Efficient Protocols for Oblivious Linear Function Evaluation
from Ring-LWE

Carsten Baum', Daniel Escudero®, Alberto Pedrouzo-Ulloa?, Peter Scholl', and
Juan Ramén Troncoso-Pastoriza3

1 Aarhus University, Aarhus, Denmark
{cbaum, escudero,peter.scholl}@cs.au.dk
2 University of Vigo, Vigo, Galicia, Spain
apedrouzo@gts.uvigo.es
3 EPFL, Lausanne, Switzerland
juan.troncoso-pastoriza@epfl.ch

Abstract. An oblivious linear function evaluation protocol, or OLE, is a two-party protocol for
the function f(x) = ax + b, where a sender inputs the field elements a, b, and a receiver inputs = and
learns f(x). OLE can be used to build secret-shared multiplication, and is an essential component of
many secure computation applications including general-purpose multi-party computation, private
set intersection and more.

In this work, we present several efficient OLE protocols from the ring learning with errors (RLWE)
assumption. Technically, we build two new passively secure protocols, which build upon recent
advances in homomorphic secret sharing from (R)LWE (Boyle et al., Eurocrypt 2019), with
optimizations tailored to the setting of OLE. We upgrade these to active security using efficient
amortized zero-knowledge techniques for lattice relations (Baum et al., Crypto 2018), and design
new variants of zero-knowledge arguments that are necessary for some of our constructions.

Our protocols offer several advantages over existing constructions. Firstly, they have the lowest
communication complexity amongst previous, practical protocols from RLWE and other assumptions;
secondly, they are conceptually very simple, and have just one round of interaction for the case
of OLE where b is randomly chosen. We demonstrate this with an implementation of one of our
passively secure protocols, which can perform more than 1 million OLEs per second over the ring
ZLom, for a 120-bit modulus m, on standard hardware.

1 Introduction

Oblivious linear function evaluation, or OLE, is a two-party protocol between a sender, with
input a,b € F, and a receiver, who inputs € F and receives y = ax + b. OLE is an arithmetic
generalization of oblivious transfer to a larger field F, since OLE over Fs can be seen as equivalent
to oblivious transfer on the messages zg, z1 by setting a = zg + 21 and b = zg, so the receiver
learns y = z,. Similarly to oblivious transfer, OLE can be used in constructions of secure
two-party and multi-party computation, and is particularly useful for the setting of securely
computing arithmetic circuits over F [34,29,4,28], where OT tends to be less efficient. As well as
general secure computation protocols, OLE can be used to carry out specific tasks like private
set intersection [31], secure matrix multiplication and oblivious polynomial evaluation [41,44].
OLE can be constructed from a range of “public-key” type assumptions. In the simplest,
folklore construction, the receiver encrypts its input = using a linearly homomorphic encryption
scheme and gives this to the sender. Using the homomorphic properties of the scheme, the
sender computes an encryption of y = ax + b and sends this back to the receiver to decrypt.
This approach can be instantiated with Paillier encryption or lattice-based encryption based
on the learning with errors (LWE) [43] or RLWE assumptions [38], and has been implicitly
used in several secure multi-party computation protocols [12,36,40]. There are also constructions
of OLE from coding-theoretic assumptions [41,34,30] which mostly rely on the hardness of
decoding Reed-Solomon codes in certain parameter regimes with a high enough noise rate. These
constructions are asymptotically efficient, but so far have not been implemented in practice,
to the best of our knowledge. For the special (and easier) case of vector-OLE, which is a large
batch of many OLEs with the same input x from the receiver, there are efficient constructions

https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0003-2375-0034
https://orcid.org/0000-0002-7937-8422
https://orcid.org/0000-0002-7283-6275
https://orcid.org/0000-0001-8764-5570

from more standard coding-theoretic assumptions over general codes, which also have good
performance in practice [4,14,44,15].

Despite the fact there are many existing constructions of OLE, either implicit or explicit
in the literature, very few of these works study the practical efficiency of OLE in its own right
(except for the special case of vector-OLE). Instead, most of the aforementioned works either
focus on the efficiency of higher-level primitives such as secure multi-party computation, or
mainly discuss asymptotic efficiency rather than performance in practice. In this work, we
advocate for the practical study of OLE as a standalone primitive. This has the benefits that
it can be plugged into any higher-level application that needs it in a modular way, potentially
simplifying analysis and security proofs compared with a more monolithic approach.

1.1 Owur Contributions

We present and study new OLE protocols with security based on the ring learning with errors
(RLWE) assumption, with passive and active security. Our passively secure protocols are very
simple, consisting of just one message per party, and our most efficient variant achieves the
lowest communication complexity of any practical (implemented) OLE protocol we are aware
of, requiring around half the bandwidth of previous solutions. We add active security using
zero-knowledge proofs, which have a low amortized complexity when performing a large number
of OLEs, giving only a small communication overhead over the passive protocols. To adapt
existing zero-knowledge proof techniques to our protocols, we have to make several modifications,
and describe a new amortized proof of knowledge that can be used to show a batch of secret-key
(R)LWE ciphertexts is well-formed (previous techniques only apply to public-key ciphertexts).
We have implemented and benchmarked our most efficient passively secure protocol, and
show it can compute more than 1 million OLEs per second on a standard laptop, over a = 120-bit
ring Z,, where m is the product of two CPU word-sized primes. The communication cost per
OLE is around 4 elements of Z,, per party, and the amortized complexity of our actively secure
protocol is almost the same, when computing a large enough number of OLEs. This is almost
half the communication cost of previous protocols based on RLWE, and less than 25% of the cost
of an actively secure protocol based on oblivious transfer and noisy Reed-Solomon encodings [30].

1.2 Outline

In Section 1.3 below, we present an overview of the main techniques in our constructions. We
then describe some preliminaries in Section 2. Section 3 contains our OLE protocols based on
public-key RLWE encryption, which only require a standard public key infrastructure as a setup
assumption. In Section 4, we present more efficient protocols which reduce communication using
secret-key encryption, and a more specialized setup assumption. Then, in Section 5, we present
details on the zero-knowledge arguments which are used to make the previous protocols actively
secure. Finally, in Section 6, we analyze the concrete efficiency of our solutions, compare this
with previous OLE protocols, and present implementation results for our most efficient passively
secure protocol.

1.3 Techniques

Our protocols construct a symmetric variant of OLE, where one party, Alice, inputs a field
element v € IF, the other party, Bob, inputs v € F, and the parties receive random values o and
B (respectively) such that a + 5 = u - v. This can easily be used to construct an OLE by having
the sender, say Alice, one-time-pad encrypt her additional input using «, allowing Bob to correct
his output accordingly. In this formulation, OLE is also equivalent to producing an additive
secret-sharing of the product of two private inputs; this type of secret-shared multiplication is
an important building block in multi-party computation protocols, for instance in constructing
Beaver multiplication triples [10]. In our protocols, we first create OLEs over a large polynomial

ring Ry = Zm[X]/(XYN + 1), which comes from the RLWE assumption, and then convert
each OLE over R,, to a batch of N OLEs over Z,,, for some prime modulus m, using packing
techniques from homomorphic encryption [45].

Our point of departure is the recent homomorphic secret sharing scheme by Boyle et al. [18],
based on LWE or RLWE. Homomorphic secret sharing is a form of secret sharing in which shares
can be computed upon non-interactively, such that the parties end up with an additive secret
sharing of the result of the computation. HSS was first constructed under the DDH assumption [17]
and variants of threshold and multi-key fully homomorphic encryption [27], followed by the
more efficient lattice-based construction of [18], which supports homomorphic computation of
branching programs (or, “restricted multiplication” circuits where every multiplication gate must
involve at least one input wire). Note that any “public-key” type two-party HSS scheme that
supports multiplication leads to a simple OLE protocol: each party sends a secret-sharing of its
input, then both parties multiply the shares to obtain an additive share of the product.

Efficient OLE from a public-key setup. Our first construction can be seen as taking the
HSS scheme of Boyle et al. and optimizing it for the specific functionality of OLE. When plugging
in their scheme to perform OLE, a single share from one party consists of two RLWE ciphertexts:
one encrypting the message, and one encrypting a function of the secret key, which is needed to
perform the multiplication. Our first observation is that, in the setting of OLE where we have
two parties who each have one of the inputs to be multiplied, we can reduce this to just one
ciphertext per party, where Alice sends an encryption of her input v multiplied by a secret key,
and Bob sends an encryption of his input. Both of these ciphertexts, including the one dependent
on the secret key, can be created from a standard public-key infrastructure-like setup where
Alice and Bob have each others” RLWE public keys, thanks to a weak KDM security property of
the scheme. This gives a communication complexity of two R, elements per party, for a RLWE
ciphertext modulus ¢, to create a single ring-OLE over R,,. We can also obtain a further saving
by sending one party’s ciphertext at a smaller modulus p < gq.

Reducing communication with a dedicated setup. Our second protocol considers a
different setup assumption, where the parties are assumed to have access to a single OLE over
Ry, which gives them secret shares of the product of two RLWE secret keys. With this, we are
able to replace the public-key RLWE ciphertexts from the previous protocol with secret-key
ciphertexts, which can be of size just one ring element instead of two. This cuts the overall
communication in half, and also reduces computational costs.

Achieving active security. To obtain security against active corruptions, we need to ensure
that both parties” RLWE ciphertexts are correctly generated, in particular, that the small
“error” polynomials used as encryption randomness were generated correctly (and not too large).
For a public key RLWE encryption, this boils down to proving knowledge of a short vector
8 € Zy, such that As = ¢ where A, c are public values defined by the RLWE public key and
ciphertext, respectively. In practice, we do not know efficient methods of proving the above
statement. Instead, we can obtain good amortized efficiency when proving knowledge for many
such relations of the form

AS; = ¢ (1)

for the same matrix A, where now the secret 3; may have slightly larger coefficients than the
original secret s;. This overhead is known as the soundness slack parameter, and comes from
the fact that a dishonest prover can sometimes make the proof succeed even when s; is slightly
larger than the claimed bound. Efficient amortized proofs for (1) have been given in several
works [37,24,7,22], most recently with a communication overhead that is independent of the
number of relations being proven [5].

Proving correctness of a batch of public-key RLWE ciphertexts can be essentially done by
proving a batch of relations of the form in (1), allowing use of these efficient amortized proofs.

To achieve active security in our public-key OLE protocol, we use a slightly modified version of
the proof from [5], by allowing different size bounds to be proven for different components of s;.
This gives us tighter parameters for the encryption scheme.

On the other hand, for our second protocol, things are not so straightforward. To see why,
recall that a batch of secret-key RLWE ciphertexts have the form:

(ai,a; - s +e +(q/p) - i) (2)

Here, a; is a random element in the polynomial ring R, = Z,[X]/(X" + 1), ¢; is a small error
value in Ry, and s € R, is the secret key. We want to prove that both s and e; have small
coefficients.

The problem is, since a; is different for each ciphertext, these cannot be expressed in the
form of (1), since they are not linear in a fixed public value. This was not the case for the
public-key setting, where every ciphertext is linear in the fixed public key; here, by switching to
a secret-key encryption scheme to improve efficiency, we can unfortunately no longer apply the
amortization techniques of [5].

Furthermore, there is a second obstacle, since we now have a special preprocessing phase
which gives out shares of s4 - sp, for the parties” RLWE secret keys s4 and sp. These must be
the same secret keys that are used to produce the encryptions, and to ensure this, we also have
to tie these together into the ZK proof statement.

To work around these issues, we perform two steps. Firstly, we modify the preprocessing so
that each party gets a commitment to its secret key, under a suitable homomorphic commitment
scheme (which can also be based on lattices [8]). We then design a new proof of knowledge,
which proves knowledge of short (s, e;, z;) satisfying (2) with similar amortized efficiency to the
proof from [5] for (1). Our proof simultaneously guarantees the secret s is the same s that was
committed to in the preprocessing, leveraging the homomorphic properties of the commitment
scheme.

2 Preliminaries

In this section we introduce some preliminaries and notation we will use. As basic notation, we
write a x 3 to denote the component-wise product of the vectors «, 3.

2.1 Rings & Rounding

Let g be an odd integer and N = 2" be a power of two. We define the ring R := Z[X]/(X + 1)
as well as R, = R/(q) as the reduction of the polynomials of R modulo g. Representing the
coefficients of f € R, uniquely by its representatives from [—(¢ —1)/2, (¢ — 1)/2] we define || f||o
as the largest norm of any coefficient of f when considered over the above interval. We define by
U(R) the uniform distribution over the finite set R and furthermore let Sg = {x € R | ||zl < B}

We now introduce the computational problems we use over R4, which are Ring-LWE, Module-
LWE and Module-SIS. We use Ring-LWE in our basic OLE protocols, while Module-LWE and
-SIS are used for our zero-knowledge argument with homomorphic commitments.

Definition 1 (Ring-LWE). Let R, be a ring as defined above, n € N* and o € RT. Let D,y be
a discrete Gaussian distribution over Ry with standard deviation o, and Ds. be some secret key
distribution over Ry. We say that an algorithm A has advantage € in solving the RLWE,, , p_,
problem if

|Prb=1| a + U(Ry),e < Dy, s+ Dg,b <+ A(a,a - s+ e)]
—Prb=1]a <« URY),u+ URY),b+ Ala,u)]| > ¢

4

Definition 2 (Module-LWE). Let R, be a ring as defined above, n,k € N*. The MLWE,, 1 3
problem asks to distinguish the distribution | I, A’]-y for a short y, from the uniform
distribution when given A'. We say that an algorithm A has advantage € in solving the MLWE,, 1, 3
problem if

Prb=1| A « URF) ANy USEH Ab+— AA [I, A'] y)]
—Prb=1] A« URZF)Au— UR)Ab— AA u)]| > e

The Module-LWE problem is widely believed to be hard for polynomial-time distinguishers
when y is sampled from a discrete gaussian distribution over R with large enough standard
deviation. The version of Module-LWE we give here has a more aggressive error distribution,
but is often used in practice.

A related well-known problem is called Module-SIS.

Definition 3 (Module-SIS). Let R, be a ring as defined above and n,k € NT. The MSIS,, . 3
problem asks to find a short vector y with ||y|lc < 8 satisfying [I, A’]-y = 0" when given a
random A’. We say that an algorithm A has advantage € in solving the MSIS,, ;, 3 problem if

PriyeSEA[L, A']-y=0"]| A« URXF)N0#y+ AA)| >

Rounding. We define by | f] , the scaling of each coefficient of f by p/q over the reals and then
rounding to the nearest integer in [—(p — 1)/2, (p — 1) /2] respectively. A simple but useful result
we will use throughout our protocols is the following.

Lemma 1. Let plq, z < Ry and y = x + e mod q for some e € Ry with |le|w < B < q/p.
Then Pr(|y], # |@], mod p] < 22255

Proof. It suffices to consider the case n = 1 and R, = Zg, since, by the union bound, the
general case can be obtained by multiplying the probability obtained in this particular case by
N -n.

