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Abstract

Fitzi, Garay, Maurer, and Ostrovsky (Journal of Cryptology 2005) showed that in the presence
of a dishonest majority, no primitive of cardinality n − 1 is complete for realizing an arbitrary
n-party functionality with guaranteed output delivery. In this work, we introduce a new 2-party
primitive FSyX (“synchronizable fair exchange”) and show that it is complete for realizing any
n-party functionality with fairness in a setting where all n parties are pairwise connected by
independent instances of FSyX.

In the FSyX-hybrid model, the two parties load FSyX with some input, and following this,
either party can trigger FSyX with a suitable “witness” at a later time to receive the output
from FSyX. Crucially the other party also receives output from FSyX when FSyX is triggered.
The trigger witnesses allow us to synchronize the trigger phases of multiple instances of FSyX,
thereby aiding in the design of fair multiparty protocols. Additionally, a pair of parties may
reuse a single a priori loaded instance of FSyX in any number of multiparty protocols (possibly
involving different sets of parties).

Keywords: secure multiparty computation, fair exchange, completeness, preprocessing.

∗Visa Research, rakumare@visa.com.
†Visa Research, srraghur@visa.com. This work was done in part while the author was at MIT.
‡UC Berkeley, asealfon@berkeley.edu. This work was done in part while the author was at MIT.



Contents

1 Introduction 1

2 Preliminaries 5
2.1 Notation and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Secure Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Security with Guaranteed Output Delivery . . . . . . . . . . . . . . . . . . . 6
2.2.6 Security with Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.7 Security with Fairness and Identifiable Abort . . . . . . . . . . . . . . . . . . 8
2.2.8 Security with Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.9 Security with Identifiable Abort . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Fairness versus Guaranteed Output Delivery . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Computing with an Honest Majority . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Honest-Binding Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.10 Receiver Non-Committing Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.11 Non-interactive Non-Committing Encryption . . . . . . . . . . . . . . . . . . . . . . 17

3 Synchronizable Exchange 18

4 Fair Secure Computation in the FSyX-hybrid model 21
4.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Proof sketch of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Getting to the FSyX-hybrid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Preprocessing FSyX 35
5.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Proof sketch of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Getting to the FSyX-hybrid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

i



1 Introduction

Secure multiparty computation (MPC) allows a set of mutually mistrusting parties to perform a
joint computation on their inputs that reveals only the outcome of the computation and nothing
else. Showing feasibility [Yao86, GMW87, BGW88, CCD88, RB89] of this seemingly impossible to
achieve notion has been one of the most striking contributions of modern cryptography. However,
definitions of secure computation do vary across models, in part owing to the general impossibility
results for fair coin-tossing [Cle86]. In settings where the majority of the participating parties
are dishonest (including the two party setting), a protocol for secure computation only provides
security-with-abort, and in particular is not required to guarantee important properties such as
guaranteed output delivery or even fairness1. On the other hand, when up to t < n/3 parties are
corrupt, then there exist protocols for n-party secure computation that guarantee output delivery
[BGW88, CCD88]. This result can be extended to a setting where up to t < n/2 parties are corrupt
assuming the existence of a broadcast channel [GMW87, RB89].

Given the state of affairs, there has been extensive research to better understand the problem
of fairness and guaranteed output delivery in secure computation in setting where t ≥ n/2. For
instance, while Cleve [Cle86] showed that two-party fair coin tossing is impossible, the works of
Gordon et al. [GHKL11, GK09, Ash14, ABMO15] showed the existence of non-trivial functions for
which fair secure computation is possible in the dishonest majority setting. On the other hand,
partially fair secure computation [GK10, BLOO11] provides a solution for a relaxed notion of
fairness in secure computation where fairness may be breached but only with some parameterizable
(inverse polynomial) probability.

Most relevant to our work is the work of Fitzi, Garay, Maurer, and Ostrovsky [FGMO05] who
studied complete primitives for secure computation with guaranteed output delivery. They showed
that no primitive of cardinality n− 1 is complete for n-party secure computation. More generally,
for n ≥ 3 and k < n, they show that no primitive of cardinality k is complete when t ≥ dk−1k+1 ·ne. It
follows that when t ≥ dn/3e, no primitive of cardinality 2 is complete for secure computation. Also,
when t ≥ n − 2, no primitive of cardinality k < n is complete for secure computation. They also
show a primitive of cardinality n that is complete for n-party secure computation when t ≥ n− 2.

It is interesting to note that the above impossibility results are derived in [FGMO05] by showing
the impossibility of broadcast (or Byzantine agreement) given a primitive of cardinality k. In this
context, note that Cohen and Lindell [CL17] showed that the presence of a broadcast channel is
inconsequential to achieving the goal of fairness, i.e., they showed that any protocol for fair com-
putation that uses a broadcast channel can be compiled into one that does not use a broadcast
channel. They also showed that assuming the existence of a broadcast channel, any protocol for
fair secure computation can be compiled into one that provides guaranteed output delivery. Im-
portantly, all these transformations only require primitives of cardinality 2.

Our contributions. Given the above, one wonders whether the impossibility result of [FGMO05]
can be bypassed if we restrict our attention to fair secure computation alone. In this work, we in-
troduce a new 2-party primitive FSyX (“synchronizable fair exchange,” or simply “synchronizable
exchange”) and show that it is complete for realizing any n-party functionality with fairness in a
setting where all n parties are pairwise connected by independent instances of FSyX. Our work,

1Fairness means that either all parties get the output or none do. Guaranteed output delivery means that all
parties get the output.
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combined with [CL17] and [FGMO05], clarifies the power of broadcast in obtaining fairness. Addi-
tionally, a pair of parties may reuse a single instance of FSyX in any number of multiparty protocols,
possibly involving different sets of parties.

Synchronizable exchange FSyX is a two-party symmetric primitive that is reactive (like the
commitment functionality Fcom [CF01]) and works in two phases. In the first phase, which we call
the load phase, parties submit their private inputs x1, x2 along with public inputs (f1, f2, φ1, φ2).
Here f1, f2 are 2-input 2-output functions, and φ1, φ2 are boolean predicates. The public input
must be submitted by both parties, and the submitted values must match. Upon receiving these
inputs, FSyX computes f1(x1, x2) and delivers the respective outputs to both parties. Next, in the
trigger phase, which can be initiated at any later time after the load phase, party Pi can send a
“witness” wi to FSyX following which FSyX checks if φi(wi) = 1. If that is indeed the case, then
FSyX computes f2(x1, x2) and delivers the respective outputs along with wi to both parties. We
stress that FSyX guarantees that both parties get the output of f2.

To use multiple pairwise instances of synchronizable exchange to achieve n-wise fair secure com-
putation, the main idea is to keep different instances of FSyX “in sync” with each other throughout
the protocol execution. That is, we need to ensure that all pairwise FSyX instances are, loosely
speaking, simultaneously loaded, and if so, simultaneously triggered. Ensuring this in the presence
of byzantine adversaries is somewhat tricky, and we outline our techniques below.

Reduction to fair reconstruction. First, we let parties run an (unfair) MPC protocol for a function
f that accepts parties’ inputs and computes the function output, then computes secret shares of
the function output, and then computes commitments on these secret shares. Finally, the MPC
outputs to all parties the set of all commitments computed above, and to each individual party
the corresponding share of the function output. Since the MPC protocol itself does not guarantee
fairness, it may be that some honest party does not receive the output. In that case, all parties
terminate and abort the protocol, and no party learns the function output. If the protocol has not
terminated, then all that is left to perform a fair reconstruction of the function output from the
secret shares. The above technique of reducing fair computation of a function to fair reconstruction
of a (non-malleable) additive secret sharing scheme is a well-known technique [GIM+10].

Synchronization via trigger conditions. The commitments generated in the above step are
used to define the trigger conditions, specifically the trigger witness must include (among other
things) openings to the commitments (i.e., the secret shares). That is, each pair of parties initiate
the load phase with their FSyX instance. We will need to ensure that the protocol proceeds only if
all FSyX instances were loaded. To do this, we let the load phase of each FSyX instance to output a
receipt (think of these as signatures on some special instance-specific message) that indicates that
the FSyX instance has been loaded. Following this parties broadcast to all other parties the receipts
they have obtained in the load phase. (Note that by [CL17], we can assume a broadcast channel
while developing our protocol, and then use their compiler to remove the broadcast channel from
our protocol.) In an honest execution, at the end of this broadcast step, each party would possess
receipts from every pairwise FSyX. On the other hand, corrupt parties may not broadcast some
receipts, resulting in a setting where corrupt parties possess all receipts, but honest parties do not.

To maintain that FSyX instances remain in sync, we let the trigger conditions ask for all re-
ceipts (each individual FSyX instance can verify these load receipts using, e.g., digital signature
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verification). This way, we ensure that any FSyX instance can be triggered only if all FSyX instances
were loaded. Recall that by definition, FSyX outputs the trigger witness along with the output
of f2. This in turn ensures that if, say an FSyX instance between Pi and Pj was triggered by Pi,
then Pj would obtain the load receipts which it can then use as part of trigger witnesses for other
FSyX instances associated with Pj . Finally, because parties only receive additive secret shares of
the output, to get the final output the adversary will need to trigger at least one FSyX instance
associated with an honest party. The ideas outlined above ensures that that honest party (and
consequently every honest party) will be able to continue triggering other FSyX instances associ-
ated with it, and obtain the final output. An additional detail to note is that in our constructions,
we let the boolean predicates φ1, φ2 depend on time. This is required to ensure termination of our
protocols (i.e., force a time limit on when the adversary must begin triggering the FSyX instances
to obtain output). Therefore, in the terminology of [PST17], our functionality FSyX is clock-aware.
The techniques we use to ensure termination may be reminiscent of techniques used in the design
of broadcast protocols from point-to-point channels in the dishonest majority setting [DS83].

Complexity, preprocessing, assumptions, and implementation. The complexity of FSyX is
the sum of the complexities of the functions f1, f2, and the predicates φ1, φ2. In our constructions,
the complexity of each FSyX instance is O(n2λ`out) and is independent of the size of the function
that is being computed.2 With additional assumptions, specifically with a non-interactive non-
committing encryption [Nie02] (alternatively, a programmable random oracle), the use of FSyX can
be preprocessed in a network-independent manner to support any number of executions.3 That is,
a pair of parties can preprocess an instance of FSyX by loading it once, and then re-using it across
multiple independent (possibly concurrent) executions of secure computation involving different sets
of parties. This type of preprocessing is reminiscent of OT preprocessing [IPS08, KRS16]. Of course,
to enable this type of preprocessing, we rely on a variant of FSyX which can be triggered multiple
times (but loaded only once). In this case, the complexity of f1 is O(λ), while the complexity
of f2 is O(λ) per trigger invocation, and the complexities of φ1, φ2 would be O(n2λ) per trigger
invocation for a protocol involving n parties. We emphasize that in the preprocessing setting,
FSyX need not be triggered when the protocol participants behave honestly. Using ideas similar to
[CGJ+17, SGK19], a follow-up work shows, among other things, how to implement a single FSyX

instance using trusted execution environments (e.g., Intel SGX) and a bulletin board abstraction.
Note that different FSyX instances can use different bulletin boards, and still be usable by our
protocols.

Relationship to other primitives. [FGMO05] investigate a number of interesting primitives
that are complete for secure computation with guaranteed output delivery for various parameter
regimes. (See [FGMO05] for a discussion of complete primitives for secure computation with
abort.) For t < n/3, they identify secure channels (with cardinality 2) as a complete primitive.
For t < n/2, they identify two complete primitives converge cast and oblivious cast. Both these
have cardinality 3. For t < n, they identify universal black box (UBB) as a complete primitive
of cardinality n. Improving on this, [GIM+10] show fair reconstruction of a non-malleable secret
sharing scheme as a complete primitive of cardinality n, whose complexity is independent of the

2The dependence on `out can be removed in the programmable random oracle model.
3Preprocessing for a bounded number of executions may be achieved by assuming only receiver non-committing

encryption [CHK05].
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function being computed (this was not the case for UBB). In addition, [GIM+10] investigate the
power of primitives that guarantee fairness but are restricted in other ways (i.e., inapplicable to
fairly computing arbitrary functions). For instance, they study fair coin flipping and simultaneous
broadcast, and show that neither of them are complete for fair computation. Note that simultaneous
broadcast was shown in [Kat07] to be complete for partial fairness [GK10]. Continuing, [GIM+10]
show that (1) no primitive of size O(log λ) is complete for fair computation (where λ is the security
parameter), and (2) for every “short” m (when the adversary can run in time poly(m)), no m-bit
primitive can be used to construct even a m+ 1-bit simultaneous broadcast. Note that none of the
primitives discussed in [FGMO05, GIM+10, Kat07] are reactive.

Timed commitments [BN00] (and numerous related works such as [GJ02, GP03]) can be used
to enable a fair exchange of digital signatures, fair auctions, and more under a somewhat non-
standard security notion. Other works with similar security notions that consider fairness in secure
computation include [Pin03, GMPY11, PST17] (see also numerous references therein). Another
line of research investigates the use of physical/hardware assumptions to enforce fairness. For
example, [LMPS04] relies on physical envelopes which provide some form of synchronizability.
Recent work [CGJ+17, SGK19] (following [PST17]) has shown that fair secure computation is
possible assuming the existence of trusted execution environments (alternatively, witness encryption
[CGJ+17]) and a blockchain to which all parties have read/write access. In these works, the
blockchain can be interpreted as a component that helps in synchronizing the TEEs. We note that
the above works use blockchain and envelopes as a cardinality n primitive in their constructions.
There are numerous works in the optimistic model (cf. [ASW97, ASW00] and several follow-up
works) that minimize the use of a trusted third party to restore fairness when breached. Another
line of research [ADMM14, ADMM16, BK14] investigates a non-standard notion of fair secure
computation, called secure computation with penalties [BK14] where participants who do not obtain
output are instead compensated monetarily (via cryptocurrency). [BK14] identifies a cardinality
2 primitive called claim-or-refund which is complete for this notion. (The presentation in [BK14]
is strictly speaking not cardinality 2, but follow-up works clarify this.) That said, claim-or-refund
shares many features with synchronizable exchange in that (1) both primitives operate in two phases
(in the context of claim-or-refund, these phases are deposit and claim/refund), (2) the second phase
is triggered via witnesses, (3) are clock-aware, and (4) both primitives can be preprocessed. Note
that the claim-or-refund primitive locks up monetary funds which can be claimed by a designated
receiver within a certain time by providing a witness to the trigger conditions, else the funds are
refunded to the sender. Implicit in [ADMM14] is a primitive that releases monetary funds after a
certain time has elapsed but during which time, the funds can be reversed by providing a trigger
witness. This primitive is complete for fair coin tossing and fair lottery under the relaxed notion
of secure computation with penalties [ADMM14].

