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ABSTRACT
Sharding is a promising approach to scale permissionless blockchains.
In a sharded blockchain, participants are split into groups, called
shards, and each shard only executes part of the workloads. De-
spite its wide adoption in permissioned systems, transferring such
success to permissionless blockchains is still an open problem. In
permissionless networks, participants may join and leave the sys-
tem at any time, making load balancing challenging. In addition, the
adversary in such networks can launch the single-shard takeover
attack by compromising a single shard’s consensus. To address
these issues, participants should be securely and dynamically allo-
cated into different shards. However, the protocol capturing such
functionality – which we call shard allocation – is overlooked.

In this paper, we study shard allocation protocols for permission-
less blockchains. We formally define the shard allocation protocol
and propose an evaluation framework. We apply the framework to
evaluate the shard allocation subprotocols of seven state-of-the-art
sharded blockchains, and show that none of them is fully correct
or achieves satisfactory performance. We attribute these deficien-
cies to their extreme choices between two performance metrics:
self-balance and operability. We observe and prove the fundamental
trade-off between these two metrics, and identify a new property
memory-dependency that enables parameterisation over this trade-
off. Based on these insights, we propose Wormhole, a correct
and efficient shard allocation protocol with minimal security as-
sumptions and parameterisable self-balance and operability. We
implement Wormhole and evaluate its overhead and performance
metrics in a network with 128 shards and 32768 nodes. The results
show that Wormhole introduces little overhead, achieves consis-
tent self-balance and operability with our theoretical analysis, and
allows the system to recover quickly from load imbalance.

1 INTRODUCTION
Sharding is a common approach to scale distributed systems. It
partitions nodes in a system into groups, called shards. Nodes in dif-
ferent shards work concurrently, so the system scales horizontally
with the increasing number of shards. Sharding has been widely
adopted for scaling permissioned systems, in which the set of nodes
are fixed and predefined, such as databases [70], file systems [58],
and permissioned blockchains [25, 41, 42, 61, 63].

Given the success of permissioned sharded systems, sharding
is regarded as a promising technique for scaling permissionless
blockchains, where nodes can join and leave the system at any
time. However, permissionless systems need to tolerate Byzantine
nodes that may attack the system, whereas traditional sharded sys-
tems [26, 27, 37, 43, 48] only need to tolerate crash faults. In sharded
blockchains, the adversary can launch single-shard takeover attacks
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(aka 1% attacks) [10, 18] by gathering its nodes to a single shard and
compromise a shard’s consensus. As voting power is split among
shards, launching such attacks requires much fewer nodes com-
pared to 51% attacks in non-sharded blockchains. To resist against
single-shard takeover attacks, sharded blockchains should 1) pre-
vent nodes from choosing shards freely, and 2) achieve load balance
where each shard contains a comparable number of nodes. Other-
wise, shards with fewer nodes can be compromised with less effort.
Without a global view of the network and centralised membership
management, a common solution is to randomly allocate nodes
into shards.

The permissionless setting inherently has node churn [91], where
nodes may join or leave the system at any time. To achieve load bal-
ance under node churn, permissionless sharded blockchains need
to adaptively re-balance nodes over time. An intuitive solution is to
randomly shuffle all nodes for every epoch. However, when a node
is allocated to a new shard, it needs to synchronise the new shard’s
ledger and find new peers, which introduces non-negligible over-
head and makes the node temporarily unavailable. The blockchain
community recognises this issue as the reshuffling problem [13, 34].

To address the above issues, sharded blockchains should employ
a mechanism that allocates nodes into shards securely, randomly,
and dynamically. We refer to such primitive as shard allocation, of
which the intuition is depicted in Figure 1. Five nodes are allocated
in shard #3 and four of them later left the system. To prevent the only
node in shard #3 from becoming a single point of failure, the system
has to allocate some nodes to shard #3 to re-balance the shards.

A systematic study on shard allocation is still missing. Existing
works on permissionless sharded blockchains focus on either the
system-level design [11, 24, 28, 67, 74, 94–96, 98] or other compo-
nents such as ledger structure [68] and cross-shard communica-
tion [99]. Other peer-to-peer protocols such as distributed hash
tables [69, 80] and distributed slicing [46, 55, 60, 75] cannot be di-
rectly adapted for this primitive, as they usually assume rational
adversary and choose liveness over safety.
Contributions. This paper provides the first study on shard al-
location, the overlooked core component for shared permissionless
blockchains. In particular, we formalise the shard allocation proto-
col, evaluate the shard allocation protocols of existing blockchain
sharding protocols, observe insights and propose Wormhole, a
correct and efficient shard allocation protocol for permissionless
blockchains. Our contributions are summarised as follows.

(1) We provide the first study on formalising the shard allo-
cation protocol for permissionless blockchains (§2). The
formalisation includes the syntax, correctness properties and
performance metrics, and can be used as a framework for eval-
uating shard allocation protocols.

(2) Based on our framework, we evaluate the shard allocation
1
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Figure 1: An example of shard allocation. New nodes (in blue) may join the system and existing nodes (in red) may leave the system. After a
state update, a subset of nodes (in yellow) may be relocated.

protocols in seven state-of-the-art permissionless sharded
blockchains (§3), including five academic proposals Elastico [74]
(CCS’16), Omniledger [67] (S&P’18), RapidChain [98] (CCS’19),
Chainspace [24] (NDSS’19), and Monoxide [96] (NSDI’19), and
two industry projects Zilliqa [94] and Ethereum 2.0 [12]. Our re-
sults show that none of these protocols is fully correct or achieves
satisfactory performance.

(3) We observe and prove the impossibility of simultaneously
achieving optimal self-balance and operability (§4.1). Self-
balance represents the ability to re-balance the number of nodes
in different shards; and operability represents the system perfor-
mance w.r.t. the cost of re-allocating nodes to a different shard.
While this impossibility has been conjectured [13, 34] and stud-
ied informally [67], we formally prove it is impossible to achieve
optimal values on both, and quantify the trade-off between them.
All existing sharded blockchains except for Omniledger make
extreme choices on either self-balance or operability, leading
to serious security or performance issues.

(4) We identify and define a property memory-dependency
that is necessary for shard allocation protocols to param-
eterise the trade-off between self-balance and operability
(§4.2). Memory-dependency (aka non-memorylessness in signal
processing literatures [78]) specifies that the shard allocation
relies on both the current and previous system states. The pa-
rameterisation support opens a new in-between design space
and makes the system configurable for different application sce-
narios. We formally prove the necessity of memory-dependency
for supporting such parameterisation.

(5) We propose Wormhole, a correct and efficient shard allo-
cation protocol (§5), and analyse how to integrate Worm-
hole into sharded blockchains (§6). We formally prove that
Wormhole achieves all correctness properties, and supports
parameterisation of self-balance and operability. We also clas-
sify existing sharded blockchains, and analyse how to integrate
Wormhole into each type of them.

(6) We implement Wormhole, and evaluate its overhead and
performance metrics in real-world settings (§7). We imple-
ment Wormhole in Rust, and evaluate the overhead of integrat-
ing Wormhole into different designs of sharded blockchains.
We simulate Wormhole with 128 shards and 32768 nodes, and
evaluate the dynamic load balance and operability under dif-
ferent churn conditions. The results show that Wormhole
achieves consistent load balance and operability with our the-
oretical analysis, and can recover quickly from load imbalance.

2 FORMALISING SHARD ALLOCATION
This section defines shard allocation protocol, including its system
model, syntax, correctness properties, and performance metrics.

2.1 System model
A sharded blockchain consists of a fixed number of𝑚 shards, each
of which maintains a ledger formed as a blockchain, and processes
transactions concurrently. Each node 𝑖 in the system has a pair of se-
cret key 𝑠𝑘𝑖 and public key 𝑝𝑘𝑖 , and is identified by 𝑝𝑘𝑖 . The sharded
blockchain proceeds in epochs. For each epoch 𝑡 , new nodes and
existing nodes execute the shard allocation protocol to obtain a new
shard membership w.r.t. the current system state 𝑠𝑡𝑡 . Nodes find
peers in the same shard by exchanging shard memberships/proofs,
then execute consensus with peers to agree on new blocks. Each
block includes the block proposer’s shard membership and proof,
apart from other data common in non-sharded blockchains. Let 𝑛𝑡

𝑘

be the number of nodes in shard 𝑘 ∈ [𝑚] and 𝑛𝑡 =∑𝑚
𝑘=1𝑛

𝑡
𝑘
be the

total number of nodes in epoch 𝑡 , where [𝑚]= {1,2,...,𝑚}.
Epoch and global system state. An epoch 𝑡 begins when a new
global and unique system state 𝑠𝑡𝑡 is available. How and when a
system state is generated depends on the concrete protocol design.
For example, Elastico [74], Omniledger [67], RapidChain [98] and
Ethereum 2.0 [12] use a decentralised randomness beacon protocol
to generate random outputs as system states; Zilliqa [94] merges
blocks from all shards in an epoch, then extracts a global system
state from the merged block.

Most sharded blockchains demand that the system state can be
accessed by nodes securely and synchronously. We make the same
assumption in line with these proposals. To focus on analysing the
shard allocation protocol ΠShardAlloc, we assume the system state
generation protocols are secure.

Sybil resistance. To defend against Sybil attacks where the adver-
sary spawns numerous nodes to compromise the consensus, permis-
sionless sharded blockchains must employ a Sybil-resistant mecha-
nism. For example, Elastico, RapidChain, and Zilliqa require nodes
solving PoW puzzles to obtain shard memberships; Monoxide and
Ethereum 2.0 employ PoW-based and Proof-of-Stake (PoS)-based
Nakamoto-style consensus; and Omniledger supports any Sybil-
resistant mechanisms, and instantiates it with a trusted identity au-
thority. Among these Sybil resistance mechanisms, Nakamoto-style
consensus requires network synchrony and certain fault tolerance
capacity [45], affecting the sharded blockchain’s system model.

Node churn. Node churn [91] happens at any point of the protocol
execution: some new nodes join and some existing nodes leave the
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sharded blockchain. As we study shard allocation across epochs, we
consider node churn happens at the end of each epoch for simplicity.
Let 𝛼 and 𝛽 be the joining rate and leaving rate, respectively. At the
end of epoch 𝑡 , 𝛼𝑡𝑛𝑡 new nodes will join and 𝛽𝑡𝑛

𝑡 existing nodes
will leave the sharded blockchain. For two consecutive epochs 𝑡
and 𝑡+1, 𝑛𝑡+1= (1−𝛽𝑡 +𝛼𝑡 )𝑛𝑡 .
Network model. The network model concerns the timing guaran-
tee of delivering messages. Depending on different proposals’ set-
tings, the networkmodel is either synchrony, partial synchrony [52],
or asynchrony. A network is synchronous if the adversary can delay
a message up to a known finite time bound Δ; is asynchronous if
the adversary can delay a message arbitrarily without any known
time bound; and is partially synchronous [52] if it is asynchronous
before an unknown Global Stabilisation Time (GST) and becomes
synchronous after GST.

We say ΠShardAlloc is synchronous if the adversary can break its
safety by delaying messages beyond Δ; is partially synchronous
if safety is guaranteed before GST and both safety and liveness
are guaranteed after GST; and is asynchronous if a correct node
can calculate its shard membership locally without communicating
with other nodes (assuming synchronous access to system states).
Adversary. The adversary aims to break some of ΠShardAlloc’s
correctness properties that we will define in §2.3. Let 𝜙 be the fault
tolerance capacity of ΠShardAlloc, where 𝜙 is no bigger than the con-
sensus protocol’s fault tolerance capacity Ψ. Otherwise, even when
the adversary’s nodes are evenly distributed among shards, the
adversary can compromise every shard. The adversary is adaptive:
at any time, it can corrupt any set of less than 𝜙𝑛𝑡 nodes, i.e., make
these nodes Byzantine, where 𝑡 is the epoch number. The adversary
can read internal states of corrupted nodes, and direct corrupted
nodes to arbitrarily forge, modify, delay, and/or drop messages from
them. The adversary can read and/or delay messages from correct
nodes. The delay period is subjected to the network model assumed
by the sharded blockchain.

2.2 Syntax
We formally define the shard allocation protocol as follows.

Definition 1 (Shard allocation ΠShardAlloc). A shard alloca-
tion protocol ΠShardAlloc is a tuple of polynomial time algorithms

ΠShardAlloc= (Setup,Join,Update,Verify)

Setup(𝜆)→𝑝𝑝 : On input the security parameter 𝜆, outputs the public
parameter 𝑝𝑝 .

Join(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 )→ (𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 ) : On input secret key 𝑠𝑘𝑖 , public param-
eter 𝑝𝑝 and state 𝑠𝑡𝑡 , outputs the ID𝑘 of the shard assigned for node
𝑖 , the proof 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 of assigning 𝑖 to 𝑘 at 𝑠𝑡𝑡 . The input may also
be public key 𝑝𝑘𝑖 of node 𝑖 , depending on concrete constructions.
This also applies to Update(·).

Update(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ,𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 ,𝑠𝑡𝑡+1)→ (𝑘′,𝜋𝑖,𝑠𝑡𝑡+1,𝑘 ′ ) : On input the pub-
lic parameter 𝑝𝑝 , secret key 𝑠𝑘𝑖 , state 𝑠𝑡𝑡 , shard index 𝑘 , proof
𝜋𝑖,𝑠𝑡𝑡 ,𝑘 and the next state 𝑠𝑡𝑡+1, outputs the identity 𝑘′ of the
newly assigned shard for 𝑖 , a shard assignment proof 𝜋𝑖,𝑠𝑡𝑡+1,𝑘 ′ .