Let x € R4 be uniformly random, let e € Z, be bounded in norm by B, and let y = x+e mod q.
Let E be the event |y], # [z], mod p. To bound the probability of E notice that, due to the
fact that |e| < B, e cannot change the nearest integer to = unless at least one of these coefficients
lies in a ball of radius (p/q)B centered at k + % for some integer k. This condition is equivalent to
x lying in a ball of radius B centered at % - (k+ 1) for some integer k. Since x € Z, is uniformly
random, the probability of this event is upper bounded by 2B/(¢q/p) = 2Bp/q. O

2.2 Gaussian Distributions and Simulatability

Definition 4. The continuous normal distribution over R™ centered at v € R™ with standard
deviation o € R s defined by the function

pm (:13): 1 mexp —||m—’U”%
v V202 202 '
If v = 0 then we just write pJ'(x). For a countable set S C R™ we furthermore define
o (9) = Lges P5' (@)

Definition 5. The discrete normal distribution over Z™ centered at v € Z™ with standard
deviation o € R™ is defined as

Dyio (@) = p.o(2)/p5' (Z7).

5

Throughout this work we apply D to vectors from R* in which case we mean that D, (x)* =

DNF(Z) with & € ZN* being the coefficient-wise embedding of R* into ZV*. We similarly
consider sampling R-elements from D, as sampling each coefficient independently from this
distribution.

In order to use random variables sampled according to the aforementioned distribution we
have to be able to estimate the size of its values. The following statement allows doing so:

Lemma 2 (See Lemma 4.4 of [37]). For any k > 1,

m

1= k)],
2= #))]
Rejection Sampling for Product Distributions. We will have to perform rejection sampling on

vectors that consist of discrete Gaussian distributions of multiple different standard deviations.
Throughout this work we will use the following

Lemma 3 (Generalizes Theorem 4.6 of [37]). Let k € NT and fori € [k] let V; C Z™i such
that all elements of V; have norm less than T;, o; € R such that o0; = oT; and h; : V; = R be a
probability distribution. If « > 0 and M = exp (12/a+ 1/(202)) then the following algorithm A:

Prf|z|2 > kov/m | ® < D] < k™ exp (

1. vi < hy, ..., v < hg
2. 21 < Dyl o, T Doy
. . . Do (x5
3. Output (x1,...,2k,v1,...,V) with probability min <Hie[k] W(w(;), 1)
is within statistical distance 27100H18F /N of the distribution of the following algorithm F:
1. 1)1(—]11, cee, v — hi
2. a1 %'Dgnll, e :Iik%'Dg]LC’“

3. Output (x1,...,%k,v1,...,v) with probability 1/MF

. . .- 172—100
where A outputs something with probability at least <T) .

Proof. See Section B of the Supplementary Material. a

2.3 Ring-LWE based encryption scheme

In this work we use basic ideas from RLWE-based encryption, particularly in our public-key
based construction from Section 3. We describe here a simplified version of the public-key
encryption scheme from [38], which we refer to as LPR. The key generation, encryption and
decryption procedures are defined as follows:

Gen(a) On input a public random a € Ry, first sample s <— Dy, and e <— D. Output sk = (s)
and pk = (a,b) where b=a-s +e.

Encpq(pk,z): On input pk € R?] and x € R, sample w, eg, e1 <= D and output (co, 1), where
cg=—-a-w+ejand cg =b-w+ey+ (¢/p) - x.

Dec(sk, (g, c1)): Compute 2’ = ¢g + s - ¢1 mod ¢, and output = = _l‘l-lp mod p.* Notice that this
works if the total noise e = s-e; 4+ e - w + e is bounded by p/2q.

On top of these standard procedures, we also use an algorithm KDMEnc which produces
an encryption of x - s, where s is the secret key. As observed in [18] (and implicit in [20]), this
can be done using only the public key by adding the message to the second component of an
encryption of zero.

KDMEnc,, 4(pk, z): Sample w, eg, e1 <= D and output (cp,c1), where ¢; = (¢/p) -z —a-w+ ey
and co = b-w + ey.

4 Our protocols do not directly use the decryption algorithm, but our simulator in the proof of Theorem 2 does.

2.4 Oblivious Linear Function Evaluation

The functionality we implement in this work is oblivious linear evaluation (OLE), which, in
a nutshell, consists of producing an additive sharing of a multiplication. A bit more precisely,
Phajice and Ppop have each one secret input v € R,,, and u € R,,, respectively, and their goal is
to get additive random shares of the product « - v. The formal description of the functionality
appears in Fig. 1.

Note that our OLE functionality produces several OLE instances simultaneously, and we
write a x 3 to denote the component-wise product of the vectors «, 3.

Functionality Fore(n,m)
Parameters: n, the number of OLEs; m, the modulus

Input: On input (Input,sid,u € Rj,) from Pgop and (Input,sid,v € R},) from Phajc, the functionality
proceeds as follows:

1. If the corruption is passive:
(a) Sample o, 3 € R, uniformly at random subject to u * v = & + 3 mod m.
(b) Send (Outputyc,, sid, o) to Paiice and (Outputg,y, sid, 3) to Pgob.
2. If the corruption is active:
(a) If Paiice is corrupt, wait for a message (Output, sid, @ € R};,) from the adversary and let 8 = uxv — .
) If Peop is corrupt, wait for a message (Output, sid, B € R,,) from the adversary and let & = u*v — 3.
) If the adversary sends abort, then the functionality sends abort to the honest party and stops running.
) If the adversary sends finish, then the functionality sends (Outputp., sid, @) to Paiice if Pgob is
corrupt, and (Outputg,,, sid, 3) to Pgob if Phaiice is corrupt.

Fig. 1: Oblivious linear evaluation functionality

2.5 SIMD for Lattice-based Primitives

The OLE functionality above produces OLEs over the ring R,,, however, in practice, we wish to
produce OLEs over Z,,. To do this, we exploit plaintext packing techniques used in homomorphic
encryption [45] based on the Chinese remainder theorem. We choose m = 1 mod (2N) such that
the polynomial X + 1 splits completely into a product of linear factors modulo m. This implies
that R, is isomorphic to N copies of Z,,, so a single OLE over the ring R,, can be directly used
to obtain a batch of N OLEs over Z,,. The isomorphism can be efficiently computed using fast
Fourier transform techniques. Therefore, with a single call to our OLE functionality in Fig. 1,
we can easily produce a batch of N -n OLEs over Z,,.

2.6 Commitments and Zero-Knowledge Arguments

In this work, in order to achieve active security, we make extensive use of commitments schemes
and zero knowledge arguments of knowledge.

Commitment Schemes. Consider the tuple C' = (KG, Com, Open) with 1% as implicit input.
KG is a PPT algorithm which generates a public parameter pk € {0, 1}-”019(“). Com is a PPT
algorithm which on input pk and a message x outputs ¢,r. Finally, Open is a deterministic
poly-time algorithm which on input pk, z, ¢, r outputs a bit b.

For an algorithm A let

pk <+ KG() A (z,2', 7,7, ¢) + A(pk)A

Pr / /
Open(pk, z,c,7) =1 A Open(pk,2’,¢c,7") =1

x # 2 < negl(k)

then we say that C is computationally binding if A is a PPT algorithm and C' is statistically
binding if A is computationally unbounded.

Furthermore, for an algorithm A if

< negl()

Pr [z = A(pk,¢) Pk KGO A (o, 21) A(pk)A] 1

i+ {0,1} A (c,r) + Com(pk,z;) | 2

2

then we say that the commitment scheme is statistically hiding if 4 is computationally unbounded
or computationally hiding if A4 is a PPT algorithm.

A commitment scheme is additively homomorphic if for two commitments (comj,r1) <
Compk(z1), (comg,72) = Compk(x2) as well as as a constant c it holds that Open(pk,ci +
c2,T1 + T2,71 + 1r2) = 1 as well as there exists a polynomial-time algorithm D such that
Open(pk, D(pk, c1,2),z1 + ¢,r1) = 1.

In this work we mainly use two different commitment schemes, namely the somewhat
additively homomorphic commitment scheme of Baum et al. [8] (denoted as C' = (KG, Com, Open))
as well as a compressing statistically secure commitment scheme Cayy = (KGaux, KGaux, Open, i)-
One can easily instantiate Cayy either using the Random Oracle or [25]. The scheme of [8] is
only somewhat homomorphic, meaning that it only supports a limited number of addition of
commitments due to the growth of r. More details on the used commitment scheme can be found
in Section B of the Supplementary Material.

Zero-Knowledge Arguments of Knowledge (ZKA). Let R be an NP relation. For
(pp, z,w) € R we call pp the public parameter, = the statement and w the witness. A Zero-
Knowledge Proof of Knowledge for R is an interactive protocol I between a PPT prover P and
a PPT verifier V with the following three properties:

Completeness: If P with input pp, z, w and V with input pp, w follow the protocol honestly,
then V outputs 0 only with negligible probability.

Soundness: If a PPT algorithm® P* on input pp, z makes V output 1 with polynomial prob-
ability p then there exists an algorithm & which, given black-box access to P* outputs w’
such that (pp,z,w’) € R in time poly(p, k) with at least constant probability p’ > 0.

Honest-Verifier Zero-Knowledge: There exists a PPT algorithm S called the simulator
whose output distribution on input pp,x and interacting with a PPT algorithm V* is
indistinguishable of a transcript of II run by P, V*.

The actual zero-knowledge arguments that are used with respect to the commitment scheme C'
can be found in Section B of the Supplementary Material.

Commitments and Zero-Knowledge Arguments. In this work, in order to achieve active
security, we make extensive use of commitments schemes and zero knowledge arguments of
knowledge. We refer the reader to Section 2.6 of the Supplementary Material for full definitions
of these cryptographic notions. Here, we only introduce the basic notation.

Commitment Schemes. We consider an additively homomorphic statistically hiding commitment
scheme, which we denote by a tuple C' = (KG, Com, Open). In this work we mainly use two
different commitment schemes, namely the somewhat additively homomorphic commitment
scheme of Baum et al. [8] (denoted as C' = (KG, Com, Open)) as well as a compressing statistically
secure commitment scheme Chyx = (KGaux, KGaux, Open y)-

One can easily instantiate Chyy either using the Random Oracle or [25]. The scheme of [8]
is only somewhat homomorphic, meaning that it only supports a limited number of addition
of commitments due to the growth of r. More details on the used commitment scheme can be
found in Section B of the Supplementary Material.

5 The term “argument of knowledge”, in contrast to “proof of knowledge”, relates to the setting in which
soundness is only guaranteed against a polynomially bounded prover.

Zero-Knowledge Arguments of Knowledge (ZKA). Let R be an NP relation. For (pp, z,w) € R
we call pp the public parameter, x the statement and w the witness. A Zero-Knowledge Proof of
Knowledge for R is an interactive protocol II between a PPT prover P and a PPT verifier V
satisfying completeness, soundness against bounded malicious provers and honest-verifier zero-
knowledge. The actual zero-knowledge arguments that are used with respect to the commitment
scheme C' can be found in Section B of the Supplementary Material.

3 OLE from PKI Setup

In this section we present our first OLE construction, which is particularly simple and efficient.
Furthermore, the only setup required is a correlated form of public key infrastructure for the
LPR encryption scheme from Section 2.3 of the Supplementary Material in which Pajice and
Pgob have each a secret/public key pair for the LPR scheme, where the a € R, component of
the public key is the same for both. This can be seen as a PKI setup in which the public keys
are derived using some public randomness. The precise functionality Fpk) is given in Fig. 2.

Our protocol, IIgig.pk, can be found in Fig. 3. The passively secure version Hg?_séi_\;i is
obtained from the active one by removing the zero knowledge arguments, whose steps are framed
in the description of the protocol. To provide a high level idea of our construction, we first
recall the main techniques from the homomorphic secret-sharing scheme of Boyle et al. [18].
Suppose two parties have additive secret shares of a RLWE secret key s € Ry, and are also
given secret shares modulo ¢ of z, « - s and a public ciphertext ¢, = (¢co,c1) = Enc(pk, y), for
some messages x,%y. Boyle et al. observed that if each party locally decrypts ¢, using its shares,
denoted [z], [z - s], we have:

[z] -co+[z-s]-cr =[x (co+c1-8)]=](g/p) z Yl

Applying the rounding operation from decryption on the above shares then gives exact additive
shares of x - y, provided the error is much smaller than ¢/p.

To create the initial shares of x and z - s, it is enough to start with shares of s and ciphertexts
encrypting x, x - s, since each ciphertext can then be locally decrypted to obtain shares of these
values. Boyle et al. also described a variant which removes the need for encryptions of z - s, but
at the cost of an additional setup assumption involving shares of s2.

Our OLE protocol from this section builds upon this blueprint, with some optimizations.
First, we observe that in the two-party OLE setting, it is not necessary to give out Enc(pk, x)
to obtain shares of z, since one of the parties always knows x so they can simply choose these
shares to be x and 0. (This is in contrast to the homomorphic secret-sharing setting, where
the evaluating parties may be a set of servers who did not provide inputs.) Since we only do
one multiplication, it’s therefore enough to give out the two ciphertexts ¢, = Enc(pk, z - s) and
¢y = Enc(pk, y), compared with four ciphertexts used in the HSS scheme from [18]. Since both
ciphertexts can be easily generated from the public-key setup, this leads to a very simple protocol
where each party (in parallel) sends a single message that is either an encryption of its input, or
its input times s.

As an additional optimization, we show that the second ciphertext encrypting y can be
defined at a smaller modulus p instead of ¢, since we only care about obtaining the result modulo
m < p, which saves further on bandwidth.b

The protocol described above is passively secure, but an active adversary can break the
security of this construction by sending incorrectly-formed ciphertexts. Due to our simple
communication pattern this turns out to be the only potential source of attack, which we rule
out by having the parties prove, in zero knowledge, that their ciphertexts are correctly formed.

6 This optimization is possible since we skip the “modulus lifting” step from [18], which is only needed when
doing several repeated multiplications.

Functionality Fpk

The functionality runs with parties Pajice and Ppob, as follows:

1. Sample a < R4 and two key pairs (Saiice, (@, baiice)) <— LPR.Gen(a) and (Sgob, (a, beob)) <— LPR.Gen(a).
2. Let b = baiice + bgob
3. Output pk = (a,b) to both parties, as well as sajice t0 Paiice and Sgob t0 Pgob-

Fig. 2: PKI setup functionality

Protocol IloLE-pk
We use moduli ¢ > p > m, where m|p and p|q, and m is the final modulus of inputs and outputs.

1. Setup. The parties call Fpk, so that both parties obtain pk = (a,b) € RZ, while Phajice gets saice € Ryq
and Pgob gets sgob € Ryq-
2. First Message. On input w € R, from Pgop:
(a) Peob sends (co,c1) = KDMEnc, ¢(pk,) to Paiice:
k

(b) The parties engage in a zero-knowledge argument for the relation Ry
and Pgop as the prover. If this fails then the parties abort.
(¢) Paiice computes paice = | Salice - €1
PAiice + PBob = & - w mod p)
3. Second Message. On input v € R, from Pajice:
(a) Phaiice sends (do, d1) = Encpp(pk, v) to Paob

p With Paiice as the verifier

» and Pgop computes pgob = Leo + sBob - €1] » (it should hold that

The parties engage in a zero-knowledge argument for the relation Ri'fice with Pgob as the verifier

b
(and Paiice as the prover. If this fails then the parties abort.