Organization. In Section 2, we provide preliminaries including definitions of security, notations,
etc. Following that, in Section 3 we describe synchronizable exchange and provide the ideal func-
tionality definition for FSyX. Then, in Section 4, we present our protocol for fair secure computation
in the FSyX-hybrid model. Finally, in Section 5, we show how FSyX can be preprocessed.
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2 Preliminaries

2.1 Notation and definitions

For n ∈ N, let [n] = {1, 2, . . . , n}. Let λ ∈ N denote the security parameter. Symbols in with an
arrow over them such as −→a denote vectors. By ai we denote the i-th element of the vector −→a . For
a vector −→a of length n ∈ N and an index set I ⊆ [n], we denote by −→a |I the vector consisting of
(ordered) elements from the set {ai}i∈I . By poly(·), we denote any function which is bounded by
a polynomial in its argument. An algorithm T is said to be PPT if it is modeled as a probabilistic
Turing machine that runs in time polynomial in λ. Informally, we say that a function is negligible,

denoted by negl, if it vanishes faster than the inverse of any polynomial. If S is a set, then x
$← S

indicates the process of selecting x uniformly at random over S (which in particular assumes that

S can be sampled efficiently). Similarly, x
$← A(·) denotes the random variable that is the output

of a randomized algorithm A. Let X ,Y be two probability distributions over some set S. Their
statistical distance is

SD (X ,Y)
def
= max

T⊆S
{|Pr[X ∈ T ]− Pr[Y ∈ T ]|}

We say that X and Y are ε-close if SD (X ,Y) ≤ ε and this is denoted by X ≈ε Y. We say that
X and Y are identical if SD (X ,Y) = 0 and this is denoted by X ≡ Y.

2.2 Secure Computation

We recall most of the definitions regarding secure computation from [GHKL11] and [CL17]. We
present them here for the sake of completeness and self-containedness. Consider the scenario of n
parties P1, . . . , Pn with private inputs x1, . . . , xn ∈ X 4. We denote x = (x1, . . . , xn) ∈ X n.

2.2.1 Functionalities

A functionality f is a randomized process that maps n-tuples of inputs to n-tuples of outputs, that
is, f : X n → Yn5. We write f = (f1, . . . , fn) if we wish to emphasize the n outputs of f , but stress
that if f1, . . . , fn are randomized, then the outputs of f1, . . . , fn are correlated random variables.

2.2.2 Adversaries

We consider security against static t-threshold adversaries, that is, adversaries that corrupt a set
of at most t parties, where 0 ≤ t < n6. We assume the adversary to be malicious. That is, the
corrupted parties may deviate arbitrarily from an assigned protocol.

2.2.3 Model

We assume the parties are connected via a fully connected point-to-point network; we refer to this
model as the point-to-point model. We sometimes assume that the parties are given access to a

4Here we have assumed that the domains of the inputs of all parties is X for simplicity of notation. This can be
easily adapted to consider setting where the domains are different.

5Here we have assumed that the domains of the outputs of all parties is Y for simplicity of notation. This can be
easily adapted to consider setting where the domains are different.

6Note that when t = n, there is nothing to prove.
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physical broadcast channel (defined in Section 2.7)7 in addition to the point-to-point network; we
refer to this model as the broadcast model. The communication lines between parties are assumed
to be ideally authenticated and private (and thus an adversary cannot read or modify messages
sent between two honest parties). Furthermore, the delivery of messages between honest parties
is guaranteed. We sometimes assume the parties are connected via a fully pairwise connected
network of oblivious transfer channels (defined in Section 2.6)8 in addition to a fully connected
point-to-point network; we refer to this model as the OT-network model. We sometimes assume
that the parties are given access to a physical broadcast channel in addition to the complete pairwise
oblivious transfer network and a fully connected point-to-point network; we refer to this model as
the OT-broadcast model9.

2.2.4 Protocol

An n-party protocol for computing a functionality f is a protocol running in polynomial time and
satisfying the following functional requirement: if for every i ∈ [n], party Pi begins with private
input xi ∈ X , then the joint distribution of the outputs of the parties is statistically close to
(f1(−→x ), . . . , fn(−→x )). We assume that the protocol is executed in a synchronous network, that
is, the execution proceeds in rounds: each round consists of a send phase (where parties send
their message for this round) followed by a receive phase (where they receive messages from other
parties). The adversary, being malicious, is also rushing which means that it can see the messages
the honest parties send in a round, before determining the messages that the corrupted parties
send in that round.

2.2.5 Security with Guaranteed Output Delivery

The security of a protocol is analyzed by comparing what an adversary can do in a real protocol
execution to what it can do in an ideal scenario that is secure by definition. This is formalized
by considering an ideal computation involving an incorruptible trusted party to whom the parties
send their inputs. The trusted party computes the functionality on the inputs and returns to each
party its respective output. Loosely speaking, a protocol is secure if any adversary interacting in
the real protocol (where no trusted party exists) can do no more harm than if it were involved in
the above-described ideal computation.

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. Denote the inputs
sent to the trusted party by x′1, . . . , x

′
n.

7This can also be viewed as working in the Fbc-hybrid model. See Section 2.3.
8This can also be viewed as working in the FOT-hybrid model. See Section 2.3.
9This can also be viewed as working in the (Fbc,FOT)-hybrid model. See Section 2.3.
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• Trusted party sends outputs: If x′i 6∈ X for any i ∈ [n], the trusted party sets x′i to
some default input in X . Then, the trusted party chooses r uniformly at random and sends
f i(x′1, . . . , x

′
n; r) to party Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealg.d.f,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Execution in the real model. We next consider the real model in which an n-party protocol
π is executed by P1, . . . , Pn (and there is no trusted party). In this case, the adversary A gets the
inputs of the corrupted party and sends all messages on behalf of these parties, using an arbitrary
polynomial-time strategy. The honest parties follow the instructions of π.

Let f be as above and let π be an n-party protocol computing f . Let A be a non-uniform
probabilistic polynomial-time machine with auxiliary input z. We let Realπ,I,A(z)(x1, . . . , xn, λ)
be the random variable consisting of the view of the adversary and the output of the honest parties
following an execution of π where Pi begins by holding xi for every i ∈ [n].

Security as emulation of an ideal execution in the real model. Having defined the ideal
and real models, we can now define security of a protocol. Loosely speaking, the definition asserts
that a secure protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated as follows.

Definition 1. Protocol π is said to securely compute f with guaranteed output delivery if for every
non-uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealg.d.f,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealg.d.f,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

2.2.6 Security with Fairness

In this definition, the execution of the protocol can terminate in two possible ways: the first is when
all parties receive their prescribed output (as in the case of guaranteed output delivery) and the
second is when all parties (including the corrupted parties) abort without receiving output. The
only change from the definition in Section 2.2.5 is with regard to the ideal model for computing f ,
which is now defined as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

7



• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. Denote the inputs sent to the trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs: If x′i 6∈ X for any i ∈ [n], the trusted party sets x′i to some
default input in X . If there exists an i ∈ [n] such that x′i = abort, the trusted party sends
⊥ to all the parties. Otherwise, the trusted party chooses r uniformly at random, computes
zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi to Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealfairf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 2. Protocol π is said to securely compute f with fairness if for every non-uniform
probabilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealfairf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealfairf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

2.2.7 Security with Fairness and Identifiable Abort

This definition is identical to the one for fairness, except that if the adversary aborts the computa-
tion, all honest parties learn the identity of one of the corrupted parties. The only change from the
definition in Section 2.2.5 is with regard to the ideal model for computing f , which is now defined
as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. In case the adversary instructs Pi to send abort, it chooses an
index of a corrupted party i∗ ∈ I and sets x′i = (abort, i∗). Denote the inputs sent to the
trusted party by x′1, . . . , x

′
n.
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• Trusted party sends outputs: If x′i 6∈ X for any i ∈ [n], the trusted party sets x′i to some
default input in X . If there exists an i ∈ [n] such that x′i = (abort, i∗) and i∗ ∈ I, the trusted
party sends (⊥, i∗) to all the parties. Otherwise, the trusted party chooses r uniformly at
random, computes zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi to Pi for every i ∈ [n].

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealid-fairf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 3. Protocol π is said to securely compute f with fairness and identifiable abort if for
every non-uniform probabilistic polynomial-time adversary A in the real model, there exists a non-
uniform probabilistic polynomial-time adversary S in the ideal model such that for every I ⊆ [n]
with |I| ≤ t,{

Idealid-fairf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealid-fairf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

2.2.8 Security with Abort

This definition is the standard one for secure computation [Gol04] in that it allows early abort ; that
is, the adversary may receive its own output even though the honest party does not. However, if one
honest party receives output, then so do all honest parties. Thus, this is the notion of unanimous
abort. The only change from the definition in Section 2.2.5 is with regard to the ideal model for
computing f , which is now defined as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. Denote the inputs sent to the trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs to the adversary: If x′i 6∈ X for any i ∈ [n], the trusted
party sets x′i to some default input in X . If there exists an i ∈ [n] such that x′i = abort, the
trusted party sends ⊥ to all the parties. Otherwise, the trusted party chooses r uniformly at
random, computes zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi to Pi for every i ∈ I

(that is, to the adversary A).
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• Trusted party sends outputs to the honest parties: After receiving its output (as
described above), the adversary either sends abort or continue to the trusted party. In the
former case the trusted party sends ⊥ to the honest parties, and in the latter case the trusted
party send zj to Pj for every j ∈ [n] \ I.

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealabortf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 4. Protocol π is said to securely compute f with abort if for every non-uniform prob-
abilistic polynomial-time adversary A in the real model, there exists a non-uniform probabilistic
polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealabortf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealabortf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

2.2.9 Security with Identifiable Abort

This definition is identical to the one for abort, except that if the adversary aborts the computation,
all honest parties learn the identity of one of the corrupted parties. The only change from the
definition in Section 2.2.5 is with regard to the ideal model for computing f , which is now defined
as follows:

Execution in the ideal model. The parties are P1, . . . , Pn, and there is an adversary A who
has corrupted at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the parties
corrupted by A. An ideal execution for the computation of f proceeds as follows:

• Inputs: P1, . . . , Pn hold their private inputs x1, . . . , xn ∈ X ; the adversary A receives an
auxiliary input z.

• Send inputs to trusted party: The honest parties send their inputs to the trusted party.
The corrupted parties controlled by A may send any values of their choice. In addition, there
exists a special abort input. In case the adversary instructs Pi to send abort, it chooses an
index of a corrupted party i∗ ∈ I and sets x′i = (abort, i∗). Denote the inputs sent to the
trusted party by x′1, . . . , x

′
n.

• Trusted party sends outputs to the adversary: If x′i 6∈ X for any i ∈ [n], the trusted
party sets x′i to some default input in X . If there exists an i ∈ [n] such that x′i = (abort, i∗)
and i∗ ∈ I, the trusted party sends (⊥, i∗) to all the parties. Otherwise, the trusted party
chooses r uniformly at random, computes zi = f i(x′1, . . . , x

′
n; r) for every i ∈ [n] and sends zi

to Pi for every i ∈ I (that is, to the adversary A).
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• Trusted party sends outputs to the honest parties: After receiving its output (as
described above), the adversary either sends (abort, i∗) where i∗ ∈ I, or continue to the
trusted party. In the former case the trusted party sends (⊥, i∗) to the honest parties, and in
the latter case the trusted party send zj to Pj for every j ∈ [n] \ I.

• Outputs: The honest parties output whatever was sent by the trusted party. The cor-
rupted parties output nothing and A outputs an arbitrary (probabilistic polynomial-time
computable) function of its view.

We let Idealid-abortf,I,S(z)(
−→x , λ) be the random variable consisting of the output of the adversary

and the output of the honest parties following an execution in the ideal model described above.

Definition 5. Protocol π is said to securely compute f with identifiable abort if for every non-
uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform
probabilistic polynomial-time adversary S in the ideal model such that for every I ⊆ [n] with |I| ≤ t,{

Idealid-abortf,I,S(z)(
−→x , λ)

}
−→x ∈Xn,z∈{0,1}∗

≡
{
Realπ,I,A(z)(

−→x , λ)
}
−→x ∈Xn,z∈{0,1}∗

We will sometimes relax security to statistical or computational definitions. A protocol is statis-
tically secure if the random variables Idealid-abortf,I,S(z)(

−→x , λ) and Realπ,I,A(z)(
−→x , λ) are statistically

close, and computationally secure if they are computationally indistinguishable.

2.3 The Hybrid Model

We recall the definition of the hybrid model from [GHKL11] and [CL17]. The hybrid model com-
bines both the real and ideal worlds. Specifically, an execution of a protocol π in the G-hybrid
model, for some functionality G, involves parties sending normal messages to each other (as in the
real model) and, in addition, having access to a trusted party computing G. The parties commu-
nicate with this trusted party in exactly the same way as in the ideal models described above; the
question of which ideal model is taken (that with or without abort) must be specified. In this
paper, we always consider a hybrid model where the functionality G is computed according to the
ideal model with abort. In all our protocols in the G-hybrid model there will only be sequential calls
to G, that is, there is at most a single call to G per round, and no other messages are sent during
any round in which G is called. This is especially important for reactive functionalities, where the
calls to f are carried out in phases, and a new invocation of f cannot take place before all the
phases of the previous invocation complete.