Verify(𝑝𝑝,𝑝𝑘𝑖 ,𝑠𝑡𝑡 ,𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 )→{0,1} : Deterministic. On input public
parameter 𝑝𝑝 , 𝑖’s public key 𝑝𝑘𝑖 , system state 𝑠𝑡𝑡 , shard index 𝑘
and shard assignment proof 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 , outputs 0 (false) or 1 (true).

Algorithm 1 describes the typical execution of ΠShardAlloc in
a sharded blockchain, from a node 𝑖’s perspective.ΠShardAlloc .Setup(𝜆)
is executed once at the beginning of the protocol execution. To join
the system in epoch 𝑡 , node 𝑖 executes ΠShardAlloc .Join(·) to obtain a
shard membership 𝑘∗ and the associated membership proof 𝜋𝑖,𝑠𝑡∗,𝑘∗ ,
so that it can execute consensus with peers in shard 𝑘∗. Upon epoch
𝑡 + 1, node 𝑖 needs to execute ΠShardAlloc .Update(·) to update its
shard membership. Other nodes can execute ΠShardAlloc .Verify(·)
to verify whether node 𝑖 has a valid and updated shard membership.

Algorithm 1: Typical execution of shard allocation protocol
ΠShardAlloc in a sharded blockchain, from node 𝑖’s perspective.
(𝑘𝑡 ,𝜋𝑖,𝑠𝑡𝑡 ,𝑘𝑡 )←ΠShardAlloc .Join(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ) // Join in epoch 𝑡

𝑠𝑡∗,𝑘∗,𝜋∗←𝑠𝑡𝑡 ,𝑘𝑡 ,𝜋𝑖,𝑠𝑡𝑡 ,𝑘𝑡 // State, shard and proof in epoch 𝑡

repeat
Wait for a new state 𝑠𝑡+
// Update shard membership and proof

(𝑘∗,𝜋𝑖,𝑠𝑡∗,𝑘∗ )←ΠShardAlloc .Update(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡∗,𝑘∗,𝜋𝑖,𝑠𝑡∗,𝑘∗ ,𝑠𝑡+ )
𝑠𝑡∗←𝑠𝑡+
// Messages may attach 𝑘∗ and 𝜋𝑖,𝑠𝑡∗,𝑘∗
Execute consensus with peers in shard 𝑘∗

until node 𝑖 leaves the system

2.3 Correctness properties
We consider three correctness properties for ΠShardAlloc, namely
liveness, allocation-randomness, and unbiasibility, plus an optional
property allocation-privacy.
Liveness. This property ensures that correct nodes can obtain
valid shard memberships timely: given a system state, all correct
nodes will finish computing Update(·) (or Join(·) if the node newly
joins the system) before the next epoch. Otherwise, nodes cannot
find their shards or participate in consensus, and consequently, the
block producing is stalled.

Definition 2 (Liveness). A shard allocation protocol ΠShardAlloc
satisfies liveness iff for every epoch 𝑡 , every correct node 𝑖 will fin-
ish computing ΠShardAlloc .Update(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡−1,𝑘𝑡−1,𝜋𝑖,𝑠𝑡𝑡−1,𝑘𝑡−1 ,𝑠𝑡𝑡 )
(or ΠShardAlloc .Join(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ) if 𝑡 = 1) before epoch 𝑡 +1 such that
ΠShardAlloc .Verify(𝑝𝑝,𝑝𝑘,+𝑖,𝑠𝑡𝑡 ,𝑘𝑡 ,𝜋𝑖,𝑠𝑡𝑡 ,𝑘𝑡 )=1, where 𝑝𝑝 is the pub-
lic parameter, 𝑠𝑘𝑖 is node 𝑖’s secret key, (𝑠𝑡𝑡−1,𝑘𝑡−1,𝜋𝑖,𝑠𝑡𝑡−1,𝑘𝑡−1 ) and
(𝑠𝑡𝑡 ,𝑘𝑡 ,𝜋𝑖,𝑠𝑡𝑡 ,𝑘𝑡 ) are the system state, node 𝑖’s allocated shard and
node 𝑖’s shard membership proof in epoch 𝑡−1 and 𝑡 , respectively.

Allocation-randomness. This property ensures that every node is
allocated to a random shard [67, 74, 94]. Otherwise, if the adversary
can predict shard allocation results, then it can launch the single-
shard takeover attack by corrupting nodes that will be allocated
to a specific shard. We stress that allocation-randomness specifies
the shard allocation process for every node independent of others,
rather than specifying a global permutation of all nodes’ shard
allocation results, which is impossible when node churn exists and
nodes have no global view on the network. Such independent deci-
sions may lead to some extreme cases where some shards are almost
empty, but with negligible probability as analysed in Appendix F.

We consider two parts of allocation-randomness, namely join-
randomness and update-randomness. Join-randomness specifies that
a newly joined node is assigned to each shard with equal probability.
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Figure 2: Update-randomness. After executing ΠShardAlloc .Update( ·) ,
the probability that a node stays in its shard (say shard 1) is 𝛾 , and
the probability of moving to each other shard is 1−𝛾

𝑚−1 .

Definition 3 (Join-randomness). A shard allocation protocol
ΠShardAlloc with𝑚 shards satisfies join-randomness iff for any secret
key 𝑠𝑘𝑖 , public parameter 𝑝𝑝 and state 𝑠𝑡𝑡 , the probability that node
𝑖 is allocated to shard 𝑘 is

𝑃𝑟
[
𝑘 =𝑘′ (𝑘 ′,𝜋𝑖,𝑠𝑡𝑡 ,𝑘′ )← Join(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 )

]
=

1
𝑚
±𝜖

where 𝑘,𝑘′ ∈ [𝑚], and 𝜖 is a negligible value.

Update-randomness specifies the probability distribution of ex-
isting nodes’ shard allocation. To remain balanced under churn,
existing nodes may need to move to other shards upon state up-
date. Moving to a new shard is computation- and communication-
intensive, as a node needs to synchronise and verify the new shard’s
ledger, which can take hundreds of Gigabytes [20, 44, 67, 81]. If a
large portion of nodes move to other shards upon each state update,
then this introduces non-negligible overhead and may make the
system unavailable for a long time. To avoid this, only a small subset
of nodes should be moved within each state update. We define 𝛾
as the probability that a node stays in the same shard after a state
update. We define update-randomness as follows.

Definition 4 (Update-randomness). A shard allocation proto-
col ΠShardAlloc with𝑚 shards satisfies update-randomness iff there
exists 𝛾 ∈ [0,1) such that for any 𝑘 ∈ [𝑚], secret key 𝑠𝑘𝑖 and public pa-
rameter 𝑝𝑝 , the probability that node 𝑖 updates its shard membership
from shard 𝑘 at state 𝑠𝑡𝑡 to shard 𝑘′ at state 𝑠𝑡𝑡+1 is

𝑃𝑟

[
𝑘 =𝑘′ (𝑘 ′,𝜋𝑖,𝑠𝑡𝑡+1,𝑘′ )←

Update(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ,𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 ,𝑠𝑡𝑡+1 )

]
=

{
𝛾±𝜖 (𝑘 ′ =𝑘 )
1−𝛾
𝑚−1 ±𝜖 (𝑘 ′≠𝑘 )

where 𝑘′ ∈ [𝑚], and 𝜖 is a negligible value.

When 𝛾 = 1
𝑚 , ΠShardAlloc achieves optimal update-randomness,

as all nodes are shuffled randomly under uniform distribution. This
definition is intuitively depicted in Figure 2.

Definition 5 (Allocation-randomness). A shard allocation
protocol satisfies allocation-randomness if it satisfies join-randomness
and update-randomness.

Unbiasibility. This property ensures that the adversary cannot ma-
nipulate the shard allocation results. While allocation-randomness
defines the probability distribution of shard allocation, unbiasibility
rules out attacks on manipulating the probability distribution, e.g.,
the join-leave attack [49, 51].

Definition 6 (Unbiasibility). A shard allocation protocolΠShardAlloc
satisfies unbiasibility iff given a system state, no node can manip-
ulate the probability distribution of the resulting shard ofΠShardAlloc .Join(·)
or ΠShardAlloc .Update(·), except with negligible probability.

Allocation-privacy. This property ensures that no one can learn
a node’s shard membership without the node providing them by
itself. Compared to allocation-randomness, allocation-privacy fur-
ther prevents the adversary from computing a node’s membership
if the adversary has no access to the node’s secret key. We consider
allocation-privacy to be optional, as it has both advantages and dis-
advantages. On the positive side, allocation-privacy is necessary for
the sharded blockchain to resist against the adaptive adversary: if
the adversary cannot learn others’ shard memberships, then it can-
not corrupt nodes in a specific shard, but only a random set of nodes
scattered across shards. On the negative side, allocation-privacy
makes nodes difficult to find peers in the same shard. If the sharded
blockchain employs a consensus protocol that requires broadcasting
operations, then nodes have to execute an extra peer finding proto-
col [74, 94] before executing consensus, introducing non-negligible
communication overhead. Thus, if the sharded blockchain is not
required to resist against an adaptive adversary, then ΠShardAlloc
does not need to achieve allocation-privacy.

Definition 7 (Join-privacy). A shard allocation protocolΠShardAlloc
with𝑚 shards provides join-privacy iff for any secret key 𝑠𝑘𝑖 , public
parameter 𝑝𝑝 , and state 𝑠𝑡𝑡 , without the knowledge of 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 and 𝑠𝑘𝑖 ,
the probability of making a correct guess 𝑘′ on 𝑘 is

𝑃𝑟
[
𝑘′=𝑘 (𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 )← Join(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 )

]
=

1
𝑚
±𝜖

where 𝑘,𝑘′ ∈ [𝑚], and 𝜖 is a negligible value.

Definition 8 (Update-privacy). A shard allocation protocol
ΠShardAlloc with𝑚 shards provides update-privacy iff for some 𝛾 ∈
[0,1), any 𝑘 ∈ [1,𝑚], secret key 𝑠𝑘𝑖 , public parameter 𝑝𝑝 , and two
consecutive states 𝑠𝑡𝑡 and 𝑠𝑡𝑡+1, without the knowledge of 𝜋𝑖,𝑠𝑡𝑡+1,𝑘 ′
and 𝑠𝑘𝑖 , the probability of making a correct guess 𝑘′′ on 𝑘′ is

𝑃𝑟

[
𝑘′′=𝑘′ (𝑘 ′,𝜋𝑖,𝑠𝑡𝑡+1,𝑘′ )←

Update(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ,𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 ,𝑠𝑡𝑡+1 )

]
=

{
𝛾±𝜖 (𝑘 ′′ =𝑘 )
1−𝛾
𝑚−1 ±𝜖 (𝑘 ′′≠𝑘 )

where 𝑘′,𝑘′′ ∈ [𝑚], and 𝜖 is a negligible value.

Definition 9 (Allocation-privacy). A shard allocation protocol
ΠShardAlloc satisfies allocation-privacy iff it satisfies both join-privacy
and update-privacy.

2.4 Performance metrics
We consider three performance metrics, namely communication
complexity, self-balance and operability.
Communication complexity. Communication complexity is the
amount of communication (measured by the number of messages)
required to complete a protocol [97]. For shard allocation, we con-
sider the communication complexity of all correct nodes obtaining
shard memberships when joining, and updating shard member-
ships upon a new epoch. The communication of synchronising new
shards is omitted.
Self-balance. Nodes should be uniformly distributed among shards.
Otherwise, the fault tolerance threshold of shards with fewer nodes
and the performance of shards with more nodes may be reduced [96,
100]. Due to node churn and lack of a global view, reaching global
load balance is impossible for permissionless networks. Instead, the
randomised self-balance approach – where a subset of nodes move
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to other shards randomly – provides the optimal load balance guar-
antee. We quantify the self-balance as the ability that ΠShardAlloc
recovers from load imbalance.

Definition 10 (Self-balance). When executing ΠShardAlloc on
𝑚 equal-sized shards in epoch 𝑡 (i.e., 𝑛𝑡

𝑖
= 𝑛𝑡

𝑗
for all 𝑖, 𝑗 ∈ [𝑚]),

ΠShardAlloc is 𝜇-self-balanced iff

𝜇=1− max
∀𝑖, 𝑗∈[𝑚]

|𝑛𝑡+1
𝑖
−𝑛𝑡+1

𝑗
|

𝑛𝑡

Value 𝜇 measures the level of imbalance among shards after an
epoch. When 𝜇 = 1, ΠShardAlloc achieves the optimal self-balance:
regardless of how many nodes join or leave the system during the
last epoch, the system can balance itself within an epoch.
Operability. To balance shards, ΠShardAlloc should move some
nodes to other shards upon each state update. As mentioned, mov-
ing nodes to other shards introduces non-negligible overhead and
may make the system unavailable for a long time. Operability was
introduced to measure the cost of moving nodes [67]. We define
operability as the probability that a node stays at its shard upon
a state update. If ΠShardAlloc satisfies update-randomness with 𝛾

(Definition 4), then its operability is 𝛾 , i.e., 𝛾-operable. When 𝛾 =1,
ΠShardAlloc is most operable: nodes will never move after joining
the network.

