case Study,” in Poster at Quantum Informa-
tion Processing QIP, 2018.

[15] P. Selinger, “Quantum circuits of T -depth one,” Phys. Rev. A,
vol. 87, no. 4, p. 042302, 2013, full version available at https://
journals.aps.org/pra/abstract/10.1103/PhysRevA.87.042302.

[16] C. Paar, “Efficient VLSI Architecture for Bit Parallel Computa-
tion in Galois Fields,” University of Duisburg-Essen, 1994.

[17] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A com-
pact Rijndael Hardware Architecture with S-Box Optimization,”
in Advances in Cryptology - ASIACRYPT 2001, ser. LNCS,
C. Boyd, Ed., vol. 2248. Springer, 2001, pp. 239–254.

[18] T. Itoh and S. Tsujii, “A fast algorithm for computing multi-
plicative inverses in GF(2m) using normal bases,” Information
and Computations, vol. 78, no. 3, pp. 171–177, 1988.

Doyoung Chung received the B.S. and Mas-
ter’s degrees in School of computing from Korea
Advanced Institute of Science and Technology
(KAIST). Currently, he is working as a senior re-
searcher in the Electronics and Telecommunica-
tions Research Institute (ETRI) and is a doctoral
candidate in School of computing, KAIST. His
main research interests include quantum crypt-
analysis and deep learning for cyber security.

Seungkwang Lee received his BS degree in com-
puter science and electronic engineering from
Handong University in 2009, and the MS degree
in computer science from Pohang University of
Science and Technology (POSTECH) in 2011.
He is currently working as a senior researcher
with ETRI, Daejeon, Rep. of Korea. His research
interests include side-channel analysis and white-
box cryptography.

Dooho Choi (Member, IEEE) is currently an
associate professor at Korea university Sejong in
Korea. He was a professor at university of science
and technology (UST) and a principal researcher
in Electronics and Telecommunications Research
Institute (ETRI). He received his B.S. degree
in mathematics from Sungkyunkwan University,
Korea in 1994, and the M.S. and Ph.D. degrees
in mathematics from Korea Advanced Institute
of Science and Technology (KAIST), Korea in
1996, 2002, respectively. His main research in-

terests include side channel analysis and its countermeasure design,
quantum crypto analysis, and security technologies of IoT.

Jooyoung Lee received the B.S. and Master’s
degrees in mathematics from Seoul National Uni-
versity, and PhD degree in cryptography from
University of Waterloo. He was a senior re-
searcher in the Electronics and Telecommunica-
tions Research Institute (ETRI) in Korea. Cur-
rently, he is working as an Associate Professor in
School of Computing, KAIST.

