
Habit: Hardware-Assisted Bluetooth-based
Infection Tracking

Nathan Manohar

UCLA

nmanohar@cs.ucla.edu

Peter Manohar

Carnegie Mellon University

pmanohar@cs.cmu.edu

Rajit Manohar

Yale University

rajit.manohar@yale.edu

ABSTRACT

The ongoing COVID-19 pandemic has caused health

organizations to consider using digital contact tracing

to help monitor and contain the spread of COVID-19.

Due to this urgent need, many different groups have

developed secure and private contact tracing phone apps.

However, these apps have not been widely deployed, in

part because they do not meet the needs of healthcare

officials.

We present Habit, a contact tracing system using a

wearable hardware device designed specifically with the

goals of public health officials in mind. Unlike current

approaches, we use a dedicated hardware device instead

of a phone app for proximity detection. Our use of a

hardware device allows us to substantially improve the

accuracy of proximity detection, achieve strong security

and privacy guarantees that cannot be compromised by

remote attackers, and have a more usable system, while

only making our system minimally harder to deploy

compared to a phone app in centralized organizations

such as hospitals, universities, and companies.

The efficacy of our system is currently being evalu-

ated in a pilot study at Yale University in collaboration

with the Yale School of Public Health.

1 INTRODUCTION

The current COVID-19 pandemic has led public health

officials to consider digital contact tracing for tracking

and reducing the spread of infectious diseases. In tradi-

tional contact tracing, a central organization identifies

individuals who have recently come in contact with

someone that has tested positive for a disease, thereby

learning who is likely to contract the disease next [27].

Digital contact tracing was notably employed by the

South Korean government and is widely attributed to be

the reason that South Korea has been able to slow the

spread of coronavirus without imposing a strict lock-

down [20]. Despite its success, digital contact tracing

comes with significant privacy concerns, as a naive im-

plementation allows the central authority to collect vast

amounts of personal data. Because of this, there has re-

cently been a plethora of work on developing contact

tracing phone apps that safeguard the user’s personal

data in some manner [1–8, 12, 17, 24, 26]. Broadly, these

apps all do their best to achieve the following two pri-

mary goals: (1) Functionality: a user should be alerted

after coming in contact with a positive user,
1
and (2)

Security and privacy: a user’s personal data should be

hidden completely from other (malicious) users and also

the central authority, if one exists.

Despite advances in achieving these goals, current

phone apps are unlikely to be endorsed by healthcare

officials or be adopted on a large scale, for two reasons.

(1) Current solutions do not support functionality

desired by healthcare officials. Fundamentally, this

is because there is a substantial gap between the design

goals of contact tracing apps in the security community

(outlined above) compared to the healthcare commu-

nity. Unlike the security community, which primarily

believes that information should be hidden from the cen-

tral authority as much as possible, we have found in our

communications with healthcare officials that, in their

experience, certain personally identifying information

needs to be leaked to the central authority in order for

digital contact tracing to be effective [23]. Specifically,

the central authority should know the identities of all

users that are positive, and when a user Alice comes

in contact with a positive user Bob, Alice should not
be notified that this has occurred. Instead, the central
authority should learn the identity of the user Alice,

and which positive user, namely Bob, that she was in

contact with [4, 23].
2
We emphasize that the above is

not a mere recommendation by healthcare officials, it

is a requirement; healthcare officials have informed us

that the failure of a contact tracing system to meet this

requirement will likely result in the system not being

adopted [23]. This requirement is not met by nearly

all contact tracing systems [1–3, 5–8, 12, 17, 24, 26], as

they hide this information from the central authority by
design because they assume that more privacy is better.

Healthcare officials have a myriad of reasons for the

above design requirement; we briefly explain three of

1
A user is positive if they have tested positive for the disease.

2
We note that this implicitly provides the central authority with

the contact patterns of all positive users, as the central authority

knows (1) who is positive, and (2) learns the identities of all users that

have come into contact with a particular positive user.

them here. First, healthcare officials strongly recom-

mend that Alice in the above scenario does not learn

that she has come in contact with Bob so that way she is

notified via a human-based notification, e.g. a phone call

from healthcare officials, instead of an automatic notifi-

cation [4, 23]. This is because informing users that they

may have contracted an infectious disease is inherently

stressful for users (especially when there is no known

cure or treatment), and a human-based phone call or in-

person conversation can help alleviate the user’s anxiety

and minimize panic, leading to better public health out-

comes [4, 23]. Second, healthcare officials want to know

the identities of the positive individuals that the user has

come in contact with so they can, e.g., interview the user

about their contact with these individuals to determine

the user’s risk of infection and/or identify positive users

that are “super spreaders” [4, 13, 19, 28]. Third, unlike

the security community, which views digital contact

tracing as a standalone system, healthcare officials such

as the CDC view digital contact tracing as an auxiliary
source of information that should be used to, for exam-

ple, “augment capacity of case investigator and contact

tracer workforce [and] contact identification by iden-

tifying potentially unknown contacts” [14, 15]. When

no information is leaked to the central authority, the

digital contact tracing system is unable to assist other

solutions, which reduces its effectiveness.

It may seem surprising that we advocate for achieving

the above design requirement imposed by healthcare

officials, as it is antithetical to the security maxim that

“more privacy is better”. However, we are not the only

ones with this opinion. The authors of the BlueTrace

paper have the same view, stating that, while increased

privacy is typically desirable, “In practice, [their] ongo-

ing conversations with public health authority officials

performing epidemic surveillance and conducting con-

tact tracing operations compel [them] to recommend

otherwise” [4].

(2) Current solutions ignore accuracy. Most con-

tact tracing apps use GPS data or Bluetooth RSSI (re-

ceived signal strength indicator) measurements as a

proxy for distance. However, GPS data is only accu-

rate up to an error of 10–15 ft, which is insufficient for

accurately detecting contacts within 6 ft [21], and is

a poor indicator of location both in urban and in in-

door settings, common scenarios for contact tracing.

Bluetooth RSSI readings are generally a poor estima-

tion of distance, and this issue is exacerbated by the fact

that the radio transmit power and receiver strength on

phones varies drastically, by factors of 1000x, depending

on the phone model [4]. In fact, the Bluetooth Special

Interest Group’s online resources explicitly state that

“There is no standardized relationship of any particu-

lar physical parameter to the RSSI reading” and “The

same RSSI value on two different Android phones with

two different chipsets may mean two different signal

strengths” [10]. The CDC states that the issues with

GPS and Bluetooth accuracy are a barrier to the adop-

tion of digital contact tracing, as “There are currently

little published empirical data showing the capabilities

of either technology” [14]. We too were unable to find

empirical data on the accuracy of current approaches.

However, our experiments indicate that using a simple

RSSI thresholding scheme for detecting proximity is in-

effective. We found that a better method was to track

“contact minutes.”
3
Even with this approach, we found

that an ideal phone was still incapable of distinguishing

between distances ≤ 6 ft and ≥ 10 ft.

The issue of accuracy is exacerbated by the fact that

current solutions are “too private”; too much privacy

makes it near impossible for healthcare officials to deter-

mine probable false positives/negatives using auxiliary

information obtained, e.g., from interviews with people

who have tested positive.

1.1 Our contribution

We present Habit, a contact tracing system using a

wearable dedicated Bluetooth hardware device (Fig. 1

and Fig. 2) that is designed to meet the needs of health-

care officials and is capable of robustly estimating the

number of contact minutes between two devices. Our

use of a hardware device allows us to (1) improve contact

tracing accuracy, (2) achieve strong security and privacy

guarantees that cannot be compromised by remote at-

tackers, and (3) improve usability, all while having only

a minimal effect on deployability. The Yale School of

Public Health is evaluating our system through a pilot

deployment in two laboratory research groups that are

part of the phased re-opening of the Yale campus (≈20

people).