Let type ∈ {g.d., fair, id-fair, abort, id-abort}. Let G be a functionality and let π be an n-party
protocol for computing some functionality f , where π includes real messages between the parties
as well as calls to G. Let A be a non-uniform probabilistic polynomial-time machine with auxiliary
input z. A corrupts at most t parties, where 0 ≤ t < n. Denote by I ⊆ [n] the set of indices of the
parties corrupted by A. Let HybridG,typeπ,I,A(z)(

−→x , λ) be the random variable consisting of the view of
the adversary and the output of the honest parties, following an execution of π with ideal calls to
a trusted party computing G according to the ideal model “type” where Pi begins by holding xi for
every i ∈ [n]. Security in the model “type” can be defined via natural modifications of Definitions
1, 2, 3, 4 and 5. We call this the (G, type)-hybrid model.

The hybrid model gives a powerful tool for proving the security of protocols. Specifically, we
may design a real-world protocol for securely computing some functionality f by first constructing
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a protocol for computing f in the G-hybrid model. Letting π denote the protocol thus constructed
(in the G-hybrid model), we denote by πρ the real-world protocol in which calls to G are replaced
by sequential execution of a real-world protocol ρ that computes G in the ideal model “type”.
“Sequential” here implies that only one execution of ρ is carried out at any time, and no other
π-protocol messages are sent during the execution of ρ. The results of [Can00] then imply that if π
securely computes f in the (G, type)-hybrid model, and ρ securely computes G, then the composed
protocol πρ securely computes f (in the real world). For completeness, we state this result formally
as we will use it in this work.

Lemma 1. Let type1, type2 ∈ {g.d., fair, id-fair, abort, id-abort}. Let G be an n-party functionality.
Let ρ be a protocol that securely computes G with type1, and let π be a protocol that securely computes
f with type2 in the (G, type1)-hybrid model. Then protocol πρ securely computes f with type2 in the
real model.

Sometimes, while working in a hybrid model, say the (G, type)-hybrid model, we will suppress
type and simply state that we are working in the G-hybrid model. This is because type is implied
by the context, G. For instance, unless specified otherwise:

• When G = Fbc
10, type = g.d..

• When G = FOT
11, type = abort.

• When G = F2PC
12, type = abort.

• When G = FMPC
13, type = abort.

• When G = FSyX
14, type = g.d..

When working in a hybrid model that uses multiple ideal functionalities, G1, . . . ,Gk with asso-
ciated types type1, . . . , typek for some k ∈ N, we call it the (G1, type1, . . . ,Gk, typek)-hybrid model.
Furthermore, we will suppress typej when typej is implied by the context, Gj for j ∈ [k].

2.4 Fairness versus Guaranteed Output Delivery

We recall here some of the results from [CL17].

Lemma 2. [CL17] Consider n parties P1, . . . , Pn in a model without a broadcast channel. Then,
there exists a functionality f : X n → Yn such that f cannot be securely computed with guaranteed
output delivery in the presence of t-threshold adversaries for n/3 ≤ t < n.

Lemma 3. [CL17] Consider n parties P1, . . . , Pn in a model with a broadcast channel. Then,
assuming the existence of one-way functions, for any functionality f : X n → Yn, if there exists a
protocol π which securely computes f with fairness, then there exists a protocol π′ which securely
computes f with guaranteed output delivery.

10See Section 2.7.
11See Section 2.6.
12See Section 3.
13See Section 2.6.
14See Section 3.

12



Preliminaries: x0, x1 ∈ {0, 1}m; b ∈ {0, 1}. The functionality proceeds as follows:

• Upon receiving inputs (x0, x1) from the sender P1 and b from the receiver P2, send ⊥ to P1 and
xb to P2.

Figure 1: The ideal functionality FOT.

Preliminaries: x1, . . . , xn ∈ {0, 1}∗; f1, . . . , fn is an n-input, n-output functionalities. The functionality
proceeds as follows:

• Upon receiving inputs (xi, fi) from Pi for all i ∈ [n], check if f = fi for all i ∈ [n]. If not, abort.
Else, send f i(x1, . . . , xn) to Pi for all i ∈ [n].

Figure 2: The ideal functionality FMPC.

Lemma 4. [CL17] Consider n parties P1, . . . , Pn in a model with a broadcast channel. Then,
assuming the existence of one-way functions, for any functionality f : X n → Yn, if there exists a
protocol π which securely computes f with fairness, then there exists a protocol π′ which securely
computes f with fairness and does not make use of the broadcast channel.

2.5 Computing with an Honest Majority

We recall here some of the known results regarding feasibility of information-theoretic multiparty
computation in the presence of an honest majority.

Lemma 5. [GMW87] Consider n parties P1, . . . , Pn in the point-to-point model. Then, there exists
a protocol π which securely computes FMPC with guaranteed output delivery in the presence of t-
threshold adversaries for any 0 ≤ t < n/3.

Lemma 6. [FGMvR02] Consider n parties P1, . . . , Pn in the point-to-point model. Then, there
exists a protocol π which securely computes FMPC with fairness in the presence of t-threshold ad-
versaries for any 0 ≤ t < n/2.

Lemma 7. [GMW87, RB89] Consider n parties P1, . . . , Pn in the broadcast model. Then, there
exists a protocol π which securely computes FMPC with guaranteed output delivery in the presence
of t-threshold adversaries for any 0 ≤ t < n/2.

2.6 Oblivious Transfer

In this work, oblivious transfer, or OT, refers to 1-out-of-2 oblivious transfer defined as in Figure 1.
We note that in the definition of FOT, one party, namely P1, is seen as the sender, while the other,
namely P2, is seen as the receiver. However, from [WW06], OT is symmetric, which implies that
the roles of the sender and the receiver can be reversed. Thus, if two parties P1 and P2 have access
to the ideal functionality FOT, they can perform 1-out-of-2 oblivious transfer with either party as
a sender and the other as the receiver. It is known that OT is complete for secure multiparty
computation with abort. We state this result formally below.
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Preliminaries: x ∈ {0, 1}∗. The functionality proceeds as follows:

• Upon receiving the input x from the sender P1, send x to all parties P1, . . . , Pn.

Figure 3: The ideal functionality Fbc.

Lemma 8. [Kil88, GV87, IPS08] Consider n parties P1, . . . , Pn in the OT-network model. Then,
there exists a protocol π which securely computes FMPC with abort in the presence of t-threshold
adversaries for any 0 ≤ t < n.

2.7 Broadcast

Broadcast is defined as in Figure 3. We recall that the ideal functionality for broadcast, namely
Fbc, can be securely computed with guaranteed output delivery in the presence of t-threshold
adversaries if and only if 0 ≤ t < n/3 [PSL80, LSP82]. Furthermore, Fbc can be securely computed
with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n [FGH+02]. Furthermore,
these results hold irrespective of the model we are working in so long as we do not have explicit
access to Fbc.

2.8 Honest-Binding Commitment Schemes

We recall the notion of honest-binding commitments from [GKKZ11]. Commitment schemes are
a standard cryptographic tool. Roughly, a commitment scheme allows a sender S to generate a
commitment c to a message m in such a way that (1) the sender can later open the commitment to
the original value m (correctness); (2) the sender cannot generate a commitment that can be opened
to two different values (binding); and (3) the commitment reveals nothing about the sender’s value
m until it is opened (hiding). For our application, we need a variant of standard commitments that
guarantees binding when the sender is honest but ensures that binding can be violated if the sender
is dishonest. (In the latter case, we need some additional properties as well; these will become clear
in what follows.) Looking ahead, we will use such commitment schemes to enable a simulator in
security proofs to generate a commitment dishonestly. This will give the simulator the flexibility
to break binding and open the commitment to any desired message (if needed), while also being
able to ensure binding (when desired) by claiming that it generated the commitment honestly.

We consider only non-interactive commitment schemes. For simplicity, we define our schemes
in such a way that the decommitment information consists of the sender’s random coins ω that it
used when generating the commitment.

Definition 6. A (non-interactive) commitment scheme for message space Mλ is a pair of PPT
algorithms (Com,Open) such that for all λ ∈ N, all messages m ∈ Mλ, and all random coins ω it
holds that

Open(Com(1λ,m;ω), ω,m) = 1

A commitment scheme for message space Mλ is honest-binding if it satisfies the following:
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Binding (for an honest sender). For all PPT algorithms A (that maintain state throughout
their execution), the following probability is negligible in λ:

Pr

 m
$← A(1k);ω

$← {0, 1}∗
c = Com(1λ,m;ω)

(m′, ω′)
$← A(c, ω)

: Open(c,m′, ω′) = 1 ∧ m 6= m′


Equivocation. There is a pair of algorithms

(
C̃om, Õpen

)
such that for all PPT algorithms A

(that maintain state throughout their execution), the following quantity is negligible in λ:∣∣∣∣∣∣ Pr
[
m

$← A(1λ);ω
$← {0, 1}∗; c = Com(1λ,m;ω) : A(1λ, c, ω) = 1

]
−Pr

[
(c, state)

$← C̃om(1λ),m
$← A(1λ);ω

$← Õpen(state,m) : A(1λ, c, ω) = 1
]
∣∣∣∣∣∣

Equivocation implies the standard hiding property, namely, that for all PPT algorithms A (that
maintain state throughout their execution) the quantity is negligible in λ:∣∣∣ Pr

[
(m0,m1)

$← A(1λ); b
$← {0, 1}; c $← Com(1λ,mb) : A(c) = b

] ∣∣∣
We also observe that if (c, ω) are generated by

(
C̃om, Õpen

)
for some message m as in the definition

above, then binding still holds: namely, no PPT adversary given (m, c, ω) can find (m′, ω′) with
m′ 6= m such that Open(c,m′, ω′) = 1.

We will sometimes use the notation (c, ω)
$← Com(m) to mean c = Com(1λ,m;ω), suppressing λ

when it is clear from the context and having the committing algorithm Com return the commitment
and the decommitment information or opening. [GKKZ11] provides constructions of honest-binding
commitments for bits assuming the existence of one-way functions.

2.9 Digital Signatures

Definition 7. A (digital) signature scheme for message space Mλ is triple of PPT algorithms
V = (Gen,Sign,Verify) such that for all λ ∈ N and all messages m ∈Mλ,

Pr

[
(vk, sk)

$← V.Gen(1λ)

σ
$← V.Sign(m; sk)

: V.Verify(σ,m; vk) = 1

]
= 1

A signature scheme for message space Mλ is existentially unforgeable if for any PPT adversary A,
the following probability is negligible in λ:

Pr


(vk, sk)

$← V.Gen(1λ)
Q = ∅

mi
$← A(1λ,Q)

σi
$← V.Sign(mi; sk)

Q = Q∪ {(mi, σi)}


i

: V.Verify(σ,m; vk) = 1 ∧ (m,σ) 6∈ Q


[Rom90] provides constructions of existentially unforgeable signatures assuming the existence

of one-way functions.
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2.10 Receiver Non-Committing Encryption

We recall the notion of receiver non-committing encryption from [CHK05]. On a high level, a
receiver non-committing encryption scheme is one in which a simulator can generate a single “fake
ciphertext” and later “open” this ciphertext (by showing an appropriate secret key) as any given
message. These “fake ciphertexts” should be indistinguishable from real ciphertexts, even when an
adversary is given access to a decryption oracle before the fake ciphertext is known.

Formally, a receiver non-committing encryption scheme E consists of the following five PPT
algorithms:

• E .Gen(1λ): Given the security parameter, λ, the key generation algorithm outputs a key-pair

and some auxiliary information. This is denoted by: (pk, sk, z)
$← E .Gen(1λ). The public key

pk defines a message space Mλ.

• E .Enc(m; pk): Given the public key pk and a message m ∈ Mλ, the encryption algorithm

returns a ciphertext ct
$← E .Enc(m; pk).

• E .Dec(ct; sk): Given the secret key sk and a ciphertext ct, the decryption algorithm returns a

message m
$← E .Dec(ct; sk), where m ∈Mλ ∪ {⊥}.

• E .Ẽnc(pk, sk, z): Given the triple (pk, sk, z) output by E .Gen, the fake encryption algorithm

outputs a “fake ciphertext” c̃t
$← E .Ẽnc(pk, sk, z).

• E .D̃ec(pk, sk, z, c̃t,m): Given the triple (pk, sk, z) output by E .Gen, a “fake ciphertext” c̃t

output by E .Ẽnc and a message m ∈ Mλ, the “fake decryption” algorithm outputs a “fake

secret key” s̃k
$← E .D̃ec(pk, sk, z, c̃t,m). (Intuitively, s̃k is a valid-looking secret key for which

c̃t decrypts to m.)

We make the standard correctness requirement; namely, for any (pk, sk, z) output by E .Gen
and any m ∈ Mλ, we have E .Dec(E .Enc(m; pk); sk) = m. Our definition of security requires,
informally, that for any message m an adversary cannot distinguish whether it has been given a
“real” encryption of m along with a “real” secret key, or a “fake” ciphertext along with a “fake”
secret key under which the ciphertext decrypts to m. This should hold even when the adversary
has non-adaptive access to a decryption oracle. We now give the formal definition.

Definition 8. Let E be a receiver non-committing encryption scheme. We say that E is secure if
the advantage of any PPT algorithm A in the game below is negligible in λ:

1. The key generation algorithm E .Gen(1λ) is run to get (pk, sk, z).

2. The algorithm A is given 1λ and pk as input, and is also given access to a decryption oracle
E .Dec(·; sk). It then outputs a challenge message m ∈Mλ.

3. A bit b is chosen at random. If b = 1 then a ciphertext ct
$← E .Enc(m; pk) is computed, and A

receives (ct, sk). Otherwise, a “fake” ciphertext c̃t
$← E .Ẽnc(pk, sk, z) and a “fake” secret key

s̃k
$← E .D̃ec(pk, sk, z, c̃t,m) are computed, and A receives (c̃t, s̃k). (After this point, A can no

longer query its decryption oracle.) A outputs a bit b ∈ {0, 1}.

The advantage of A is defined as 2 ·
∣∣Pr[b = b′]− 1

2

∣∣.
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2.11 Non-interactive Non-Committing Encryption

We recall the notion of non-interactive non-committing encryption from [Nie02]. We do so in
two ways. The first way of looking at non-interactive non-committing encryption is that it is the
same as receiver non-committing encryption, except that it can equivocate multiple ciphertexts as
opposed to one. On a high level, a non-interactive non-committing encryption scheme is one in
which a simulator can generate multiple “fake ciphertexts” and later “open” them (by showing an
appropriate secret key) as any given message vector. We first note that the receiver non-committing
encryption scheme of [CHK05] can be extended, as noted by them, to support equivocation of
any bounded number of ciphertexts. However, the size of the key of the scheme would grow
linearly with the number of outstanding ciphertexts. Such schemes can be constructed based on
standard assumptions such as the quadratic residuosity assumption. If no bound on the number of
outstanding texts is known apriori, then as noted in [Nie02], constructing such schemes is impossible
in the standard model. The other way of looking at non-interactive non-committing encryption is
that it is a realization of the ideal functionality for public key encryption, namely, FPKE. We refer
the reader to [CKN03, CHK05] for further details.