3 EVALUATING EXISTING PROTOCOLS
In this section, we model shard allocation protocols of seven state-
of-the-art sharded blockchains and evaluate them based on our
framework. For simplicity, we refer a sharded blockchain’s shard al-
location protocol as the sharded blockchain’s name. Our evaluation
(summarised in Table 1) shows that none of them is fully correct
or achieves satisfactory performance.

3.1 Evaluation criteria
The evaluation framework includes the system model, correctness
properties (§2.3), and performance metrics (§2.4). The systemmodel
concerns the network model and fault tolerance capacity in §2.1,
plus the trusted components that some proposals assume in or-
der to guarantee the correctness. The node churn and adversary’s
goals in §2.1 are common in all proposals, and thus are omitted.
As the evaluation framework focuses on shard allocation, other
subprotocols in sharded blockchains – e.g., system state generation,
consensus and cross-shard communication – are assumed secure.

We stress that shard allocation’s fault tolerance capacity is no
bigger than the consensus protocol’s fault tolerance capacity Ψ.
For example, if all correctness properties in the shard allocation
protocol hold even when all nodes are Byzantine (e.g., guaranteed
by a trusted third party), the shard allocation protocol achieves the
fault tolerance capacity of Ψ.

3.2 Overview of evaluated proposals
We choose seven state-of-the-art sharded blockchains, including
five academic proposals Elastico [74], Omniledger [67], Chainspace [24],
RapidChain [98], and Monoxide [96], and two industry projects
Zilliqa [94] and Ethereum 2.0 [12]. We briefly describe their shard
allocation protocols below, and defer their details to Appendix D.

Elastico, Omniledger and RapidChain rely on distributed random-
ness generation (DRG) protocols for shard allocation. In Elastico,
nodes in a special shard called final committee run a commit-and-
reveal DRG protocol [29] to produce a random output. Each node
then solves a PoW puzzle derived from the random output and
its identity, and will be assigned to a shard according to its PoW
solution. In Omniledger, all nodes in the network execute a syn-
chronous leader election protocol based on a verifiable random
function. The leader then initiates the RandHound [92] DRG pro-
tocol with the other nodes to generate a random output. If the
leader election fails for five times, then nodes fallback to run an
asynchronous DRG protocol [35]. Given the latest random output,
nodes derive a unique permutation of them, and 1

3 nodes in the
beginning of the permutation are shuffled to other shards randomly.
In RapidChain, nodes in a special shard called reference committee
execute a Feldman Verifiable Secret Sharing (VSS) [54]-based DRG
protocol to generate a random output. To join the system, a node
needs to solve a PoW puzzle parameterised by the random output.
The puzzle serves no other purpose than allowing the node to join
the system. The reference committee then executes the Commensal
Cuckoo rule [90] as follows. Interval [0,1) is equally divided into
different fragments, each representing a shard. Each new node is
mapped to an ID 𝑥 ∈ [0,1) based on its identity, and is allocated to
the shard whose interval includes 𝑥 . Existing nodes with IDs close
to 𝑥 are “pushed” to other shards randomly.

Chainspace, Monoxide, Zilliqa and Ethereum 2.0 do not rely on
DRG protocols for shard allocation. In Chainspace, a node can ap-
ply to move to another shard at any time, and other nodes vote to
decide on the applications. The voting works over a special smart
contract ManageShards, whose execution is assumed to be correct
and trustworthy. Monoxide and Ethereum 2.0 allocate nodes into
different shards according to their addresses’ prefixes. Zilliqa is
built upon Elastico, but it uses the last block’s hash value as the
current epoch’s random output.

3.3 System model

Network model. A shard allocation protocol is synchronous if
the adversary can break its safety by delaying messages beyond
the latency upper bound Δ; is partially synchronous if such > Δ
delay only affects liveness but not safety, and liveness is resumed
once the network becomes synchronous; and is asynchronous if
a correct node can calculate its shard membership locally without
communicating with other nodes. Note that we assume in §2.1
that nodes have secure and synchronous access to system states,
and other subprotocols of the sharded blockchain (including sys-
tem state generation) are secure. Elastico and RapidChain are syn-
chronous, as they employ the synchronous DRG protocols [29, 54].
Omniledger is partially synchronous, as it employs the partially syn-
chronous RandHound DRG protocol. Chainspace, Monoxide, Zilliqa
and Ethereum 2.0 are asynchronous: in Chainspace, a node submits
a smart contract transaction to obtain or update a shard member-
ship, and the liveness is achieved once the transaction is received
by the smart contract; Monoxide and Ethereum 2.0 allow nodes to
calculate shards locally without communicating with others; and
Zilliqa replaces the DRG [29] in Elastico by using block hashes as
system states that can be accessed synchronously by assumption,
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Table 1: Evaluation of seven permissionless shard allocation protocols. Red indicates strong assumptions, unsatisfied correctness properties,
and relatively weaker performance. Yellow indicates moderate assumptions and partly satisfied correctness properties. Green indicates weak
assumptions, satisfied correctness properties, and better performance.
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Elastico New block Sync. - 1/3 ✓ ✓ ✓ ✗ ✓ 𝑂 (𝑛𝑓 ) 𝑂 (𝑛𝑓 ) 1 1
𝑚

Omniledger New block Part. sync. - 1/3 ✓ ✓ ✓ ✓ ✗ 𝑂 (𝑛) 𝑂 (𝑛) ∼𝑂 (𝑛3) 1− (2𝑚−3)𝛽𝑡
3𝑚−3

2
3

RapidChain Nodes joining Sync. - 0 ✗ ✓ ✓ ✓ ✗ 𝑂 (𝑛2) 𝑂 (𝑛2) 1−𝛽𝑡 𝑚𝑎𝑥 (1−𝜅𝛼𝑡𝑛,0)
Chainspace - Async. Smart contracts Ψ ✓ ✓ ✗ ✗ ✗ - 𝑂 (𝑛) 1−𝛽𝑡 -
Monoxide - Async. - Ψ ✓ ✓ ✗ ✓ ✗ 0 0 1−𝛽𝑡 1
Zilliqa New block Async. - Ψ ✓ ✓ ✓ ✗ ✓ 𝑂 (𝑛) 𝑂 (𝑛) 1 1

𝑚
Ethereum 2.0 - Async. - Ψ ✓ ✓ ✗ ✓ ✗ 0 0 1−𝛽𝑡 1

Wormhole (§5) New rand. Async. Rand. Beacon∗ Ψ ✓ ✓ ✓ ✓ ✓ 𝑂 (𝑛) 𝑂 (𝑛) 1−𝛽𝑡 + 𝛽𝑡
2𝑜𝑝 1− 𝑚−1

𝑚 ·2𝑜𝑝
𝑜 Optional. ∗Wormhole can rely on an external randomness beacon, or allow a group of nodes to run a decentralised randomness beacon protocol similar
to Elastico, Omniledger, RapidChain and Ethereum 2.0. Ψ is the fault tolerance capacity of the sharded blockchain’s consensus protocol.

and nodes can calculate their shards locally given the system states.
Trusted components. These protocols assume no trusted compo-
nent, except for Chainspace that assumes trusted smart contracts.
Fault tolerance capacity. Elastico and Omniledger achieve the
fault tolerance capacity of 𝜙 = 1

3 , which is inherited from their DRG
protocols. RapidChain cannot tolerate any faults, as one faulty node
can make the Feldman VSS lose liveness by withholding shares. In
Chainspace, Monoxide, Zilliqa, and Ethereum 2.0, all correctness
properties of shard allocation are guaranteed when all nodes are
Byzantine. For Monoxide and Ethereum 2.0, computing shards is
offline. Chainspace assumes trusted smart contracts. For Zilliqa,
blocks are produced correctly by assumption and shard computa-
tion is offline. Thus, their shard allocation protocols achieve fault
tolerance capacity of Ψ.

3.4 Correctness properties
Public verifiability. All of these shard allocation protocols achieve
public verifiability except for RapidChain. RapidChain’s shard allo-
cation is not publicly verifiable, as the deployed Commensal Cuckoo
protocol is not publicly verifiable.
Liveness. All shard allocation protocols satisfy liveness.
Allocation-randomness. Elastico, Omniledger, RapidChain, and
Zilliqa satisfy allocation-randomness, as all nodes are shuffled for
each epoch. Chainspace does not satisfy allocation-randomness, as
nodes can choose which shard to join. Monoxide and Ethereum 2.0
do not satisfy allocation-randomness, as nodes can choose their
preferred shards by choosing addresses.
Unbiasibility. Elastico and Zilliqa do not fully achieve unbiasibil-
ity. Compared to the PoW puzzles in Bitcoin-like systems, the PoW
puzzles in Elastico and Zilliqa are less challenging to solve, allowing
the adversary to solve multiple puzzles within an epoch and choose
a preferred shard to join. Chainspace does not achieve unbiasibility,
as it does not satisfy allocation-randomness and nodes are free to
choose shards.
Allocation-privacy. Elastico and Zilliqa satisfy allocation-privacy,
as the allocated shard remains secret if the node does not reveal its

PoW solution. Therefore, Elastico and Zilliqa employ an extra peer
finding mechanism called “overlay setup”, where a special shard
called “directory committee” collects and announces nodes’ allo-
cated shards. Omniledger, RapidChain, and Chainspace do not sat-
isfy allocation-privacy as memberships can be queried at the iden-
tity blockchain, the reference committee and the ManageShards
smart contract, respectively. Monoxide and Ethereum 2.0 do not
satisfy allocation-privacy, as nodes’ addresses are publicly known.

3.5 Performance metrics
Communication complexity. Elastico’s shard allocation requires
𝑂 (𝑛𝑓 ) messages per epoch, where 𝑛 and 𝑓 are the number of nodes
and faulty nodes, respectively. For each epoch, the final committee
needs to run the DRG protocol, which consists of a vector con-
sensus [79] with communication complexity 𝑂 (𝑛𝑓 ). Ideally, the
final committee in Elastico has 𝑛

𝑚 nodes, and the communication

complexity is 𝑂 ( 𝑛𝑚
𝑓

𝑚 ) = 𝑂 (𝑛𝑓 ) (𝑚 is constant). For Omniledger,
Join(·) requires 𝑂 (𝑛) communication, as each new node requests
to a node for joining the system. The communication complexity
of Update(·) is 𝑂 (𝑛) or 𝑂 (𝑛3): the best case of Update(·) is that
the leader election and RandHound are both successful, leading to
𝑂 (𝑛) messages; and the worst case is that nodes fallback to run the
asynchronous DRG [35] with communication complexity 𝑂 (𝑛3).
RapidChain’s shard allocation requires 𝑂 (𝑛2) messages per epoch,
which is inherited from Feldman VSS [54]. Monoxide and Ethereum
2.0 requires no communication for shard allocation, as nodes decide
their shards locally. Zilliqa requires 𝑂 (𝑛) messages per epoch as
each node needs to retrieve the latest block.
Self-balance. In Elastico and Zilliqa, all nodes are shuffled for each
epoch, leading to the self-balance of 1 with negligible bias. In Om-
niledger, 1

3 nodes are shuffled for each epoch, leading to operability
𝛾 = 2

3 . By Lemma 1 (introduced later in §4.1), Omniledger’s self-
balance will be 𝜇 = 1− (2𝑚−3)𝛽𝑡

3𝑚−3 . The self-balance of RapidChain,
Chainspace, Monoxide and Ethereum 2.0 is 1−𝛽𝑡 . In the worst case
where no nodes newly join the system and 𝛽𝑛𝑡 nodes in the same
shard leave the system, self-balance becomes 𝑛−𝛽𝑡𝑛

𝑛 =1−𝛽𝑡 .
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Operability. The operability of Elastico and Zilliqa are 1
𝑚 , as all

nodes are shuffled for each new epoch. The operability of Om-
niledger is 𝛾 = 2

3 , as
1
3 nodes are shuffled for each epoch. The

operability of RapidChain is max(1−𝜅𝛼𝑡𝑛,0), where 𝜅 ∈ [0,1] is the
size of the interval in which nodes should move to other shards,
and 𝛼𝑡 is the join churn rate in epoch 𝑡 . In epoch 𝑡 , there are 𝛼𝑡𝑛
nodes joining the network, and each newly joined node causes
the reallocation of 𝜅𝑛 other nodes. The operability then becomes
1− 𝛼𝑡𝑛 ·𝜅𝑛

𝑛 = 1−𝜅𝛼𝑡𝑛. As operability cannot be smaller than 0 in
reality, operability is max(1−𝜅𝛼𝑡𝑛,0). We cannot determine the op-
erability of Chainspace, as Chainspace does not specify how many
nodes can propose to change their shards. Monoxide and Ethereum
2.0 have the operability of 1, as nodes in Monoxide and Ethereum
2.0 never move to other shards.

4 OBSERVATION AND INSIGHTS
Table 1 shows that no shard allocation protocols achieves optimal
self-balance and operability simultaneously. We formally prove that
achieving optimal values on both of them is impossible. We then
identify a new property memory-dependency that enables param-
eterising the trade-off between them, opening a new in-between
design space configurable for different application scenarios. We
provide proof sketch for the analysis, and defer the formal proofs
toAppendix A.

4.1 Impossibility and trade-off
According to Table 1, except for Omniledger and RapidChain, self-
balance 𝜇 is either 1−𝛽𝑡 or 1, and operability 𝛾 is either 1 or 1

𝑚 . In
fact, achieving optimal self-balance and operability simultaneously
still remains as an open problem, and has been extensively discussed
in the blockchain community [13, 34]. We prove that, however, this
is impossible for any correct shard allocation protocol. The proof
starts from analysing the relationship between self-balance 𝜇 and
operability 𝛾 . Lemma 1 formally states the relationship, and Appen-
dix A provides its full proof.