Roadmap. We begin by giving a system overview and

comparing our system design to concurrent work in

Section 2. In Section 3, we explain the benefits of using

hardware. In Section 4, we define our threat model and

state our security guarantees. We give a detailed descrip-

tion of our system design in Section 5. In Section 6, we

argue that our system has our desired security guar-

antees. Finally, we conduct experiments and compare

3
A “contact minute” means that two users were within 6 ft of each

other for one minute. The CDC recommends self-isolation if a user

is within 6 ft of a positive user for ≥ 15 mins [16]. Contact minutes

give a finer-grained notion of a “contact” as compared to a simple

“proximate or not” indicator, and this allows for healthcare providers

to assess risk of exposure more accurately and easily [23].

2

the proximity detection accuracy of Habit to an ideal

phone app in Section 7.

2 SYSTEM OVERVIEW AND

CONCURRENTWORK

We state the design goals of our system and outline

how our system operates. Then, we compare Habit to

concurrent approaches.

2.1 Our design goals

To address the gap between the design goals of the se-

curity community and the healthcare community, we

outline a list of our design goals below. We adhere to

the following key principle: our system should protect

the privacy of users as much as possible while satisfying

the healthcare design requirement specified in Section 1.

In our model, the central authority is the healthcare

provider, so leaking, e.g., that Alice is positive to the

central authority is allowed as the healthcare provider

already has access to Alice’s health records, and so it

knows this information anyways. Our design goals are

as follows:

(1) De-anonymization is “opt-in”: the central authority

never learns a user’s personally identifying informa-

tion unless that user chooses to share the informa-

tion with the central authority.

(2) A user that never comes in contact with a positive

user should remain anonymous: the user’s identity
and contact records are hidden from all other users

and the central authority.

(3) A user that comes in contact with a positive user but

never tests positive for the disease should not remain

completely anonymous. With the user’s consent, the

central authority should learn the identity of the

user and all the positive users the user was in contact

with, but nothing else.

(4) Users should not learn if they come in contact with

another user that has tested positive for the disease.

They are instead notified via an out-of-band message

from healthcare officials.

As an additional goal, we would like the system to only

use lightweight cryptography. Habit meets all of the

above design goals, and makes use of simple cryptogra-

phy: hash functions and symmetric key encryption, with

minimal use of public key cryptography for establishing

TLS connections.

2.2 Habit overview

Our system consists of three components: the central

server, the wearable hardware device (henceforth re-

ferred to as the tag), and a relay device such as a phone

that allows the tag to communicate with the server. Our

Figure 1: Hardware for the tag with a standard

magnetic stripe/credit card shown for scale.

Figure 2: Entire device enclosed in the preliminary

3D printed case prototype, in preparation for de-

ployment. The longest dimension is 1 cm longer

than the board to accommodate the rechargeable

battery.

system is designed for use in centralized organizations

such as university campuses, hospitals, or businesses.

We assume that there is a central authority, such as a

healthcare provider, that already knows information

about the users in the system. The central authority

controls the server, and is responsible for initially dis-

tributing the tags to the users and administering tests

for the disease. Each tag is assigned a unique, randomly

generated serial number sn, which is only used to reveal

the identity of the tag to the server if the user may be

infected.

The tag uses an off-the-shelf board that contains an

embedded microprocessor and a Bluetooth interface

(Fig. 1).
4
The tag is stored in a small case that is worn

on a keychain or a lanyard (Fig. 2).

The relay device is necessary to allow the tag to com-

municate with the central server, as the tag only contains

a Bluetooth radio for remote communication; we allow

the relay to be untrusted and malicious.
Using the Bluetooth radio, the tag broadcasts a tag ID,

a 256-bit string that is randomly generated locally by

the tag, and stores (encrypted) records of all the tag IDs

that it sees and the corresponding number of contact

4
We note that the tag could be made significantly smaller, but

we opted to use standard off-the-shelf hardware to make deployment

easier.

3

minutes. Tag IDs are refreshed every hour along with
the tag’s Bluetooth MAC address,5 to mitigate tracking

of users. The Bluetooth radio broadcasts at a very low

signal strength, making it extremely challenging to com-

municate with the tag from more than 20 ft away, even

using devices other than our tag.

The server, controlled by a public health entity, stores

a list of all tag IDs broadcasted by users who have tested

positive for the virus. Once a day, a user’s tag communi-

cates with the server via a protocol where, if the user has

come in contact with a positive user, the server learns

the user’s tag’s sn and all positive tag IDs that the user

has come in contact with. The user always learns noth-

ing. Users who test positive for the disease at a health

clinic receive a login token that they use to register their

identity via a user-generated public key with the server.

This public key is used to authenticate their identity in

future connections and add their tag IDs to the server’s

list of positive tag IDs. Users can always “opt-out” of

the system at any time by simply turning off their tag.

2.3 Comparison with concurrent work

There are many different contact tracing systems cur-

rently under development. This is a rapidly evolving

area of research; we summarize and compare our design

to concurrent approaches to the best of our ability. All

of the proposed systems for digital contact tracing use

phone apps and broadly fall into two different categories:

trusted third party and untrusted third party, depending

on whether the central server is trusted or untrusted.

Trusted third party. In this approach, each user reg-

isters an ID with the server. The server then generates

contact tokens (equivalent to our notion of tag IDs) for

each user and shares them with the user. When two

users come in contact, they exchange their tokens over

a short-range connection such as Bluetooth. When a

user Alice later tests positive, she uploads all of her re-

ceived contact tokens to the central server. Since the

central server generated all of the contact tokens, the

central server knows the identity of the user that sent

these tokens, and, therefore, knows who was in contact

with Alice. The trusted third party approach was de-

ployed in Singapore’s BlueTrace app [4]. We note that

the BlueTrace design meets most of our design goals in

Section 2.1. However, de-anonymization is not opt-in, as

if Alice tests positive and came in contact with Bob then

it is Alice (instead of Bob) that de-anonymizes Bob to

the server by uploading her contact tokens. BlueTrace

additionally does not protect against a compromised

5
We must change the Bluetooth MAC address as otherwise an

attacker can track users over long periods of time by simply observing

their MAC addresses, which are present in all BLE packets.

server, as if the central server’s key is compromised by

an attacker then privacy guarantees are lost.

Untrusted third party. In this approach, users gener-

ate their own contact tokens locally and exchange them

as before. Now, when a user Alice later tests positive,

Alice uses a login token to upload her contact tokens

to the server. Another user, Bob, then communicates

with the server via a protocol to determine if Bob has

received a token that the server has flagged as positive,

while the server learns nothing about the tokens that

Bob has received. In many systems, this is done by hav-

ing the server publish a list of all “positive tokens” or

equivalent information [1–3, 5, 6, 8, 17, 24], while in

others [12, 26] the server and Bob use a protocol for

private set intersection or private set intersection car-

dinality. Untrusted third party approaches do not meet

the design requirements of healthcare officials outlined

in Section 1 and Section 2.1, as they do not meet design

goals (3) and (4).

Our proposed system is most similar to the untrusted

third party approach, with two key differences. First, we

have the server learn if a user Alice came in contact with

a positive user instead of giving Alice this information

and hiding it from the server. The former is behavior

desired by healthcare officials and meets our design

goals, while the latter achieves more privacy. Second,

we use dedicated hardware instead of a phone app to do

contact tracing, which improves accuracy and security.