For the sake of completeness and ease of later presentation, we recall the non-interactive non-
committing encryption scheme of [Nie02] in the random-oracle model. Let F = (K, F ) be a col-
lection of trapdoor permutations, where K denotes an index set and F = {fk}k∈K is a set of
permutations with efficiently samplable domains. For every k ∈ K, we denote by tk the trapdoor
associated with k which enables inversion of fk. We assume the existence of a generation algorithm
G which on input the security parameter λ outputs a key-trapdoor pair (k, tk) uniformly at random.
Let H : {0, 1}∗ → {0, 1}`(λ) be a random oracle (instantiated by an appropriate hash function).
The non-interactive non-committing encryption scheme E consists of the following algorithms:

• E .Gen(1λ): Given the security parameter, λ, the key generation algorithm obtains (k, tk) by
executing G with the security parameter λ as input. It then outputs the public and private
keys pk = (k, fk, H) and sk = tk. The message space is defined to be Mλ = {0, 1}`(λ).

• E .Enc(m; pk): Given the public key pk and a message m ∈ Mλ, the encryption algorithm
samples x from the domain of fk and returns a ciphertext ct = (fk(x), H(x)⊕m).

• E .Dec(ct; sk): Given the secret key sk and a ciphertext ct = (ct1, ct2), the decryption algorithm
computes x by inverting ct1 using tk and returns the message m = H(x)⊕ ct2.

We refer the reader to [Nie02] for a complete proof that the scheme defined above is a non-
interactive non-committing encryption scheme. The sketch the proof here. The scheme is clearly
non-interactive. We now need to design a simulator S which can generate multiple “fake cipher-
texts” and later “open” them to an arbitrary sequence of messages. Note that this is easy to
do. To generate n “fake ciphertexts”, S samples x1, . . . , xn independently at random from the

domain of fk. It then samples y1, . . . , yn
$← {0, 1}`(λ). The m ciphertexts are defined to be

{cti}i∈[n] where cti = (fk(xi), yi). Then, in order to open the n ciphertexts to a message vector
−→m = (m1, . . . ,mn) ∈Mn

λ, S would program the random oracle H such that H(xi) = mi⊕ yi. Note
that this ensures that the “fake ciphertexts” do in fact “open” to the message vector −→m. We also
stress, as this will be required for us later, that the simulator need not know n in advance, that is,
it can produce any (polynomially bounded) number of “fake ciphertexts” and later “open” them as
required. This is also precisely the difference from receiver non-committing encryption as described
earlier which necessitates the use of random oracles as noted in [Nie02].
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Preliminaries: x1, x2 ∈ {0, 1}∗; f1, f2 are 2-input, 2-output functionalities. The functionality proceeds
as follows:

• Upon receiving inputs (x1, f1) from P1 and (x2, f2) from P2, check if f = f1 = f2. If not, abort.
Else, send f1(x1, x2) to P1 and f2(x1, x2) to P2.

Figure 4: The ideal functionality F2PC.

3 Synchronizable Exchange

We are interested in solving the problem of securely computing functionalities with fairness, most
commonly referred to as fair secure computation. We begin with the case of two parties. It is
known that fair two-party secure computation is impossible in the standard model as well as in the
(Fbc,FOT)-hybrid model [Cle86]. This result generalizes to the setting of n parties that are trying
to compute in the presence of a t-threshold adversary for any n/2 ≤ t < n.

One could define the ideal functionality, F2PC as in Figure 4. Clearly, any 2-party functionality
can be securely computed with fairness in the (F2PC, fair)-hybrid model. One can then ask the
following question in the context of n > 2 parties:

Consider n parties P1, . . . , Pn in the OT-broadcast model. Does there exist a protocol that securely
computes FMPC with fairness in the (F2PC, fair)-hybrid model?

We are interested in security in the presence of a t-threshold adversary for any n/2 ≤ t < n. While
we do not know the answer to this question, it seems that the answer to this question would be
negative. The intuition for this is that the various invocations of the ideal functionality F2PC cannot
“synchronize” with each other and thus we would run into issues similar to the those highlighted by
the impossibility result in [Cle86], namely, some party/parties obtain information about the output
of the protocol before the others and if these parties were corrupt, they may choose to abort the
protocol without the honest parties receiving their outputs.

Equipped with this intuition, we propose the primitive, FSyX, which we call “synchronizable
exchange”. We define the ideal functionality for FSyX in Figure 5. We associate the type g.d.
to the ideal functionality FSyX when working in the FSyX-hybrid model. When interacting with
this functionality, parties first submit their inputs to FSyX which then gives them a “receipt”
acknowledging the end of the input submission phase. Following this, the functionality simply
waits for a trigger from one of the parties. Once the trigger is received (we specify conditions for
the validity of a trigger), the functionality will deliver the outputs according to the specification.
In the formal description, we allow parties P1, P2 to submit two functions f1, f2 and two Boolean
predicates (that check validity of a trigger value) φ1, φ2 along with their inputs x1, x2. FSyX then
computes f1(x1, x2) and sends this value as a “receipt” that the input submission phase has ended.
The actual output of the computation is f2(x1, x2) and this will be provided to the parties at the
end of the trigger phase. Note that the trigger phase can be activated by either party Pi. However,
Pi would need to provide a “witness” w that satisfies φi. Also, more generally, the output of the
computation f2(x1, x2, w) can additionally depend on the witness w that was provided as well.

Note that FSyX is at least as strong as F2PC. In order to realize F2PC in the FSyX-hybrid
model, we set f1 = ε (the empty string), f2 = f , φ1 = φ2 = 1. The hope in defining this reactive
functionality, however, is to achieve synchronization of multiple invocations of the ideal functionality
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Preliminaries: x1, x2 ∈ {0, 1}∗; f1, f2 are 2-output functions; φ1, φ2 are boolean predicates. The
functionality proceeds as follows:

• Load phase. Upon receiving inputs (x1, f = (f1, f2, φ1, φ2)) from P1 and (x2, f
′) from

P2, check if f = f ′. If not, abort. Else, compute f1(x1, x2). If f1(x1, x2) = ⊥a, abort.
Else, send f i1(x1, x2) to Pi for i ∈ {1, 2}, and go to next phase.

• Trigger phase. Upon receiving input w from party Pi, check if φi(w) = 1. If yes, then
send (w, f j2 (x1, x2, w)) to both parties Pj for j ∈ {1, 2}.

aWe crucially require that ⊥ is a special symbol different from the empty string. We use ⊥ as a means of
signalling that the load phase of FSyX did not complete successfully. We will however allow parties to attempt to
invoke the load phase of the functionality at a later time. As we proceed, we will also have our functionality be
clock-aware and thus only accept invocations to the load phase until a certain point in time. After the load phase
times out, the functionality is rendered completely unusable. Similarly, if the load phase has been completed
successfully, a clock-oblivious version of the functionality can be triggered at any point in time as long as a
valid witness is provided, no matter the number of failed attempts. The clock-aware version of the functionality,
however, will only accept invocations of the trigger phase until a certain point in time. After the trigger phase
times out, the functionality is rendered completely unusable.

Figure 5: The ideal functionality FSyX.

FSyX. In a nutshell, the synchronization of multiple invocations of the ideal functionality FSyX is
enabled by the “trigger” phase of functionality. We will be using f1 to provide a proof to parties
other than P1, P2 that the input submission phase has ended for parties P1, P2. In other words, if
we wish to synchronize multiple invocations of the ideal functionality FSyX, we set the witness for
the trigger phase of each of the invocations to be the set of all receipts obtained from the inputs
phases of the invocations. The set of all receipts acts as a proof that every invocation of the ideal
functionality completed its load phase successfully. We use this feature of FSyX in order to design
a protocol for fair secure computation.

Multiple Triggers and Witnesses. Note that as described, the load phase of the functionality
FSyX can only be executed successfully once. And, once it has been successfully executed, the
functionality is in the trigger phase. However, whilst in the trigger phase, the primitive may be
triggered any number of times successfully or unsuccessfully. Furthermore, triggering the primitive
with different witnesses may actually produce different outputs, as modeled by having the output
f2 depend on the witness w in addition to x1, x2. This will be important for us in Section 5.

Clock-awareness. A technicality that arises in the protocol is that of guaranteed termination.
Specifically, we will need our ideal functionality to be “clock-aware”. The issue of modeling a
trusted clock has been studied in the literature. In this work, we stick to the formalism outlined
in [PST17]. We recall the main ideas here. We assume a synchronous execution model, where
protocol execution proceeds in atomic time steps called rounds. We assume that the trusted clocks
of attested execution processors and the network rounds advance at the same rate. It is easy to
adapt our model and results if the trusted clocks of the processors and the network rounds do
not advance at the same rate. In each round, the environment must activate each party one by
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Preliminaries: x1, x2 ∈ {0, 1}∗; f1, f2 are 2-output functions; φ1, φ2 are boolean predicates;
r denotes the current round number; INPUT TIMEOUT < TRIGGER TIMEOUT are round
numbers representing time outs. The functionality proceeds as follows:

• Load phase. If r > INPUT TIMEOUT, abort. Otherwise, upon receiving inputs of the
form (x1, f = (f1, f2, φ1, φ2)) from P1 and (x2, f

′) from P2, check if f = f ′. If not, abort.
Else, compute f1(x1, x2, r). If f1(x1, x2, r) = ⊥, abort. Else, send f i1(x1, x2, r) to Pi for
i ∈ {1, 2}, and go to next phase.

• Trigger phase. If r > TRIGGER TIMEOUT, abort. Otherwise, upon receiving input w
from party Pi, check if φi(w, r) = 1. If yes, then send (w, f j2 (x1, x2, w, r)) to both parties
Pj for j ∈ {1, 2}.

Figure 6: The clock-aware ideal functionality FSyX.

one, and therefore, all parties can naturally keep track of the current round number. We will use
the symbol r to denote the current round number. A party can perform any fixed polynomial
(in λ) amount of computation when activated, and send messages. We consider a synchronous
communication model where messages sent by an honest party will be delivered at the beginning
of the next round. Whenever a party is activated in a round, it can read a buffer of incoming
messages to receive messages sent to itself in the previous round. To model trusted clocks in
attested execution processors, we will provide a special instruction such that ideal functionalities,
in particular FSyX can query the current round number. We say that a functionality F is clock-
aware if the functionality queries the local time; otherwise we say that the functionality F is
clock-oblivious. For the rest of the work, we will always assume that FSyX is clock-aware. We
would also like to stress that we require only relative clocks – in other words, trusted clocks of all
functionalities need not be synchronized, since our protocol will only make use of the number of
rounds that have elapsed since initialization. Therefore, we will assume that when a functionality
reads the clock, a relative round number since the first invocation of the functionality is returned.
Thus, when working in this model, we assume that every party and every invocation of the ideal
functionality FSyX has access to a variable r that reflects the current round number. More generally,
every function and predicate that is part of the specification of FSyX may also take r as an input.
Finally, the functionality may also time out after a pre-programmed amount of time. We describe
this clock-aware functionality in Figure 6.

Infinite Timeouts. We note here that it is possible to set either one or both of INPUT TIMEOUT
and TRIGGER TIMEOUT to be ∞. What this means is that the functionality retains its state even
if it goes offline. Its state would comprise f1, f2, φ1, φ2, x1, x2 and which phase (input or trigger) it
is currently in. We also require that if the functionality does go offline and come back online, it
can still access the current value of the clock, r. The only time we use this feature of the primitive
is in Section 5 where we are able to preprocess the functionality for an unbounded number of fair
multiparty computations that would be run in the future. In this case, we would need to trigger
this functionality whenever an adversary attempts to break fairness. Since we have no bound on
how many computations we will run, we will set the TRIGGER TIMEOUT to be ∞. In practice,
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one could also just set TRIGGER TIMEOUT to be a very large number. We stress however that the
functionality is stateful and able to read time irrespective of whether it goes offline intermittently.

4 Fair Secure Computation in the FSyX-hybrid model

In this section, we will describe how a set of n parties in the OT-network model that have pairwise
access to the ideal functionality FSyX can implement n-party fair secure function evaluation. To
begin with, we will assume that the n-parties are in the point-to-point model and develop a protocol
in the (Fbc,FMPC,FSyX)-hybrid model. We first provide some intuition for our construction.

4.1 Intuition

We first start with the 3-party case as a warm-up. Let P1, P2, and P3 be the three parties with
inputs x1, x2 and x3 respectively. For i, j ∈ {1, 2, 3} with i < j, we have that parties Pi and Pj
have access to the ideal functionality FSyX. In particular, let F i,jSyX represent the instantiation of
the FSyX functionality used by parties Pi, Pj . We wish to perform fair secure function evaluation
of some 3-input 3-output functionality F .

Reduction to single output functionalities. Let (y1, y2, y3)
$← F (x1, x2, x3) be the output of

the function evaluation. We define a new four input single output functionality F ′ such that

F ′(x1, x2, x3, z) = F 1(x1, x2, x3)‖F 2(x1, x2, x3)‖F 3(x1, x2, x3)⊕ z = y1‖y2‖y3 ⊕ z

where z = z1‖z2‖z3 and |yi| = |zi| for all i ∈ [3]. The idea is that the party Pi will obtain
z′ = F ′(x1, x2, x3, z) and zi. Viewing z′ = z′1‖z′2‖z′3 where |z′i| = |zi|15 for all i ∈ [3], party Pi
reconstructs its output as

yi = zi ⊕ z′i
Now, we may assume that the input of party Pi is (xi, zi) (or we can generate random zis as part
of the computation) which determines z. It thus suffices to consider fair secure function evaluation
of single output functionalities.