Lemma 1. If a correct shard allocation protocol ΠShardAlloc with
𝑚 shards satisfies update-randomness with 𝛾 , the self-balance of
ΠShardAlloc is

𝜇=1−
���� (𝛾𝑚−1)𝛽𝑡

𝑚−1

����
, where 𝛽𝑡 is the percentage of nodes leaving the network in epoch 𝑡 .

Proof sketch. When the 𝛽𝑡𝑛𝑡 leaving nodes are from the same
shard 𝑖 , self-balance 𝜇 will achieve the smallest value

𝜇=1− max
∀𝑖, 𝑗∈[𝑚]

|𝑛𝑡+1
𝑖
−𝑛𝑡+1

𝑗
|

𝑛𝑡

=1−
|𝛾𝑚−1
𝑚−1 𝛽𝑡𝑛

𝑡 |
𝑛𝑡

=1−
���� (𝛾𝑚−1)𝛽𝑡

𝑚−1

����
□

Figure 3 visualises their relationship in Lemma 1. The line never
reaches the point (1,1), indicating thatΠShardAlloc can never achieve
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Figure 3: Relationship between self-balance 𝜇 and operability 𝛾 . We
pick𝑚=10 and 𝛽𝑡 =0.005 as an example. No shard allocation protocol
can go above the blue line to reach the orange area.

optimal values for them simultaneously. With operability increas-
ing, the self-balance increases to 1 when 𝛾 ≤ 1

𝑚 , then decreases
when 𝛾 ≥ 1

𝑚 . When 𝛾 = 0, self-balance becomes 1− 𝛽𝑡
𝑚−1 . This is

because when 𝛾 =0, all nodes are mandatory to change their shards.
As shard 𝑘 has fewer nodes, during ΠShardAlloc .Update(·) it loses
fewer nodes but receives more nodes from other shards. When
𝛾 = 1

𝑚 , self-balance becomes 1, i.e., optimal.
Therefore, it is impossible to achieve optimal values for self-

balance and operability simultaneously. Theorem 1 formally states
the impossibility, and Appendix A provides its full proof.

Theorem 1. Let 𝛽𝑡 be the percentage of nodes leaving the net-
work in epoch 𝑡 . It is impossible for a correct shard allocation protocol
ΠShardAlloc with𝑚 shards to achieve optimal self-balance and oper-
ability simultaneously for any 𝛽𝑡 >0 and𝑚>1.

4.2 Parameterising the trade-off
As shown in Figure 3, (1,1−𝛽𝑡 ) and ( 1

𝑚 ,1) are two extreme cases in
the trade-off between self-balance and operability, and shard alloca-
tion protocols lying at these two points are impractical. In addition,
none of our evaluated protocols allows parameterising this trade-
off. We prove that, to parameterise this trade-off, sharding protocols
should be memory-dependent, where the shard allocation result de-
pend not only on the current system state, but also on the previous
ones. In signal processing literatures, this property is also known as
non-memorylessness, where the output signal does not only depend
on the current input, but also some previous inputs [78]. Formally,
memory-dependency is defined as follows.

Definition 11 (Memory-dependency). A shard allocation pro-
tocol ΠShardAlloc is memory-dependent iff for any public parameter
𝑝𝑝 , secret key 𝑠𝑘𝑖 , and shard 𝑘 , the output of ΠShardAlloc .Update(𝑝𝑝,
𝑠𝑘𝑖 , 𝑠𝑡𝑡 , 𝑘, 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 , 𝑠𝑡𝑡+1) depends on system states earlier than 𝑠𝑡𝑡 .

By Definition 4, both self-balance and operability are related to
the probability𝛾 of nodes staying at the same shard. To parameterise
self-balance and operability, a shard allocation protocol should
incorporate shard allocation results of previous epochs. When
𝛾 ∈ ( 1

𝑚 ,1), the probability distribution of allocation-randomness is
non-uniform, and the membership proof of each epoch 𝑡 depends
on that in the previous epoch 𝑡 −1. As the membership proof of
epoch 𝑡 −1 also depends on that of epoch 𝑡 −2, recursively, each
membership proof depends on all historical membership proofs.
Thus, memory-dependency is necessary for parameterising the
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trade-off between self-balance and operability. Theorem 2 formally
states such necessity, and Appendix A provides its full proof.

Theorem 2. If a correct shard allocation protocol ΠShardAlloc is
𝜇-self-balanced and 𝛾-operable where 𝜇 ∈ (1−𝛽𝑡 ,1) and 𝛾 ∈ ( 1

𝑚 ,1),
then ΠShardAlloc is memory-dependent.

Proof sketch. AssumingΠShardAlloc is non-memory-dependent,
i.e., 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 involves no information of 𝑠𝑡𝑡−1. Proof 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 allows
verifying node 𝑖 is in shard 𝑘 in epoch 𝑡 . When 𝛾 ∈ ( 1

𝑚 ,1), verifying
𝜋𝑖,𝑠𝑡𝑡 ,𝑘 requires the knowledge of the shard 𝑘 of node 𝑖 at state 𝑠𝑡𝑡 .
As 𝑘 depends on 𝑠𝑡𝑡−1, if 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 does not include 𝑠𝑡𝑡−1, then node
𝑖 can produce 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 w.r.t. an arbitrary shard 𝑘′≠𝑘 , contradicting
to update-randomness. □

5 WORMHOLE: MEMORY-DEPENDENT
SHARD ALLOCATION

Based on the gained insights, we propose Wormhole, a correct and
efficient shard allocation protocol. Wormhole relies on a random-
ness beacon (RB) to generate the system states, and a verifiable ran-
dom function (VRF) to guide the nodes in computing their shards. By
being memory-dependent, Wormhole supports parameterisation
of self-balance and operability. We formally analyse Wormhole’s
correctness, and its communication and computational complexity.

5.1 Primitives: RB and VRF
Randomness beacon. Similar to existing sharded blockchains
such as Elastico, Omniledger, and Zilliqa, Wormhole allocates
nodes based on some randomness. RB [66] is a service that period-
ically generates random outputs. RB is instantiated by either an ex-
ternal party or by a group of nodes via a decentralised randomness
beacon (DRB) protocol. RB satisfies the following properties [88]:
• RB-Availability: No node can prevent the protocol from making
progress.
• RB-Unpredictability: No node can know the value of the random
output before it is produced.
• RB-Unbiasibility: No node can influence the value of the random
output to its advantage.
• RB-Public-Verifiability: Everyone can verify the correctness of
the random output.
RB schemes are both readily available and widely used. Pub-

lic external RBs are maintained by countries such as the US [66],
Chile [15], and Brazil [2], as well as reputable institutions such
as Cloudflare [8], EPFL [19], and League of Entropy [9]. DRB pro-
tocols can be constructed from Publicly Verifiable Secret Sharing
(PVSS) [36, 88, 92], Verifiable Delay Functions [53, 71], Nakamoto
consensus [62], and real-world entropy [33, 39]. Several sharded
blockchains, including Elastico, Omniledger, and RapidChain, em-
ploy DRB to produce the system states already; Ethereum 2.0 uses
DRB for its consensus; emerging projects such as Filecoin [32] rely
on an external RB for its consensus.
Verifiable random function. A VRF [50, 59, 76] is a public-key
version of a hash function, which computes an output and a proof
from an input string and a secret key. Anyone with the associated
public key and the proof can verify 1) whether the output is from
the input, and 2) whether the output is generated by the owner
of the secret key. Some VRFs support batch verification [1, 64], i.e.,

xxxxxxxxxdabc dabcxxxxx0456

=

Action of
the node

Join shard
#abc+1

Move to
shard #456+1

1111xxxxxxxxx

Stay at shard
#456+1

0456xxxxx1234

Move to
shard #234+1

=

Randomness
Beacon

Figure 4: Intuition of Wormhole ΠWH
ShardAlloc. All numbers are in hexa-

decimal. We use 𝑜𝑝 =16 and𝑚=163 as an example, and assume epoch
0 is the last non-memory-dependent epoch.

verifying multiple VRF outputs at the same time, which is faster
than verifying VRF outputs one-by-one. Formally, a VRF is a tuple
of four algorithms:
• VRFKeyGen(𝜆)→ (𝑠𝑘,𝑝𝑘): On input a security parameter 𝜆, out-
puts the secret/public key pair (𝑠𝑘,𝑝𝑘).
• VRFEval(𝑠𝑘,𝑚) → (ℎ,𝜋): On input 𝑠𝑘 and an arbitrary-length
string𝑚, outputs a fixed-length random output ℎ and proof 𝜋 .
• VRFVerify(𝑝𝑘,𝑚,ℎ,𝜋)→{0,1}: On input 𝑝𝑘 ,𝑚, ℎ, 𝜋 , outputs the
verification result 0 or 1.
• (Optional) VRFBatchVerify(𝑝𝑘, ®𝒎,®𝒉, ®𝝅) → {0,1}: On input 𝑝𝑘 , a
series of strings ®𝒎 = (𝑚1, ... ,𝑚𝑛), outputs ®𝒉 = (ℎ1, ... ,ℎ𝑛), and
proofs ®𝝅 = (𝜋1,...,𝜋𝑛), outputs the verification result 0 or 1.

VRF should satisfy the following three properties [59].
• VRF-Uniqueness: It is computationally hard to find (𝑝𝑘,𝑚,ℎ,ℎ′,𝜋,𝜋 ′)
such thatℎ≠ℎ′ andVRFVerify(𝑝𝑘,𝑚,ℎ,𝜋)=VRFVerify(𝑝𝑘,𝑚,ℎ′,𝜋 ′)=
1.
• VRF-Collision-Resistance: It is computationally hard to find (𝑚,𝑚′)
such that ℎ = ℎ′ where (ℎ, ·) ← VRFEval(𝑠𝑘,𝑚) and (ℎ′, ·) ←
VRFEval(𝑠𝑘,𝑚′).
• VRF-Pseudorandomness: It is computationally hard to distinguish
the random output of VRFEval(·) from a random string without
the knowledge of the corresponding public key and the proof.

5.2 Key challenge and strawman designs
The key challenge in designing a memory-dependent shard alloca-
tion protocol is the recursive dependency problem: a shard member-
ship proof in epoch 𝑡 needs to prove its shard membership in epoch
𝑡−1 (i.e., “the memory”); and the shard membership proof in epoch
𝑡−1 needs to prove that in epoch 𝑡−2, and so on. Therefore, an extra
mechanism is necessary to bound the number of history proofs.

A strawman design is to prescribe a fixed number of history
proofs, so that all shard allocations but the earliest one are verifi-
able. However, this approach allows the adversary to enumerate
all the shards as the earliest shard, and only releases one that leads
them to the target shard, similar to the well-known grinding at-
tack [30, 45] against proof-of-stake protocols.

Another strawman design is to periodically discard history proofs,
so that nodes only need to provide history proofs up to the last non-
memory-dependent epoch. Let each unit with𝑤 epochs be an era,
which begins when 𝑡 mod 𝑤 =0 and ends when 𝑡 mod 𝑤 =𝑤−1,
where 𝑡 is the epoch number. At each era’s beginning, a node dis-
cards all history proofs, and computes the shard membership in a
non-memory-dependent way, i.e., only based on its secret key and
the current system state. This bounds the number of history proofs,
but all nodes are likely to be allocated to new shards at each era’s
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beginning, lowering the operability significantly for one epoch.

5.3 The Wormhole design
Wormhole addresses the above challenge by (1) prescribing a non-
memory-dependent shard allocation per node per era and (2) ran-
domising this non-memory-dependent epoch for each node, so
that the size of a membership proof is bounded and nodes discard
history proofs in different epochs. Algorithm 2 provides the full
construction of Wormhole.

Each node 𝑖 determines the non-memory-dependent epoch and
the allocated shard in this epoch by using calcNMDEpoch(·). When
an era starts at epoch 𝑡 (when 𝑡 mod 𝑤 = 0), node 𝑖 calculates
VRFEval(𝑠𝑘𝑖 ,𝑠𝑡𝑡 ) → (𝑔𝑖,𝑡 , 𝜋𝑖,𝑡 ), where 𝑠𝑡𝑡 is RB’s output, i.e., the
system state, in epoch 𝑡 . Then at epoch 𝑡+(𝑔𝑖,𝑡 mod 𝑤), the node
will remove all the memory and move to shard 𝑘 = (𝑔𝑖,𝑡 mod𝑚)+1.
Note that both the reallocation epoch and the allocated shard are
non-memory-dependent, and this happens exactly once per era.

In the other𝑤−1 memory-dependent epochs, each node 𝑖 deter-
mines the allocated shard by using calcShard(·). At epoch 𝑡 , node
𝑖 computes VRFEval(𝑠𝑘𝑖 ,𝑠𝑡𝑡 )→ (ℎ𝑖,𝑡 ,𝜋𝑖,𝑡 ). Let 𝑜𝑝 be the parameter
for parameterising operability (and self-balance). Let LSB(𝑥,𝑚) and
MSB(𝑥,𝑚) be the least and most significant 𝑥 bits of𝑚, respectively.
Node 𝑖 stays in the same shard, i.e., 𝑘𝑖,𝑡 =𝑘𝑖,𝑡−1 if LSB(𝑜𝑝,ℎ𝑖,𝑡−1)≠
MSB(𝑜𝑝,ℎ𝑖,𝑡 ), otherwise moves to shard 𝑘𝑖,𝑡 = (ℎ𝑖,𝑡 mod 𝑚) + 1.
This injects the memory-dependency to the shard memberships
of two consecutive epochs. Increasing 𝑜𝑝 improves operability but
reduces self-balance, and vice versa. Figure 4 illustrates this idea.