)
(€) Paiice outputs o = |d1 * paiice |,,,-
(d) Pgob outputs B = [do * u + di * PBob | ,,,-
We should now have o + 8 = u x v mod m.

Fig. 3: Actively secure OLE protocol from a PKI setup. The passively secure version of the
protocol is obtained by removing the framed steps.

3.1 Passive Security

We now proceed to the security proof of our protocol Ug?_séi_\;i, which consists of protocol Ilo| E-pk

in Fig. 3 without the zero knowledge arguments framed in the protocol description.

Our proof requires that a random element of R, is invertible with high probability. As we
will see, this technicality allows the simulator to “solve equations”, matching real and ideal views.
For our choice of parameters this is always the case, and for this we make use of the following
lemma.

Lemma 4. Let g = Hle pi, where each p; is an £-bit prime. If the polynomial f(x) € Zy[z] of
degree N used to define Ry splits completely mod p; as f(x) = H;V:1 fij(x) mod p;, where each
fij(z) is linear, then the probability that a uniformly random element from Ry is not invertible
s upper bounded by %

Proof. The conditions in the lemma imply that R, = (F,,)" x -+ x (Fp,)", and an element
in R, is not invertible if and only if one of its components in [F), from the decomposition above
is zero. This happens with probability 1/2¢ for each component, so by the union bound, the
probability that at least one of these components is zero is bounded by N - k- 27¢. ad

Given the above, the probability that at least one component of a vector in Ry is not
invertible is upper bounded by n - N - k- 27, For all our parameter sets in Section 6, this
quantity is below 27 for A ~ 36, which is good enough for our purposes since we need it only
as an artefact for the proof and it does not lead to any concrete attack or leakage.” We also use

7 This restriction can be easily overcome by modifying the definition of security against passive adversaries,
allowing the adversary to choose its output. However, we prefer to stick to more standard security definitions.

10

invertibility to argue correctness of the protocol, as it is required for being able to use Lemma 1
in our protocols. If this probability is not good enough for a certain application, the parties could
use a PRF to rerandomize their shares so that this lemma can be applied without invertibility.
However, in order to keep our exposition simple we do not discuss such extension.

Another simple but useful lemma for our construction is the following.

Lemma 5. Assume that plq. Given y € R, the set of x € Ry such that y = mp is given

by x = (%) -y +e fore € ZN(—q/2p,q/2p]. In particular, the mapping Ry — R, given by
T Laﬂp 1 a surjective regular mapping, meaning that every element in the codomain has an

equal number of preimages.

Finally, we have the following proposition, concerning correctness of our construction. It
follows as a corollary of Proposition 2 by setting the soundness slack parameter 7 to be 1, so we
defer the proof to that section.

Proposition 1. Assume that 3-2571-n-(mN)2- Bey-Bsk < p < 3.2“1.”.]‘\1[2.3&”.]3
be the inputs to Protocol Hg?_séi_\;i, and let o, B € R}, be the outputs. Then, with probability at
least 1 — 27" uxv =a+ 3.

- Letu,v € Ry,

With these tools at hand we proceed with the main result from this section.

. Then protocol

Theorem 1. Assume that 3-2°t1 - n - (mN)? - Bere - Bsk < p < g5z 53 -
Hpassive ’

OLE-pk’ which consists of protocol Il gpk without the underlined steps, realizes functionality
FoLe in the Fpki-hybrid model under the RLWE assumption.

The proof of this Theorem is presented in Section C of the appendix.

3.2 Active Security

As we saw in the previous section, the correctness of our construction relies on the different
terms involved having a certain bound: The input w must be smaller than m, the noise terms
used for the encryption have to be upper bounded by Be,r, and the randomness w and w’ used
for the encryption must be less than Bgc. An actively corrupted party who chooses randomness
outside these bounds can easily distinguish between the real and ideal executions.

To achieve active security, each party proves in zero-knowledge that the ciphertexts they send
are correctly formed. We begin by analyzing the case of a corrupt Ppgop. Consider the message
from Ppop, which consists of a batch of ciphertexts

(co,e1) = (b-w+eg,(q/p) - u—a-w+ep)

Rewriting this, Pgop has to prove knowledge of vectors (over Ry) w,u, eg, e satisfying

b 10 0 T (eo
(—a 01 q/p) (weverw) = (cl) 3)
e e N~
A S T

and ||wl|co < Bsks [|[]|oo < M, ||€0]|cc < Berr and ||€1]|oc < Berr. This can be written in matrix
form as follows

pok _ | pruw) = ((R,q,n,8,4),T,5) [(A4,8,T) e RF x RV x R
Bob NAS =T A |sil]loo < B

where s; is the i-th row of S and the bound vector is 5 = (Bsk, Berr, Berr, Bmsg). Such type of
statements can be proven efficiently using the amortized proof from [5], as we discuss more
thoroughly in Section 5.

11

We can similarly define a relation for the message (dp, d;) that Pajice sends, and we call this
relation Rzll‘i ce- We note however that in the proof of Theorem 1 we did not actually use any
bound on the message v, so we may exclude the bound ||v]|oc < m from this relation.

For the rest of this section we assume the existence of zero knowledge arguments of knowledge
for the relations Rxll(i e and Rgl;b. As mentioned above, we show how to construct these in Section
5.1. Note that when proving knowledge of the relation Rg;b or R%ice above, if the prover is
malicious then our proof actually only guarantees that ||s;||2 < 7 - 5;, where 7 is the soundness
slack parameter of the zero knowledge argument. We therefore need to choose our parameters
with respect to the larger bounds, to ensure correctness of the protocol.

We begin with the following proposition, which shows that, under an appropriate choice of
parameters, our protocol guarantees correctness.

Proposition 2. Assume that 3 -2 - n -7 (mN)? - Bey - B < p < 3.2“1.”.%\[2.3%.351{. Let
u,v € R}, be the inputs to Protocol IloLg-pk, and let o, 3 € R}, be the outputs. Assume that
the relations Rzlfice and RpBl;b defined in Section 3.2 hold, but that at most one of them has slack
parameter 7.5 Then, with probability at least 1 — 2%, uxv = a + B.

Proof. Let us begin by writing the individual public keys as bgopb = @ - Sob + €Bob and
balice = @ - SAlice T €Alice; and let b = bpop + bajice and s = Sgob + Salice; SO b = a - s+ e
where e = epjice + €Bob.- We also write (¢g,¢1) = (b-w + eg,(q/p) -u —a - w + e;) and
(do,d1) = (b-w' + ey + (p/m) -v,—a-w' + €)). It follows then that
co+s-ci=b-w+e+(q/p)-s-u—s-a-w+s-e
=(b—s-a)-w+ey+(q/p)-s-u+s-e;
=(q/p)-s-u+(eg+e-w+s-e;) modagq.

~\~
e

By recalling that s = sajice + SBob, We can write this as ¢p + Sgob - €1 = (¢/p) - 5 - u + (—Splice -
c1 + e) mod ¢. Rounding this equation modulo p, we see that

Lco + SBob - Cﬂp =5 U+ |—SAlice - C1 + 61,, mod p.

From RpBlgb we know that ||w||ec < 7 - Bek and that ||€;]|co, ||€}]|cc for i = 1,2 are upper
bounded by 7 - Berr. Hence ||€]|oo < 37N BereBsk < m. Also, since spjice - €1 1s close to
uniform, it follows from Lemma 1 that I__SAlice -c1 + 6—‘p = L—SAﬁce . C{lp = — LSAIice . Cl-lp with
probability at least 1 — 27". From this we conclude that pajice + PBob = S - u mod p with high
probability.

Now, we can perform a similar analysis for (dg, d;) by writing

dy+s-di=b-w +ey+(p/m)-v—a-s-w+s-€]
=(b-s-a) - w +ey+(q/p)-v+s-€
= (p/m)-v+(ef+e-w +s-€) modp.

e/
We can multiply both sides by u to get do x u + (s - u) xd; = (p/m) - (u*v) + u x € mod p,
and recalling that w - s = pajice + PBob Mmod p with high probability we obtain that

do *u + pRop x d1 = (%) “(u*v)+ (—pplice xd1 + u*€’) mod p.

If RES, holds with slack 7 and R% . with slack 1, then we know that that ||u|le < T -m,
[w']|oo < Bek and [|€}]|co < Berr for i = 1,2, 50 ||€/[| o < 3BerrBsk. On the other hand, if RB:,

8 That is, the bounds in one of the two relations have an extra factor of 7. This corresponds to what can be
guaranteed for a corrupt party via the zero knowledge argument.

12

holds with slack 1 and R%ice with slack 7, then we know that [|ullcc < m, ||w'|lec < T Bsk
and ||€}||cc < 7 Berr for i = 1,2, 50 ||€/|lc0 < 37BerrBsk- Either case, it holds that ||u * €'[|s <
3MTN Ber B < m Hence, rounding this equation modulo m, and using Lemma 1, we

conclude that u x v = a + 8 mod m with probability at least 1 — 27", as required. a

With this tool at hand, the security of the actively secure version of our protocol can be
proven. The proof appears in Section C of the appendix.

. Protocol

Theorem 2. Assume that 3-2°1 - n -7 (mN)?- Bey - By < p < TR

q
1n-T-N2-Berr Bgk
Ilo e pk realizes functionality FoLg under the RLWE assumption.

4 OLE from Correlated Setup

Ciphertexts in the public key version of the LPR cryptosystem consist of two ring elements.
However, in the secret key variant, we can reduce this to one element, since the first element is
uniformly random so can be compressed using, for example, a PRG. Given this, a natural way
of shaving off a factor of two in the communication complexity of our protocol from Section 3
would be to use secret key encryption instead of public key.

In this section we present an OLE protocol that instantiates precisely this idea. The com-
munication pattern is very similar to the one from Protocol IlgLg_pk, in which there is a setup
phase, then Pgop, sends an encryption of his input u to Pajice (and proves in zero-knowledge its
correctness for the actively secure version), and then Pajice does the same. The challenge, here,
is that now, as we are using secret-key encryption to obtain his ciphertext in the first message,
there is no way for Bob to encrypt w multiplied by the (combined) secret key.

To make this work, we replace the PKI setup functionality from the previous section with
a more specialized setup, where Pgop, gets ogop, € Ry and Pajice gets oalice € Ry such that
SAlice * SBob = OAlice + 0Bob Mmod ¢. This can be seen as an OLE itself, where the values being
multiplied are small RLWE secret keys; under this interpretation, our protocol can be seen as
a form of “OLE extension” protocol. The intuition for why this setup is useful, is that Bob’s
secret-key ciphertext can now be distributively “decrypted” using the shares of spjice - SBob, Which
(after rounding) leads to shares of u - sajice. In the second phase, these shares are then used to
“decrypt” Alice’s ciphertext, giving shares of the product u x v.

The setup functionality is described in Figure 4, where we present both the passive and
active versions of the functionality, with the main difference being that in the active setting
we must ensure that the corrupt party uses the same secret key for encrypting its input as the
secret key distributed in the setup phase. Thus, in this case, when the corrupted party proves in
zero knowledge the correctness of its encryption, it also proves that the secret key is the same as
in the setup phase. This requires the setup functionality in the active case to output some extra
information that allows us to “bind” the key from the setup with the key from the encryption
sent, for which we use commitments. We discuss this in more detail when we look at active
security in Section 4.2.

Our protocol is described in full detail in Fig. 5. As in Section 3, we present the full, actively
secure version, but outline in a box those steps that are only necessary for active security.

4.1 Passive Security

The following proposition states that our construction satisfies correctness when the parties are
honest, and follows from Proposition 4 in Section 4.2, which analyzes the case where the bounds
satisfied by the values from one of the parties may not be sharp.

Proposition 3. Assume that 2511 . n - (mMN)? - Bey < p < WM. Let w,v € R}, be
the inputs to Protocol IloLgsk, and let o, 3 € R, be the outputs. Then, with probability at least
1-27" urxv=a+p3.

13

Functionality Feetup

This functionality interacts with two parties Paiice, Peob as well as an ideal adversary S. Upon initialization,
S is allowed to passively corrupt either Pajice or Pgob or none of them. The functionality is parameterized by
the ring R, the moduli ¢, p, m and the bound 0 < Bs < ¢. For the active case it is also parameterized by the
homomorphic commitment scheme C' = (KG, Com, Open) together with the parameters pk of C.

Sample: On input (Sample, sid) by both Pajice, Peob and if no such message has been sent before to the
functionality, the functionality proceeds as follows:

— If the corruption is passive:
1. Sample Salice, SBob < Rq uniformly at random such that ||Saiice||oo, ||SBob||cc < Bs.
2. Sample Oalice, TBob € Rq subject to Salice * SBob = TAlice + TBob mod q.
3. Send (Outputyje, $id, Saiice, Taiice) 10 Paiice and (Outputg,, sid, Sgob, TBob) t0 Phob.
— If the corruption is active:
1. Sample Saiice; SPg,, < Rq uniformly at random such that ||saiice||co, ||SBob|lcc < Bs.
2. Compute (comajice, alice) — Compi (Saiice) and (comgeb, gob) — Comypi (SBob)-
3. Sample oalice, TBob € Rq subject to Salice - SBob = TAlice + OBob Mmod q.
4. Send (Outputpice, Sid, Salice, TAlice, T'Alice; COMAlice; COMBob) to Phlice and
(Outputg,, sid, Sob, OBob, T'Bobs COMAlice, COMBob) t0 Pgob.

Fig. 4: Preprocessing for OLE with passive security

With this proposition, we proceed to the proof of security of our passively secure protocol.

Theorem 3. Assume that m?- Bey - 25T n- N2 < p < Wm. Then protocol Hg?_séi_:i,
which consists of protocol Ilo sk without the underlined steps, realizes functionality FoLg in

the Fsetup-hybrid model under the RLWE assumption.

The proof bears similarity with the proof of Theorem 1, and we defer it to Section C of the
appendix.

4.2 Active Security

An active adversary in the protocol ITg gk can cheat by sending incorrect messages. For example,
a corrupt Pgop may send an incorrectly formed ¢, and one can show that, in fact, by choosing
c appropriately a corrupt Pgop may learn some information about Pajice’s input v. A similar
attack can be carried out by a corrupt Pajice- Hence, to achieve active security, we must ensure
that the message ¢ sent by Pgop and the message d sent by Pajice are computed honestly.

We implement zero knowledge arguments to show precisely these statements. Pgop proves that

he knows u, e and sggp of the appropriate sizes such that ¢ = (%) ‘u+ (@ - Spop + €Bob) mod g,

and Phajice proceeds similarly.

An additional technicality, however, is that sgop, (and respectively sajice) has to be exactly
the same value that was distributed during the setup phase. To enforce this, we consider
a modified setup functionality for the actively secure setting that, on top of distributing
SBob * SAlice = OBob + TAlice, also distributes commitments to sgop and sajice that can be used in
the relation of the zero knowledge argument (Fig. 4).