Realities of using a phone app. Despite being easy

to deploy, phone apps on iOS and Android are not very

usable because these operating systems impose severe

restrictions on the use of the BLE protocol—due to pri-

vacy concerns! On iOS, the app must be active in the fore-
ground to be able to use BLE, which therefore requires

users to always have their phone unlocked and the app

open in order to participate in the contact tracing sys-

tem [4]! On Android, the app requires access to location
services in order to use BLE, giving the app access to sen-

sitive location data that it should not be able to access [9].

Apple/Google’s contact tracing API is not constrained

by these restrictions, but only because Apple/Google

modified their respective OSes to allow their contact

tracing apps to function [1, 22]! These constraints have

effectively sidelined all contact tracing solutions other

than Apple/Google’s [22], and have caused Singapore

to examine alternative hardware-based solutions [18].

Despite not having significant usability concerns, Ap-

ple/Google’s API is nonetheless a untrusted third party
approach and as discussed above does not meet the func-

tionality requirements of healthcare officials.

Proximity detection accuracy. Most contract trac-

ing systems use Bluetooth as a black box to exchange

4

contact tokens without considering its accuracy, im-

plicitly using Bluetooth RSSI readings to inaccurately

measure distance, and make no attempt to improve ac-

curacy. COVID SafePaths [6] and NOVID [7] are two

approaches that do attempt to take into account accu-

racy. COVID SafePaths uses GPS data in combination

with Bluetooth data to attempt to improve accuracy, and

NOVID uses ultrasound measurements in combination

with Bluetooth data to attempt to improve accuracy.

However, we were unable to find any concrete statistics

on the benefits of either approach.

3 THE CASE FOR HARDWARE

DEVICES

It is appealing to use existing smartphones as the basis

for Bluetooth-based contact tracing. This just requires

installing an app on an existing device—one which in-

dividuals typically carry on their person at all times.

However, there are numerous benefits and only min-

imal drawbacks to having a dedicated tag for contact

tracing. We explain the tradeoffs that come with using

hardware devices below.

Better proximity detection accuracy. A dedicated

tag improves proximity detection accuracy for the fol-

lowing two reasons:

(1) Known radio. Using a dedicated tag introduces some

degree of certainty in the signal source and the receiver,

allowing for more accurate distance measurements com-

pared to phone apps.

There are a large variety of phone models, and dif-

ferent models have different radio hardware. Different

radios can have vastly different transmission charac-

teristics and receiver characteristics. Transmit power

and receiver strength can vary by factors of 1000x [4].

Wireless signals also interact with metallic items that

might be in close proximity to the radio. The fact that

phones are so personal means different individuals cus-

tomize their phone in different ways; some might use

cases with metallic paint, while others might have a

metallic credit card on the back of their phone. Each of

these modifications has an effect on the RSSI readings

of that phone. The diversity of phone configurations

makes the already difficult problem of estimating dis-

tance even worse. Using a known radio mitigates this

issue, as the transmission and receiver characteristics

are standardized.

Some amount of phone diversity can be compensated

for through the BLE protocol, as BLE permits embed-

ding the transmit power into a beacon’s advertising
packet [11]—the mode used for BLE-based proximity

detection. Unfortunately, adding the transmit power to

an advertising packet removes 24 bits of randomness for

the tag ID. This also does not account for the different

ways phones might be accessorized.

(2) Dedicated radio. The use of a dedicated radio enables
us to reduce the transmit power of the radio, providing

better proximity detection accuracy without impacting

any other use. This is because stronger wireless signals

are likely to have higher variability in an indoor envi-

ronment. Intuitively, this is because signals that travel a

longer distance can interact with more objects, resulting

in a more diverse multi-path environment.

We quantify the benefits of our tag for proximity

detection in Section 7.

Better security and privacy. A dedicated tag im-

proves security and privacy for the following two rea-

sons.

(1) Separate device. Users only need to assume that the

tag’s hardware is trusted for security and privacy. A

user can simply download, build, and install the tag’s

firmware locally, and as long as the tag’s hardware is
not compromised, the user will be protected. In contrast,

a phone app needs to assume that the phone’s operating

system is trusted, as a malicious OS (or hacked phone)

could otherwise snoop on all of the app’s computation,

compromising the user. Moreover, the phone app needs

to assume that the OS protects the app from other pro-

cesses running on the phone, as otherwise a malicious

app could snoop on the contact tracing app. These as-

sumptions of trust required by phone apps are much

stronger than the simple one necessary to obtain secu-

rity and privacy in our system, and are simply unrealistic

ones due to the complexity of a modern smartphone.

(2) Security from remote attackers The tag has no means

of communication other than the Bluetooth radio, which

additionally transmits at a low power that makes it ex-

tremely challenging to communicate with the tag from

over 20 ft away, even when using a device other than

our tag. This is a strong physical security guarantee: it

is nearly impossible for an adversary to tamper with a

user’s tag without coming within physical proximity of

the user. Phones, of course, have many other means of

remote communication, e.g. WiFi, cellular connections,

etc., allowing them to be hacked and tampered with

remotely, thus providing much weaker security against

remote attackers.

Better usability. Our hardware tag is much easier to

use compared to phone apps. As explained in Section 2.3,

phone apps on iOS and Android are difficult to use be-

cause of the way these OSes restrict the use of the BLE

protocol. However, none of these usability issues arise

with our hardware tag because we have full control over

the device. While carrying around our tag may appear

to be cumbersome for users, the small size of our tag

allows it to fit easily inside a small case on a keychain,

5

making it essentially effortless to carry around and use.

The tag weighs 15 grams, so weight is a non-issue. The

rechargeable battery has a battery life of about half a

week and takes roughly 1 hour to charge, so battery

life is not a significant concern.
6
Our system has a re-

covery mechanism so that if a user’s tag runs out of

battery, the user can continue to use the same tag after

recharging it without losing any of the tag’s local data

or compromising security and privacy.

Minimallyworse deployability. Themain drawback

to a dedicated tag is that it is harder to deploy than phone

apps, as for users it is obviously harder to obtain the

physical tag than to download an app. However, our tag

is not hard to deploy for centralized organizations. A

centralized organization can distribute tags to the users

without much difficulty in the same way that it already

distributes similar items, e.g. ID cards. Our tag uses com-

modity hardware that is already available, which makes

it easy to purchase in bulk. Using published retail prices,

the hardware and battery for our tag costs under $30,

so it is easily affordable for many centralized organiza-

tions, e.g. universities, hospitals, and businesses. The

price could furthermore be reduced to roughly $3.50

per tag if we used custom hardware. We believe that,

on balance, the benefits of a dedicated tag outweigh its

minor costs especially in the context of an organization

looking for a cost-effective solution to contact tracing.

4 SECURITY GOALS AND THREAT

MODEL

In this section, we describe our threat model and list the

primary security guarantees of our system.

Threat model. In our system, we consider two differ-

ent types of attackers.

(1) Non-server attacker. A non-server attacker is allowed

to control
7
all of the tags and relays of a group of collud-

ing and malicious users of its choosing. Additionally, it

is allowed to actively interfere, e.g. eavesdrop and mod-

ify messages, on any communication channel between

any two devices, with one exception: we never allow the

attacker to be present during the initial setup between

a user’s tag and relay device. However, an attacker can

only interfere with this connection if it is physically

within 20 ft of the user during setup, so this is not a sig-

nificant concern. When targeting an honest user Alice,

the attacker is also allowed to either have control and

physical access to Alice’s relay or steal Alice’s tag at any

point in time, but not both.