Reduction to fair reconstruction. We will use ideas similar to [GIM+10, KVV16] where in-
stead of focusing on fair secure evaluation of an arbitrary function, we only focus on fair reconstruc-
tion of an additive secret sharing scheme. The main idea is to let the three parties run a secure
computation protocol that computes the output of the secure function evaluation on the parties’
inputs, and then additively secret shares the output. Given this step, fair secure computation then
reduces to fair reconstruction of the underlying additive secret sharing scheme.

The underlying additive secret sharing scheme. We use an additive secret sharing of the
output y. Let the shares be yi for i ∈ [3]. That is, it holds that

y =
⊕
i∈[3]

yi

We would like party Pi to reconstruct y by obtaining all shares yi for each i ∈ [3]. Initially, each
party Pi is given yi. Therefore, each party Pi only needs to obtain yj and yk for j, k 6= i.

15We may assume without loss of generality that the lengths of the outputs of each party are known beforehand.
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Fair reconstruction via FSyX. We assume that the secure function evaluation also provides
commitments to all the shares of the output. That is, Pi receives (yi,

−→c ) for each i ∈ [3], where
Com is a commitment scheme and

−→c = {Com(y1),Com(y2),Com(y3)}

Furthermore, we assume that each party Pi picks its own verification key vki and signing key ski
with respect to a signature scheme with a signing algorithm Sign and a verification algorithm Verify,
for each i ∈ [3]. All parties then broadcast their verification keys to all parties. Let

−→
vk = {vk1, vk2, vk3}

Each pair of parties Pi and Pj then initializes F i,jSyX with inputs

xi =
(−→
vk, ski, yi,

−→c
)

and
xj =

(−→
vk, skj , yj ,

−→c
)

The function f1 checks if both parties provided the same value for
−→
vk,−→c and checks the yi and yj

are valid openings to the corresponding commitments. It also checks that the signing keys provided
by the parties are consistent with the corresponding verification keys (more precisely, we will ask
for randomness provided to the key generation algorithm of the signature scheme). If all checks
pass, then F i,jSyX computes

σi,j = Sign((i, j); ski)‖Sign((i, j); skj)

This completes the description of f1.

Synchronization step. The output of f1 for each of the F i,jSyX will provide a way to synchronize

all FSyX instances. By synchronization, we mean that an F i,jSyX instance cannot be triggered unless
every other instance has already completed its load phase successfully. We achieve synchronization
by setting the predicate φk(w) (for k ∈ {i, j}) to output 1 if and only if w consists of all signatures

−→σ = {σi,j}i<j

That is, each instance F i,jSyX will accept the same trigger w = −→σ . We define f2 to simply output
both yi and yj to both parties if φk(w) = 1.

Protocol intuition. We briefly discuss certain malicious behaviors and how we handle them.
From the description above, it is clear that parties have no information about the output until one
of the FSyX instances is triggered. Furthermore, note that this implies that the corrupt parties must
successfully complete the load phases of the instances of FSyX that it shares with all of the honest
parties in order to obtain the witness that can be used to trigger the FSyX instances. Following the
load phases of all of the FSyX instances, we ask each party to broadcast the receipt σi,j obtained

from F i,jSyX. Now suppose parties Pi and Pj are both dishonest, and suppose they do not broadcast
σi,j . Note also that since Pi and Pj collude, they do not need the help of FSyX to compute σi,j .
Since honest Pk does not know the synchronizing witness −→σ , it will not be able to trigger any of
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the FSyX instances. However, note that for the adversary to learn the output of the computation,

the corrupt party Pi (without loss of generality) will need to trigger F i,kSyX to obtain Pk’s share of

the key. However, once Pi triggers F i,kSyX, it follows that Pk would obtain the synchronizing witness
−→σ using which it can trigger both F i,kSyX and F j,kSyX and learn its output.

Termination. The protocol as described up until this point does not have guaranteed termina-
tion. In particular, the honest parties will need to wait for the corrupted parties to broadcast their
receipts or trigger a channel with an honest party in order to be able to trigger the instances of
FSyX and obtain the output. Time outs do not help in this case as the adversary may simply wait
until the last moment to trigger instances of FSyX and obtain their outputs leaving insufficient time
for the honest parties to trigger their instances of FSyX and obtain their outputs. In order to ensure
termination, we make use of the clock. The main invariant that we want to guarantee is that if an
instance of FSyX involving an (honest) party is triggered, then every other instance of FSyX that
the (honest) party is involved in, also needs to be triggered. One way to implement this idea is to
assume that all instances of FSyX time out after

T =

(
3

2

)
= 3

rounds. Furthermore, an instance of FSyX accepts triggers in some round τ ∈ [T ] (that is, until
it times out) if and only if you provide a proof that t − 1 other instances of FSyX were triggered

until now. As before, we will have FSyX leak the triggering witness to the parties. Thus, if F i,jSyX
is triggered in some round t, then Pi (and/or Pj) can trigger all the other F i,kSyX (and/or F j,kSyX)
channels that it is involved in, in round τ + 1.

Suppose some honest party, say Pi, does not obtain the output of the computation while the
adversary has learned the output. Since the adversary learned the output, this means that the
adversary triggered F i,jSyX for some j (otherwise the adversary would not have learnt yi and would
not have received the output). That means Pi would have been able to trigger all the other channels
that it is involved in and generate the final output in the next round. The only issue with this
argument would be when F i,jSyX was triggered last, that is, in round τ = T . However this is not
possible since until this time, at most T − n+ 1 < T − 1, assuming n ≥ 3, instances of FSyX could
have been be triggered. This is because n− 1 instances of FSyX must be left untriggered in round
τ = T − 1 since the honest party didn’t get its output.

Reducing the duration of time outs. A more clever solution will allow us to terminate within
T = n rounds. In order to trigger an instance of FSyX in some round τ ∈ [T ], you must provide
a proof that other instances of FSyX involving at least τ different parties have been triggered.

Consider the first round τ in which Pi is an honest party and F i,jSyX is triggered for some j. If τ = 1,
then the single invocation already gives a proof that channels involving two parties, namely, i, j,
have been triggered. Otherwise, by assumption, proofs of invocations of instances of FSyX involving

τ different parties were needed to trigger F i,jSyX. But Pi is not one of these parties as τ is the first

round in which F i,jSyX was triggered for any j. Consequently, Pi, on this invocation, obtains a proof
that instances of FSyX involving at least τ + 1 parties have been triggered, and can thus trigger
all channels in round τ + 1. As before, the only gap in the argument is the case τ = T . One can
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trivially see that since F i,jSyX has not been triggered for any j, it is impossible to obtain a proof that
instances of FSyX involving at least T different parties have been triggered.

Simulation. We look ahead for the issues that come up while trying to prove security, that is,
during the simulation. The simulator will release to the adversary, the adversary’s shares of the
output, which can be simulated. But, it also releases commitments to all the shares of the output.
Since the simulator does not know the output apriori, and does not know whether the adversary
is going to abort the computation, in which case, no one knows the output, it has to produce
commitments that it can later equivocate. In this context, we use, not regular commitments, but
honest-binding commitments. In this case, the simulator can produce commitments to garbage but
can later open them to be valid shares of the output. The rest of the computations can be trivially
simulated. The only other detail to be looked into is that of the clock. We need to determine if
the adversary has decided to abort the computation, that is, if the adversary is going to receive
the output of the computation of not. This is done by noticing if and when the adversary decides
to trigger the instances of FSyX that involve honest parties. We know that if the adversary ever
triggers an instance of FSyX involving an honest party, then all parties will be in a position to
receive the output. Thus, the simulator can simply run the adversary to determine whether it has
decided to enable parties to obtain the output, in which case the simulator would ask the trusted
party to continue, or not, in which case the simulator would ask the trusted party to abort.

4.2 Protocol

We now present the protocol for fair secure computation in the (Fbc,FMPC,FSyX)-hybrid model.

Preliminaries. F is the n-input n-output functionality to be computed; xi is the input of
party Pi for i ∈ [n]; Fa,bSyX represents the instantiation of the FSyX functionality used by par-
ties Pa, Pb with time out round numbers INPUT TIMEOUT = 0 and TRIGGER TIMEOUT = n

for a < b, where a, b ∈ [n];
(
Com,Open, C̃om, Õpen

)
is an honest-binding commitment scheme;

V = (Gen, Sign,Verify) is a signature scheme; r denotes the current round number.

Protocol. The protocol ΠFMPC proceeds as follows:

• Define F ′ to the be the following n-input n-output functionality: On input −→x = (x1, . . . , xn):

– Let (y1, . . . , yn) = F (x1, . . . , xn) and let

y = y1‖ . . . ‖yn

Sample random strings αi
$← {0, 1}∗ such that |αi| = |yi| for each i ∈ [n]. Let

α = α1‖ . . . ‖αn

Let z = y ⊕ α.

– Sample a random additive n-out-of-n secret sharing z1, . . . , zn of z such that

z =
⊕
i∈[n]

zi
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– Compute commitments along with their openings (czi , ω
z
i )

$← Com(zi) to each of the
shares zi for each i ∈ [n]. Let

−→
cz = (cz1, . . . , c

z
n)

– Sample random proof values π1, . . . , πn
$← {0, 1}λ. Compute commitments along with

their openings (cπi , ω
π
i )

$← Com(πi) to each of the proof values πi for each i ∈ [n]. Let

−→
cπ = (cπ1 , . . . , c

π
n)

– Party Pi receives output
(
αi,
−→
cz , ωzi , zi,

−→
cπ , ωπi , πi

)
for each i ∈ [n].

• The parties invoke the ideal functionality FMPC with inputs ((x1, F
′), . . . , (xn, F

′)). If the
ideal functionality returns ⊥ to party Pi, then Pi aborts for any i ∈ [n]16. Otherwise, party

Pi receives output
(
αi,
−→
cz , ωzi , zi,

−→
cπ , ωπi , πi

)
for each i ∈ [n].

• Each party Pi, for each i ∈ [n], picks a random βi ∈ {0, 1}∗ and uses this randomness to
pick a signing and verification key pair (ski, vki) = V.Gen(1λ;βi). It then invokes the ideal
functionality Fbc and broadcasts vki to all other parties. If it does not receive vkj for all
j 6= i, it aborts. Otherwise, it obtains

−→
vk = (vk1, . . . , vkn)

• For each a, b ∈ [n] with a < b, define the following functions.

– Let fa,b1 be the function that takes as input (γ, γ′) and parses

γ =
(−→
vk, sk, β,

−→
cz , ωz, z,

−→
cπ , ωπ, π

)
and

γ′ =
(−→
vk′, sk′, β′,

−→
cz ′, ωz ′, z′,

−→
cπ ′, ωπ ′, π′

)
It checks that:

∗
−→
vk =

−→
vk′,
−→
cz =

−→
cz ′,
−→
cπ =

−→
cπ ′

∗ (sk, vka) = V.Gen(1λ;β), (sk′, vkb) = V.Gen(1λ;β′)

∗ Open(cza, ω
z, z) = Open(czb , ω

z ′, z′) = 1

∗ Open(cπa , ω
π, π) = Open(cπb , ω

π ′, π′) = 1

16In the FOT-hybrid model, let πF ′ denote the protocol for the functionality F ′ defined in Lemma 8. The parties
execute πF ′ . If the execution of πF ′ aborts, we are assuming that all (honest) parties are aware of the round when
the execution of πF ′ aborts, that is, when the adversary has decided to abort the execution of πF ′ . Since we are
working in the FMPC-hybrid model, we know that in the ideal model, this is the case when the honest parties receive
⊥ as their output. If we assume that in the case when the the adversary decides to let the honest parties obtain their
outputs, no honest party ever receives ⊥, this could be used to identify the scenario when the adversary has decided
to abort the execution of πF ′ . Thus, we could, in principle, replace this instruction with: If party Pi receives ⊥ as its
output, it aborts. Furthermore, since we are considering the case of unanimous abort, if the adversary has decided
to abort the execution of πF ′ , all honest parties abort the protocol.
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If all of these checks pass, then fa,b1 outputs

σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

and otherwise it outputs ⊥.

– Let φa,b1 be the function that takes as input a witness w, which is either of the form

(0,−→σ ) or of the form
(

1,−→σ ,−→z ,−→ωz,−→π ,−→ωπ,
−→
ind
)

.

∗ If w is of the first form, then it tests if r = 1 and

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

for all a, b ∈ [n] with a < b, outputting 1 if so and 0 if not.

∗ If w is of the second form, then it checks that:

·
V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

for all a, b ∈ [n] with a < b

· |−→π | =
∣∣∣−→ωπ∣∣∣ =

∣∣∣−→ind∣∣∣ = r

·
−→
ind consists of distinct indices in [n].

· Open
(
czindj , ω

z
j , zj

)
= 1 for every j ∈ [r].

· Open
(
cπindj , ω

π
j , πj

)
= 1 for every j ∈ [r].

If all of these checks pass, then φa,b1 outputs 1 and otherwise it outputs 0.

– Let φa,b2 be identical to φa,b1 .

– Let fa,b2 be the function that takes as input (γ, γ′) where γ, γ′ are as above, and outputs
(ωz, z, ωπ, π, ωz ′, z′, ωπ ′, π′).

• Set r = 017. Each party Pa for each a ∈ [n] will now run the load phase to set up each
instance of FSyX that it is involved in. For each pair of parties Pa, Pb with a 6= b for a, b ∈ [n],
let a′ = min(a, b) and b′ = max(a, b). For each such pair of parties Pa, Pb, party Pa runs the

load phase of Fa
′,b′

SyX , providing inputs (xa, f), where

xa =
(−→
vk, ska, βa,

−→
cz , ωza, za,

−→
cπ , ωπa , πa

)
and

f =
(
fa
′,b′

1 , fa
′,b′

2 , φa
′,b′

1 , φa
′,b′

2

)
17This does not entail actually setting r = 0, but rather viewing the current round as round zero and henceforth

referencing rounds with respect to it, that is, viewing r as the round number relative to the round number when this
statement was executed.
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• If r > n, abort. Otherwise, while r ≤ n,

– If a party Pa for a ∈ [n] receives σa′,b′ from each Fa
′,b′

SyX it is involved in, indicating that
the load phase of all such FSyX functionalities were completed successfully, and r = 0, it
invokes the ideal functionality Fbc and broadcasts

−→σa =
{
σa′,b′

}
a′=a ∨ b′=a

to all the parties. Otherwise, it invokes the ideal functionality Fbc when r = 1 and
broadcasts abort to all the parties and aborts.