Given that the protocol is essentially symmetric with respect to the roles of Pajice and Pgop,
from now on we focus on discussing the case of a corrupt Pgop. A similar argument applies for
the case of corrupt Pajice- The message ¢ that Pgep, sends is formed by adding n RLWE samples

to (%) -u, which is a scaled version of its input w. Furthermore, the RLWE samples must be

generated using the secret sgop distributed in the setup phase. As a result, the relation that
Pgob Will prove is

K (pan,w): C=<%>-u+a-s+emodq/\
,R’IS30b(T) = <(R7 Q7p7m7/87 pka a, COInBOb)v) ||'u”oo S T* 51 AN ||€||oo S T - 52/\
c, (u,e,s,7) Open,(compop, 5,7) = 1

14

Protocol IloLe.sk

We use moduli ¢ > p > m, where m is the final modulus of inputs and outputs. We assume that m divides p
and that p divides q.

1. Setup phase.
(a) Passive case. Paiice, Paob each send (Sample, sid) to Feetup. Phlice ObtaIns saiice; oaiice While Paop obtains

SBob; OBob-

Active case. Phiice, Paob €ach send (Sample, sid) t0 Feetup. Palice ObtAINS Salice, TAlice, T'Alice, CAlicey CBob

and Pgob obtains sgob, 0Bob, TBob, CAlices CBob-

(b) The parties sample two public random values a,a’ € R} .*
2. First Message. On input u € R, from Pgop:

(a) Peob samples a noise vector ego, <— D™ and sends ¢ = (%) -+ (@ - Sgob + €Bob) mod g t0 Phiice-

(b) The parties engage in a zero-knowledge argument for the relation R, with Pajce as the verifier
and Pgob as the prover with witness (u, €gob, SBob, 'Bob)- If this fails then the parties abort.

(¢) Paiice cOmputes paiice = |Saiice * € — @ * TAlice | -
(d) Peob computes pgopb = — |a - O'Bob—‘p. It should now hold that u - Saice = Palice + PBob MoOd P.
3. Second Message. On input v € R, from Phjice-
(a) Paiice samples a noise vector eajice < D™ and sends d = (ﬁ) -v+ (a’ - saiice + €aiice) mod p to Pegob.

(b) The parties engage in a zero-knowledge argument for the relation R, with Pgop as the verifier
and Phiice as the prover, with witness (v, eaiice, Saiice, T'alice)- 1f this fails then the parties abort.

(c) Paob outputs, 3 = |[uxd — a’ * pgeb|,, mod m.
(d) Paiice outputs, o = — |a’ * PAlice | ,,, mod m. It should hold that uxv = a + 3 mod m

% In practice this can be done by using a PRF with some pre-shared key. In our proofs we use a random
oracle that can be programmed by the simulator.

Fig. 5: Actively secure OLE protocol based on RLWE. The passively secure version of the protocol
is obtained by removing the framed steps.

and RAhce can be defined similarly.” Here in the honest case Pgop starts with RB b, but the
guarantee given by the zero-knowledge argument will be for a substantially larger factor 7 (see
Section 5). The relation essentially shows that the message that Pgop sends is well formed, and
furthermore, that the sgop used for constructing this message is exactly the same as the one
provided in the setup phase.

For the purpose of this section we assume the existence of zero knowledge arguments for the
relations RAhce and ngkob. We develop such results in Section 5.

Now, to proceed with the security proof of our protocol, we first present the following
proposition, which states that our construction satisfies correctness even when the bound on the
parameters may have some slack.

Proposition 4. Assume that 25t -n -7 (mN)? - Be < p < g BB, Letu,v €RY,
be the inputs to Protocol Ilo g.sk, and let o, 3 € R}, be the outputs. Assume that the relations
T\’,Ahce and RBOb hold, but that at most one of them has slack parameter T. Then, with probability
at least 1 — 277, uxv =a + (.

Proof. We begin by noticing that spjice - € = (%) - Splice * U+ (@ SAlice - SBob + SAlice - €Bob) Mod ¢,
so, taking into account that in the real world Fserup guarantees that sajice - SBob = TAlice + TBob:

we have that a - ogop + Salice - €Bob = (SAlice * € — @ - TAjice) — (%) - Splice + w mod ¢. Rounding

this equation mod p, and noticing that (%) - SAlice - W rounds exactly to the integer spjice - u, we
obtain [a - 0Bob + Salice €Bob |, = |SAlice - € — @ - Oplice],, — SAlice - mod p.

Now, if RAhce has slack 7 and RBob has slack 1, it follows that ||sajice/lcc < 7 - Bsk and
lleBobl|co < Berr, which implies that ||Salice - €Bobllocc < NTBerrBsk- On the other hand, if RAhce

9 As in public-key protocol from Section 3.2, Paiice does not need to prove the bound on her input v.

15

has slack 1 and RBob has slack 7, it follows that ||sajice|]|coc < Bsk and ||€gob||co < 7 - Berr, which
also implies that ||sajlice - €Bobllococ < NTBerrBsk. Since a - ogop is uniformly random, and given
that ||Salice - €Boblloo < TN BereBsk < W, Lemma 1 implies that |a - ogop + Salice - eBOb}p
la - aBoﬂp with probability at least 1 — 277,

For the second message, we see that in the real world Phajice sends d = () 'v+(a"5A|ice—|—eA|ice)
mod m to Pgop, where v is Pajice’s input. Now, if RAhce has slack 7 and RBOb has slack 1, it
follows that ||ealice|loo < 7 - Berr and ||u]|oc < m, which implies that ||u x eajicel|coc < TMN Beyy.
On the other hand, if RAhce has slack 1 and Rlsgkob has slack 7, it follows that ||ealicellco < Berr

and ||u)leco < 7 -m, which implies too that ||u % eajice|]|lcoc < 7MN Beyr. Using Lemma 1, we can

conclude that u x v = a + B, except with probability at most 277. a

Given this, we can prove the security of our actively secure OLE protocol, as stated in the
following theorem. The proof appears in Section C of the appendix.

Theorem 4. Assume that 2°71 -n -7 - (mMN)? - By < p < TS e B B Then protocol
Ilo sk realizes functionality FoLg in the Fsetup-hybrid model under the RLWE assumption.

5 Zero-Knowledge Arguments

In this section we describe in detail the zero-knowledge arguments that are necessary to implement
the actively secure versions of our OLE protocols. Both of the arguments are amortized, meaning
that i) they prove n statements in parallel and ii) for large enough n the communication from
the prover P to the verifier ¥V becomes strictly sublinear in n. While the first argument follows
directly from [5], the second one is a non-trivial modification of this approach. It implies an
amortized argument for proving well-formedness of secret-key (R)LWE ciphertexts, which to the
best of our knowledge, has not been done previously and may be of independent interest.

5.1 Argument for Public OLE

Recall the relations RA“ e and RpBlf)b considered in Section 3.2. We present in this section a
zero-knowledge argument of knowledge for these relations. We begin by noticing that these
relations can be expressed in matrix-form as T = AS where A is derived from the public
parameters, T is the target and S is the secret we want to prove knowledge of. More concretely

610 0 (4o)T = (enen)
—(101Q/p 0 €1 - 0, €1
~—_—— S T
A

where we show that S has a bound of Bgy, Berr, Berr, Bmsg for each row, respectively.

We consider one single relation R, defined as in RBOb (or RAh), but using the 2-norm
instead of the co-norm.' To prove this relation, we use the interactive argument between P and
V that is outlined in Fig. 6. One can easily show the following theorem, whose proof we defer to
Section B.5 of the Supplementary Material.

Theorem 5. Assume that Vi € [n] : || f[i]]]2 < Te, |leoli]|l2, |e1ld]]l2 < Terr, [|2[i]||2 < Tmsg- Let
(>Kk+2, M>1and o, > 12/(In M)vVnlT,. Furthermore, let Cauy be a statistically hiding
and computationally binding commitment scheme. Then the aforementioned protocol is a zero-

knowledge argument of knowledge for Rpk with (Bsk, Berr, Bmsg) = (V8N sk, V8N Oerr, V8N Omsg)
that is complete with probability 1/M*, computationally sound and statistically zero-knowledge.

10 The choice of norm is irrelevant for the purpose of the existence of a proof, since bounds in one norm can be
translated to the other.

16

Zero Knowledge Argument for R

The following is a zero knowledge argument for the relation Rpk. The public instance is pp = (R, q,n, 8, A)
and furthermore let Caux = (KGaux, Comayux, Open,,,) be a statistically hiding auxiliary commitment scheme
with public key pk,,, known to both P, V.
1. P samples y1 Dﬁsk,yz,yg — Dﬁemy4 — Df;msg, defines Y = (y1,...,94) as well as W «— AY ',
generates (comw ,rw) CoMaux (PK,ues W) and sends compw to V.
2. V samples C < {0, 1}**" uniformly at random and sends it P.

3. P computes (z1,...,24) = Z < C(f,eq,e1,x) + Y. Continue with probability

. 1 Doy (z1) Di,(22) Di(zs) Dopylze)
mln 1’ 74 e S| e err e err e
M DCf,ask (zl) DCeo,ae,,(ZQ) DCel,ae,,,(z3) D(Z‘:l:,amsg (Z4)

and send Z as well as rw to V, otherwise abort.
4. 'V accepts iff
(a) Open, (pk,,,,comw, AZT —TCT rw)=1
(b) llzill2 < Bs/2, [|22|2; l|zsll2 < Berr/2, [|z4l2 < Bmsg/2

Fig. 6: Zero knowledge argument for Rpy

5.2 Argument for Private OLE

For the OLE in Fig. 5 with preprocessing the relation which each party has to prove looks
different from the aforementioned Ry and we cannot apply the same argument as above. In
more detail, one of the two relations (the other follows along the same lines) that we want to
prove is

(a,c,u,e) € Ry x Ry x R" x R"A

(pp; u, w) = _ (q)
Ry =4 ((Roq,p.m. B,pk,a, com),) | €= \p) #Fa stemodan
C, (U,B,S,T‘) ||’LLH2 < Bu A ||8||2 < Berr/\

Opengy (com, s,7) =1

where 8 = (By, Berr). !
Towards constructing an interactive argument, we first observe that the equation to be
proven can be alternatively written as

—a-s=(q¢/p)-ut+e—c

which means that all such statements are in fact linear in s. At first glance it might seem
plausible to apply a standard amortization technique such as in Fig. 6 but that is not possible:
amortization techniques require that the instances are linear in a public value, whereas in our
case we need to exploit linearity in the secret. In Fig. 7 we present a zero-knowledge argument
for the specific relation whose overhead is O(x), i.e. the number of additional vectors in Ry only
depends on the statistical security parameter k.

Theorem 6. Assume that Vi € [n] : ||v[i]|l2 < Tu,|l€fi]lls < Te. Let £ > k+3, M > 1
and o, > 12/(In M)\/nlT,. Furthermore, let C be a statistically hiding and computationally
binding commitment scheme. Then the aforementioned protocol is a zero-knowledge argument of
knowledge for R, with (Buy, Berr) = (V8Noy, V8Nae) that is complete with probability 1/M?*,

computationally sound and statistically zero-knowledge.

A full proof of this theorem is presented in Section B.5 of the Supplementary Material. In
terms of complexity of the aforementioned protocol, we start by sending ¢ = O(k) commitments
com; of O(1) R, elements, then sample £ - n bits and then send two R4-vectors €, pu which are of

1 Observe that, again, we have switched to the 2-norm.

17

Zero Knowledge Argument for Rgob

The following is a zero knowledge argument for the relation Rpo,. The public instance is pp =
(R, q,p,m, B, pk, a, com) where we use the same commitment scheme C' = (KG, Com, Open) together with the
parameters pk from the setup phase.

1. P runs an interactive proof for Rpok from Appendix B.3 with V to show knowledge of an opening of com
using the opening (s, 7). Here we use the same £ for Rpok.

2. P samples f <« D5 ,v < D5 . Then for j € [¢{] P generates commitments (comj,7;) <

Comp ((a/p) - lj] + £17]) and sends {cam; }c(q to V.

V samples C < {0,1}**™ uniformly at random and sends it to P. Both V, P set a < Ca and ~ + Ce.

4. P locally computes € «— f 4+ Ce and p < v + Cu. With probability

- <1 1 _DL.(e) Df;um))

’ M? DeCe,ae(e) DéCu,cru (l"’)

w

P outputs (€,) to V, otherwise aborts.
5.V checks that ||€]|2 < Berr/2 and ||p]l2 < Bw/2 and otherwise aborts.
For each j € [(] V,P locally set cém; < com; + ~[j] — (¢/p) - nlj] — €lj].
7. P runs an interactive argument for Ry, from Appendix B.4using

e

(pp7 U, 'LU) = ((Ry N7 q, pky OCom é: a)7 ({com, COAIn]'}jG[Z]% ({57 T, fj7 1}]6[2]))

Observe that the first step is only necessary for the generality of Theorem 6. In our application P will show
in the preprocessing that it knows an opening of com so that this step must not be run.

Fig. 7: Zero knowledge argument for Rpep

length ¢ each. Furthermore, we need to run a ZK argument of both relations Rpok, Riin which
each require additional O(k) R4-elements of communication (see Section B). Therefore we obtain
O(k) total communication.

Finally, we discuss in Section E of the Supplementary Material why we chose the specific
approach taken in this work instead of other zero-knowledge argument techniques.

18

6 Evaluation

In this section, we evaluate the efficiency of our OLE protocols, and compare this with protocols
based on previous techniques. Firstly, we look at the communication complexity and compare this
with other protocols. Then, in Section 6.2, we present implementation results for our passively
secure secret-key protocol to demonstrate its practicality.

Choosing Parameters. We estimate parameters for our OLE protocols according to the
correctness requirement in Proposition 2. For RLWE we use a ternary secret distribution (so,
By = 1) a Gaussian error distribution with ¢ = 3.19 and Bey = 60; the soundness slack
parameter is 7 = 1 for passive protocols and 7 ~ 24v/8 Nnk otherwise. The statistical security
parameter is k = 40.

6.1 Comparison to Previous Protocols

Security Total comm. (bits)
Protocol . . Rounds” logm ~ 128 logm ~ 64
passive active
passive active passive active
PK-OLE RLWE + Fsf 1 1516 1630 1004 1120
SK-OLE RLWE + FS 1 758 815 502 560
AHE RLWE + FS + 2 1320 1476 800 956
LOE?
SHE RLWE + FS 2 3682 3682 2310 2310
RS noisy - 8 4096 4096 2048 2048
encodings

T FS is Fiat-Shamir

! LOE is linear-only encryption [13]

“1 round means that each party sends one message simultaneously. 2 rounds either means that each party
sequentially sends one message (for AHE), or one simultaneous message, twice in succession (for SHE).