To join the system, a node 𝑖 executes Join(·): it calculates VRF
outputs and proofs since the last non-memory-dependent epoch,
and executes calcShard(·) to calculate its allocated shard 𝑘 . The
shard membership proof 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 includes a sequence of VRF outputs
(ℎlast,...,ℎ𝑡 ) and their VRF proofs (𝜋last,...,𝜋𝑡 ), where 𝑙𝑎𝑠𝑡 is the last
non-memory-dependent epoch calculated from calcNMDEpoch(·).

Upon epoch 𝑡+1, node 𝑖 executesUpdate(·) as follows. It first cal-
culates the VRF output of 𝑠𝑡𝑡+1. If epoch 𝑡+1 is memory-dependent,
then calcShard(·) only needs to check ifMSB(𝑜𝑝,ℎ𝑡+1)=LSB(𝑜𝑝,ℎidx)
and compute idx and shard_id accordingly, where ℎidx is cached
from epoch 𝑡 . If epoch 𝑡 +1 is non-memory-dependent, then the
previous proofs are discarded and the shard ID is (ℎ𝑡+1 mod𝑚)+1.

To verify proof 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 , Verify(·) uses calcNMDEpoch(·) to ver-
ify the last non-memory-dependent epoch, uses VRFBatchVerify(·)
to verify VRF outputs, and uses calcShard(·) over these VRF outputs
to verify its output against 𝑘 . Previous verification results can be
cached and reused: upon an updated membership proof 𝜋𝑖,𝑠𝑡𝑡+1,𝑘 ′ ,
the verifier can reuse most of the results in verifying 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 , includ-
ing verification results of previous VRF outputs and calcShard(·).

Construction without allocation-privacy. As mentioned in
§2.3, allocation-privacy is not always a desired property. To remove
allocation-privacy in ΠWH

ShardAlloc, one can replace VRFEval(𝑠𝑘𝑖 ,𝑠𝑡𝑡 )
with 𝐻 (𝑝𝑘𝑖 | |𝑠𝑡𝑡 ), where 𝑠𝑘𝑖 and 𝑝𝑘𝑖 are key pairs of node 𝑖 , 𝑠𝑡𝑡 is
the system state, and 𝐻 (·) is a cryptographic hash function.

5.4 Theoretical analysis

Correctness. We summarise the security analysis below , and
Appendix B provides the full security proofs. Wormhole satisfies

liveness as a node can compute Join(·) andUpdate(·) locally.Worm-
hole satisfies unbiasibility, as VRFEval(·) and calcShard(·) are de-
terministic functions, and system states are unbiasible, guaranteed
by RB. Wormhole satisfies join-randomness, as VRF produces uni-
formly distributed outputs.When the epoch is amemory-dependent
epoch, the probability that two random outputs share the same 𝑜𝑝-
bit substring is 1

2𝑜𝑝 . Within the probability 1
2𝑜𝑝 , the probability that

two random outputs result in the same shard is 1
𝑚 . This leads to

𝛾 = 1− 1
2𝑜𝑝 ·

𝑚−1
𝑚 = 1− 𝑚−1

𝑚 ·2𝑜𝑝 . When the epoch is a non-memory-
dependent epoch, the node will be shuffled, leading to 𝛾 = 1

𝑚 . Thus,
Wormhole satisfies allocation-randomness. Wormhole satisfies
allocation-privacy, as one cannot compute Join(·) or Update(·) for
a node without knowing its secret key. The probability of guessing
shard allocation follows the proof of allocation-randomness.
Performance metrics. The communication complexity of Join(·)
and Update(·) of ΠWH

ShardAlloc are 𝑂 (𝑛) where 𝑛 is the number of
nodes, as each node needs to receive a constant number of sys-
tem states for executing Join(·) and Update(·). A ΠWH

ShardAlloc proof
contains [3,2𝑤+2) VRF outputs/proofs, where𝑤 is the era length.
Join(·) invokes VRFEval(·) for [1,2𝑤) times, leading to computa-
tional complexity 𝑂 (𝑤). Update(·) invokes VRFEval(·) for once,
leading to computational complexity𝑂 (1).Verify(·) invokesVRFVerify(·)
for once if verification results are cached, otherwiseVRFBatchVerify(·)
over [1,2𝑤) VRF outputs/proofs, leading to computational complex-
ity𝑂 (1) or𝑂 (𝑤), respectively. By update-randomness,ΠWH

ShardAlloc’s
operability is

𝛾 =1−𝑚−1
𝑚
· 1
2𝑜𝑝

=1− 𝑚−1
𝑚 ·2𝑜𝑝

By Definition 1, ΠWH
ShardAlloc’s self-balance is

𝜇=1−
���� (𝛾𝑚−1)𝛽𝑡

𝑚−1

����
=1− 1

𝑚−1
·
[
(1− 𝑚−1

𝑚 ·2𝑜𝑝 )𝑚−1
]
𝛽𝑡

=1− 1
𝑚−1

·
[
(𝑚−1)−𝑚−1

2𝑜𝑝

]
𝛽𝑡

=1−(1− 1
2𝑜𝑝
)𝛽𝑡

=1−𝛽𝑡 +
𝛽𝑡

2𝑜𝑝

5.5 Comparison with existing protocols
Table 1 summarises the comparison result. It shows thatWormhole
is the only shard allocation protocol that is fully correct and achieves
satisfactory performance, without relying on strong assumptions.
To make a fair comparison, we also evaluate shard allocation proto-
cols while assuming RB, and the evaluation results are summarised
in Table 2. Chainspace, Monoxide and Ethereum 2.0 are omitted as
their shard allocation protocols do not rely on randomness.

According to Table 2, these proposals are improved in terms
of the system model and communication complexity. All of them
achieve 𝑂 (𝑛) communication complexity, where the concrete over-
head depends on the instantiation and implementation, includ-
ing cryptographic primitives and message formats. However, they
still suffer from some problems they originally have, and Worm-
hole still outperforms them. For example, among the correctness
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Algorithm 2: Full construction of Wormhole ΠWH
ShardAlloc.

Algorithm calcShard(𝑚,𝑜𝑝,ℎ𝑥 ,ℎ𝑥+1,...,ℎ𝑦):
idx←𝑥

for 𝑗 ∈ [𝑥+1,𝑦 ] do
if MSB(𝑜𝑝,ℎ 𝑗 ) =LSB(𝑜𝑝,ℎidx ) then

idx← 𝑗 // Can be cached

𝑠ℎ𝑎𝑟𝑑_𝑖𝑑←(ℎidx mod𝑚) +1
return 𝑠ℎ𝑎𝑟𝑑_𝑖𝑑

Algorithm calcNMDEpoch(𝑤,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ):
// NMD = non-memory-dependent

𝑡era←𝑡 − (𝑡 mod 𝑤 )
𝑡−era←𝑡era−𝑤
𝑔−𝑖,𝑡 ,𝜋

−
𝑖,𝑡←VRFEval(𝑠𝑘𝑖 ,𝑠𝑡−era )

𝑡−nmd←𝑡−era+ (𝑔−𝑖,𝑡 mod 𝑤 )
𝑔𝑖,𝑡 ,𝜋𝑖,𝑡←VRFEval(𝑠𝑘𝑖 ,𝑠𝑡era )
𝑡nmd←𝑡era+ (𝑔𝑖,𝑡 mod 𝑤 )
last←𝑡−nmd<𝑡 <𝑡nmd ? 𝑡−nmd :𝑡nmd
return (last,(𝑔−𝑖,𝑡 ,𝜋−𝑖,𝑡 ,𝑔𝑖,𝑡 ,𝜋𝑖,𝑡 ) )

Algorithm Setup(𝜆):
𝑚,𝑜𝑝,𝑤←𝜆

return (𝑚,𝑜𝑝,𝑤 )

Algorithm Join(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ):
𝑚,𝑜𝑝,𝑤←𝑝𝑝

(last,𝜋range )←calcNMDEpoch(𝑤,𝑠𝑘𝑖 ,𝑠𝑡𝑡 )
for 𝑗 ∈ [last,𝑡 ] do

ℎ 𝑗 ,𝜋 𝑗←VRFEval(𝑠𝑘𝑖 ,𝑠𝑡 𝑗 )
𝑘←calcShard(𝑚,𝑜𝑝,ℎlast,...,ℎ𝑡 )
𝜋𝑖,𝑠𝑡𝑡 ,𝑘←(last,𝜋range,ℎlast,...,ℎ𝑡 ,𝜋last,...,𝜋𝑡 )
Store 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 in memory
return 𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘

Algorithm Update(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ,𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 ,𝑠𝑡𝑡+1):
𝑚,𝑜𝑝,𝑤←𝑝𝑝

(last,𝜋range,ℎlast,...,ℎ𝑡 ,𝜋last,...,𝜋𝑡 )←𝜋𝑖,𝑠𝑡𝑡 ,𝑘
(last+,𝜋+range )←calcNMDEpoch(𝑤,𝑠𝑘𝑖 ,𝑠𝑡𝑡+1 )
Remove (ℎ 𝑗 ,𝜋 𝑗 ) from memory for
𝑗 ∈ [last,last+ )

ℎ𝑡+1,𝜋𝑡+1←VRFEval(𝑠𝑘𝑖 ,𝑠𝑡𝑡+1 )
𝑘 ′←calcShard(𝑚,𝑜𝑝,ℎlast+ ,...,ℎ𝑡+1 )
𝜋𝑖,𝑠𝑡𝑡+1,𝑘′←
(last+,𝜋+range,ℎlast+ ,...,ℎ𝑡+1,𝜋last+ ,...,𝜋𝑡+1 )

Store 𝜋𝑖,𝑠𝑡𝑡+1,𝑘′ in memory
return 𝑘 ′,𝜋𝑖,𝑠𝑡𝑡+1,𝑘′

Algorithm Verify(𝑝𝑝,𝑝𝑘𝑖 ,𝑠𝑡𝑡 ,𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘):
𝑚,𝑜𝑝,𝑤←𝑝𝑝

(last,𝜋range,ℎlast,...,ℎ𝑡 ,𝜋last,...,𝜋𝑡 )←𝜋𝑖,𝑠𝑡𝑡 ,𝑘
(𝑔−𝑖,𝑡 ,𝜋−𝑖,𝑡 ,𝑔𝑖,𝑡 ,𝜋𝑖,𝑡 )←𝜋range
𝑡era←𝑡 − (𝑡 mod 𝑤 )
𝑡−era←𝑡era−𝑤
𝑡−nmd←𝑡−era+ (𝑔−𝑖,𝑡 mod 𝑤 )
𝑡nmd←𝑡era+ (𝑔𝑖,𝑡 mod 𝑤 )
// Verify memory range

if

𝑡−nmd<𝑡 <𝑡nmd∧last≠𝑡−nmd ∨
𝑡nmd ≤ 𝑡∧last≠𝑡nmd ∨
VRFVerify(𝑝𝑘𝑖 ,𝑠𝑡−era,𝑔−𝑖,𝑡 ,𝜋−𝑖,𝑡 ) =0 ∨
VRFVerify(𝑝𝑘𝑖 ,𝑠𝑡era,𝑔𝑖,𝑡 ,𝜋𝑖,𝑡 ) =0

then
return 0

®𝒔𝒕,®𝒉, ®𝝅←
(𝑠𝑡last,...,𝑠𝑡𝑡 ),(ℎlast,...,ℎ𝑡 ),(𝜋last,...,𝜋𝑡 )

if VRFBatchVerify(𝑝𝑘𝑖 , ®𝒔𝒕,®𝒉, ®𝝅 ) =0 then
return 0 // Can be cached

if 𝑘≠calcShard(𝑚,𝑜𝑝,ℎlast,...,ℎ𝑡 ) then
return 0

return 1

Table 2: Evaluation of shard allocation protocols that replace DRG with a randomness beacon. Meanings of colours are same as Table 1.⋆
means the metric is improved by replacing DRG with a randomness beacon.
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Elastico New block Async.⋆ Rand. Beacon∗ Ψ⋆ ✓ ✓ ✓ ✗ ✓ 𝑂 (𝑛)⋆ 𝑂 (𝑛)⋆ 1 1
𝑚

Omniledger New block Part. sync. Rand. Beacon∗ Ψ⋆ ✓ ✓⋆ ✓ ✓ ✗ 𝑂 (𝑛) 𝑂 (𝑛)⋆ 1− (2𝑚−3)𝛽𝑡
3𝑚−3

2
3

RapidChain Nodes joining Async.⋆ Rand. Beacon∗ Ψ⋆ ✗ ✓ ✓ ✓ ✗ 𝑂 (𝑛)⋆ 𝑂 (𝑛)⋆ 1−𝛽𝑡 𝑚𝑎𝑥 (1−𝜅𝛼𝑡𝑛,0)
Zilliqa New block Async.⋆ Rand. Beacon∗ Ψ ✓ ✓ ✓ ✗ ✓ 𝑂 (𝑛) 𝑂 (𝑛) 1 1

𝑚

Wormhole (§5) New rand. Async. Rand. Beacon∗ Ψ ✓ ✓ ✓ ✓ ✓ 𝑂 (𝑛) 𝑂 (𝑛) 1−𝛽𝑡 + 𝛽𝑡
2𝑜𝑝 1− 𝑚−1

𝑚 ·2𝑜𝑝
𝑜 Optional. ∗ Shard allocation protocols can rely on an external randomness beacon, or allow nodes to run a decentralised randomness beacon
protocol. Ψ is the fault tolerance capacity of the sharded blockchain’s consensus protocol.

properties, only Omniledger’s liveness issue is fixed. In addition,
Omniledger should still assume partial synchorny, as liveness is
guaranteed only under synchronous networks. To compute shard
memberships, nodes have to broadcast their identifies and agree
on a permutation of them, which require synchrony. Moreover, all
of them still suffer from weak operability except for Omniledger.