– If a party Pa for a ∈ [n] receives −→σ such that

V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

for all a, b ∈ [n] with a < b, and r = 1, then it uses the witness w = (0,−→σ ) to invoke
the trigger phase of each instance of FSyX that it is involved in. Once all such instances
of FSyX involving party Pa have been triggered, use the shares z1, . . . , zn to reconstruct
z, parses z as z1‖ . . . ‖zn where |zi| = |yi| for all i ∈ [n]18 and computes yi = zi ⊕ αi to
obtain the output of the computation.

– If party Pa for a ∈ [n] has not received the output of the computation and an instance
of FSyX involving party Pa is first triggered in round 1 ≤ r < n, it triggers each instance
of FSyX that it is involved in during round r + 1 using the output out it receives from
the instance of FSyX as follows:

∗ If out1 = (0,−→σ ), then r = 1. Let Fa
′,b′

SyX be the instance of FSyX that was triggered,

where a′ = a ∨ b′ = a. Parse out2 = (ωz, z, ωπ, π, ωz ′, z′, ωπ ′, π′). It prepares the
witness

w =
(
1, (z, z′),

(
ωz, ωz ′

)
, (π, π′),

(
ωπ, ωπ ′

)
, (a′, b′)

)
∗ If out1 =

(
1,−→σ ,−→z ,−→ωz,−→π ,−→ωπ,

−→
ind
)

, it prepares the witness

w =
(

1,−→σ ,−→z ′,
−→
ωz ′,−→π ′,

−→
ωπ ′,
−→
ind′
)

where

· |−→z ′| = r + 1, −→z ′|[r] = −→z |[r], z′r+1 = za

·
∣∣∣−→ωz ′∣∣∣ = r + 1,

−→
ωz ′
∣∣∣
[r]

=
−→
ωz
∣∣∣
[r]

, ωzr+1
′ = ωza

· |−→π ′| = r + 1, −→π ′|[r] = −→π |[r], π′r+1 = πa

·
∣∣∣−→ωπ ′∣∣∣ = r + 1,

−→
ωπ ′
∣∣∣
[r]

=
−→
ωπ
∣∣∣
[r]

, ωπr+1
′ = ωπa

·
∣∣∣−→ind′∣∣∣ = r + 1,

−→
ind′
∣∣∣
[r]

=
−→
ind
∣∣∣
[r]

, ind′r+1 = a

18We may assume without loss of generality that the lengths of the outputs of each party are known beforehand.
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Once all instances of FSyX involving party Pa have been triggered, it uses the shares
z1, . . . , zn to reconstruct z, parses z as z1‖ . . . ‖zn where |zi| = |yi| for all i ∈ [n] and
computes yi = zi ⊕ αi to obtain the output of the computation.

– If party Pa for a ∈ [n] has not received the output of the computation and an instance
of FSyX involving party Pa is triggered and r = n, it receives all shares of z. It uses the
shares z1, . . . , zn to reconstruct z, parses z as z1‖ . . . ‖zn where |zi| = |yi| for all i ∈ [n]
and computes yi = zi ⊕ αi to obtain the output of the computation.

Remark. It is possible to replace the O(n2) signatures with n other commitments to n other
independent random proof values (akin to π) that can be used to prove that all the instances of
FSyX completed their load phases successfully.

4.3 Proof sketch of Security

We sketch the proof of security of the above protocol. The correctness of the computation of
the functionality F ′ follows by definition from the correctness of the ideal functionality FMPC.
Furthermore, we have that at the end of the invocation of the ideal functionality FMPC, either all
honest parties unanimously abort or all honest parties unanimously continue. Thus, assuming that

FMPC did not abort, every party receives the output of F ′. For every i ∈ [n], let
−→
vki denote the

set of verification keys that were obtained by party Pi. Note that, by the correctness of the ideal
functionality Fbc, −→

vk =
−→
vki

for all i ∈ [n]. If
−→
vk does not contain vkj for every j ∈ [n], which would happen in the case that

some corrupt parties do not broadcast their verification keys, all honest parties unanimously abort.
Otherwise, all honest parties unanimously continue. Assuming the honest parties have not aborted,
we note that if the corrupt parties do not provide valid inputs to the load phase of even one of the
instances of FSyX that they are involved in along with an honest party, say Pi for some i ∈ [n], by
the correctness of the ideal functionality FSyX and the binding property for the honestly generated
commitments, that particular instance of FSyX will not complete its load phase successfully. In this
case Pi will force all honest parties to unanimously abort, since no party (not even the corrupt ones)
can obtain their output. We thus consider the case where all instances of FSyX have completed
their load phases successfully. At this point, if all parties broadcast all the signatures they obtained
from the instances of FSyX, all parties can trigger the instances of FSyX that they are involved in to
receive all the shares of z, reconstruct z and finally obtain their output correctly. The issue arises
when some corrupt parties do not broadcast the signatures they obtained from the instances of
FSyX. If a corrupt party triggers any instance of FSyX involving an honest party, say Pi for some
i ∈ [n], with a witness of the form (0,−→σ ) in round 1, then the honest party obtains a tuple of values
(−→σ , z, ωz, π, ωπ) from the corrupt party. In addition to its own such tuple of values, it obtains a
valid witness to trigger all the instances of FSyX that it is involved in in round 2. Since n ≥ 2,
Pi succeeds in doing this and obtaining the shares of z, z and hence finally its output correctly.
Consider any honest party Pj for j 6= i. Since n > 2, Pj , as did Pi, proceeds to trigger all the
instances of FSyX that it is involved in in round 3. If no corrupt party triggers any instance of
FSyX involving an honest party with a witness of the form (0,−→σ ) in round 1, if the adversary is to
obtain the output, it must instruct a corrupt party to trigger an instance of FSyX that it is involved

in along with an honest party, but now using a witness of the form
(

1,−→σ ,−→z ,−→ωz,−→π ,−→ωπ,
−→
ind
)

. Let
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r be the first round when a corrupt party triggers an instance of FSyX that it is involved in along

with an honest party, say Pi for some i ∈ [n], using a witness of the form
(

1,−→σ ,−→z ,−→ωz,−→π ,−→ωπ,
−→
ind
)

.

Then, it must be the case that i 6∈
−→
ind and that Pi now obtains the tuple of values (−→σ , z, ωz, π, ωπ)

corresponding to r parties other than itself. Combining this information with its own tuple of
values (z, ωz, π, ωπ), it obtains a valid witness to trigger all the instances of FSyX that it is involved
in in round r + 1. If r < n, Pi succeeds in doing this and obtaining the shares of z, z and hence
finally its output correctly. Consider any honest party Pj for j 6= i. If r + 1 = n, then Pj receives
all the shares of z and consequently its output correctly. If r + 1 < n, then Pj , as did Pi, proceeds
to trigger all the instances of FSyX that it is involved in in round r+ 2. Finally, we note that r < n
since r is the first round when a corrupt party triggers an instance of FSyX that it is involved in
along with an honest party, which means that the witness it used to trigger the instance of FSyX

can have the tuple of values (z, ωz, π, ωπ) corresponding to at most n− 1 parties as at least one of
the parties is honest. If this does not happen, then no party (not even the corrupt ones) obtains
their output. This completes the proof of security.

4.4 Security

We now prove the following lemma.

Lemma 9. If
(
Com,Open, C̃om, Õpen

)
is an honest-binding commitment scheme and V is a signa-

ture scheme, then the protocol ΠFMPC securely computes FMPC with fairness in the (Fbc,FMPC,FSyX)-
hybrid model.

Proof. Let A be an adversary attacking the execution of the protocol described in Section 4.2 in
the (Fbc,FMPC,FSyX)-hybrid model. We construct an ideal-model adversary S in the ideal model
of type fair. Let F be the n-input n-output functionality to be computed. Let I be the set of
corrupted parties. If I is empty, then there is nothing to simulate. S begins by simulating the first
step of the protocol, namely, the invocation of the ideal functionality FMPC. Here, S behaves as the
ideal functionality FMPC. Recall that the type of FMPC is abort. S obtains the inputs {(xi, fi)}i∈I
of the corrupted parties from A. If (xi, fi) = abort for any i ∈ I, S forwards {(xi, fi)}i∈I to
the trusted party computing FMPC with fairness, receives ⊥ as the output of all parties, which it
forwards A. Suppose (xi, fi) 6= abort for all i ∈ I. If there exists a j ∈ I such that fj 6= F ′

as defined in protocol ΠFMPC, S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with
fairness, which aborts, and then aborts itself. If there exists a j ∈ I such that (xj , fj) is not of the
specified format, S replaces (xj , fj) with a default value. Going forward, we assume that for all
i ∈ I, (xi, fi) is well-formed and that fi = F ′ as defined in ΠFMPC.
S now needs to simulate the outputs received by the corrupted parties from the ideal function-

ality FMPC. For each i ∈ [n], S samples a random string αi
$← {0, 1}∗ of length equal to the length

of the ith output of F . Let
α = α1‖ . . . ‖αn

For each i ∈ I, S samples a random string zi
$← {0, 1}∗ of length equal to the sum of the lengths of

all the outputs of F . It then computes commitments along with their openings (czi , ω
z
i )

$← Com(zi)
to each of the shares zi for each i ∈ I. For each i ∈ [n] \ I, it samples a equivocable commitment

(czi , statei)
$← C̃om(1λ). Let

−→
cz = (cz1, . . . , c

z
n)
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For each i ∈ [n], S samples random proof values π1, . . . , πn
$← {0, 1}λ and compute commitments

along with their openings (cπi , ω
π
i )

$← Com(πi) to each of the proof values πi. Let

−→
cπ = (cπ1 , . . . , c

π
n)

and −→
ωπ = (ωπ1 , . . . , ω

π
n)

Thus, the simulator constructs the output
(
αi,
−→
cz , ωzi , zi,

−→
cπ , ωπi , πi

)
for each i ∈ I and forwards

it to A. If A then sends abort, S forwards {(xi, fi)}i∈I to the trusted party computing FMPC

with fairness, with (xj , fj) replaced with abort for some j ∈ I, receives ⊥ as the output of all
parties, which it forwards A. Otherwise, A responds with continue. At this point, S has completed
simulating the invocation of the ideal functionality FMPC.

For each i ∈ [n] \ I, S picks a random βi ∈ {0, 1}∗ and uses this randomness to pick a signing
and verification key pair (ski, vki) = V.Gen(1λ;βi). Now, S must simulate the invocations of the
ideal functionality Fbc by the corrupt parties. Here, S behaves as the ideal functionality Fbc. Recall
that the type of Fbc is g.d.. For all i ∈ [n]\I, S “broadcasts” vki to all the corrupt parties. For any
i ∈ I, if A instructs Pi to invoke Fbc with input vki, S “broadcasts” vki to all the corrupt parties
and stores vki. At the end of this round, if A did not instruct some corrupt party to invoke Fbc,
S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with fairness, with (xj , fj) replaced
with abort for some j ∈ I, receives ⊥ as the output of all parties, and aborts itself. Otherwise, S
successfully constructs −→

vk = (vk1, . . . , vkn)

At this point, S has completed simulating the invocations of the ideal functionality Fbc used to
broadcast the verification keys of all the parties.
S maintains a virtual round counter and initializes it to zero. Now, S has to simulate the

invocations of the load phases of the instances of the ideal functionality FSyX that involve corrupt
parties. Here, S behaves as the ideal functionality FSyX. Recall that the type of FSyX is g.d.. For
any a, b ∈ [n] with a < b and a ∈ I and b ∈ [n] \ I, if A instructs Pa to invoke the load phase of

Fa,bSyX with inputs

γ =
(−→
vk′, ska, βa,

−→
cz ′, ωz, z,

−→
cπ ′, ωπ, π

)
S computes fa,b1 (γ, γ′) as defined in ΠFMPC, where

γ′ =
(−→
vk, skb, βb,

−→
cz , ωzb , zb,

−→
cπ , ωπb , πb

)
Note that since b ∈ [n] \ I, S does in fact have skb, βb, ω

π
b , πb. The only values it does not have are

ωzb , zb. In the execution of fa,b1 , ωzb , zb are needed to check that

Open(czb , ω
z
b , zb) = 1

Note that since Pb is an honest party, it would always supply inputs such that this check passes.
Furthermore, the outcome of this check does not depend on any input that the adversary sends.
Thus, in simulating the computation of fa,b1 , S performs all the checks that fa,b1 , except this one.
If all the checks pass, S computes

σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))
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and forwards σa,b to the adversary. S also stores ska, βa. If any of the checks do not pass, S simply

aborts simulating the load phase of this particular instance Fa,bSyX. S behaves symmetrically if for
any a, b ∈ [n] with a < b and b ∈ I and a ∈ [n] \ I, if A instructs Pb to invoke the load phase of

Fa,bSyX. The final case to consider is if for any a, b ∈ [n] with a < b and a, b ∈ I, if A instructs Pa, Pb

to invoke the load phase of Fa,bSyX with inputs

γ =
(−→
vk′, ska, βa,

−→
cz ′, ωz, z,

−→
cπ ′, ωπ, π

)
and

γ′ =
(−→
vk′′, skb, βb,

−→
cz ′′, ωz ′, z′,

−→
cπ ′′, ωπ ′, π′

)
S computes fa,b1 (γ, γ′) as defined in ΠFMPC. If all the checks pass, S computes

σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

and forwards σa,b to the adversary. S also stores ska, βa, skb, βb. If any of the checks do not pass,

S simply aborts simulating the load phase of this particular instance Fa,bSyX. At the end of this
round, let LoadFailed denote the set of all i such that Pi is an honest party and A did not instruct
some corrupt party to invoke the load phase of an instance of FSyX that it was involved in with
Pi. If LoadFailed is not empty, for each i ∈ LoadFailed, S must simulate the invocations of the ideal
functionality Fbc by party Pi to broadcast abort. For each i ∈ LoadFailed, S “broadcasts” abort to
all the corrupt parties. S then forwards {(xi, fi)}i∈I to the trusted party computing FMPC with
fairness, with (xj , fj) replaced with abort for some j ∈ I, receives ⊥ as the output of all parties,
and aborts itself. Otherwise, S successfully constructs

−→
sk = (sk1, . . . , skn)

and −→
β = (β1, . . . , βn)

S computes
σa,b = (V.Sign((a, b); ska),V.Sign((a, b); skb))

for every a < b ∈ [n] and defines
−→σ = {σa,b}a<b,a,b∈[n]

Now, S must simulate the invocations of the ideal functionality Fbc by the corrupt parties. For all
a ∈ [n] \ I, S “broadcasts”

−→σi =
{
σa′,b′

}
a′=i ∨ b′=i

to all the corrupt parties. For any i ∈ I, ifA instructs Pi to invoke Fbc with input−→σi , S “broadcasts”
−→σi to all the corrupt parties.