Table 1: Comparison of the complexity of our OLE protocols with previous works based on

homomorphic encryption

Table 1 presents the communication complexity, measured from the protocol specifications,
of our two public-key and secret-key OLE protocols, and compares this with two other protocols
based on RLWE-based homomorphic encryption, either additively homomorphic (AHE) or
somewhat homomorphic (SHE), as well as a protocol based on noisy Reed-Solomon encodings
(RS). As can be seen from the table, ours is the only protocol with just a single round of
communication, where each party simultaneously sends just one message (as in a non-interactive
key exchange), whereas both other protocols require two rounds. Our secret-key protocol, which
requires some special preprocessing, has the lowest communication cost of all the protocols,
with both passive and active security. Furthermore, compared with the previously most efficient
protocol based on AHE with active security, our active protocols avoid the need for assuming
linear-only encryption, which is a relatively strong and un-studied assumption, compared with
standard RLWE.

A full description of these protocols can be found in Section D of the Supplementary Material.

6.2 Experimental Results

We have implemented the passive version of the secret-key protocol (see in Fig. 5) in Go language,
making use of the ring package provided by the lattigo library [1]. Our implementation features a
full-RNS (Residue Number System) realization of all the protocol operations, using a moduli of
60-bit limbs. For comparison purposes, we have also implemented the AHE-based OLE protocol
described in Section A of the Supplementary Material.

19

The execution times of the protocol steps were tested on a laptop with an Intel Core i7-8550U
processor with 16GB RAM, running Arch Linux with kernel 5.6.4 and Go 1.14.2 The latency is
not simulated, as it is highly dependent on the particular deployment; we include instead the
communication complexity of the involved messages, from which the latency can be derived.

Parameter Par. set 1 Par. set 2 Bob Par. set 1 Par. set 2 Alice Par. set 1 Par. set 2
q 360 bits (6 limbs) 480 bits (8 limbs) Step 2.(a) 462 ms 601 ms Step 2.(c) 564 ms 817 ms
D 240 bits (4 limbs) 360 bits (6 limbs) Step 2.(d) 533 ms 772 ms Step 3.(a) 350 ms 479 ms
m 60 bits (1 limb) 120 bits (2 limbs) Step 3.(c) 263 ms 438 ms Step 3.(d) 242 ms 412 ms
bit security ~ 159 ~ 116 1st msg. 995 ms 1373 ms 1st msg. 564 ms 817 ms
OLEs 2097152 2097152 2nd msg. 263 ms 438 ms 2nd msg. 591 ms 890 ms
(a) Example parameter sets (n = 128 and N = (b) Run times in the passive case of Fig. 5 for the example

16384) and global run times for the passive case parameter sets of Table 2a (n = 128 and N = 16384, uni-
of Fig. 5 (uniformly random ternary secret keys formly random ternary secret keys {—1,0,1} and Gaussian
{—1,0,1} and Gaussian noise with o = 3.19). noise with o = 3.19).

Table 2: Parameter sets and run times in the passive case of Fig. 5

We have chosen two practical parameter sets for both protocols (see Tables 2a and 4a), both
featuring more than 110 bits of security,'? and achieving more than 2 million scalar OLEs per
protocol run. Table 2b includes the run times corresponding to each party (Alice and Bob) and
Table 4b (see Section A of the Supplementary Material) shows the communication costs.

It is worth noting that the public key version from Fig. 3 is not explicitly tested, but it incurs
in a similar computational complexity as the one from Fig. 5; it presents, though, an increase on
the communication complexity, as the interchanged messages are composed of two polynomials
instead of one.

As the latency is not simulated, in order to compare with other protocols, we must consider
that the total run time of ours would be max (Tgob, Talice), being Tgob (resp. Tajice) the corre-
sponding run time for Bob (resp. Alice). Tables 3a and 3b include the corresponding expressions
and also extrapolate total protocol run times for some specific values of network bandwidth
{600Mbit/s, 1Gbit /s, 10Gbit/s}. Tsep corresponds to the time of each step included in Table 2b,
and Ty (resp. T¢) is the time needed to transmit ciphertext d (resp. ¢)

Extrapolated runtimes are approximately equal or lower than those obtained with the protocol
based on AHE from Section A of the Supplementary Material; note that for the last one we
are not taking into account transmission runtimes. Consequently, we can see that the proposed
protocols in this paper achieve both a better efficiency and lower communication cost than the
one based on AHE from Section A of the Supplementary Material.

Acknowledgements. We thank the anonymous reviewers for comments which helped to
improve the paper. This work has been supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 669255 (MPCPRO), the Danish Independent Research Council under Grant-ID
DFF-6108-00169 (FoCC), an Aarhus University Research Foundation starting grant, the Xunta
de Galicia & ERDF under projects ED431G2019/08 and Grupo de Referencia ED431C2017/53,
and by the grant #2017-201 (DPPH) of the Strategic Focal Area “Personalized Health and
Related Technologies (PHRT)” of the ETH Domain.

12 We have used the LWE security estimator of Albrecht et al. [2] (available online in https://bitbucket.org/
malb/lwe-estimator.) to give bit-security estimates.

20

https://bitbucket.org/malb/lwe-estimator
https://bitbucket.org/malb/lwe-estimator

Run time expressions for Bob and Alice Total time 600Mbit/s 1Gbit/s 10Gbit/s
Toob = max (Ta.q + T2.4, T5.0 + Ta) + T5.c Par. Set 1 2526 ms 2023 ms 1344 ms
Thtice = max (T5.q, T2.a + Te) + T2.c + T3.q Par. Set 2 3508 ms 2837 ms 1931 ms

(a) Total run time expressions for Bob (Tgop) and Alice (b) Extrapolated run times (max (Tgob, Talice)) in the
(Tiice)- passive case of Fig. 5.

Table 3: Total run times expressions and extrapolated run times in the passive case of Fig. 5

Parameter Par. set 1 Par. set 2
{n, N} {256, 8192} {128,16384} Proposed protocol of Fig. 5
p 240 bits (4 limbs) 360 bits (6 limbs) {Bob | Alice} Par. set 1 Par. set 2
m 60 bits (1 limb) 120 bits (2 limbs) Ist msg. {2.(a) | —} {94.37 | —} MB {125.83 | —} MB
bit security ~ 115 ~ 159 2nd msg. {— | 3.(a)} {— | 62.91} MB {— | 94.37} MB
OLEs 2097152 2097152
Alice time 1441 ms 2129 ms AHE-based protocol from Section A
Bob time 1024 ms 1375 ms 1st round {— 16291} MB {— | 94.37} MB
Total time 2465 ms 3504 ms 2nd round {125.83 | —} MB {188.74 | —} MB

(a) Example parameter sets and global run times (b) Communication cost in the passive case of Fig. 5 and the
for the passively secure OLE based on AHE from passively secure OLE based on AHE from Section A of the
Section A of the Supplementary Material (uniformly Supplementary Material .

random ternary secret keys {—1,0,1} and Gaussian

noise with o = 3.19).

Table 4: Parameter sets and communication costs for the passive case of Fig. 5 and Section A of
the Supplementary Material

References

1.

Lattigo 1.3.1. Online: http://github.com/ldsec/lattigo, Feb. 2020. EPFL-LDS.

2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. J. Mathematical

10.

11.

12.

Cryptology, 9(3):169-203, 2015.

S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight sublinear arguments without
a trusted setup. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages
2087-2104. ACM Press, Oct. / Nov. 2017.

. B. Applebaum, I. Damgard, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic computation with

constant computational overhead. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 223-254. Springer, Heidelberg, Aug. 2017.

C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky. Sub-linear lattice-based
zero-knowledge arguments for arithmetic circuits. In H. Shacham and A. Boldyreva, editors, CRYPTO 2018,
Part II, volume 10992 of LNCS, pages 669—699. Springer, Heidelberg, Aug. 2018.

C. Baum, D. Cozzo, and N. P. Smart. Using TopGear in overdrive: A more efficient ZKPoK for SPDZ. In K. G.
Paterson and D. Stebila, editors, SAC 2019, volume 11959 of LNCS, pages 274-302. Springer, Heidelberg,
Aug. 2019.

C. Baum, I. Damgard, K. G. Larsen, and M. Nielsen. How to prove knowledge of small secrets. In M. Robshaw
and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 478-498. Springer, Heidelberg,
Aug. 2016.

C. Baum, I. Damgard, V. Lyubashevsky, S. Oechsner, and C. Peikert. More efficient commitments from
structured lattice assumptions. In D. Catalano and R. De Prisco, editors, SCN 18, volume 11035 of LNCS,
pages 368-385. Springer, Heidelberg, Sept. 2018.

C. Baum and A. Nof. Concretely-efficient zero-knowledge arguments for arithmetic circuits and their
application to lattice-based cryptography. In Public-Key Cryptography - PKC 2020. Springer, 2020.

D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum, editor, CRYPTO’91,
volume 576 of LNCS, pages 420-432. Springer, Heidelberg, Aug. 1992.

E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward. Aurora: Transparent succinct
arguments for R1CS. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 103-128. Springer, Heidelberg, May 2019.

R. Bendlin, I. Damgard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty
computation. In K. G. Paterson, editor, FEUROCRYPT 2011, volume 6632 of LNCS, pages 169-188. Springer,
Heidelberg, May 2011.

21

http://github.com/ldsec/lattigo

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. Lattice-based SNARGs and their application to more efficient
obfuscation. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS,
pages 247-277. Springer, Heidelberg, Apr. / May 2017.

E. Boyle, G. Couteau, N. Gilboa, and Y. Ishai. Compressing vector OLE. In D. Lie, M. Mannan, M. Backes,
and X. Wang, editors, ACM CCS 2018, pages 896-912. ACM Press, Oct. 2018.

E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient two-round OT extension
and silent non-interactive secure computation. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors,
ACM CCS 2019, pages 291-308. ACM Press, Nov. 2019.

E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, and P. Scholl. Efficient pseudorandom correlation
generators: Silent OT extension and more. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part 111, volume 11694 of LNCS, pages 489-518. Springer, Heidelberg, Aug. 2019.

E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure computation under DDH. In
M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 509-539. Springer,
Heidelberg, Aug. 2016.

E. Boyle, L. Kohl, and P. Scholl. Homomorphic secret sharing from lattices without FHE. In Y. Ishai and
V. Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 3-33. Springer, Heidelberg,
May 2019.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrap-
ping. In S. Goldwasser, editor, ITCS 2012, pages 309-325. ACM, Jan. 2012.

Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key
dependent messages. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 505-524. Springer,
Heidelberg, Aug. 2011.

M. Chase, Y. Dodis, Y. Ishai, D. Kraschewski, T. Liu, R. Ostrovsky, and V. Vaikuntanathan. Reusable
non-interactive secure computation. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part I1I,
volume 11694 of LNCS, pages 462-488. Springer, Heidelberg, Aug. 2019.

R. Cramer, I. Damgard, C. Xing, and C. Yuan. Amortized complexity of zero-knowledge proofs revisited:
Achieving linear soundness slack. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 479-500. Springer, Heidelberg, Apr. / May 2017.

I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure MPC
for dishonest majority - or: Breaking the SPDZ limits. In J. Crampton, S. Jajodia, and K. Mayes, editors,
ESORICS 2013, volume 8134 of LNCS, pages 1-18. Springer, Heidelberg, Sept. 2013.

1. Damgard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643—662.
Springer, Heidelberg, Aug. 2012.

I. Damgard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically hiding bit commitment
schemes and fail-stop signatures. In D. R. Stinson, editor, CRYPT0’93, volume 773 of LNCS, pages 250—-265.
Springer, Heidelberg, Aug. 1994.

L. de Castro, C. Juvekar, and V. Vaikuntanathan. Fast vector oblivious linear evaluation from ring learning
with errors. Cryptology ePrint Archive, Report 2020/685, 2020. https://eprint.iacr.org/2020/685.

Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and its applications. In M. Robshaw
and J. Katz, editors, CRYPTO 2016, Part 111, volume 9816 of LNCS, pages 93—-122. Springer, Heidelberg,
Aug. 2016.

N. Déttling, S. Ghosh, J. B. Nielsen, T. Nilges, and R. Trifiletti. TinyOLE: Efficient actively secure two-party
computation from oblivious linear function evaluation. In B. M. Thuraisingham, D. Evans, T. Malkin, and
D. Xu, editors, ACM CCS 2017, pages 2263-2276. ACM Press, Oct. / Nov. 2017.

D. Genkin, Y. Ishai, M. Prabhakaran, A. Sahai, and E. Tromer. Circuits resilient to additive attacks with
applications to secure computation. In D. B. Shmoys, editor, 46th ACM STOC, pages 495-504. ACM Press,
May / June 2014.

S. Ghosh, J. B. Nielsen, and T. Nilges. Maliciously secure oblivious linear function evaluation with constant
overhead. In T. Takagi and T. Peyrin, editors, ASTACRYPT 2017, Part I, volume 10624 of LNCS, pages
629-659. Springer, Heidelberg, Dec. 2017.

S. Ghosh and T. Nilges. An algebraic approach to maliciously secure private set intersection. In Y. Ishai
and V. Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 154—185. Springer,
Heidelberg, May 2019.

N. Gilboa. Two party RSA key generation. In M. J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS,
pages 116-129. Springer, Heidelberg, Aug. 1999.

Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In D. Boneh, editor,
CRYPTO 2003, volume 2729 of LNCS, pages 145-161. Springer, Heidelberg, Aug. 2003.

Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no honest majority. In
O. Reingold, editor, TCC 2009, volume 5444 of LNCS, pages 294-314. Springer, Heidelberg, Mar. 2009.

M. Keller, E. Orsini, and P. Scholl. MASCOT: Faster malicious arithmetic secure computation with oblivious
transfer. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016,
pages 830-842. ACM Press, Oct. 2016.

22

https://eprint.iacr.org/2020/685

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making SPDZ great again. In J. B. Nielsen and V. Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 158-189. Springer, Heidelberg, Apr. / May
2018.

V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and T. Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 738-755. Springer, Heidelberg, Apr. 2012.

V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-LWE cryptography. In T. Johansson and P. Q.
Nguyen, editors, FEUROCRYPT 2013, volume 7881 of LNCS, pages 35-54. Springer, Heidelberg, May 2013.
V. Lyubashevsky and G. Seiler. Short, invertible elements in partially splitting cyclotomic rings and applications
to lattice-based zero-knowledge proofs. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I,
volume 10820 of LNCS, pages 204-224. Springer, Heidelberg, Apr. / May 2018.

P. Mohassel and Y. Zhang. SecureML: A system for scalable privacy-preserving machine learning. In 2017
IEEE Symposium on Security and Privacy, pages 19-38. IEEE Computer Society Press, May 2017.

M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In 81st ACM STOC, pages 245—-254.
ACM Press, May 1999.

D. Rathee, T. Schneider, and K. K. Shukla. Improved multiplication triple generation over rings via
RLWE-based AHE. In CANS 2019, 2019. https://eprint.iacr.org/2019/577.

O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In H. N. Gabow and
R. Fagin, editors, 87th ACM STOC, pages 84-93. ACM Press, May 2005.