6
Note that the user will anyways have to connect the tag to

the server every few day, due to our “opt-in” requirement for de-

anonymization.

7
By “control”, we mean that the attacker is given complete access

to the device and can deviate arbitrarily from the protocol.

(2) Server attacker. A server attacker is a non-server

attacker that additionally is allowed to control the server.

If the target user is Alice, we also impose the constraint

that no compromised tag, i.e. a tag that the attacker has

chosen to control, is allowed to come in contact with

a tag that Alice comes in contact with (this includes

coming in contact with Alice’s tag). We note that this

restriction is necessary, as otherwise a malicious server

could falsely claim that all tag IDs known to the attacker

are positive, and if Alice comes in contact with any of

the tags known to the server, she will reveal her sn to

the server.

Security guarantees. The main security guarantees

of our system are as follows:

(1) Server security against non-server attackers. A non-

server attacker cannot learn the server’s list of infected

tag IDs, convince the server that a colluding user has

come in contact with a positive user when no colluding

user has, or convince the server that a colluding user

is positive when no colluding user is. Moreover, if a

colluding user has come in contact with a positive user

or is positive, a non-server attacker cannot convince

the server that a non-colluding user has come in contact

with a positive user or is positive, respectively.

(2) User security against non-server attackers. A non-

server attacker targeting Alice cannot learn if Alice has

come in contact with any particular user Bob,
8
if Al-

ice has come in contact with a positive user, if Alice is

positive, or Alice’s tag’s serial number.

(3) Nonpositive user security against server attackers. If

Alice is a nonpositive user, then a server attacker target-

ing Alice cannot learn anything unless Alice has come

in contact with a positive user, in which case it learns

Alice’s identity and the identities of the positive users

that Alice has come in contact with. We note that the

above information is leaked to the server during the

honest execution of the protocol, so it can be trivially

learned by an attacker that has compromised the server.

Furthermore, if Alice does not sync with the server, the

server attacker cannot learn anything.

Security non-goals. The security non-goals of our

system encompass attacks that could be achieved by (1)

not participating in the protocol or (2) placing cameras

or other tracking devices at target locations instead of

the tags. Furthermore, we do not deal with attacks that

are inherent to electronic contact tracing.

For example, we do not prevent malicious users from

not showing up as having contact with positive individ-

uals when they actually have. Indeed, we only prevent

malicious users from producing “false positives”, which

would waste the time of health officials that would have

8
Except if Alice came in contact with Bob less than 1 hr before

her tag was stolen.

6

to track down and meaninglessly interview such people.

A user that wishes to appear as a “false negative” could

simply refuse to participate in the contact tracing pro-

tocol or never carry their tag; thus, we do not protect

against such behavior.We do not protect a user’s privacy

against an attacker that has physical access to both the

user’s tag and relay device. However, a user’s privacy is

protected against an attacker that has physical access to

at most one of the user’s tag or relay device. Addition-

ally, we do not protect against a malicious server placing

tags at various locations and adding these tags into the

list of infected individuals in order to track users. Such

behavior could be mirrored by placing cameras or other

tracking devices at the same locations. Finally, we do

not handle denial of service attacks such as jamming

the Bluetooth radio, flooding the system with different

tag IDs thereby overwhelming local memory/storage, or

DoS attacks on the central server. We note that all of the

above attacks are issues that are inherent to any form of

digital contact tracing. Moreover, with the exception of

DoS attacks on the central server, all of the above attacks

cannot be executed remotely, making them difficult to

execute at scale. While we assume that an attacker can

read the non-volatile memory associated with the tag,

we do not protect against more sophisticated physical

attacks on the tag, such as differential power analysis,

laser probing, etc., and assume that the volatile memory

cannot be read. We note that such attacks require the

attacker to have physical access to the tag. We assume

that the login token sent (e.g., via mail) by healthcare

officials to a user that tests positive is not stolen by the

attacker.

5 SYSTEM DESIGN

We explain the system design of Habit in detail. We

assume familiarity with the system overview given in

Section 2.2. We present the system by explaining the

technical details of the devices and how they interact,

omitting the details of the protocols used. Then, in Sec-

tion 5.2 we describe each of the protocols in detail.

5.1 Habit’s design

Encrypted communication. All connections between

the relay and server use TLS, and the server has its own

certificate that is known to the relay and tag. Connec-

tions between the tag and relay use authenticated en-

cryption and are encrypted using a symmetric key. In

our system, all symmetric keys k consist of two parts:

k (1)
, the encryption key, and k (2)

, the MAC key, and

symmetric key encryption is “encrypt-then-mac”. For

encryption we use AES-128 in CFB mode and for MACs

we use HMAC with SHA-256 as the hash function. We

use CFB mode because wireless communication is lossy,

and CFB mode permits communication to resume after

the first uncorrupted packet is received. To communicate

with the server, the tag and relay establish a tag–relay

symmetric key authenticated encrypted connection and

relay–server TLS connection, and then the tag tunnels a

TLS connection to the server through these two connec-

tions. We remark that variable length communications

occur only when the tag communicates with the server.

By padding, we can ensure that the length of the com-

munication is hidden from an eavesdropper.

Tag and relay communication. The tag connects

with the relay device at setup over the Bluetooth inter-

face, using the setup protocol in Section 5.2.1 in which

the relay generates and gives two symmetric keys k1 and
k2 to the tag. On setup, the user selects a PIN. This PIN

is used to derive a key that is used to encrypt k1 and k2
before they are stored in the relay’s nonvolatile storage.

We note that the PIN is not necessary for security, but

it is good practice to store these keys encrypted on the

relay. The tag uses k1 to securely communicate with the

relay, and k2 to encrypt data stored at rest on the tag. On

the tag, the key k1 is stored in nonvolatile storage, while

k2 is stored in volatile storage. This means that if the tag

is disconnected from its battery, then k2 is lost to the tag
while the tag still knows k1. The tag and relay use k1 to
establish future secure connections using the protocol

in Section 5.2.2. To protect against replay attacks, the

key k1 is refreshed during this protocol. The key k2 is
refreshed every time the tag connects to the relay using

the re-key protocol in Section 5.2.3. If the tag has lost k2
due to, e.g., loss of power, then the tag recovers k2 from
the relay in this protocol.

Most exchanges between the tag and relay transmit

a small number of bytes, and a failure can be accom-

modated by simply re-trying the operation. The only

exception to this is reading records from the tag when

the tag communicates with the server. In this case, we

also provide support for a mechanism to selectively read

a subset of the records. The record data packet stream

is augmented with sequence numbers that can be used

to determine which packets were lost, and the relay can

use this information to request missing packets at the

granularity of individual records.

Storing data on the tag. The tag uses k2 to encrypt

all of the data stored in nonvolatile memory, with the

exception of the key k1, which is stored unencrypted

in nonvolatile memory. For example, the tag stores in

nonvolatile memory all of its records and the tag IDs

that it has broadcasted/generated for the future. The tag

has storage space for > 25000 records and automatically

deletes records older than 14 days. The tag stores k2 in
its volatile memory, and the tag’s records are never seen
by the user’s relay.