Once round 0 is completed, S has completed simulating the invocations of the load phase of all
the instances of the ideal functionality FSyX and the ideal functionality Fbc. What remains is to
determine whether the adversary wishes to obtain its output and to simulate the invocations of the
trigger phases of the instances of the ideal functionality FSyX that the adversary instructs corrupt
parties to trigger. We consider two cases. First, we make the following definition: a witness w is
valid if

w = (0,−→σ )
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in round 1 with
V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

for all a, b ∈ [n] with a < b, or

w =
(

1,−→σ ,−→z ,
−→
ωz,−→π ,

−→
ωπ,
−→
ind
)

in round 1 ≤ r ≤ n with

•
V.Verify (σa,b,1, (a, b); vka) = 1

and
V.Verify (σa,b,2, (a, b); vkb) = 1

for all a, b ∈ [n] with a < b

• |−→π | =
∣∣∣−→ωπ∣∣∣ =

∣∣∣−→ind∣∣∣ = r

•
−→
ind consists of distinct indices in [n].

• Open
(
czindj , ω

z
j , zj

)
= 1 for every j ∈ [r].

• Open
(
cπindj , ω

π
j , πj

)
= 1 for every j ∈ [r].

Case A. The adversary instructed all corrupt parties to broadcast all of their signa-
tures. S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with fairness. It receives
the corrupt parties outputs, namely, {yi}i∈I . S chooses the outputs of the honest party completely

at random, that is, it samples random strings yi
$← {0, 1}∗ of length equal to the length of the ith

output of F , for i ∈ [n] \ I. S then constructs

y = y1‖ . . . ‖yn

It then defines
z = y ⊕ α

Let j be an arbitrary index in [n] \ I. S samples random strings zi
$← {0, 1}∗ of length equal to the

sum of the lengths of all the outputs of F , for i ∈ [n] \ (I ∪ {j}). S then computes

zj = z ⊕
⊕

i∈[n]\{j}

zi

and constructs
−→z = (z1, . . . , zn)
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S computes ωzi
$← Õpen(statei, zi) for each i ∈ [n] \ I and constructs

−→
ωz = (ωz1 , . . . , ω

z
n)

Note that, at this point, S has every value ever used in the protocol. For every i ∈ [n] \ I and
every j ∈ I, letting a = min(i, j) and b = max(i, j), S sends ((0,−→σ ) , (ωza, za, ω

π
a , πa, ω

z
b , zb, ω

π
b , πb))

to Pj . Going forward, S simulates invocations of the trigger phases of the instances of the ideal
functionality FSyX that the adversary instructs corrupt parties to trigger as follows.

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance of
FSyX involving another corrupt party, say Pj for j ∈ I, with a valid witness w, S sends
(w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj))

19 to parties Pi and Pj .

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance
of FSyX involving an honest party, say Pj for j ∈ [n] \ I, with a valid witness w, S sends
(w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj)) to Pi.

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

• Suppose the an honest party, say Pi for i ∈ [n] \ I, triggers an instance of FSyX involving a
corrupt party, say Pj for j ∈ I. S sends (w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj)) to Pj .

Case B. The adversary did not instruct all corrupt parties to broadcast all of their
signatures. We first discuss how S simulates certain invocations of the trigger phases of the
instances of the ideal functionality FSyX that the adversary instructs the corrupt parties to trigger.

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance of
FSyX involving another corrupt party, say Pj for j ∈ I, with a valid witness w. S sends
(w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj)) to parties Pi and Pj .

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

Suppose the adversary does not instruct a corrupt party, say Pi for some i ∈ I, to trigger an
instance of FSyX involving an honest party, say Pj for some j ∈ [n] \ I, with a valid witness and
the round counter exceeds n, S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with
fairness, with (xj , fj) replaced with abort for some j ∈ I, receives ⊥ as the output of all parties,
and aborts itself. Otherwise, at the first instant the adversary instructs a corrupt party to trigger
an instance of FSyX involving an honest party with a valid witness w, S forwards {(xi, fi)}i∈I to
the trusted party computing FMPC with fairness. It receives the corrupt parties outputs, namely,
{yi}i∈I . S chooses the outputs of the honest party completely at random, that is, it samples random

strings yi
$← {0, 1}∗ of length equal to the length of the ith output of F , for i ∈ [n] \ I. S then

constructs
y = y1‖ . . . ‖yn

19Technically, this would have to be reordered as before. We ignore this technicality for ease of presentation.
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It then defines
z = y ⊕ α

Let j be an arbitrary index in [n] \ I. S samples random strings zi
$← {0, 1}∗ of length equal to the

sum of the lengths of all the outputs of F , for i ∈ [n] \ (I ∪ {j}). S then computes

zj = z ⊕
⊕

i∈[n]\{j}

zi

and constructs
−→z = (z1, . . . , zn)

S computes ωzi
$← Õpen(statei, zi) for each i ∈ [n] \ I and constructs

−→
ωz = (ωz1 , . . . , ω

z
n)

Note that, at this point, S has every value ever used in the protocol. S sends the tuple of values
(w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj)) to Pi. Going forward, S simulates invocations of the trigger phases

of the instances of the ideal functionality FSyX that involve corrupt parties as follows.

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance of
FSyX involving another corrupt party, say Pj for j ∈ I, with a valid witness w, S sends
(w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj)) to parties Pi and Pj .

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance
of FSyX involving an honest party, say Pj for j ∈ [n] \ I, with a valid witness w, S sends
(w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj)) to Pi.

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

• Suppose the an honest party, say Pi for i ∈ [n] \ I, triggers an instance of FSyX involving a
corrupt party, say Pj for j ∈ I. S sends (w, (ωzi , zi, ω

π
i , πi, ω

z
j , zj , ω

π
j , πj)) to Pj .

Finally, S outputs whatever A outputs. It is easy to see that the view of A is indistinguishable

in the execution of the protocol ΠFMPC and the simulation with S, if
(
Com,Open, C̃om, Õpen

)
is

an honest-binding commitment scheme and V is a signature scheme. We therefore conclude that
the protocol ΠFMPC securely computes FMPC with fairness in the (Fbc,FMPC,FSyX)-hybrid model,
as required.

Remark. In the proof of Lemma 9, we ignore some annoying technicalities. For instance, the
adversary may cause the honest parties to abort, will be unable to obtain its output but still
pointlessly interact with some of the ideal functionalities. In the proof, however, the simulator
would have aborted. We note that these details are not particularly enlightening and are of no
consequence. One can deal with these sorts of attacks by asking the simulator to wait in these
scenarios until the adversary says that it is done and then finally abort if it has to. Thus, we
assume, for the purpose of the proof, that if the adversary forces the honest parties to abort in a
situation where it will be unable to obtain its output, without loss of generality, it halts. Other
examples of such technicalities are when the adversary sends “unexpected” messages, “incomplete”
messages, etc. Note that such messages can be easily detected and ignored, and do not affect the
protocol in any way.
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4.5 Getting to the FSyX-hybrid model

Combining Lemmas 1, 4, 8 and 9, we obtain the following theorem.

Theorem 1. Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming the exis-
tence of one-way functions, there exists a protocol π which securely computes FMPC with fairness
in the presence of t-threshold adversaries for any 0 ≤ t < n in the (FOT,FSyX)-hybrid model.

As discussed in Section 3, F2PC, and hence FOT, can be realized in the FSyX-hybrid model. We
thus have the following theorem.

Theorem 2. Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming the exis-
tence of one-way functions, there exists a protocol π which securely computes FMPC with fairness
in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid model.

It is important to note that via this transformation, we have not introduced a need for the
parties to have access to multiple instances of the ideal functionality FSyX as opposed to one. This
is because, in the protocol ΠFMPC, the ideal functionality FOT will only be used to emulate the ideal
functionality FMPC. During this stage, we do not make any use of the ideal functionality FSyX.
Once we are done with the single invocation of FMPC, we only invoke the ideal functionality FSyX.
As a consequence, parties can reuse the same instance of FSyX to first emulate FOT and then as
a complete FSyX functionality. We note that this however does increase the number of times the
functionality is invoked.

5 Preprocessing FSyX

In this section, we will describe how a pair of parties can “preprocess” an instance of the ideal
functionality FSyX.We first describe what we mean by “preprocess”. What we would like to enable
is the following. We already know that the ideal functionality FSyX allows the pair of parties to
perform fair two-party computations. We would like to set up the FSyX functionality such that after
a single invocation of the load phase, the two parties can perform an arbitrary (apriori unknown)
polynomial number of fair two-party computations. Furthermore, if the parties are honest, they
would not need to invoke the ideal functionality, that is, the “preprocessing” of the functionality is
optimistic. Combining this with the protocol for fair multiparty computation in the FSyX-hybrid
model from Section 4, we are able to show how an arbitrary set of n parties in the point-to-point
model that have pairwise access to the ideal functionality FSyX that has been preprocessed, can
perform an arbitrary (apriori unknown) polynomial number of fair multiparty computations. To
begin with, we will assume that the n-parties are in the point-to-point model and develop a protocol
in the (Fbc,FMPC,FSyX)-hybrid model. We first provide some intuition for our construction.

5.1 Intuition

We first start with the 3-party case as a warm-up. Let P1, P2, and P3 be the three parties, subsets
(or all) of which would like to perform an unbounded (apriori unknown polynomial) number of
secure function evaluations. For i, j ∈ {1, 2, 3} with i < j, we have that parties Pi and Pj have

access to the ideal functionality FSyX. In particular, let F i,jSyX represent the instantiation of the FSyX

functionality used by parties Pi, Pj . We wish to perform fair secure function evaluation of some
3-input 3-output functionality F .
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Reduction to single output functionalities. Let (y1, y2, y3)
$← F (x1, x2, x3) be the output of

a function evaluation20. We define a new four input single output functionality F ′ such that

F ′(x1, x2, x3, z) = F 1(x1, x2, x3)‖F 2(x1, x2, x3)‖F 3(x1, x2, x3)⊕ z = y1‖y2‖y3 ⊕ z

where z = z1‖z2‖z3 and |yi| = |zi| for all i ∈ [3]. The idea is that the party Pi will obtain
z′ = F ′(x1, x2, x3, z) and zi. Viewing z′ = z′1‖z′2‖z′3 where |z′i| = |zi|21 for all i ∈ [3], party Pi
reconstructs its output as

yi = zi ⊕ z′i
Now, we may assume that the input of party Pi is (xi, zi) (or we can generate random zis as part
of the computation) which determines z. It thus suffices to consider fair secure function evaluation
of single output functionalities.

Reduction to fair reconstruction. We will use ideas similar to [GIM+10, KVV16] where in-
stead of focusing on fair secure evaluation of an arbitrary function, we only focus on fair recon-
struction of an additive secret sharing scheme. The main idea is to let the parties run a secure
computation protocol that computes the output of the secure function evaluation on the parties’
inputs, and then additively secret shares the output. Given this step, fair secure computation then
reduces to fair reconstruction of the underlying additive secret sharing scheme.

Instance and party independence. Looking ahead, as in Section 4, we will use the instances
of the ideal functionality FSyX to perform fair reconstruction. In order to be able to preprocess the
instances of the functionality for arbitrary reconstructions, what is being reconstructed must be
independent of the secure function evaluation and, in particular, the inputs of the parties. Further-
more, it must also be independent of the specific parties that are performing the reconstruction.
However, until now, we have been assuming that the output of the secure function evaluation on
the parties’ inputs is what is being reconstructed, which does not satisfy our requirements and
hence would not allow preprocessing. In order to fix this, we assume that the output of the secure
function evaluation on the parties’ inputs is encrypted under a key and that key is what will be
reconstructed fairly. Note that the key can be chosen independent of the secure function evaluation
and the parties’ inputs. We would also like it to be the case that even after reconstructing once,
our preprocessing is valid. This would require that the preprocessing allows for the generation
and fair reconstruction of multiple independent (to a computational adversary) keys, one for each
secure function evaluation. Thus, what is actually done during the preprocessing phase is the fol-
lowing. Each pair of parties Pi and Pj initializes F i,jSyX. The function f1 samples two random values

vi,j , vj,i
$← {0, 1}λ and computes the output of f1 as

Vi,j = Vj,i = vi,j ⊕ vj,i

along with commitments to these values to ensure that only these values are used by parties in
protocols. This completes the description of f1.

20This discussion can be trivially extended to function evaluations with two inputs as opposed to three.
21We may assume without loss of generality that the lengths of the outputs of each party are known beforehand.
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The underlying additive secret sharing scheme. For the instance of secure function evalua-
tion with identifier id, we sample a unique key, Kid, to encrypt the output yid of the secure function
evaluation. Let Enc denote the encryption algorithm of an encryption scheme. The parties would
receive ctid = Enc(yid;Kid) and then fairly reconstruct Kid. We use an independent additive secret
sharing of the key Kid for each party. Let the shares be kid,i,j for i, j ∈ [3]. That is, it holds that

Kid =
⊕
j∈[3]

kid,i,j

for each i ∈ [3]. We would like party Pi to reconstruct Kid by obtaining all shares kid,i,j for each
j ∈ [3]. Initially, each party Pi is given kid,i,i. Therefore, each party Pi only needs to obtain kid,i,j
and kid,i,j′ for j, j′ 6= i. Looking ahead, we would use the instances of the ideal functionality FSyX

to allow parties to fairly learn all their shares of Kid. However, since we are preprocessing the
instances, the information needed to compute these shares must be independent of the instance of
secure function evaluation. The value that the instance F i,jSyX would release fairly to parties Pi and
Pj is Vi,j . Thus, party Pi additionally receives

ctid,i,j = Enc(kid,i,j ;hid,i,j)

where
hid,i,j = H(Vi,j‖id)

where H is a hash function (random oracle). The intuition is that the instances of the ideal func-
tionality FSyX to allow parties to fairly learn the Vi,js, and hence the hid,i,js and finally kid,i,js, thus
fairly reconstructing Kid. It is important to note that using Vi,js that are independent of the in-
stance of secure function evaluation, we can fairly reconstruct, using per-instance (computationally
independent) hash values hid,i,j generated using Vi,js, per-instance (independent) encryption keys
Kid.