P. Schoppmann, A. Gascén, L. Reichert, and M. Raykova. Distributed vector-OLE: Improved constructions
and implementation. In L. Cavallaro, J. Kinder, X. Wang, and J. Katz, editors, ACM CCS 2019, pages
1055-1072. ACM Press, Nov. 2019.

N. P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Des. Codes Cryptography, 71(1):57-81,
Apr. 2014.

23

https://eprint.iacr.org/2019/577

A Passively Secure OLE From Linearly Homomorphic Encryption

We start out with two parties having uw,v € R}, as inputs where Pajice has u and Pgop .
Furthermore, assume that Pgo, has 8 € R}, as well. Our goal is, again, to compute av € R},
such that o + 3 = uxv. Here - is the product of ring elements or of a scalar multiplication with
a vector, while * denotes the element-wise multiplication of two vectors.

1. First, Pajice sSamples s € R,, according to the ternary distribution, ¢ € R, uniformly at
random as well as r € R" as a discrete Gaussian with the same standard deviation o = 3.19
(approximated using a Binomial distribution). It sends pk = (¢,d = c- s+ 1) to Pgop.-

2. In the first round of the OLE, Pajice samples e; € R™ as a discrete Gaussian with the
same standard deviation o = 3.19 (approximated using a Binomial distribution). Pajice then
samples a € Ry uniformly at random, computes b=a - s — (p/m) - u + e; and sends a, b to
Ppob-

3. In the second round, Pgop samples t € R} according to the ternary distribution, e; € R"
according to a discrete Gaussian with ¢ = 3.19 but moreover es € R" uniform with
infinity norm smaller than 3mNZ20 - 2% < p/(2m). It sets € = axv + c -t + ey and
y=bxv+d-t+ (p/m) B+ e3 and sends x,y to Phjice.

4. Finally, Pajice computes a = [(x - s — y mod p)/(p/m)] and outputs this.

We see that

z-s—y=(axv+c-t+ey)-s—bxv—d-t—es—(p/m)-p
=(axv+c-t)-st+er-s—(a-s)xv—exv—(c-s)xt—r-t
—e3+ (p/m)(uxv—P)

and the desired relation holds. The noise terms add up to r -t + e1 *v + €2 - s + e3 where e3
due to its size statistically drowns the other three terms, which makes simulation possible. This
is because ||e1]|oo < 60 with overwhelming probability and ||v|le < m/2, 50 |l€1 * V| < 3MmN?
with overwhelming probability, while r - t and es - s are a lot smaller.

Furthermore, since we also require that 3mN2o - 25 < p/(2m) this term will not lead to
a wrap-around mod p during decryption and the result will be correct with overwhelming
probability. Observe that Pajice Will not actually have to send a because it can be sampled from
a PRG-seed by both Phajice, Pob, meaning that the communication only requires 3 R-elements
for one R,,,-OLE once pk is set up.

B Commitments & Zero-Knowledge Arguments, continued

B.1 Rejection Sampling

Lyubashevsky [37] proved the following Theorem, which is at the core of many lattice-based
constructions:

Theorem 7 (See Theorem 4.6 of [37]). Let V. C Z™ such that all elements of V' have norm
less than T, o € R such that 0 = w(T+v/logm) and h : V — R be a probability distribution. Then
there exists a constant M = O(1) such that the distributions of the following algorithm A:

1. v+ h
2 @« DI,
3. Output (x,v) with probability min (%, 1)

is within statistical distance 2_"J(1°gm)/M of the distribution of the following algorithm F:

1. v+ h

24

2. x < DI
3. Output (x,v) with probability 1/M

where A outputs something with probability at least w

For concreteness, if ¢ = oT for a > 0 then M = exp (12/a + 1/(2a?)), meaning that the output
of A is within statistical distance 27190 /M of F and that A outputs something with probability
at least 1_%\/]77100.

We can now use the aforementioned theorem to prove Lemma 3:

Proof. We perform the experiment from Theorem 7 for each of the k components using discrete
Gaussian distributions Dy’ in the process. Since « is fixed among all components, then in
particular the constant M will be the same across all k£ individual experiments. By a union
bound, we obtain the statistical distance 27190+°¢¥ /)f by adding up all k identical terms.
The fact that F outputs the vector with probability at least ((1 —27190)/M)* follows by the
independence of the k experiments. ad

B.2 Instantiating (Somewhat Homomorphic) Commitments

After having introduced the formal definitions for commitment schemes and zero-knowledge
proofs in Appendix 2.6 we will now recap an implementation which we use in our construction,
namely the somewhat homomorphic commitment scheme of Baum et al. [8] and its accompanying
zero-knowledge proofs.

A specific property of the scheme of [8] is that it allows “relaxed openings”, meaning that an
opening of a commitment com does not just consist of the message x and randomness r but also
some additional factor f. The guarantee is then that the scheme is binding as long as it is hard
to come up with two (x,r, f) and (z,7’, f) that open the same commitment com. In order to
define f properly let C = {c € Ry | ||c|lo = 1 Alc|li =k} as well as C = {c — ¢ | ¢ # ¢ € C}.
[39] showed under which conditions all elements of C,C are invertible.

Somewhat Homomorphic Commitments. The commitment scheme of [8] consists of the
following algorithms:

KG: Given Ry, N, k,n,3,0com sample A} <« Rgx(k_n) as well as al, + R’;*’%l. Set A7 =
[In A’l] and as = [0" 1 a’ﬂ and output pk = (R4, N, k,n, 5, A1, az).
Com: On input a valid public key pk and a value z € R, sample r < Sk compute

[Coml} [Al] [On}
com = = X7+
comy an T
and output (com, 7).

com;q

Open: On input a valid public key pk and com = [com
2

] eRITL xeRy, e R’g as well as

f € C output 1 iff

A n » .
U [Cczr;llgl} - {azl] xr+f [(:v} and Vi€ [k]: |[rfilll2 < 4ocomVN

and 0 otherwise.

(8] showed that their construction is binding under the MSIS,, ;. 160¢,.xN assumption and hiding
under the MLWE,, ;1 j 3 assumption.
It can directly be seen that the commitment scheme is somewhat homomorphic:

25

Zero Knowledge Argument for Opening Rpok

The following is a zero knowledge argument for proving knowledge of an opening of a commitment, i.e. for
the relation Rpok. Let Caux = (KGaux, COMaux, Open be a statistically hiding auxiliary commitment scheme
with public key pk, . known to both P, V.

aux)

aux

1. For i € [{] P samples y; < DfﬁCom and computes ¢; < A1y;. P then generates the auxiliary commitments
(comg i, 7¢,i) < Comaux(t;) and sends these to V.

2. P,V run a coin-flipping protocol based on Cayx to sample d + {0, 1}2.

3. For each i € [{] P sets z; < y; + d[i] - 7. Let z be the concatenation of all z; and € of d[i] - 7 respectively.

Then with probability
: Dirco (2)
min | 1, — 27—~
M - Do, (2)

P sends z to V, otherwise he aborts. P furthermore sends the openings for the commitments generated
with Chux-
4. If V receives z then he accepts if for all ¢ € [£]:
(a) Open,, (coms;, A1z; — d[ilcom[1],7¢;) =1
(b) ¥j € [k]: [lzi[j]ll2 < ocomVBN

Fig. 8: Zero knowledge argument for Opening Rpok

— If com = {cc(::l] is a commitment that can be opened as (z,r, f) then for a public 2’ € R,
2

com;yp

the commitment com’ =
comy + &

,] can be opened as (z + 2/, 7, f).

— For h commitments com’ = [ccoc:x;l] with openings (a,7", f) we have that com =
2
Lic) conzl has opening (3¢ xi,zie[h] ri f) if > iclh] r® still fulfills the bound of
2_ic[h) €Om)
Open.

In comparison to fully linearly homomorphic commitments it is not possible to generate a
commitment com’ from com with opening z such that com’ opens to « -z for a public a
without losing the binding property. Instead, one has to use a zero-knowledge proof to show such
a relation. Below we will describe both the standard proof of knowledge for the commitment
scheme as well as the proof of linear relation.

B.3 Zero-Knowledge Proof of Opening

The commitment scheme of [8] comes with a highly efficient proof of knowledge and other efficient
proofs. The disadvantage of this class of proofs is that soundness does not reduce to a standard
opening (z,7,1) but instead will extract (x,r, f) with f € C. These “extended openings” are
never generated by an honest party but possibly by an adversary and are not sufficient in our
application.

(pp, u, w) = (:):,r)ERqXRI;/\

Rpok = (R, N, q,pk,0com),)
com, (1;7 ’l") Openpk(c0m7 z, T, 1) -1

Instead, we use a “standard” proof of knowledge for a commitment which follows the standard
Fiat-Shamir with Aborts signature. The algorithm can be found in Fig. 8.

Lemma 6. Let M > 1 and ocom > 12/In M+/BNk as well as ¢ > k. The algorithm from Fig. 8
is a zero-knowledge argument of knowledge that is complete with probability 1/M , computationally
sound and statistically honest-verifier zero knowledge.

26

Zero Knowledge Argument for Linear Relation Rii,

The following is a zero knowledge argument for proving knowledge of openings for the relation Rii,. Let
Caux = (KGaux, Comayux, Open,,,) be a statistically hiding auxiliary commitment scheme with public key pk_,,
known to both P, V.

ocons COMputes t; < A1y, t; < A1y; as well as u; < ali] - (a2, y:) —
(az,y;). P generates auxiliary commitments

1. For i € [n] P samples y;, y; « D¥

(comg i, 7t,3) < Comaux(ts),
(Comt/ﬂ-,rtgi) < COT‘T’laux(t{L')7

(comu,i, Tu,i) ¢ ComMaux(us)

and sends these to V.

2. P,V run a coin-flipping protocol based on Caux to sample d < C™.

3. For each i € [n] P sets z; < y; + d[i] - i, 2} < y; + d[i] - 7;. Let 2,2’ be the concatenation of all z;, 2|
respectively and €, € of d[i] - r; and d[i] - 7;. Then with probability

Dkn . Dk" !
min 17 - cr]:om (Z) UCoIr: (Z)
M? - Db, () - IDE/TZ’UCOM (=)

P sends z, 2’ to V, otherwise he aborts. P furthermore sends the openings for the commitments generated
with Caux.
4. If V receives z,z’ then he accepts if for all i € [n]:
(a) Open,,, (coms;, A1z; — d[ilcom;[1],r¢;) =1
(b) Open,,,(comy ;, A1z — d[ilcom;[1],rs ;) =1
(c) Openg,(comy,i,hi,Tus) =1
(d) Vj € [k]: |=iljlll2 < ocom VBN and ||2{[j]]|2 < ocom VBN
where h; < ali] - (a2, 2z;) — (a2, z;) — (afi]lcom;[2] — com][2]) - d[i].

Fig.9: Zero knowledge argument for Linear Relation Ry;,

Observe that this argument has a much higher communication complexity (by a factor) than
the optimized AoK of [8] for this commitment scheme, but it has the aforementioned advantage
of being more “exact”. Furthermore, in the overall work we will only use it once.

B.4 Zero-Knowledge Proof of Linear Relation

Based on [8] one can easily prove a linear dependency a € R, between the openings of two
commitments. Consider the relation

(pp7 u,w) = Vi € [n] :
Rew =] (RN Pk 0Com m,).\ | (0,737, i) € Ry x R x RY x DA
In {comi,comg}ie[n], Openpk(comi,fﬂi,rz‘, fi) = 1A
({JIZ‘, Ti, T;; fl}ze[n]) Openpk(com;7 amxl’ Té’ fl) =1

One can use the zero-knowledge proof as outlined in Fig. 9 to prove Ry, meaning that each
of the n commitments com) has an opening that is [i] away from the opening of com,.

Lemma 7. Let M > 1 and ocom > 12/In M\/kBNEkn. The algorithm from Fig. 9 is a zero-
knowledge argument of knowledge that is complete with probability 1/M?, computationally sound
and statistically honest-verifier zero knowledge.

Proof. The proof follows as a generalization of the linearity-proof for two commitments of [8].
The only difference is that we adjusted the size of ocom to allow a rejection-sampling for the
whole vector z;, 2] at once, which leads to a slightly worse bound on the extracted openings. O

One important property of the protocol is that the extracted opening for both com;, com,
will have the same value f for both commitments.

27

B.5 Some Missing Proofs

Theorem 8 (Theorem 5 restated). Assume that Vi € [n] : || f[i]|l2 < T, |leold]]l2, |le1]]]l2 <
Tere, |®[i]||l2 < Tmsg- Let £ > k+2, M > 1 and o, > 12/(In M)v/nlT,. Furthermore, let Caux
be a statistically hiding and computationally binding commitment scheme. Then the aforemen-
tioned protocol is a zero-knowledge argument of knowledge for Rpk with (Bsk, Berr, Bmsg) =
(V8Nog, V8N e, \/87N0msg) that is complete with probability 1/M?*, computationally sound
and statistically zero-knowledge.

Proof. The proof follows directly from Theorem 1 of [5] where the zero-knowledge argument
is done individually for each row of S using Lemma 3. We will therefore only sketch the most
important parts.

Completeness. We will focus on the contribution of f throughout the argument but it
generalizes to eg, e, accordingly. We know that for ¢ € [n] it holds that || f[i]|l2 < Te . Thus
1(CF)[i]ll2 < v/n - Ty for all elements of the vector and hence ||C f||2 < vénTy,. Using og from
the statement as well as Lemma 3 we can see that Z will be sent with the required probability.
As therefore particularly z; ~ Dgsk we can upper-bound its norm using Lemma 2 setting k = 2
and using N > k. Therefore Step 4b succeeds with overwhelming probability, while Step 4a
holds by linearity.

Honest-Verifier Zero-Knowledge. In the simulation & will simply sample C as in the
protocol, generate

(21,...,21) < D5, x Dy x Dy xDf
set W« AZT —TCT and commit to the respective value W. S then outputs the transcript
(ew, C, (rw, Z)) with probability 1/M*. Observe that indistinguishability follows by Lemma 3
as well as the statistical hiding property of Cayx.

Soundness. By a standard heavy-column argument we can rewind a successful prover P*
on different challenges for the same first message cy and are able to obtain multiple transcripts
for different (C, Z), but fixed comy. Observe that by the binding property of Chyx we must
have that comy, always opens to the same value. This allows us to obtain multiple equations of
the form T(C — C')" = A(Z — Z")". We will extract f[i], eoli], e1]i], [i] by rewinding with all
columns of C, C’ being fixed during rewinding except for the i-th column, which means that all
except for the i-th part of T will disappear when being multiplied by (C — C’)T. Then by the
aforementioned equation and the bounds on the z; from successfully produced transcripts the
result follows. The lower bound of £ > k + 2 is a consequence of the heavy-column argument of
[5]. 0

Theorem 9 (Theorem 6 restated). Assume that Vi € [n] : ||v[i]||2 < Tu, | €e]i]ll2 < Te. Let
(> rK+3, M >1and o, > 12/(In M)V/nlT,. Furthermore, let C be a statistically hiding
and computationally binding commitment scheme. Then the aforementioned protocol is a zero-
knowledge argument of knowledge for RSBkob with (Buy, Berr) = (V8N 0w, V8N0e) that is complete
with probability 1/M*, computationally sound and statistically zero-knowledge.