6 INTEGRATION OFWORMHOLE
In this section, we analyse how to integrate Wormhole into dif-
ferent sharded blockchains, and the corresponding impact on the
system model and overhead.

6.1 Design choices related to Wormhole
The overhead introduced by Wormhole can be affected by two
design choices of the sharded blockchain, namely the existence of
identity registry and the choice of consensus protocol.
Existence of identity registry. Some sharded blockchains employ
an identity registry that tracks identities of nodes in the system. For

example, Elastico, RapidChain and Zilliqa require a special shard to
be the identity registry; Omniledger instantiates the Sybil-resistant
mechanism by using a trusted identity authority; and Chainspace
requires nodes to maintain a special smart contract managing iden-
tities.

The existence of identity registry decides where a shard mem-
bership is verified and stored. If the sharded blockchain employs
an identity registry, then the identity registry can maintain and
verify all shard memberships, and a node can query other nodes’
shard memberships over the identity registry. Without an identity
registry, a node then has to receive and verify other nodes’ shard
memberships when executing other subprotocols (e.g., consensus).

Choice of consensus protocol. Existing research [77, 87] suggests
to classify consensus protocols into two types, namely BFT-style
consensus and Nakamoto-style consensus. In BFT-style consensus,
given the latest blockchain, nodes propose blocks, vote to agree
on a unique block, and append the agreed block to the blockchain.
In Nakamoto-style consensus, given the latest blockchain, nodes
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compete to solve a cryptographic puzzle. If a node solves a puzzle,
then it can append a new block associated to the puzzle solution
to the blockchain. Nodes follow a chain selection rule to decide
the main chain among all forks, and eventually the main chains of
different nodes converge to the same one.

The choice of consensus protocol decides when a shard member-
ship is queried or verified. With BFT-style consensus, a node has to
additionally verify a quorum of nodes’ shard memberships for each
block. With Nakamoto-style consensus, a node has to additionally
verify the block proposer’s shard membership for each block.
Classification of sharded blockchains. Our evaluated sharded
blockchains only belong to two “identity registry + consensus” com-
binations: Elastico, Omniledger, Chainspace, Zilliqa and Ethereum
2.0 employ an identity registry and BFT-style consensus; andMonox-
ide employs Nakamoto-style consensus without an identity registry.

6.2 Integration analysis
We then analyse how to integrate Wormhole into the two cases.
With identity registry, BFT-style consensus. In this case, ev-
ery node executes Wormhole to obtain a shard membership with
proof and submits them to the identity registry for verification.
For each new epoch, a node needs to compute a VRF output with
proof and send them to the identity registry. The identity registry
needs to send each node the set of all peers’ identities and the shard
size. Every node then executes BFT-style consensus with peers to
agree on blocks. For each vote, a node looks up the the voter node’s
identity within the set. A block needs to obtain a quorum of votes
to be valid. The identity set can be replaced with a cryptographic
accumulator [31], where the size and the lookup complexity can
be sublinear w.r.t. the set size. The identity registry also manages
nodes’ identities and handles Sybil attacks.

With this approach, the sharded blockchain inherits the network
model and fault tolerance capacity from its underlying consensus
protocol, and incurs some extra overhead as follows. The identity
registry needs to additionally receive, store and verify shard mem-
berships and proofs for all nodes. For each new epoch, each node
needs to additionally submit a VRF output and proof to the identity
registry and receive the set of identities and an integer, while the
identity registry needs to verify a VRF output and update the shard
membership. For each block, each node needs to look up a quorum
of nodes’ shard memberships within the set.
No identity registry, Nakamoto-style consensus. In this case,
every node executesWormhole to obtain a shard membership with
proof, and keeps solving puzzles to propose blocks over the main
chain decided by the chain selection rule. Each block additionally
attaches the miner’s shard membership and proof. Upon receiving a
block, the node additionally verifies the miner’s shard membership.
Similar to Elastico, Chainspace, Zilliqa and Ethereum 2.0, a node has
to solve a cryptographic puzzle in order to obtain an identity in the
system. To support permissionless settings, the puzzle’s difficulty
is controlled by a difficulty adjustment mechanism.

The Nakamoto-style consensus will require Wormhole to as-
sume a synchronous network and the fault tolerance capacity de-
pending on the concrete Sybil-resistance mechanism, as analysed
by Dembo et al. [45]. Nodes need to possess the dedicated resource
w.r.t. the Sybil-resisitance mechanism in Nakamoto-style consensus.
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Figure 5: Computation overhead ofWormhole.

In addition, for every block, a node needs to additionally receive,
store and verify a shard membership and proof.

7 EVALUATION OFWORMHOLE
In this section, we implement Wormhole and evaluate its overhead
and performance metrics in the wild. The evaluation results show
that Wormhole introduces little overhead and achieves perfor-
mance metrics consistent with the theoretical values.

7.1 Overhead analysis
Implementation and experimental setup. We implementWorm-
hole in Rust. We use rug [6] for large integer arithmetic and
bitvec [4] for bit-level operations. We use w3f/schnorrkel [16],
which implements the standardised VRF [59] over the Curve25519
elliptic curve with Ristretto compressed points [17] and the Schnorr-
style aggregatable discrete log equivalence proofs (DLEQs) [1] for
batch verification. The size of keys, VRF outputs and proofs are
32, 32 and 96 Bytes, respectively. System states are simulated by
rand [5]. We write the benchmarks using cargo-bench [3] and
criterion [7]. We specify the O3-level optimisation for compila-
tion, and sample 20 executions for each unique group of parameters.
All experiments were conducted on a MacBook Pro with a 2.2 GHz
6-Core Intel i7 processor and a 16 GB RAM.
Benchmarks results. Webenchmark Join(·),Update(·) andVerify(·)
for Wormhole. Recall that with era length 𝑤 , a node reaches a
non-memory-dependent epoch for every𝑤 epochs on average. We
choose 𝑤 ranging from 256 to 2048 epochs. In Bitcoin’s setting
where a block is generated for every ten minutes, 256 and 2048
epochs take about 2 and 14 days, respectively.

Figure 5 shows the results. For newly joined nodes, the execution
time of Join(·) and Verify(·) increases linearly with the number of
random outputs. With 256 random outputs, Join(·) and Verify(·)
take 39 and 12 ms, respectively. With 2048 random outputs, Join(·)
and Verify(·) take 300 and 90 ms, respectively. For existing nodes,
Update(·) and Verify(·) take about 0.15 and 0.13 ms, respectively.
A shard membership takes at most 4 Bytes, which can support 232

shards. As VRF outputs and proofs are 32 and 96 Bytes, a member-
ship proof size 𝑆𝜋 is (32+96)∗2𝑤 =256𝑤 Bytes. The size 𝑆𝜋 is then
64 and 512 KB with 𝑤 =256 and 2048, respectively; and updating
a membership proof takes 128 Bytes.
Overhead of integration. We analyse the concrete overhead of in-
tegrating Wormhole into two types of sharded blockchains in §6.2
separately. When employing an identity authority and BFT-style
consensus, the identity registry needs to receive, store and verify
shard memberships and proofs. This incurs one-time overhead of
𝑆𝜋 ∗𝑛 on storage and communication, and 𝑛 non-cached Verify(·)
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invocations. For each epoch, each node sends a VRF output and
proof to the identity registry, the identity registry verifies it, and
sends back the set of identities and the shard size. Thus, each node
sends 128 Bytes and receives 32∗ 𝑛𝑚 Bytes, and the identity registry
invokes a cached Verify(·) once for each node. If replacing the set
with a constant-size accumulator of 𝑠 Bytes, then the per-node
communication overhead can be reduced to 𝑠+128 Bytes. For each
block, each node has to look up a quorum of nodes’ identities, which
introduces computation overhead of 𝑛

𝑚 lookup operations.
When employing Nakamoto-style consensus without identity

authority, for each block, a node needs to additionally receive, store
and verify a shard membership and proof, incurring the communi-
cation and storage overhead of 𝑆𝜋 and the computation overhead
of a non-cached Verify(·) invocation.

7.2 Simulation
We then simulate Wormhole in a network with 128 shards and
32768 nodes, confirming the theoretical results on Wormhole’s
self-balance and operability guarantees in §5.4.

Evaluation criteira. The simulation aims at observing the load
balance and operability in the real-world setting and comparing
them with the theoretical analysis in §5.4.

Following existing distributed systems research [82], the ob-
served load balance is quantified as the coefficient of variation (CV),
namely the ratio between the standard deviation 𝑠𝑡𝑑 (·) and the
mean value𝑚𝑒𝑎𝑛(·) of the node distribution across shards. Specif-
ically, the observed load balance in epoch 𝑡 is 𝑠𝑡𝑑 (N𝑡 )

𝑚𝑒𝑎𝑛 (N𝑡 ) , where
N𝑡 = {𝑛𝑡

𝑘
}𝑘∈[𝑚] is the number𝑛𝑡

𝑘
of nodes in every shard𝑘 in epoch

𝑡 . When CV is zero, then the system achieves optimal load balance,
where every shard contains the same number of nodes. When CV
is smaller than 1, then it means the distribution is low-variance and
the system achieves satisfactory load balance.

The observed operability is quantified as the ratio between the
number of moved nodes and the number of existing nodes. Specifi-

cally, the observed operability in epoch 𝑡 is 1− 𝑛𝑡moved
𝑛𝑡

, where 𝑛𝑡 and
𝑛𝑡moved are the total number of nodes and the number of moved
nodes in epoch 𝑡 , respectively.

Simulation setup. We simulate Wormhole with𝑚=128 shards,
𝑛=128∗256=32768 nodes,𝑤 =2048, and operability degree 𝛾 =0.95
over 500 epochs with variant churn rate distribution. Appendix E
provides additional simulations with different operability degree
𝛾 = {0.85,0.90,1.0}. As there is no data available on the shard mem-
berships of sharded blockchains, we align the simulated churn rate
distribution to Bitcoin, where both the join rate 𝛼 and leave rate
𝛽 in 2021 are about 0.1 per day according to recent measurement
studies [85, 86]. Depicted in Figure 6(a), we simulate the following
scenarios. (1) Epoch 1-50: 𝛼 ∈ [0,0.2], 𝛽 ∈ [0.09,0.11], epoch 101-150:
𝛼 ∈ [0.09,0.11], 𝛽 ∈ [0,0.2], and epoch 201-250: 𝛼,𝛽 ∈ [0,0.2]. This
scenario evaluates Wormhole’s resilience against volatile join and
leave churn rates. (2) Epoch 301-350:𝛼 ∈ [0.04,0.06], 𝛽 ∈ [0.09,0.11],
which evaluates Wormhole’s resilience against the case of 𝛼 < 𝛽 ,
which affects self-balance and operability as analysed in Lemma 1.
(3) Epoch 401-450: 𝛼 ∈ [0.09,0.11], 𝛽 ∈ [0.04,0.06], which evaluates
Wormhole’s resilience against the case of 𝛼 > 𝛽 . Other epochs are
configured with 𝛼,𝛽 ∈ [0.09,0.11] to allow the network to recover
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Figure 6: Simulation results of Wormhole over 500 epochs (x axis) in
different churn rates. (a) Simulated churn rate (𝛼,𝛽 ) over epochs. (b)
Distribution of nodes over epochs. A node is static if it stays in the
same shard compared to the last epoch; is moved if it is allocated to
another shard compared to the last epoch; is new if it newly joins the
system in this epoch; and is left if it leaves the system in this epoch.
(c) Observed load balance in the best-case and worst-case execution.
In the best case, a random set of nodes leave the system, while in the
worst case nodes in the same shard leave the system. (d) Observed
operability compared with the expected one.

and avoid influence between the above epoch executions.
Simulation results (Figure 6). Figure 6(b) outlines the distribu-
tion of nodes. Figure 6(c) shows the observed load balance, in both
best-case and worst-case execution. In the best-case execution, a
random set of nodes leave the network, and each shard is likely
to lose a similar number of nodes. In the worst-case execution,
nodes in the same shard leave the network, making the shards less
balanced. We observe that in epoch 1-300 where the average join
rate 𝛼 equals to the average leave rate 𝛽 , the observed load balance
is about 0.1 and 0.6 in the best-case and worst-case execution, re-
spectively. In epoch 301-350 where 𝛼 < 𝛽 , the observed load balance
increases to 0.5 and 1.1 in the best-case and worst-case execution,
respectively. The observed load balance is less than 1 in most cases,
meaning that Wormhole achieves satisfactory load balance guar-
antee under high leave rate. In addition, in epoch 351-400 where
𝛼 =𝛽 again, the observed load balance in the worst-case execution
reduces from 1.1 to 0.8 monotonically within about 25 epochs. This
shows that Wormhole can recover from temporary load imbalance
in a short time period. Moreover, in epoch 401-450 where 𝛼 > 𝛽 , the
observed load balance reduces further by 0.1 in both the best-case
and worst-case execution. This is because newly joined nodes are
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uniformly distributed among shards, amortising the load imbalance.
Figure 6(d) shows the observed operability. We observe that

while the expected operability is 0.95, the observed operability is
0.95±0.01, meaning that Wormhole can achieve the parameterised
operability with little bias. In epoch 351-400 where 𝛼 recovers to be
equal to 𝛼 , the maximum bias remains stable rather than recovering
to that in epoch 1-300. This is because the number of nodes has
been reduced, making the statistical results more volatile. In epoch
401-450 where 𝛼 > 𝛽 , the observed operability recovers to that in
epoch 1-300. This is also because newly joined nodes are uniformly
distributed among shards.