7

Tag ID randomization and contact detection. Tags

generate their own random 256-bit IDs and broadcast

them using the Bluetooth Low Energy protocol. We use

both the MAC address as well as the payload of the BLE

advertising packet for randomization, giving us 256 bits

of randomness for the ID. To detect contacts, the tag

listens for other broadcasts and records which tag IDs it

has seen. Upon receiving a tag ID τ with RSSI rssi , the
tag adds τ to its list of contacts with a “contact minutes”

counter of 0. If the tag consistently receives packets with

tag ID τ and rssi larger than the pre-set threshold of

−80 dBm over the course of a minute, then the counter

is incremented by 1. Tag IDs also include a checksum

to filter out BLE packets from benign devices that are

not participating in the contact tracing protocol. Tags

generate a set of IDs that will be used for a 20 day period

and commit to using them when connected to the server

(Section 5.2.4). Every time a tag communicates with the

server, the tag ensures it has enough fresh IDs for the

following 20 day period. Each tag changes its tag ID

every hour to mitigate stalking. We note that there is

a trade-off between the frequency with which the tag

ID is modified versus the storage required for contact

tracking.

Tag and server communication. The tag shares its

contacts with the server using the protocol in Section 5.2.4.

In this protocol, if the user has come in contact with a

positive user, then the server learns the user’s sn and all

positive tag IDs that the user has come in contact with.

The user learns nothing and, importantly, does not know

if the server has learned its sn or not. This is achieved by

having the user send sn encrypted, and the server can

decrypt if and only if the user has seen a positive tag ID.

The tag also sends commitments to the tag IDs it will

use in the 5 day period 15 days in the future (namely,

days 15 − 20 from the present) to the server. Note that

the server will already have the commitments for days

< 15 from when the tag synced with the server in the

past. Each commitment additionally contains the 1 hr

time window in which the tag ID will be used. Tags com-

mit to their future tag IDs in a 5 day period instead of

only a 1 day period so that users can forget to sync with

the server for ≤ 5 days. Executing the entire tag–server

communication protocol takes roughly 1 min.

The only way a user de-anonymizes itself is if it syncs

with server and has come in contact with a positive

user. Initiating a sync with the server requires the user

to push a button on the relay device, which makes de-

anonymization opt-in. A user can additionally always

opt-out of the system by simply turning off the tag.

Registering positive tag IDswith server. The server

needs to acquire and update its list of tag IDs that are

positive. Each user that tests positive for the disease is

given a one-time login token (delivered with the test

results) that allows the user to register a signature ver-

ification key pk with the server. Now, the user’s relay

uses pk as a certificate to authenticate its identity when

it connects to the server via TLS. After “logging in,”

the user’s tag then sends decommitments, allowing the

server to learn the tag IDs that the tag will use/has used.

The server only adds tag IDs to its positive list if the

user had committed to them at least 15 days in the past.

Details of the registration protocol are in Section 5.2.5.

We force tags to commit to IDs ≥ 15 days in the

future so that a positive user that sees a tag ID τ of a

non-positive user cannot claim to the server that it is

theirs
9
for at least 15 days. Note that tags delete records

after 14 days, so by the time the malicious positive user

gets τ added to the server, users will have deleted records
of their contact with the honest τ .
Tag implementation. We implemented the firmware

for the tags within the Arduino framework, which pro-

vides a very accessible C/C++ programming environ-

ment as well as a large ecosystem of open-source li-

braries. The core processor/chip is a Nordic Semicon-

ductor nRF52840, which has a 32-bit ARM Cortex-M4

processor operating at 64 MHz [25]. We use vendor-

provided Bluetooth libraries, and as the Arduino envi-

ronment for this chip uses FreeRTOS, our implemen-

tation does as well. All the functionality described in

the system design section was implemented in C++, and

takes ≈3K lines of code (not including third-party li-

braries). Communication to/from the tag uses Nordic’s

Bluetooth UART characteristic, which supports commu-

nication mechanism with another Bluetooth device.

Our tags support a small but useful command set,

including commands to read/write the current time, ex-

plicitly checkpoint/restore records, flush records, delete

the checkpoint, selectively delete records, set the tag

IDs used for rotation, read the current set of tag IDs,

change the proximity threshold used, and tag RSSI cali-

bration mode. The final packet sent by the tag indicates

whether the operation completed succesfully or failed.

Note that while the command-set mostly uses ASCII

strings for simplicity, all traffic between the tag and

relay is encrypted.

5.2 Protocols

We now finish the description of our system by specify-

ing the details of the omitted protocols. For all protocols,

we let the function h(·) denote the SHA-256 hash func-

tion.

9
This would cause all honest users that saw τ be incorrectly

flagged as having contact with a positive user.

8

5.2.1 Tag–Relay setup. The protocol for the first-time

connection between the tag and relay is:

(1) The relay uses Bluetooth LE to connect to the tag

and sends the tag symmetric keys k1,k2.
(2) The tag randomly generates a 256-bit string r and

sends Enck1 (r) to the relay.

(3) The relay sends Enck1 (r
′) to the tag, where r ′ = h(r).

(4) The tag verifies that r ′ == h(r), and if so then the

tag and relay are “connected” and can talk. Future

messages are sent encrypted using k1.
(5) The tag and relay execute the re-keying protocol of

Section 5.2.3.

5.2.2 Tag–Relay reconnect. The tag and relay reconnect
as follows:

(1) The relay uses Bluetooth LE to connect to the tag.

(2) The tag randomly generates a 256-bit string r and
sends Enck1 (r) to the relay.

(3) Relay generates new key k ′
1
and sends Enck1 (r

′∥k ′
1
)

back to tag, where r ′ = h(r).
(4) The tag verifies that r ′ == h(r), and if so then the tag

replaces k1 with k
′
1
; otherwise the tag disconnects.

(5) Steps 2–5 of the tag–relay setup protocol are re-

peated.

5.2.3 Re-keying records. After a tag and relay have re-

connected, the key k2 on the tag can be re-keyed as

follows:

(1) The relay sends k2 to the tag.

(2) The tag verifies that k2 is the correct key by using

it to decrypt its records. Note that the tag can do

this even if its k2 stored in volatile memory has been

lost due to, e.g., power loss. On failure, the tag dis-

connects. On success, it requests a fresh k2 from the

relay.

(3) The relay sends the fresh key k ′
2
to the tag.

(4) The tag replaces k2 with k ′
2
and the non-volatile

storage is re-encrypted with k ′
2
.

5.2.4 Tag–server communication protocol. We let S1 be
the list of tag IDs that the tag has seen, and S2 be the list
of tag IDs that the server has flagged as positive. Note

that a tag ID is associated with a time window when it

is valid, and tag IDs communicated to the server include

this time window. The tag and server first establish a

TLS connection through the tag–relay and relay–server

connections, and then they communicate via the follow-

ing protocol:

(1) The tag generates and sends to the server a ran-

dom 256-bit string r , along with, for every τ ∈ S1,
f (f (τ))∥Encf (τ) (sn∥minsτ) where f is the function

f (·) := h(·∥r),minsτ is the number of contact min-

utes of τ , and sn is the unique serial number assigned

to the tag.
10
The tag also sends commitments to (τ , t)

for the tag IDs τ and the time window t when they

will be used for days 15–20 in the future to the server.

(2) The server receives r , and therefore can compute

f (·). For each τ ∈ S2 and hash ciphertext pair s∥cs
received, the server checks if f (f (τ)) = s;11 the set
of such τ ’s is S1 ∩ S2. If the server finds τ such that

f (f (τ)) = s , then the server computes Decf (τ) (cs)
to learn sn, and sn is added to the list of potentially

infected users.

5.2.5 Registering tag IDs for positive patients. Let’s say
that Alice goes tests positive. We explain the protocol

that Alice uses to add her tag IDs to the server’s list.