Proof. The proof uses elements of the proof of Theorem 5, though some modifications are
necessary to obtain the full statement.

Completeness. The proof of completeness follows along the exact same lines as the proof
of Theorem 5, except that we now only have 2 vectors to perform rejection sampling on and not
4. All of the bounds can be determined the exact same way, and the correctness of the opening
follows by homomorphism of the commitment scheme and the completeness of the arguments
for Rpok and Ryj,. We assume that both arguments succeed with probability 1/M which yields
the claim.

28

Honest-Verifier Zero-Knowledge. The simulator will start by a simulation of the
argument for Rpok. If this sub-simulator outputs 71 then we will continue simulating, otherwise
abort if the sub-simulator for Rpok aborts and output its aborting transcript.

As in the proof of Theorem 5, the simulator then generates C < {0, 1}**™ honestly and
samples € + Dﬁe, TR Df.u. Given this, we can compute o, as in the protocol.

Next, sample the commitments com; as uniformly random commitments and generate the com;
such that the equation from 6 holds. With probability 1/M? we output (71, {com; }ielg, C) and
abort, otherwise we generate 7o as the output of the statistical zero-knowledge simulator of the
argument for Ry;,. Here, we abort and only output (71, {com;};c(q, C, €, p) if this sub-simulator
aborts or otherwise output (71, {com;};c(q, C, €, p, 72) if the sub-simulator succeeds.

Observe that the overall probability of outputting a full simulated transcript is 1/M?, a
transcript without 75 1/M? and a transcript only containing 71 with probability 1/M which
is the same as in the protocol. The values €, u are distributed as in the protocol by Lemma
3 whereas {com;};c|q are statistically indistinguishable from those of the protocol due to the
statistical hiding of the commitment scheme. Then, since 71, 7o are statistically indistinguishable
from the real transcript of the arguments for Rpok, Riin the statement follows.

Soundness. Assume that there exists a prover P* that can convince a verifier with
probability € > 27%%3. Observe that P*s randomness tape is fixed, except for the inputs coming
from the interaction. We first rewind the prover on the subprotocol for Rpok where we extract
the opening (s,7,1). Observe that by the binding property of C' P* is not able to open ¢ to any
(', 7', f") with s’ # s throughout the rest of this argument.

Next, we fix some choice for Rpok and continue with the rest of the protocol with P*, calling
this new hybrid algorithm P;. This fixes the commitments com; for the remaining protocol. By
the standard heavy-column Lemma, with probability at least 1/2 we have that the fraction of
choices of C' and randomness in Ryi, which make P; output a valid transcript is at least 27%%2.

Using the same fixing of C we now arrive at a prover P, which with probability 1/4 outputs
valid transcripts with probability at least > 27", Using the soundness of Ry, in Step 7 we
have that any cém; must contain a value of the form —a[j] - s for some aj] as com in Ry, can
only be opened to s due to the binding property of the scheme. Observe that these openings of
com; can be transformed into openings of com; by linearity of the scheme, i.e. they do also work
for Py.

Next, using the same heavy-column argument as in the proof of Theorem 5 we can then
for each i € [n] extract two accepting transcripts that have C, C’ where all columns of C are
identical to C’ except for column 7, which means that there is a j such that

—(a[j] = ejl)s = v5] = ' [j] = (a/p)(li] — w'l5]) — (els] — €'[5])
where by the definition of «,~ it must now hold that
ali] - s = cli] — (a/p)(ulj] — 1'[j]) — (e[j] = €'[j])-
Setting u[i] = p[j]—p'[j] and e[i] = €[j]— €[] then yields the necessary values of the appropriate

bounds. Observe that the loss in success probability is only constant (i.e. we can amplify it back
by repeating the experiment) and that the extractor runs in time poly(e,). O

C Missing Proofs in OLE Sections

Theorem 10 (Theorem 1 restated). Assume that 3 - 26t o o (MN)? - Beye - Bk < p <
3.2“1.”.;\1[2,3“.3%. Then protocol Hg?_sEs'_‘;ek, which consists of protocol IoLg-pk without the under-

lined steps, realizes functionality FoLg in the Fpki-hybrid model under the RLWE assumption.

29

Proof. Let us consider first the case in which Pgop is passively corrupt. The transcript of
the computation for an environment Z that corrupts Pgop consists of the inputs (u,v), the
values from the setup phase (Sgob, bBob, @), the intermediate messages (dp, d;) and the outputs
(at, B). Our goal is to show the existence of a simulator S that, on input (u, 3), can simulate the
transcript above so that it is indistinguishable from a real execution.

The simulator proceeds as follows. It emulates the setup phase by sampling a, Sajice, SBob, PAlice, PBob
as in the real execution, and it sets (cg, 1) = KDMEnc(pk, u). Then it lets pgop = | €0 + SBob * cﬂp,
samples dy <~ R and samples a uniformly random d; € R} subject to 8 = [do * u + d1 * pPBob | ,-
This is possible since, by applying Lemma 5, sampling such d; boils down to finding one single
x such that y = do *x u + 1 * pob mod ¢ for some fixed y € Ry, which can be done since all
entries in pgep are invertible with probability at least 27,

To argue that the distribution of the values outputted by S are computationally indistin-
guishable from those in the real execution, we consider a hybrid distribution as follows:

Hybrid H;. The execution is as in the ideal world, but the functionality Fo_g is modified so
that S can choose the output 3. This way, instead of getting 3 and then sampling (dy, d;)
so that 8 = |do * u + di * PBob |,,,, the simulator samples (do, d;) completely at random and
then defines 3 := |dg * u + di * pBop |,,, and sends this to the functionality FolE.

Hybrid Hs. The execution is as in the hybrid Hy, but instead of sampling (do, d1) uniformly
at random, these are obtained as encryptions of the input v from Z for the real-world Pajice-

Claim. The ideal execution and the hybrid H; are statistically indistinguishable.

This follows from Lemma 5 and from the invertibility of all the entries in pgep, since these
imply that the function [-],, is a regular function and as a result one can either sample its
output 3 and then sample a uniform input dy*u + di * pgop that maps to 3, which corresponds
to the ideal world, or one can sample the input uniformly first and then compute the output,
which corresponds to the hybrid Hj.

Claim. The hybrids H; and Hy are computationally indistinguishable.

This is based on the security of the RLWE problem. We define an adversary A’ playing the
CPA game for the LPR encryption scheme, which is defined as follows: A’ receives a public key
pk from the challenger and it then replies with some message v, the challenger then tosses an
internal coin and returns (dy, d;) to A’ where the pair is either an encryption of v or a uniformly
random pair. The goal of A’ is to guess the internal bit from the challenger.

Our adversary A’ proceeds by playing an honest Pajice and the simulator S above, using the
public key received from the challenger. Upon receiving Pajice’s input v from Z, A’ sends v to
the challenger and receives (dfj, d}) A’ plays the protocol, but uses (dfj, d}) in place of (do, dy).

We notice the following. If (dfj, d}) is an encryption of v, then the execution corresponds to
the hybrid Ha. On the other hand, if (df, d}) is uniform, then this is precisely the hybrid H;.
Therefore, the advatange of Z is upper bounded by the advantage of A’, which is negligible from
the security of the LPR encryption scheme.

Claim. The real execution and the hybrid Hs are statistically indistinguishable.

Our first observation is that the intermediate values from the setup phase (Sgob,bBob, @)
and the intermediate messages (dy, d;) follow the exact same distribution in both executions,
so the only potential distinguishing point is the output pair (a, 3): In the hybrid Hy it holds
that 8 = [do *u + di * PRob|,, and a = u x v — B3, whereas in the real world a is defined as
a = |d - palice |, It suffices to show then that u x v = o + 3 holds in the real world as well.
This holds with probability at least 1 — 27", as shown in Proposition 1.

This concludes the proof of the claim, and with it, the proof of the theorem. a

30

Theorem 11 (Theorem 2 restated.). Assume that 3-2"1 . n.7.(mN)?: Bey - By < p <
. Protocol IoL-pk Tealizes functionality FoLe under the RLWE assumption.

q
325 L7 N2-Ber By

Proof. We define a simulator S that interacts with the environment Z as follows.

Corrupt Bob: The simulator emulates an honest party Pajice, and it also emulates the PKI resource
by sampling a <— R, and two key pairs (Salice, (@, balice)) < Gen(a) and (Sgob, (a, bob)) <— Gen(a),
and sending the public key pk = (a,b) to both Pajice and Pgob, Salice 10 Palice and Sgop t0 Pgop.-
After this setup phase the emulated Pajice Teceives (cg, ¢1) from Pgep, and she runs the zero
knowledge argument for R'élgb honestly and, if the proof succeeds, S uses the knowledge on the
secret key s = Sajice + SBob t0 decrypt a message u.

The emulated Pajice computes (do,d;) = Enc(pk,0) and sends the input w and output 8
to the functionality FoLg, where B = |do * u + di * pgop |,,, mod m. Then it sends (dy, d;) to
Pgob and then runs the zero knowledge argument for RZIE e Nonestly, which she can do since she
knows the witness.

To argue that the real and the ideal world are indistinguishable, it is useful to consider the
following hybrid:

Hybrid H. The execution is as in the ideal world, except that the actual input v from real-world
Phiice is used to define (dy, d;), and the zero knowledge argument for Rzll(i ce Uses this input.

Claim. The real execution is statistically indistinguishable from the hybrid H.

Begin by noticing that there is no difference between the intermediate messages in these two
executions. The only potential difference originates in the input/output relation: in the hybrid
it is the case that a + 3 = u x v, so we only need to show that this is the case too in the real
execution.

To see this, first observe that the extractor £ from the ZKA for ’RE‘;
tain a witness for ’Rgl;b, ie.w = (w,ep, er,u)such that (co,c1) = (b-w+ep, (¢/p) - u—a-w+ey)
with [|u]|ec < 7-m, [|[w]|ec < T Bsk, ||€0]lco < T Berr and ||€1||oc < 7+ Berr. What the simulator
computes, on the other hand, is ¢y + s-¢; = (¢/p) - s-u + e, where e = ey + e¢-w + s - e1, and
then rounds to p. The bounds above imply that ||e|/cc < 37N BerrBsk, which just needs to be
below ¢/2p to guarantee correct decryption. This is clearly implied by the bound in the theorem
statement.

As a result, the value that the simulator decrypts is exactly the w from the witness. At this
point we can apply Proposition 2 with 7 being the slack parameter from the ZKA to conclude
that u x v = a + 3 holds in the real world with probability at least 1 — 27",

p can interact with Z to ob-

Claim. The hybrid H is computationally indistinguishable from the ideal world.

Here we notice that the only difference between these two scenarios is the message (do, d1)
(and its corresponding ZKA). It suffices then to argue that these two are indistinguishable,
which intuitively hold because of the security of the encryption scheme and the zero knowledge
property of the ZKA for Rill‘i .

In a bit more detail, consider an adversary A’ for the following game: A’ gets a public key pk
and sends v € R}, to a challenger who samples a bit internally and returns (dp, d;) = Enc(pk,0)
if the bit is 0, and (do, d1) = Enc(pk, v) if the bit is 1. This is essentially the semantic security of
the LPR encryption scheme and its security can be proved based on RLWE [38]. Our adversary
A’ is defined as follows: it runs a copy of Z internally and interacts with by playing the honest
Phaijice and the simulator S. A’ gets pk from the challenger and uses this for the PKI setup. Notice
that A’ does not know the secret key s that the challenger used, but it still can give Pgop a
uniformly random secret key sgop, which implicitly defines a secret key sajice for Pajice (that A’
does not know!).

31

The simulator then receives v from Z and A’ passes this value to the challenger, getting
back the challenge (dp,d1). S uses this as the second message from Pajice t0 Pgob- Now, the
main issue with the interaction above is that Pajice cannot prove RSA"“ce now, since she does not
know the witness. To this end, consider the simulator M for the ZKA for RSA"“CQ. A’ has the
public parameters and the instance information from the interaction with Z, so it can use M to
interact with Z and pass the ZKA. If Z claims the resulting interaction is from the ideal world,
then A’ outputs 0, and if Z claims the interaction is in the real world then A’ outputs 1.

We claim now that the adversary A’ above wins the game with an advantage that is negligibly
close to the advantage with which Z distinguishes H from the ideal world, which implies that
the latter must be negligible, as the original claim stated. To see this, first notice that, for a
fixed (dp, d1), Z cannot distinguish between interacting with M and interacting with a prover
who knows the witness. This holds by the zero knowledge property of the ZKA. As a result, the
advantage of A’ is negligibly close to the difference between the probability of Z outputting “ideal
world” and the probability of Z outputting “H” when the ZKA is computed correctly. Finally,
given that the interaction of Z with A’ corresponds to either the ideal world (for challenge 0)
or the hybrid H (for challenge 1) when the ZKA is computed correctly, we conclude that this
difference is precisely the distinguishing advantage of Z, which concludes the proof of the claim
and with it the proof of indistinguishability for a corrupt Pgep.-

Corrupt Alice (sketch): The proof in this setting is similar to the one considered above and
therefore we only provide a sketch. The simulator uses the same idea of encrypting a dummy
input 4 = 0 on behalf of the emulated honest Pgop, and running the ZKA for Rg;b honestly. To
prove indistinguishability of the ideal and real worlds, a similar hybrid as above is considered
where this message uses the real w.

Proving that the hybrid is indistinguishable from the real world follows along the same lines
as above. However, proving that the hybrid is indistinguishable from the ideal world requires a
small change, given that now w is not encrypted, but KDM-encrypted. This, fortunately, is not
a problem since KDM-encryptions are indistinguishable from proper encryptions, as shown in
[18]. O

Theorem 12 (Theorem 3 restated). Assume that m?-Bey,-2°T1-n-N? < p < Wm.

Then protocol Ugiséi_\fk, which consists of protocol Ig| sk without the underlined steps, realizes
functionality FoLe in the Fsetup-hybrid model under the RLWE assumption.

Proof. Let S be a simulator interacting with the real-world adversary A and the functionality
FoLe. We begin by considering the case in which Pgep is passively corrupt. It turns out that the
case in which Pajice is corrupt is completely symmetric.

The simulator receives as input the corrupt party’s input © € R7,, and it emulates an honest
Phalice With a dummy input. It also emulates the resource Fseryp by sending random sgop and
OBob t0 Pgob from the proper distributions. S begins by invoking the ideal functionality Fopg on
input u to get back 8; € R, fori =1,...,n. Then S samples a’ € Ry and d € Ry, uniformly at

random, and chooses a uniformly random a € Ry such that 8 = {u *d —a' x <— la - O'Bob-lp)—‘

This is possible since, by applying Lemma 5 twice, sampling such a boils down to finding « such
that y = @ - ogop mod ¢ for some fixed y € Ry, which can be found since opoyp, is invertible with
probability at least 27* from Lemma 4. Finally, S emulates the protocol interaction by setting
the initial public value a, and it waits for egop from Ppgop. At this point S simulates the second
message by sending d to Pgop on behalf of the emulated honest party Pajice-

Now we argue that the simulation above is indistinguishable from a real-world execution, which
amounts to showing that the view of the environment, defined as (u, v, Sgob, TBob, @, @', ¢, d, &, 3),
is indistinguishable in both executions. To this end, we consider an intermediate hybrid H which
is defined as follows:

32

Hybrid H. d, instead of being uniformly random, it is sampled as in the real execution:
d = (ﬂ) U+ (a’/ " SAlice T eAIice) mod m.

m

Claim. The hybrid H and the real world executions are statistically indistinguishable.