Additional results in Appendix E are also consistent with our the-
oretical analysis: larger𝛾 weakens the load balance while improving
and stabilising the operability.

8 CONCLUSION
Designing permissionless sharded blockchains is an open challenge,
and one of the key reasons is the overlooked shard allocation pro-
tocol. In this paper, we filled this gap by formally defining the
permissionless shard allocation protocol, evaluating existing shard
allocation protocols, observing trade-offs, and constructing a new
shard allocation protocol Wormhole. Theoretical analysis and ex-
perimental evaluation show that Wormhole is secure and efficient.
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A PROOFS OF IMPOSSIBILITY
AND MEMORY-DEPENDENCY

Lemma 2. If a correct shard allocation protocol ΠShardAlloc with
𝑚 shards satisfies update-randomness with 𝛾 , the self-balance 𝜇 of
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ΠShardAlloc is

𝜇=1−
���� (𝛾𝑚−1)𝛽𝑡

𝑚−1

����
where 𝛽𝑡 is the percentage of nodes leaving the network in epoch 𝑡 .

Proof. By Definition 10, in epoch 𝑡 , the number 𝑛𝑡
𝑘
of nodes

in any shard 𝑘 is 𝑛𝑡

𝑚 . By join-randomness, newly joined nodes
will be uniformly allocated into shards. Thus, without the loss of
generality, we assume at the end of epoch 𝑡 , no node joins the
network (𝛼 =0) and 𝛽𝑡𝑛

𝑡 nodes leave the network. Let Δ𝑛𝑡
𝑘
be the

number of leaving nodes in shard 𝑘 ∈ [𝑚] in epoch 𝑡 , we have∑𝑚
𝑘=1 Δ𝑛

𝑡
𝑘
= 𝛽𝑡𝑛

𝑡 . Upon the next system state 𝑠𝑡𝑡+1, each node
executes ΠShardAlloc .Update(·), and its resulting shard complies
with the probability distribution in Definition 4. After executing
ΠShardAlloc .Update(·), there are some nodes in shard 𝑘 moving to
other shards, and there are some nodes from other shards moving
to shard 𝑘 as well.

By the definition of operability, there are 𝛾 (𝑛𝑡
𝑘
−Δ𝑛𝑡

𝑘
) nodes in

shard 𝑘 that do not move to other shards. There are

(1−𝛽𝑡 )𝑛𝑡 −(𝑛𝑡𝑘−Δ𝑛
𝑡
𝑘
)

nodes that do not belong to shard 𝑘 . By Definition 4, there are
1−𝛾
𝑚−1

[(1−𝛽𝑡 )𝑛𝑡 −(𝑛𝑡𝑘−Δ𝑛
𝑡
𝑘
)]

nodes moving to shard 𝑘 . Thus, the number 𝑛𝑡+1
𝑘

of nodes in shard
𝑘 in epoch 𝑡+1 is

𝑛𝑡+1
𝑘

=𝛾 (𝑛𝑡
𝑘
−Δ𝑛𝑡

𝑘
)+ 1−𝛾

𝑚−1
[(1−𝛽𝑡 )𝑛𝑡 −(𝑛𝑡𝑘−Δ𝑛

𝑡
𝑘
)]

=
𝛾𝑚−1
𝑚−1

(𝑛𝑡
𝑘
−Δ𝑛𝑡

𝑘
)+ (1−𝛾) (1−𝛽𝑡 )

𝑚−1
𝑛𝑡

By Definition 10, to find 𝜇, we should find the largest
|𝑛𝑡+1

𝑖
−𝑛𝑡+1

𝑗
|

𝑛𝑡
,

which can be calculated as
|𝑛𝑡+1
𝑖
−𝑛𝑡+1

𝑗
|

𝑛𝑡
=
|𝛾𝑚−1
𝑚−1 (𝑛

𝑡
𝑖
−Δ𝑛𝑡

𝑖
)− 𝛾𝑚−1

𝑚−1 (𝑛
𝑡
𝑗
−Δ𝑛𝑡

𝑗
) |

𝑛𝑡

=
|𝛾𝑚−1
𝑚−1 (Δ𝑛

𝑡
𝑖
−Δ𝑛𝑡

𝑗
) |

𝑛𝑡

Thus, when (Δ𝑛𝑡
𝑖
−Δ𝑛𝑡

𝑗
) is maximal,

|𝑛𝑡+1
𝑖
−𝑛𝑡+1

𝑗
|

𝑛𝑡
is maximal, and

𝜇 can be calculated. As there are 𝛽𝑡𝑛𝑡 nodes leaving the network
in total, the maximal value of (Δ𝑛𝑡

𝑖
−Δ𝑛𝑡

𝑗
) is 𝛽𝑡𝑛𝑡 . Therefore, 𝜇 can

be calculated as

𝜇=1− max
∀𝑖, 𝑗∈[𝑚]

|𝑛𝑡+1
𝑖
−𝑛𝑡+1

𝑗
|

𝑛𝑡

=1− max
∀𝑖, 𝑗∈[𝑚]

|𝛾𝑚−1
𝑚−1 (Δ𝑛

𝑡
𝑖
−Δ𝑛𝑡

𝑗
) |

𝑛𝑡

=1−
|𝛾𝑚−1
𝑚−1 𝛽𝑡𝑛

𝑡 |
𝑛𝑡

=1−
���� (𝛾𝑚−1)𝛽𝑡

𝑚−1

����
□

Theorem 3. Let 𝛽𝑡 be the percentage of nodes leaving the net-
work in epoch 𝑡 . It is impossible for a correct shard allocation protocol
ΠShardAlloc with𝑚 shards to achieve optimal self-balance and oper-
ability simultaneously for any 𝛽𝑡 ≠0 and𝑚>1.

Proof. We prove this by contradiction. Assuming self-balance
𝜇 = 1 and operability 𝛾 = 1. According to Lemma 1, 𝜇 = 1 only
when either 𝛽𝑡 = 0 or 𝛾𝑚 = 1. As 𝛾 = 1 and 𝑚 > 1, 𝛾𝑚 > 1. Thus,
ΠShardAlloc can achieve 𝜇 =1 and 𝛾 =1 simultaneously only when
𝛽𝑡 =0. However, 𝛽𝑡 >0, which leads to a contradiction. □

Theorem 4. If a correct shard allocation protocol ΠShardAlloc is
𝜇-self-balanced and 𝛾-operable where 𝜇 ∈ (1−𝛽𝑡 ,1) and 𝛾 ∈ ( 1

𝑚 ,1),
then ΠShardAlloc is memory-dependent.

Proof. We prove this by contradiction. Assuming ΠShardAlloc is
non-memory-dependent, i.e., the output of

ΠShardAlloc .Update(𝑝𝑝,𝑠𝑘𝑖 ,𝑠𝑡𝑡 ,𝑘,𝜋𝑖,𝑠𝑡𝑡 ,𝑘 ,𝑠𝑡𝑡+1)
only depends on 𝑠𝑡𝑡 and 𝑠𝑡𝑡+1. This means there exists no 𝛿 ≥ 1 such
that 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 involves any information of 𝑠𝑡𝑡−𝛿 .

When 𝛾 ∈ ( 1
𝑚 , 1), the distribution of the resulting shard of

ΠShardAlloc .Update(·) is non-uniform, given the update-randomness
property. In this case, executing ΠShardAlloc .Update(·) requires the
knowledge of 𝑘 – index of the shard that 𝑖 locates at state 𝑠𝑡𝑡 . Thus,
𝜋𝑖,𝑠𝑡𝑡+1,𝑘 ′ – one of the output of ΠShardAlloc .Update(·) – should en-
able verifiers to verify node 𝑖 is at shard 𝑘 in epoch 𝑡 .

Verifying node 𝑖 is at shard 𝑘 in epoch 𝑡 is achieved by verify-
ing 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 . Thus, 𝜋𝑖,𝑠𝑡𝑡+1,𝑘 ′ depends on 𝑠𝑡𝑡 and 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 . Similarly,
𝜋𝑖,𝑠𝑡𝑡 ,𝑘 depends on 𝑠𝑡𝑡−1 and 𝜋𝑖,𝑠𝑡𝑡−1,𝑘 , and 𝜋𝑖,𝑠𝑡𝑡−1,𝑘 depends on
𝑠𝑡𝑡−2 and 𝜋𝑖,𝑠𝑡𝑡−2,𝑘 . Recursively, 𝜋𝑖,𝑠𝑡𝑡 ,𝑘 depends on all historical
system states. Thus, if the assumption holds, then this contradicts
update-randomness. □

Remark 1. When 𝛾 = 1
𝑚 or 1, ΠShardAlloc .Update(·) does not

rely on any prior system state. When 𝛾 = 1
𝑚 , the resulting shard

ofΠShardAlloc .Update(·) is uniformly distributed, soΠShardAlloc .Update(·)
can just assign nodes randomly according to the incoming system
state. When 𝛾 =1, the resulting shard of ΠShardAlloc .Update(·) is cer-
tain. All of our evaluated shard allocation protocols choose 𝛾 = 1

𝑚 or
1, except for RapidChain using Commensal Cuckoo and Chainspace
allowing nodes to choose shards upon requests.

B PROOFS OFWORMHOLE ΠWH
ShardAlloc

Lemma 3. ΠWH
ShardAlloc satisfies liveness.

Proof. By RB-Availability, the RB is always producing random
outputs, and therefore new system states regularly. Given a new
system state, any honest node can execute ΠWH

ShardAlloc .Update(·)
(orΠWH

ShardAlloc .Join(·) for newly joined nodes). As bothΠ
WH
ShardAlloc .Join(·)

and ΠWH
ShardAlloc .Update(·) can be computed locally without inter-

acting with other nodes, the execution of them will eventually
terminate. □

Lemma 4. ΠWH
ShardAlloc satisfies unbiasibility.

Proof. We prove this by contradiction. Assuming thatΠWH
ShardAlloc

does not satisfy unbiasibility: given a system state, an adversary
can manipulate the probability distribution of the output shard
of ΠWH

ShardAlloc .Join(·) or Π
WH
ShardAlloc .Update(·) with non-negligible

probability. This consists of three attack vectors: 1) the adversary
can manipulate the system state; 2) when ΠWH

ShardAlloc .Join(·) or
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ΠWH
ShardAlloc .Update(·) are probabilistic, the adversary can keep gen-

erating memberships until outputting a membership of its preferred
shard; and 3) the adversary can forge proofs of memberships of
arbitrary shards.

By RB-Unbiasibility, the randomness produced by RB is unbi-
asible, so the system state of ΠWH

ShardAlloc is unbiasible. By VRF-
Collision-resistance, given a secret key, the VRF output of the sys-
tem state is unique except for negligible probability. This elimi-
nates the last two attack vectors and ensures that the VRF output
of the unbiasible system state is unbiasible. The output shard of
ΠWH
ShardAlloc .Join(·) or Π

WH
ShardAlloc .Update(·) is a modulus of the VRF

output, which is also unbiasible. This eliminates the first attack vec-
tor. Thus, if ΠWH

ShardAlloc does not resist against the first attack vector,
then this contradicts RB-Unbiasibility; and if ΠWH

ShardAlloc does not
resist against the second and/or the last attack vectors, then this
contradicts VRF-Collision-resistance. □

Lemma 5. ΠWH
ShardAlloc satisfies join-randomness.

Proof. We prove this by contradiction. Assuming thatΠWH
ShardAlloc

does not satisfy join-randomness, i.e., the probabilistic of a node
joining a shard 𝑘 ∈ [𝑚] is 1

𝑚 +𝜖 for some 𝑘 and non-negligible 𝜖 .
Running Join(·) requires the execution of VRFEval(·) over a series
of system states. By VRF-Pseudorandomness, VRF outputs of sys-
tem states are pseudorandom. As a modulo of a VRF output, the
output shard of ΠWH

ShardAlloc .Join(·) is also pseudorandom. Thus, if
ΠWH
ShardAlloc does not satisfy join-randomness, then this contradicts

VRF-Pseudorandomness. □

Lemma 6. ΠWH
ShardAlloc satisfies update-randomness.

Proof. We prove this by contradiction. Assuming thatΠWH
ShardAlloc

does not satisfy update-randomness, i.e., with non-negligible prob-
ability, there is no 𝛾 such that the probability of a node joining a
shard 𝑘 complies with the distribution in Definition 4. When epoch
𝑡 is a non-memory-dependent epoch, the node will be shuffled. By
VRF-Pseudorandomness, the probability of moving to each shard
is same. Thus, there is a 𝛾 = 1

𝑚 that makes the output shard of
Update(·) to comply with the distribution in Definition 4.