(1) Alice receives (in the mail, say), the test report with

a login token t .
(2) Alice inputs the user ID and login token t to her

relay, which the relay sends to the tag.

(3) The tag generates a signing key pair (pk, sk) and
sends (t , pk) to the server via TLS tunneled through

the tag–relay and relay–server connections.

(4) Alice is now registered with the server.

Now, when Alice connects her tag to the server, it ad-

ditionally shares its tag IDs with the server via the fol-

lowing protocol.

(1) The tag and server connect with TLS. We now use

authenticated mode for both parties, with the tag’s

certificate being pk that was registered.

(2) The tag sends the server decommitment information

for all past tag ID commitments.

(3) The server decommits to learn tag ID, timestamp

pairs. The server adds all tag IDs that decommitted

with a timestamp that has already elapsed and is at

least 15 days after the commitment was sent to its

list of positive tag IDs.

6 SECURITY ANALYSIS

In this section, we argue that Habit satisfies our de-

sired security goals. We model the hash function h as a

random oracle. All attackers we consider are allowed to

eavesdrop and actively interfere on all communication

channels.
12
Since relays and servers communicate using

TLS and relays and tags use authenticated encryption,
12

any attacker is unable to gain any useful information

by eavesdropping on communication between two un-

corrupted devices. We prevent against replay attacks

across these communication channels because of TLS

10
The tag sends these records in order sorted by f (f (τ)), to hide

the order of the τ ’s in its records.

11
We note that a naive implementation of this operation would

take O (|S1 | |S2 |) time, but it can be done in quasilinear time using

simple data structures.

12
Except for the initial setup, in which the attacker cannot inter-

fere.

9

and the fact that the tag–relay channel refreshes keys.

We prevent against message modifications using TLS

and MACs. As described in Section 4, there are three

main security guarantees. The above holds in all three

settings, and we elaborate on these security guarantees

below.

Server security against non-server attackers. A

non-server attacker is allowed to control the tags and

relays of an arbitrary group of colluding and malicious

users. Since the server never sends any messages depen-

dent on the server’s list of infected tag IDs, the attacker

cannot learn this information without corrupting the

server. If no colluding user has come in contact with a

positive user, then the attacker does not know any posi-

tive tag ID (since these are simply randomly generated).

In order to convince the server that a user has come in

contact with a positive user, the attacker would need

to send the server a hash value v such that an ID on

the server hashes to v . By the collision-resistance of the

hash function and the fact that the ID’s on the server

are uniformly random, the attacker can only succeed

with negligible probability. Similarly, since tag serial

numbers are uniformly generated, if a colluding user

has come in contact with a positive user, it will only be

able to convince the server that a non-colluding user

has come in contact with a positive user with negligible

probability. This is immediate, since without corrupting

the server, the attacker must guess a string in a list of

uniformly random strings with no information.

Similarly, the attacker cannot convince the server that

a colluding user is positive if none of them are because

the attacker will not have access to any token t that it
needs to register with the server since these can only

be obtained by testing positive for the disease in a lab.

Finally, the attacker cannot convince the server that a

non-colluding user is positive since the attacker must

commit to the tag IDs that the positive user will use 15

days in advance. Since the commitment is binding, this

prevents the attacker from having the server accept a tag

ID as a positive tag ID until at least 15 days have passed

since the attacker knew the tag ID. So, the attacker will

only be able to convince the server to accept the tag

ID of a non-colluding user at least 15 days after the

non-colluding user used that tag ID. Since records are

deleted after 14 days, no user in the system will still

have a contact with this tag ID stored on its tag, and so

the fact that it is stored as a positive tag ID on the server

has no effect.

User security against non-server attackers. Wewill

consider two cases for a non-server attacker targeting

Alice: (1) the attacker controls and has physical access

to Alice’s relay, but not Alice’s tag and (2) the attacker

controls and has physical access to Alice’s tag, but not

Alice’s relay. In the case of (1), the attacker cannot learn

if Alice has come in contact with any particular user Bob.

This is because Alice’s tag uses randomly generated tag

IDs every tag window, so the attacker will not be able

to match any tag ID it sees on a different device with

Alice. Moreover, Alice’s relay never sees Alice’s records

(either in the clear or encrypted) and any communica-

tion between the tag and the server via Alice’s relay is

tunneled using TLS, so an attacker controlling Alice’s

relay is unable to learn Alice’s records. In the case of (2),

the attacker can only learn if Alice has come in contact

with any particular user Bob if the contact occurred < 1

hr before the attacker chose to steal Alice’s tag. This is

because Alice’s tag is broadcasting its current tag ID, so

the attacker can learn the ID for the latest time window.

However, as was the case for (1), the attacker cannot

learn Alice’s tag IDs used in other time windows. This

is because the contact records and tag IDs on Alice’s tag

are encrypted using a key stored in volatile memory, so

an attacker that steals Alice’s tag will be unable to de-

termine this key and learn anything from the encrypted

records. This attacker is not allowed to control or have

physical access to Alice’s relay, so it has no means to

learn the encryption key.

A non-server attacker targeting Alice also cannot

learn if Alice is positive or Alice’s tag’s sn. This follows
from the fact that this information is stored on the server

or encrypted on Alice’s tag, which hides it from the at-

tacker.
13
A non-server attacker targeting Alice cannot

learn if Alice has come in contact with a positive user.
14

This is because Alice herself does not know this infor-

mation, and so the only way for an attacker to learn if

this has occurred is for it to establish that Alice came in

contact with any particular user, and that that user is

positive. However, a non-server attacker cannot learn

if Alice came in contact with any particular user
15
, as

shown previously. Therefore, the attacker cannot learn

if there exists a user that is positive that Alice came in

contact with.

Nonpositive user security against server attackers.

First, we will analyze the case where the targeted user

Alice has not come in contact with a positive user. In this

case, the server attacker cannot learn anything, which

follows from the fact that the non-server attacker could

not learn anything in this situation along with the fact

that the server does not know the user IDs of any user

that came in contact with Alice. Moreover, the server

13
If Alice is not positive, her tag will store an encryption of ⊥

instead of her (pk, sk) pair.
14
Except if Alice came in contact with a positive colluding user

less than 1 hr before her tag was stolen.

15
Except if Alice came in contact with a colluding user less than 1

hr before her tag was stolen.

10

never sends any messages to Alice, and the only mes-

sages Alice sends are h(h(τ ∥r)∥r) and Ench (τ ∥r) (sn) for
every ID τ that Alice came in contact with. In order to

learn sn or an ID that Alice came in contact with, the at-

tacker would need to invert h(·∥r) for a random r either
once or twice, respectively.

Next, we will consider the case where Alice has come

in contact with a positive user. From the honest behav-

ior of the server, the attacker is able to learn sn and the

list of positive contacts. However, an attacker is unable

to learn the IDs of nonpositive users that Alice came

in contact with. This follows from the fact that these

IDs are uniformly random strings unknown to the at-

tacker (recall the attacker cannot control a tag that has

come in contact with any of Alice’s contacts), and the

only information about them the attacker has access

to are their hashes (sent to the server) and encryptions

(stored on the tag). The attacker is also unable to learn

the tag IDs that Alice has been using as these are also

stored encrypted on Alice’s tag and never sent to the

server. Finally, if Alice never syncs with the server, the

server attacker cannot learn anything since all relevant

information is stored encrypted on Alice’s tag and no

information is communicated to the server.

7 EVALUATION

To evaluate our tags, we deployed them in a home office

setting. We were unable to gather data in other settings

due to current limitations on access to research space

because of social distancing measures.