To see this, first notice that in the hybrid above v and B are uniformly random subject to

uxv = a+3. Also, @', sgop and ooy, are uniformly random, ¢ is defined as (%) ‘u~+(a-Sgob+€Bob)
mod ¢, d equals (%) v+ (@’ - splice + €alice) mod m (for secrets sajice and eajice that Z does
not know) and a is uniformly random subject to 8 = Lu xd—a- (— la - aBObwp)-|

Our goal is to show that the distribution above is the same distribution as in the real
execution. To this end, first notice that in the real execution sgep, 0Bop and a’ are also uniformly
random. Also, ¢ and d are computed as in the hybrid. Furthermore, a is uniformly random and
B is defined as B = |[uxd —a' *x (—|a - 0Bob|)],,, Which implies that 3 is uniformly random
from Lemma 5. This is the same as chosing first 8 uniformly at random and then sampling a
conditioned on the equation above, which is what happens in the hybrid. Given the above, it
remains to argue that u x v = a 4+ 3 in the real world with overwhelming probability, which is
precisely what Proposition 3 shows.

We conclude then from the above that the distributions in the real world and in the hybrid
are identical. Hence, to finish with the proof of the theorem, if suffices to show that the hybrid
and the ideal world are indistinguishable.

Claim. The hybrid H and the ideal world executions are computationally indistinguishable.

Begin by noticing that the only difference between these distributions is the choice of d:
In the ideal execution it is completely uniform, but in the hybrid it is sampled as (%) v+
(a’ - salice + €alice) mod m. As a result, Z distinguishes H from the ideal world if and only if it
distinguishes d. Such Z would imply an adversary A’ for the RLWE game, defined as follows:
This adversary plays an honest Pajice and the simulator S. On input a sample (a*,b*) € (Rg)2
for the RLWE game, S above is invoked with a* and d* = (%) -v + b* in place of a’ and d,
respectively, where v is the input that Pajice received from Z.

We see that if the sample is an RLWE sample, i.e. b* = a* - s + e for some s, then the
distribution generated by A’ is identical to the distribution in the hybrid H, where Pajice gets
s as Salice- On the other hand, if b* is uniformly random, then the distribution generated by
A’ is identical to the distribution in the ideal world. Therefore, if Z claims the execution is in
the ideal world, A’ concludes that (a*,b*) is a uniform sample, and otherwise it concludes it is
an RLWE sample. A" would break the RLWE,, p game with essentially the same distinguishing
advantage as Z’s, which contradicts the security of RLWE,, p. a

Theorem 13 (Theorem 4 restated.). Assume that 25T -n-7-(MN)? Beyy < p < SR
Then protocol IloLg-sk Tealizes functionality FoLg in the Fsetup-hybrid model under the RLWE
assumption.

Proof. As usual, we define a simulator S that interacts with the real-world adversary A and
the functionality FoLg. As stated before, we only consider the case in which Pgoyp, is actively
corrupt, since the analysis for Pajice is similar.

The simulator emulates an honest Pajice with dummy input, and it also emulates the resource
Fisetup honestly which distributes (sgob; 0Bob, "'Bobs CAlices CBob) t0 Ppob. The emulated Pajice also
interacts with Pgep to sample a and a’.

Upon receiving ¢ from Ppgep, the emulated Pajice engages with Pgep in the zero knowledge
argument for REkob, and if the emulated Pajice accepts, S uses defines u as the quotient of the
(componentwise) division between ¢ — a - sgop and ¢/p. Then S defines d as an honest Pajice
would do, with dummy input v = 0, and sends (u,3) to the functionality Fo g, where (3 is

33

q
T N2 Berr-

defined as Lu xd+a *|a- JBOb-lp—‘ mod m. Pajice then sends d to Pgop, and at this point the
m

emulated Pajice can play the zero knowledge argument for RSA"lice honestly since it knows the
witness for the relation (recall that S used a dummy input v = 0 for Pajice)-

We claim that the ideal and real world executions are indistinguishable to Z. To this end,
we consider the following hybrid:

Hybrid H. The execution is as in the ideal world, except that the actual input v from real-world
Paiice is used to define d, and the zero knowledge argument for RSA"Hce uses this input.

Claim. The real execution is computationally indistinguishable from the hybrid H.

This argument is similar to the one applied in the first claim in the proof of Theorem 3.
Intuitively, the fact that the actual input v is used to define d implies that from this message
onwards the hybrid H and the real world look identical. Furthermore, if the first zero knowledge
argument succeeds, then we know that c is well formed, and at this point the proof becomes
essentially identical to the one in the passive case. We now proceed with the details.

Let us begin by considering the extractor £ for the zero knowledge argument for Rf‘gkob. Notice
that Ppop convinces Pajice With the same probability in both worlds since, up to that point, the
two interactions are indistinguishable. If this probability is negligible then clearly H and the
real execution would be indistinguishable, as the interaction would terminate here. Otherwise,
the extractor £ would extract from Pgop a witness w = (u, €Bob, Sgop, "Bob) for the relation

R, which means that ¢ = (%) ~u+ (a- sy, + eBob) mod g, where |[ulloo < 7-m € R},

[eBoblloc < 7 - Berr, and Open,,;(cBob, SBopb> "Bob) = 1, where cgop was the commitment produced
in the setup phase. Furthermore, from the computationally binding property of the commitment
scheme we see that, with overwhelming probability, sgop = sg,,, Where sgop was the value
distributed in the setup phase.

Now, notice that the real world and the hybrid H coincide in the second zero knowledge
argument for the relation RSAknce, so Z cannot distinguish up to this point either. Hence, to
conclude the argument about the two worlds being indistinguishable, it remains to be shown
then that the input/output relation is the same in both worlds. To see this, first observe that
the u extracted from the first zero knowledge argument is the same as the one extracted by S
in the world H, which follows directly from the uniqueness of the quotient and the fact that
lleBoblloo < T - Berr < q/p. As a result, we can apply Proposition 4 to obtain that uxv = a + 3
with overwhelming probability in the real world, which is precisely the relation in the hybrid H.
With this we conclude then that H is indistinguishable from the real world.

Claim. The hybrid H is computationally indistinguishable from the ideal world.

Intuitively, this holds since the only difference between the hybrid H and the ideal world is
the message d and its zero knowledge argument: In H the actual input v is used to construct d,
but in the real world a dummy input of 0 is used instead. These cannot be distinguished due to
the security of RLWE and the zero knowledge property of the ZKA.

In a bit more detail, consider an adversary A’ for the following game: A’ gets d from a

challenger, where d is either a - s + e (challenge 0) or (%) v+ (a-s+e) (challenge 1) for

some v chosen by A’ and s <— R, e < D that are kept secret. This is essentially the semantic
security of the LPR encryption scheme and its security can be proved based on RLWE [38]. Our
adversary A’ is defined as follows: it runs a copy of Z internally, getting v from Z which is
passed to the challenger. Furthermore, A’ interacts with Z as the simulator S, using the message
d received by the challenger as the second message from Pajice t0 Pgob-

The main issue with the interaction above is that A’ cannot prove RsAklice now, since it does
not know the witness. To this end, consider the simulator M for the ZKA for RSAk“CG' A’ has the
public information = = (¢, @, Berr, Bsk, M, T, CBob) from the interaction with Z, so it can use M

34

on input x to interact with Z and pass the ZKA. If Z claims the resulting interaction is from
the ideal world, then A’ outputs 0, and if Z claims the interaction is in the real world then A’
outputs 1.

We claim now that the adversary A’ above wins the game with an advantage that is negligibly
close to the advantage with which Z distinguishes H from the ideal world. To see this, first
notice that, for a fixed d, Z cannot distinguish between interacting with M and interacting
with a prover who knows the witness. This holds by the zero knowledge property of the ZKA.
As a result, the advantage of A’ is negligibly close to the difference between the probability of Z
outputting “ideal world” and the probability of Z outputting “H” when the ZKA is computed
correctly. Finally, given that the interaction of Z with A’ corresponds to either the ideal world
(for challenge 0) or the hybrid H (for challenge 1) when the ZKA is computed correctly, we
conclude that this difference is precisely the distinguishing advantage of Z.

The above implies that the distinguishing advantage of Z has to be negligible, which concludes
the proof of the claim and with it the proof of the theorem. ad

Remark 1. For our protocol we used a proof of knowledge, but a careful analysis of the proof
above shows that we only need the existence of a witness, and not its extractability. As a
result, we may relax the conditions on the zero knowledge argument by not requiring a proof of
knowledge, as the mere soundness from the ZKA would suffice. This in fact also applies to the
proof of Theorem 2.

D Previous Works

OLE from additively homomorphic encryption (AHE): There is a standard approach
to building OLE using linearly homomorphic encryption, where Pajice sends Enc(u) to Pgop,
who multiplies this with his input v and adds it to Enc(3) for a random € R,,. For example,
this is the method that is implicitly used in the BDOZ [12] and LowGear [36] protocols for
actively secure multi-party computation. One drawback of this method, seen in [12], is that to
obtain active security, Pgop needs to prove that he multiplied v correctly into the ciphertext
sent by Pajice- This proof of correct multiplication is prohibitively more expensive than proofs
of plaintext knowledge, since we do not know of any efficient way to amortize a large batch of
them. The LowGear protocol [36] avoids the proof of correct multiplication (while still using
a proof of plaintext knowledge from Pajice) by assuming an additional property of the RLWE
encryption scheme called “enhanced CPA” security. This is implied by linear-only encryption, a
non-falsifiable assumption used in some zero-knowledge constructions [13].
We evaluate this approach in the “AHE” row of Table 1, using parameters based on [36].

OLE from RLWE: Concurrently and independently to our work, an efficient instantiation
of the AHE-based template described above is presented in [26], essentially using the LPR
encryption scheme as described here. To achieve circuit privacy, the authors in [26] do not rely
on traditional “noise drowning” techniques. Instead, the authors devise a more efficient method
involving “quotient-and-rounding”. This method reduces the sizes of the ciphertexts and allows
for cheaper arithmetic.

OLE from somewhat homomorphic encryption (SHE): Another approach is to use a
somewhat (or partially) homomorphic encryption scheme that supports one multiplication, as
well as addition, such as BGV [19]. This method has been used to create multiplication triples
in many protocols in the SPDZ family [24,23]. To use this to create OLE, each party first sends
an encryption of its input u or v, and then multiply the ciphertexts homomorphically. Next, one
party sends an encryption of a random value, which is added to this before being decrypted

35

towards the other party with a distributed decryption protocol. This requires 3 ciphertexts to
be sent in all, plus one additional R, element for the distributed decryption, where one party
sends its “partial decryption” to the other party, who decrypts the result.!?

We evaluate this approach in row “SHE” of Table 1, using SHE parameters from the Overdrive
variant of SPDZ [36, Table 1].

OLE from noisy Reed-Solomon encodings (RS): Another approach is based on oblivious
transfer and noisy encodings via Reed-Solomon codes [41,34,30]. Here, the protocol of Ghosh
et al. [30] has the best concrete efficiency, and achieves active security almost for free on
top of previous passive protocols using simple consistency check. The protocol has not been
implemented, but according to estimates from [28], an optimistic choice of parameters for the
underlying security assumption leads to a communication cost of 32 field elements per OLE.
This still leads to a higher communication cost than our protocols. Note that although the other
protocols, being based on RLWE encryption, will likely have similar computational costs, we
cannot easily compare the computational efficiency of the RS protocol, since it has not been
implemented.

Other OLE Protocols. There are several other ways of constructing OLE which are not
presented in Table 1, which we now briefly discuss here. Recently, Rathee et al. implemented
passively secure protocols for Beaver triple generation over rings using RLWE [42]. These are
based on the AHE approach described above, except they also use a CRT optimization where
the plaintext space is reduced by using several ciphertexts with different plaintext moduli. This
optimization is better suited to their setting with multiplication over general rings mod 2¥, and
does not seem to give a benefit for our setting of a large prime plaintext space.

As mentioned earlier, we can also use Paillier encryption to build OLE from linearly ho-
momorphic encryption, and add active security using either zero-knowledge proofs [12] or a
common reference string [21]. However, Paillier ciphertexts are very large (at least 4096 bits) and
have a high computational overhead, since exponentiations are relatively much more costly than
polynomial operations in RLWE. It may be advantageous to use Paillier when only a few OLEs
are desired, but in the amortized setting it seems unlikely to be competitive. OLE can also be
constructed from string oblivious transfer, with Gilboa’s method [32]. Using OT extension [33]
this can be quite cheap computationally [35], but has a much higher communication cost that is
quadratic in the field bit length, instead of linear for all the protocols in Table 1, and around an
order of magnitude higher than our protocol.

Finally, Boyle et al. [16] combined homomorphic secret sharing with a PRG based on the
hardness of solving multivariate quadratic equations, to produce a large batch of n Beaver
triples or OLEs with o(n) communication. This interesting approach clearly has much lower
communication than our methods, but it only achieves such low communication when producing
a very large number of triples (more than 23%), so will not be suitable for many applications.
Furthermore, its computational efficiency is much worse than our protocol.

E On utilizing other Zero-Knowledge Arguments

Both Rpk and Rg, can also be proven using other zero-knowledge arguments, and we will now
explain why we chose this specific approach.

On individual arguments. An alternative to the use of amortized arguments such as those used
in our protocol is to use arguments for each linear relation separately, e.g. using [9]. For n such

13 This has slightly lower costs than the SPDZ protocol, since we have simplified the distributed decryption for
the two-party OLE setting.

36

instances the overall communication will then at least be O(nN) and also computation must now
be performed for each of the n instances. Amortization allows to instead reduce computation
and communication to net x instances, thus reducing the overhead.

On other amortized proofs. The recent work of [6] extended previous MPC preprocessing to
use the more efficient challenge spaces of [5]. This can most likely be applied in our setting too
and would lead to an earlier point at which amortization outperforms individual arguments. We
leave this as interesting future work.

On generic proofs. Generic argument systems such as [3] or [11] outperform our proofs in
terms of communication for large enough instances due to their sublinear (in the proven circuit)
communication. This low communication comes at the expense of higher computation on the
prover side, thus potentially decreasing the throughput of our protocol. [3,11] can use amortization
over multiple instances, but so far it has not been studied how these perform in the lattice
setting in comparison to specialized amortization techniques.

37

	Efficient Protocols for Oblivious Linear Function Evaluation from Ring-LWE