When 𝑡 is a memory-dependent epoch, the last VRF output re-
mains unchanged. In ΠWH

ShardAlloc .Update(·), given the last VRF out-
put, the probability that the 𝑜𝑝 MSBs of the newVRF output equal to
𝑜𝑝 LSBs of the last VRF output is 1

2𝑜𝑝 . By VRF-Pseudorandomness,
the probability of moving to each other shard is same. Thus, there
is a 𝛾 = 1− 1

2𝑜𝑝 ·
𝑚−1
𝑚 = 1− 𝑚−1

𝑚 ·2𝑜𝑝 that makes the output shard of
Update(·) to comply with the distribution in Definition 4.

Thus, if ΠWH
ShardAlloc does not satisfy update-randomness, then

this contradicts VRF-Pseudorandomness. □

Lemma 7. ΠWH
ShardAlloc satisfies allocation-privacy.

Proof. This follows proofs of Lemma 5 and 6. □

C RELATEDWORK
We briefly review existing research on sharding distributed sys-
tems and compare our contributions with two studies systematising

blockchain sharding protocols.
Sharding for CFT distributed systems. Sharding has been
widely deployed in crash fault tolerant (CFT) systems to raise their
throughput. Allocating nodes to shards in a CFT system is straight-
forward, as there is no Byzantine adversaries in the system, and the
total number of nodes is fixed and known to everyone [37, 40, 70].
The main challenge is to balance the computation, communication,
and storage workload among shards. Despite a large number of load-
balancing algorithms [26, 27, 38, 43, 48], none of them is applicable
in the permissionless setting as they do not tolerate Byzantine faults.
Distributed Hash Tables. Many peer-to-peer (P2P) storage ser-
vices [69, 80] employ Distributed Hash Tables (DHT) [83] to assign
file metadata, i.e., a list of keys, to their responsible nodes. In a DHT,
nodes share the same ID space with the keys; a file’s metadata is
stored at the nodes whose IDs are closest to the keys. Although
designed to function in a permissionless environment, DHTs are vul-
nerable to several attacks [47, 72, 73], therefore are not suitable for
blockchains, which demands strong consistency on financial data.
Distributed Slicing. Distributed Slicing [65] aims at grouping
nodes with heterogeneous computing and storage capacities in
a P2P network to optimise resource utilisation. In line with CFT
systems, these algorithms [46, 55, 60, 75] require nodes to honestly
report their computing and storage capacities, therefore are not
suitable in a Byzantine environment.
Evaluation of sharded blockchains. Wang et al. [95] propose an
evaluation framework based on Elastico’s architecture; Avarikioti
et al. [28] formalise sharded blockchains by extending the model of
Garay et al. [57]. Both of them aim at evaluating the entire sharded
designs, and put most efforts on DRG or cross-shard communica-
tion, neglecting the security and performance challenges of shard
allocation.

D DETAILS OF EVALUATED
SHARD ALLOCATION PROTOCOLS

D.1 Elastico
In Elastico, a new block will trigger the shard allocation protocol.
In Elastico’s shard allocation protocol, all nodes in a special shard
called final committee execute a commit-then-reveal Distributed
Randomness Generation (DRG) protocol [29] to produce a random
output. With a the random output as input, a node derives a PoW
puzzle, and needs to solve it to obtain a valid shard membership.
The prefix of a valid PoW solution is ID of the allocated shard.

The DRG protocol [29] works as follows. Let 𝑛𝑠 = 𝑛
𝑚 and 𝑓𝑠 =

𝑓
𝑚

be the number of nodes and faulty nodes in the final committee,
respectively. First, each node in the final committee chooses a ran-
dom string, then broadcasts its hash to others. Nodes receiving
≥ 2

3𝑛𝑠 hashes will execute a vector consensus [79] to agree on a
set of hashes. The vector consensus works under synchronous net-
works, and has the communication complexity of 𝑂 (𝑛𝑠 𝑓𝑠 ). After
the consensus, each node broadcasts its original random string to
other nodes. Each node can XOR arbitrary 1

2𝑛𝑠 +1 received strings
to obtain a valid random output.
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D.2 Omniledger
Similar to Elastico, Omniledger’s shard allocation protocol is also
constructed from DRG. In Omniledger, all nodes in the network
jointly execute RandHound [92] - a leader-based DRG protocol tol-
erating 1

3 faulty nodes - to generate random outputs. RandHound
adapts Publicly Verifiable Secret Sharing (PVSS) [89] to make ran-
dom outputs publicly verifiable, and CoSi [93] to improve the com-
munication and space complexity of generating multi-signatures.
RandHound has the communication complexity of 𝑂 (𝑛), works
under asynchronous network, and tolerates 1

3 faulty nodes [92].
As RandHound is leader-based, nodes should elect a leader be-

fore running RandHound. To elect a leader, nodes run a verifiable
random function (VRF) [76]-based cryptographic sortition, which
works as follows. First, nodes obtain the entire list of peers, either by
using a trusted identity authority managing node memberships, or
allowing nodes to broadcast their identities. Then, each node com-
putes a ticket by running VRFEval(𝑠𝑘𝑖 ,”𝑙𝑒𝑎𝑑𝑒𝑟”| |𝑝𝑒𝑒𝑟𝑠 | |𝑣), where
𝑠𝑘𝑖 is its secret key, 𝑝𝑒𝑒𝑟𝑠 is the list of peers, and 𝑣 is a view counter
starting from zero. Each node then broadcasts its ticket, and waits
for a timeout Δ. After Δ, each node takes the one with smallest
ticket as the leader. If the leader does not start executing Rand-
Hound after another Δ, nodes will increase the view counter by 1,
compute another ticket and broadcast it again.

Omniledger assumes the leader election is highly possible to
succeed. If the sortition fails for five times, nodes quit the leader
election and RandHound, and instead execute an asynchronous
coin-tossing protocol [35] to generate the random output. The
coin-tossing protocol [35] guarantees safety under asynchronous
networks, but suffers from the communication complexity of𝑂 (𝑛3).

Given the random output, nodes in each shard agree on a random
set of ≤ 𝑛

𝑚 pending nodes and allow them to join the shard. Then,
nodes derive a unique permutation of themselves, and 1

3 nodes in
the beginning of the permutation are moved to random shards.

D.3 RapidChain
In RapidChain, a node has to solve a PoW puzzle to obtain a shard
membership. The PoW puzzle is derived from the random output
produced by a DRG protocol. The DRG prevents the long range
attack, where one pre-computes PoW solutions in order to take ad-
vantage of consensus in the future. The DRG is executed by nodes in
a special shard called reference committee. The DRG protocol works
as follows. First, each node chooses a random string and shares it to
others using Feldman Verifiable Secret Sharing (VSS) [54]. Second,
each node adds received shares together to a single string, then
broadcasts it. Last, each node calculates the final randomness using
Lagrange interpolation on received strings. Feldman VSS assumes
a synchronous network and cannot tolerate any faults, as any node
failing to broadcast shares to all other nodes will make the protocol
to restart, breaking the liveness.

After solving a PoW puzzle, a node applies the Commensal
Cuckoo rule [90] to obtain a shard membership. Each node is ran-
domlymapped to a number in [0,1). The interval is then divided into
smaller segments, and nodes within the same segment belong to the
same shard. When a node joins the network, it will “push forward”
nodes in a constant-size interval surrounding itself to other shards.

As Feldman VSS assumes synchrony, RapidChain’s shard allo-
cation protocol should assume synchrony to remain correct. Com-
mensal Cuckoo assumes crash faults only, as the shard membership
is not publicly verifiable, and a Byzantine node can deviate from
the protocol and stay in any shard. With only crash faults, the load
across shards is balanced adaptively with new nodes joining.

D.4 Chainspace
Chainspace uses a smart contract called ManageShards to manage
nodes’ membership. Nodes can request to move to other shards by
invoking transactions of ManageShards. Note that ManageShards
runs upon Chainspace itself. While the security of ManageShards
relies on the whole system’s security, the system’s security relies
on nodes. Meanwhile, nodes’ membership rely on ManageShards,
which leads to a chicken-and-egg problem. To avoid this chicken-
and-egg problem, Chainspace assumes ManageShards executes cor-
rectly.

D.5 Monoxide
Monoxide’s identity system is similar to Bitcoin. Nodes are free to
create identities, and nodes are assigned to different shards accord-
ing to their addresses’ most significant bits (MSBs). Unlike other
protocols, Monoxide’s shard allocation protocol does not seek to
solve all problems in our formalisation. Instead, it solves these prob-
lems by employing PoW-based consensus upon the shard allocation
protocol.

D.6 Zilliqa
Zilliqa [21] is a permissionless sharded blockchain that claims to
achieve the throughput of over 2,828 transactions per second. It
follows the design of Elastico [74], but with several optimisations.
Our evaluation is based on Zilliqa’s whitepaper [94], Zilliqa’s devel-
oper page [22], and Zilliqa’s source code (the latest stable release
v5.0.1) [23].

Different from Elastico which runs a DRG, Zilliqa simply uses
the SHA2 hash of the latest block as randomness. Taking the ran-
domness as input, each node generates two valid PoW solutions.
Each node should solve two PoW puzzles within a time window
of 60 seconds, otherwise it cannot join any shard for this epoch.
This means propagating PoW solutions should finish within a time
bound, which implicitly assumes synchronous network. The first
PoW is used for selecting nodes to form the final committee, and
the second PoW is used for distributing the rest nodes to other com-
mittees. The final committee is responsible for collecting nodes in
the network and helping nodes find their peers in the same shards.

D.7 Ethereum 2.0
In Ethereum 2.0 [11], each account has a unique ID, and accounts
are assigned to different shards according to their IDs. More specif-
ically, Ethereum 2.0 employs Proof-of-Stake (PoS)-based consensus,
where the voting power is proportional to the cryptocurrency de-
posits a.k.a. staking power. Note that Ethereum 2.0 also employs
a DRG protocol (i.e., RANDAO [14]), which is used for sampling
block producers (aka validators) rather than shard allocation.
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E ADDITIONAL SIMULATION RESULTS
We present some additional simulation results of Wormhole. We
extend the simulation setting in §7.2 by additionally testing the op-
erability degree𝛾 = {0.85,0.90,1.00}. Figure 7 outlines the full results.

The results show that with a larger operability𝛾 , the load balance
will be weaker, and the operability will be more stable and close
to the expected value. For example, when 𝛾 = 0.85 and 𝛼 < 𝛽 , the
worst-case observed load balance only weakens by less than 0.1,
implying the resilience against leaving nodes. When 𝛾 = 1 where
nodes are never shuffled and 𝛼 < 𝛽 , the worst-case observed load
balance weakens significantly from 1 to 3, implying weak load
balance guarantee.

F DISCUSSION
We model the shard allocation based on each individual node’s
view, rather than based on a global view on the network, as it is

impossible for nodes to have such global view when node churn
exists and the network is large-scale. When each node computes its
shard membership independently, it is possible that some shards are
almost empty, but with negligible probability. In particular, when
nodes are allocated into shards randomly and independently, the
problem can be modelled as the “balls into bins” problem under the
random allocation policy [84]: randomly allocating 𝑛 balls into𝑚
bins. The probability distribution of𝑚𝑖𝑛({𝑛𝑘 }𝑘∈[𝑚] is proven in
Example 3.10 of [56] to be the Poisson distribution, i.e.,

𝑃𝑟 [𝑚𝑖𝑛({𝑛𝑘 }𝑘∈[𝑚] )=𝑦]=
𝑒−

𝑛
𝑚 ( 𝑛𝑚 )

𝑦

𝑦!
, which decreases exponentially with decreasing 𝑦. Therefore, our
subsequent definitions and analysis consider average-case execu-
tions excluding these extreme cases.
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Figure 7: Additional simulation results of Wormhole. The simulation setting is identical to §7.2 except for the variant operability degree 𝛾 .

19


	Abstract
	1 Introduction
	2 Formalising shard allocation
	2.1 System model
	2.2 Syntax
	2.3 Correctness properties
	2.4 Performance metrics

	3 Evaluating existing protocols
	3.1 Evaluation criteria
	3.2 Overview of evaluated proposals
	3.3 System model
	3.4 Correctness properties
	3.5 Performance metrics

	4 Observation and insights
	4.1 Impossibility and trade-off
	4.2 Parameterising the trade-off

	5 Wormhole: Memory-dependent shard allocation
	5.1 Primitives: RB and VRF
	5.2 Key challenge and strawman designs
	5.3 The Wormhole design
	5.4 Theoretical analysis
	5.5 Comparison with existing protocols

	6 Integration of Wormhole
	6.1 Design choices related to Wormhole
	6.2 Integration analysis

	7 Evaluation of Wormhole
	7.1 Overhead analysis
	7.2 Simulation

	8 Conclusion
	References
	A Proofs of impossibility and memory-dependency
	B Proofs of WormholeShardAllocWH
	C Related work
	D Details of evaluated shard allocation protocols
	D.1 Elastico
	D.2 Omniledger
	D.3 RapidChain
	D.4 Chainspace
	D.5 Monoxide
	D.6 Zilliqa
	D.7 Ethereum 2.0

	E Additional simulation results
	F Discussion