For our experiments, we used ten tags, placing them

at varying distances from each other and with multiple

transmit/receive pairs. The precise details are specified

in each subsection along with measurement results. We

note that all RSSI measurements are unit-less, as “There

is no standardized relationship of any particular physical

parameter to the RSSI reading” [10].

7.1 RSSI variability

As is well-known in the wireless community, signal

strength is a poor indicator of distance. To illustrate this

fact, we measured the RSSI distribution at varying set-

tings of the radio transmission power between two tags

that were a fixed distance (6 ft) apart. Figure 3 shows the

results of our measurements for eight different settings

of transit power (the radio’s default setting is 4 dBm). A

minimum of 1000 BLE packets were received for each

histogram. We note that different histograms would be

obtained even with slight variations in position.

As can be seen, the data are noisy, and confirms our ex-

pectation that the RSSI of a single packet is not a reliable

indicator of distance. The Bluetooth SIG recommends

that using the mode of the RSSI for a set of packets

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-95 -90 -85 -80 -75 -70 -65 -60 -55

P
ro

b
a

b
ili

ty

RSSI

Distribution of RSSI at a fixed distance (6ft)

TX -8 dBm
TX -4 dBm
TX 0 dBm
TX 2 dBm
TX 3 dBm
TX 4 dBm
TX 5 dBm
TX 6 dBm

Figure 3: Received signal strength distribution for

varying levels of transmit power (TX) for a trans-

mit/receive pair at fixed locations.

from the same transmitter is a more reliable indicator of

distance [10]. However, our deployment scenario corre-

sponds to one where both transmitter and receiver are

mobile, so unfortunately the distance is time-varying

and thus using the mode of the RSSI does not make

sense. Based on Figure 3, our empirical observation is

that a low transmit power has a less variable RSSI.

7.2 Proximity via RSSI threshold

In our second experiment, we estimated the false posi-

tive/false negative probabilities for proximity detection

using a simple RSSI threshold technique. This means

that we count a received packet as “proximate” if the

received RSSI value is above the threshold. In this experi-

ment, we used 6 different transmit/receive tags located at

distances ranging from 2 ft to 16 ft from each other, with

a transmit power of −8 dBm. For each transmit/receive

pair, we collected data at three different positions at

each distance, and ensured that we had received at least

1000 packets. The RSSI histogram was collected, as well

as the number of packets received per minute, and the

combination was used to compute the empirical false

positive and false negative probabilities at varying dis-

tances. Note that, as the RSSI threshold gets smaller, the

false positive rate gets larger, as it is easier for a received
packet to be above the threshold. We note that Habit

uses an RSSI threshold of −80. The results of the above

experiment are shown in the two figures on the left in

Figure 4. The figure shows the effect of using a single

packet RSSI value to determine if a transmitter was close

to a receiver. These results are consistent with the RSSI

histogram from Figure 3. Notice, for example, that while

we would expect that a distance of 14 ft would have

fewer false positives than 12 ft due to signal attenuation,

11

 0

 0.2

 0.4

 0.6

 0.8

 1

-86 -84 -82 -80 -78 -76 -74 -72 -70

P
ro

b
a

b
ili

ty

RSSI proximity threshold

False neg 2ft
False neg 4ft
False neg 6ft

 0

 0.2

 0.4

 0.6

 0.8

 1

-86 -84 -82 -80 -78 -76 -74 -72 -70

P
ro

b
a

b
ili

ty

RSSI proximity threshold

False pos 8ft
False pos 10ft
False pos 12ft
False pos 14ft
False pos 16ft

Figure 4: Per-packet false positive and false nega-

tive probabilities at different distances with a TX

power of −8 dBm, where the x-axis is the proxim-

ity threshold value. Distances < 6 ft are true pos-

itives so the only errors are false negatives; simi-

larly, distances > 6 ft can only have false positive

errors.

the complexity of the wireless environment can invert

this relationship for certain RSSI thresholds.

A natural, conservative way to detect a contact would

be to use the “worst case” packet RSSI—i.e. the largest

RSSI received to determine if two tags were ever close

to each other. We also conducted an experiment where

we used this scheme. We found that, for RSSI thresholds

that kept the false negative probability close to zero

at 6 ft, a contact was recorded at every distance up to

14ft in all our experiments. Hence, just using worst-case

RSSI was not a good approach.

7.3 Contact minutes

Habit uses a scheme we developed to estimate the num-

ber of contact minutes. This was based on CDC guidance,

where a contact for COVID-19 is defined as being in the

proximity of someone for at least 15 minutes [16], so a

simple “proximate or not” indicator is insufficient.

 0

 0.2

 0.4

 0.6

 0.8

 1

-86 -84 -82 -80 -78 -76 -74 -72 -70

P
ro

b
a

b
ili

ty

RSSI proximity threshold

False neg 2ft [60]
False neg 4ft [60]
False neg 6ft [60]

 0

 0.2

 0.4

 0.6

 0.8

 1

-86 -84 -82 -80 -78 -76 -74 -72 -70

P
ro

b
a

b
ili

ty

RSSI proximity threshold

False pos 8ft [60]
False pos 10ft [60]
False pos 12ft [60]
False pos 14ft [60]
False pos 16ft [60]

Figure 5: Probability of erroneously recording a

contact minute using our technique with a TX

power of −8 dBm.

We track contact minutes as follows. A transmitting

tag is viewed as “proximate” if a packet is received from

that tag with an RSSI larger than the threshold. If such

packets keep being received in a 30 second window, then

the tag remains in the proximate state. The time that

the tag is “proximate” is the number of contact minutes

stored by the receiving tag.

Figure 5 shows the false positive/false negative prob-

abilities of a minute being added to the proximate timer.

With this approach, Habit’s RSSI threshold of −80 is a

“sweet spot” that has low false negative rate while also

obtaining a low false positive rate at distances ≥ 10 ft.

7.4 Habit vs ideal phone app

Finally, we compared the contact minutes recorded by

Habit vs that of an ideal phone app. We modeled an

ideal phone app by having all users have the same radio

with a transmit power of 4 dBm, as phones are typically

Bluetooth class 2 devices (10 m range, maximum trans-

mit power of 4 dBm). We chose the RSSI thresholds for

Habit and the ideal phone app to give the best false

positive rate for each system while minimizing false

negative rate, based on the experiments in Section 7.3,

12

Dist. Habit Phone

(ft) A (mins) B (mins) A (mins) B (mins)

2 15.0 15.0 15.0 15.0

4 15.0 15.0 15.0 15.0

6 12.7 14.4 13.3 15.0

8 5.0 14.3 10.0 15.0

10 1.1 7.5 14.9 15.0

12 0.0 8.3 0.1 11.1

14 0.0 0.0 5.8 14.6

16 0.0 0.0 0.0 15.0

Table 1: Average contact minutes in a 15 min win-

dow taken over 2 hrs recorded by our proposed

method at low TX power versus using the stan-

dard TX power of a phone. The RSSI threshold

for the “low TX” case was −80, and the threshold

for the phone case was −68. In scenario A, devices

were exposed, while in scenario B, devices were

placed near other items to simulate an everyday

use scenario.

which we also repeated for the ideal phone. This resulted

in thresholds of −80 and −68 for Habit and the phone

app, respectively. We remark that these thresholds are

best determined experimentally, based on the actual tag

that is to be deployed (i.e. taking everything into account,
such as the case materials and geometry, battery, orien-

tation of the hardware, etc). We recorded the average

number of contact minutes at each distance seen over

2 hrs. Two different scenarios were used: one where

the devices were exposed, modeling the case when both

the transmitter phone and receiver phone were held in

a user’s hand (scenario A), and one where one of the

devices was exposed while the other was placed next

to items (keys and headphones) that might be found in

a bag or pocket (scenario B). The results are shown in

Table 1. Using a “12 min” threshold to classify a con-

tact, Habit (low TX power) is able to separate distances

≤ 6 ft and 8 ft or larger in the best case (scenario A),

while the ideal phone app (high TX power) erroneously

records almost 15 contact minutes at a distance of 10 ft.

In the everyday case (scenario B), the errors increase.

Habit records a large number of contact minutes at

even 8 ft, although it is able to distinguish between dis-

tances ≤ 6 ft and ≥ 10 ft with the 12 min threshold. The

ideal phone app, however, records close to 15 contact

minutes at nearly every distance, with the one exception

being 11.1 contact minutes at 12 ft, and so it is unable

to detect proximity.

8 CONCLUSION

We presented Habit, a system consisting of a dedicated,

wearable contact-tracing hardware device, a relay (typi-

cally the user’s phone), and a back-end server controlled

by healthcare officials. The system supports the goals

of public health officials, while preserving the privacy

of users against powerful attackers. Our system is cur-

rently deployed in a pilot study being conducted at Yale

University.

ACKNOWLEDGEMENTS

We thank Linda Niccolai and her team from the Yale

School of Public Health for describing the key ingredi-

ents of manual contact tracing and for their work on

running the pilot study. We thank Larry Wilen for pro-

viding 3D printed cases for the pilot. We thank Aneesh

Manohar for encouraging us to write this paper and

Alexis Korb for suggesting the title.We also thankAlessan-

dro Chiesa and Saba Eskandarian for providing helpful

feedback on an earlier draft of this paper.

Nathan Manohar is supported in part from DARPA

SAFEWARE and SIEVE awards, NTT Research, NSF

Frontier Award 1413955, and NSF grant 1619348, BSF

grant 2012378, a Xerox Faculty ResearchAward, a Google

Faculty Research Award, an equipment grant from Intel,

and an Okawa Foundation Research Grant. This ma-

terial is based upon work supported by the Defense

Advanced Research Projects Agency through Award

HR00112020024 and the ARL under Contract W911NF-

15-C- 0205. The views expressed are those of the authors

and do not reflect the official policy or position of the De-

partment of Defense, the National Science Foundation,

NTT Research, or the U.S. Government.

Peter Manohar is supported by the NSF Graduate Re-

search Fellowship Program (under Grant No. DGE1745016)

and the ARCS Foundation. Any opinions, findings, and

conclusions or recommendations expressed in this ma-

terial are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation.

13

REFERENCES

[1] Exposure Notifications.

https://www.apple.com/covid19/contacttracing, April, 2020.

[2] PACT. https://pact.mit.edu/, April 8, 2020.

[3] PrivateKit. http://privatekit.mit.edu/, March 19, 2020.

[4] BlueTrace. https://bluetrace.io/, March 20, 2020.

[5] COVID Watch. https://www.covid-watch.org, March 20, 2020.

[6] COVID SafePaths. https://covidsafepaths.org/, May, 2020.

[7] NOVID. https://www.novid.org/, May, 2020.

[8] DP3T. https://github.com/DP-3T/documents, May 25, 2020.

[9] Android Developers. Bluetooth Low Energy Overview.

https://developer.android.com/, 2020.

[10] Bluetooth Special Interest Group Consortium.

https://www.bluetooth.com/blog/proximity-and-rssi/, 2020.

[11] Bluetooth Special Interest Group Consortium.

https://www.bluetooth.com/specifications/bluetooth-core-

specification/,

2020.

[12] Ran Canetti, Ari Trachtenberg, and Mayank Varia. Anonymous

Collocation Discovery: Harnessing Privacy to Tame the

Coronavirus. arXiv:cs.CY/2003.13670, April 3, 2020.

[13] Centers for Disease Control and Prevention. Contact Tracing

for COVID-19.

https://www.cdc.gov/coronavirus/2019-ncov/php/contact-

tracing/contact-tracing-plan/contact-tracing.html,

2020.

[14] Centers for Disease Control and Prevention. Digital Contact

Tracing Tools.

https://www.cdc.gov/coronavirus/2019-ncov/php/contact-

tracing/contact-tracing-plan/digital-contact-tracing-tools.html,

2020.

[15] Centers for Disease Control and Prevention. Digital Contact

Tracing Tools for COVID-19.

https://www.cdc.gov/coronavirus/2019-

ncov/downloads/digital-contact-tracing.pdf,

2020.

[16] Centers for Disease Control and Prevention. Public Health

Guidance for Community-Related Exposure.

https://www.cdc.gov/coronavirus/2019-ncov/php/public-

health-recommendations.html,

2020.

[17] Justin Chan et al. PACT: Privacy Sensitive Protocols and

Mechanisms for Mobile Contact Tracing.

arXiv:cs.CR/2004.03544, May 7, 2020.

[18] John Geddie and Aradhana Aravindan. Singapore plans

wearable virus-tracing device for all.

https://www.reuters.com/article/us-health-coronavirus-

singapore-tech-idUSKBN23C0FO, June 5,

2020.

[19] Alex Keown. Study Reveals Importance of Contact Tracing in

COVID-19. https://www.biospace.com/article/chinese-study-

highlights-importance-of-contact-tracing-to-mitigate-

infection-rates-of-covid-19/, April 29,

2020.

[20] Justin McCurry. Test, trace, contain: how South Korea flattened

its coronavirus curve.

https://www.theguardian.com/world/2020/apr/23/test-trace-

contain-how-south-korea-flattened-its-coronavirus-curve, April

22, 2020.

[21] P. Misra and P. Enge. Global Positioning System: Signals,
Measurements,and Performance. Ganga-Jamuna Press, 2006.

[22] Casey Newton. Why countries keep bowing to Apple and

Googles contact tracing app requirements, May 8, 2020.

[23] Linda Niccolai and Jeff Brock. Panel on Contact Tracing hosted

by Dean Jeff Brock. Yale School of Public Health, May 19, 2020.

[24] Ramesh Raskar et al. Apps Gone Rogue: Maintaining Personal

Privacy in an Epidemic. arXiv:cs.CR/2003.08567, March 19, 2020.

[25] Nordic Semiconductor. nrf52840 multiprotocol soc.

https://www.nordicsemi.com/Products/Low-power-short-

range-wireless/nRF52840,

2020.

[26] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and

Dawn Song. Epione: Lightweight contact tracing with strong

privacy, May 2, 2020.

[27] World Health Organization. Contact tracing.

https://www.who.int/news-room/q-a-detail/contact-tracing,

2017.

[28] World Health Organization. Contact tracing in the context of

COVID-19. https://www.who.int/publications/i/item/contact-

tracing-in-the-context-of-covid-19,

2020.

14

	Abstract
	1 Introduction
	1.1 Our contribution

	2 System overview and concurrent work
	2.1 Our design goals
	2.2 Habit overview
	2.3 Comparison with concurrent work

	3 The case for hardware devices
	4 Security goals and threat model
	5 System design
	5.1 Habit's design
	5.2 Protocols

	6 Security analysis
	7 Evaluation
	7.1 RSSI variability
	7.2 Proximity via RSSI threshold
	7.3 Contact minutes
	7.4 Habit vs ideal phone app

	8 Conclusion
	References