An attempt at fair reconstruction via FSyX. We assume that the secure function evaluation
with identifier id provides the encryption ctid of the output yid of the secure function evaluation.
Additionally, party Pi receives ctid,i,j for each j ∈ [n] and kid,i,i. From our earlier discussion, the
instances of the ideal functionality FSyX allow parties to fairly learn the Vi,js. In order to allow
reuse of the preprocessing, however, the instances of the ideal functionality FSyX must only allow
parties to fairly learn the hid,i,js. As a first attempt to ensure this, we require the secure function
evaluation to also give party Pi a signature σi on id. That is, Pi receives(

ctid, {ctid,i,j}j∈[3] , kid,i,i, σi
)

We will have the parties fairly learn the hid,i,js using the instances of the ideal functionality FSyX.
We achieve this by setting the predicate φk(w) (for k ∈ {i, j}) to output 1 if and only if w consists
of both signatures (σi, σj). That is, each instance F i,jSyX will accept the trigger wi,j = (id, σi, σj).
We define f2 to simply output hid,i,j to both parties if φk(w) = 1. Parties learn signatures of other
parties by broadcasting their signatures and waiting for other parties to do so. If party Pi receives
signatures from every other party, it can trigger every instance of the ideal functionality FSyX it
is involved in, thus learning hid,i,j for each j ∈ [3] and finally learning Kid. Malicious parties may
however not broadcast their signatures. Concretely, we have the following attack: Suppose P1 is
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honest while P2 and P3 are corrupt. P2 and P3 already know σ2 and σ3 and only need σ1 to learn
the output. P1 broadcasts σ1 while P2 and P3 do not broadcast σ2 and σ3. Finally, P2 triggers the
ideal functionality F1,2

SyX using (σ1, σ2) and learns the output. P1, on the other hand, only learns σ2
and hence does not learn the output.

Fair reconstruction via FSyX. We fix the protocol sketch described above using a technique we
developed for termination of the protocol described in Section 4. The protocol for reconstruction
proceeds in T = n rounds. In order to trigger an instance of FSyX in some round τ ∈ [T ], you
must provide a proof that other instances of FSyX involving at least τ different parties have been

triggered. Consider the first round τ in which Pi is an honest party and F i,jSyX is triggered for some
j. If τ = 1, then the single invocation already gives a proof that channels involving two parties,
namely, i, j, have been triggered. Otherwise, by assumption, proofs of invocations of instances of
FSyX involving τ different parties were needed to trigger F i,jSyX. But Pi is not one of these parties

as τ is the first round in which F i,jSyX was triggered for any j. Consequently, Pi, on this invocation,
obtains a proof that instances of FSyX involving at least τ + 1 parties have been triggered, and can
thus trigger all channels in round τ + 1. The only gap in the argument is the case τ = T . One can
trivially see that since F i,jSyX has not been triggered for any j, it is impossible to obtain a proof that
instances of FSyX involving at least T different parties have been triggered.

Optimistic preprocessing. In the case where parties are honest, we can simply have the secure
function evaluation provide the output instead of parties having to trigger their instances of the
ideal functionality FSyX. We are guaranteed, by virtue of the fair reconstruction techniques dicussed
thus far, that in the case where parties behave adversarially, the honest parties do have a way to
obtain the output of the computation. In this way, in the optimistic setting, parties never have
to trigger the instances of the ideal functionality FSyX. Combined with the fact that the actual
preprocessing phase is extremely simple, we see that this paradigm makes fair secure function
evaluation just as efficient as secure function evaluation with abort in the optimisitic case.

Simulation. We look ahead for the issues that come up while trying to prove security, that is,
during the simulation. The simulator will release to the adversary, the encryption of the output and
encryptions of the adversary’s shares of the key used to encrypt the output. Since the simulator
does not know the output apriori, and does not know whether the adversary is going to abort
the computation, in which case, no one knows the output, it has to produce encryptions that it
can later equivocate. In this context, we use, not a regular encryption scheme, but non-interactive
non-committing encryption commitments. In this case, the simulator can produce encryptions to
garbage but can later decrypt them to be valid shares of the key and the actual output. The rest of
the computations can be trivially simulated. The only other detail to be looked into is that of the
clock. We need to determine if the adversary has decided to abort the computation, that is, if the
adversary is going to receive the output of the computation of not. This is done by noticing if and
when the adversary decides to trigger the instances of FSyX that involve honest parties. We know
that if the adversary ever triggers an instance of FSyX involving an honest party, then all parties
will be in a position to receive the output. Thus, the simulator can simply run the adversary to
determine whether it has decided to enable parties to obtain the output, in which the simulator
would ask the trusted party to continue, or not, in which case the simulator would ask the trusted
party to abort.
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5.2 Protocol

We now present the protocol for preprocessing fair secure computation in the (FMPC,FSyX)-hybrid
model.

STAGE I: PREPROCESSING

Preliminaries. Pa and Pb are two parties for a, b ∈ [N ] with a < b, where N is some uni-

versal upper bound on the number of parties; Fa,bSyX represents the instantiation of the FSyX

functionality used by parties Pa, Pb with time out round numbers INPUT TIMEOUT = ∞ and
TRIGGER TIMEOUT = ∞; (Com,Open) is a commitment scheme; H : {0, 1}∗ → {0, 1}L(λ)22 is a
random oracle; r denotes the current round number.

Protocol. The protocol ΠPreprocess proceeds as follows:

• Define the following functions.

– Let fa,b1 be the function that takes no input, samples two strings va,b, vb,a
$← {0, 1}λ and

computes and stores
Va,b = Vb,a = va,b ⊕ vb,a

It also computes

(cva,b, ω
v
a,b)

$← Com(va,b)

and
(cvb,a, ω

v
b,a)

$← Com(vb,a)

Finally, it outputs (va,b, c
v
a,b, ω

v
a,b, c

v
b,a) to party Pa and (vb,a, c

v
a,b, c

v
b,a, ω

v
b,a) to party Pb.

– Let φa,b1 be the function that takes as input a witness w and parses

w =
(
id, t,

−→
cπ ,
−→
ωπ,−→π ,

−→
ind
)

It checks that:

∗ id ∈ {0, 1}λ

∗ t is a valid round number and t < r

∗
∣∣∣−→ind∣∣∣ =

∣∣∣−→ωπ∣∣∣ = |−→π | = r − t

∗
−→
ind consists of distinct indices in

[
|−→cπ |
]
.

∗ Open
(
cπindj , ω

π
j , πj

)
= 1 for every j ∈ [r − t].

If all of these checks pass, then φa,b1 outputs 1 and otherwise it outputs 0.

– Let φa,b2 be identical to φa,b1 .

22The following type-check must and can be performed: L(λ) is the length of the key that will be used to encrypt
shares of a key that will be used to encrypt the output of the secure function evaluations to be performed in the
future.
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– Let fa,b2 be the function that takes as input w where w is as above, and outputs

hid,a,b = hid,b,a = H
(
Va,b‖id‖t‖

−→
cπ
)

• Parties Pa, Pb run the load phase of Fa,bSyX, providing the same input (⊥, f), where

f =
(
fa,b1 , fa,b2 , φa,b1 , φa,b2

)
If parties Pa and Pb receive their outputs va,b and vb,a respectively, we say that their prepro-
cessing phase has been successfully completed.

STAGE II: FAIR SECURE FUNCTION EVALUATION

Preliminaries. S ⊆ [N ], where n is some universal upper bound on the number of parties, and
|S| = n; F is the n-input n-output functionality to be computed; xi is the input of party Pi
for i ∈ S; Fa,bSyX represents the instantiation of the FSyX functionality used by parties Pa, Pb with
time out round numbers INPUT TIMEOUT = ∞ and TRIGGER TIMEOUT = ∞ for a < b, where
a, b ∈ S; (Com,Open) is an commitment scheme; (Gen,Enc,Dec) is non-interactive non-committing
encryption scheme; H : {0, 1}∗ → {0, 1}L(λ)23 is a random oracle; r denotes the current round
number.

Protocol. The protocol ΠFMPC-preprocess proceeds as follows:

• Party Pi for every i ∈ S ensures that its preprocessing phases with every other party Pj
for j ∈ S \ {i} have been successfully completed. If not, party Pi aborts. Otherwise, it

has obtained values
{
vi,j , c

v,i
i,j , ω

v,i
i,j , c

v,i
j,i

}
j∈S\{i}

as outputs from its preprocessing phases with

every other party.

• Define F ′ to the be the following n-input n-output functionality: On input
−→
X = (X1, . . . , Xn):

– Parse

Xi =

(
xi, ti,

{
vi,j , c

v,i
i,j , ω

v,i
i,j , c

v,i
j,i

}
j∈S\{i}

)
– Check that t = ti = tj for all i, j ∈ S. If not, abort.

– Check that cv,ii,j = cv,ji,j and that Open(cv,ii,j , ω
v,i
i,j , vi,j) = 1 for all i, j ∈ S with i 6= j. If not,

abort.

– Sample a random identifier id ∈ {0, 1}λ for this instance of fair secure function evaluation.

– Let (y1, . . . , yn) = F (x1, . . . , xn) and let

y = y1‖ . . . ‖yn
23The following type-check must and can be performed: L(λ) is the length of the randomness needed to generate

a key long enough to encrypt shares of a key long enough to encrypt the output of the secure function evaluations to
be performed in the future.
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Sample random strings αi
$← {0, 1}∗ such that |αi| = |yi| for each i ∈ [n]. Let

α = α1‖ . . . ‖αn

Let z = y ⊕ α.

– Sample a random encryption key-pair (pk, sk) by invoking Gen(1λ). Compute an encryp-
tion of the output

ct = Enc(z; pk)

– Sample n random additive n-out-of-n secret sharings {k1,j}j∈S , . . . , {kn,j}j∈S of sk such
that

sk =
⊕
j∈[n]

ki,j

for every i ∈ S.

– Sample random proof values π1, . . . , πn
$← {0, 1}λ. Compute commitments along with

their openings (cπi , ω
π
i )

$← Com(πi) to each of the proof values πi for each i ∈ [n]. Let

−→
cπ = (cπ1 , . . . , c

π
n)

– Compute

hi,j = hj,i = H
(
Vi,j‖id‖t‖

−→
cπ
)

where
Vi,j = Vj,i = vi,j ⊕ vj,i

for every i, j ∈ [n] with i 6= j.

– Sample encryption key-pairs (pki,j , ski,j) by invoking Gen(1λ;hi,j) for every i, j ∈ [n]
with i 6= j. Compute

cti,j = Enc(ki,j ; pki,j)

for every i, j ∈ [n] with i 6= j.

– In the first stage of output delivery24, party Pi receives output(
αi, id, t, ct, {cti,j}j∈S\{i}, ki,i, ωπi , πi

)
for each i ∈ S.

– In the second stage of output delivery, party Pi receives output
−→
cπ for each i ∈ S.

– Finally party Pi receives the output z for each i ∈ S.

24While this would require setting up additional notation, for ease of presentation, we suppress formally defining
security of multi-stage primitives. In our case, the functionality F ′ is a two-stage functionality. While defining
security with abort for F’, which is all we will need for this work, we consider security with abort for each stage.
That is, the adversary obtains its output for the first stage and then decides whether the honest parties may receive
their output for the first stage. If not, neither the adversary nor the honest parties obtain their output for the second
stage. If yes, the honest parties receive their output for the first stage and the adversary receives its output for the
second stage, following which it decides if the honest parties may receive their output for the second stage.
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• For each i ∈ S, party Pi estimates the round number ti when the secure function evaluation
of F ′ using the ideal functionality FMPC will be complete. It then constructs

Xi =

(
xi, ti,

{
vi,j , c

v,i
i,j , ω

v,i
i,j , c

v,i
j,i

}
j∈S\{i}

)
• The parties invoke the ideal functionality FMPC with inputs {(Xi, F

′)}i∈S . If the ideal func-
tionality returns ⊥ after the first stage to party Pi, then Pi aborts for any i ∈ [n]25. Otherwise,
party Pi receives output (

αi, id, t, ct, {cti,j}j∈S\{i}, ki,i, ωπi , πi
)

for each i ∈ S. If the ideal functionality returns z after the third stage, in round t, to party
Pi for any i ∈ S, then Pi parses z as z1‖ . . . ‖zn where |zj | = |yj | for all j ∈ [n] and computes
yi = zindi ⊕ αi to obtain the output of the computation, where indi is the index of i in S. If
the ideal functionality returned ⊥ after the third stage but did not return ⊥ after the second
stage to party Pi, then party Pi also receives

−→
cπ by round t. Then, in round r = t+ 1, Pi uses

the witness
w =

(
id, t,

−→
cπ , ωπi , πi, i

)
to invoke the trigger phase of each instance of FSyX it is involved in. Once all such instances
of FSyX involving party Pi have been triggered, Pi obtains hid,i,j for every j ∈ S \ {i}. Using
these values, it computes encryption key-pairs (pki,j , ski,j) by invoking Gen(1λ;hid,i,j) for every
j ∈ S \ {i}. Then, it computes

ki,j = Dec(cti,j ; ski,j)

for every j ∈ S \ {i}. Then, it computes

sk =
⊕
j∈S

ki,j

and
z = Dec(ct; sk)

Finally, Pi parses z as z1‖ . . . ‖zn where |zj | = |yj | for all j ∈ [n] and computes the value
yi = zindi ⊕ αi to obtain its output, where indi is the index of i in S. Otherwise, if the ideal
functionality returned ⊥ after both the second and third stages, the protocol proceeds as
follows.

• If r > t+ n, abort. Otherwise, wait until r > t. While t+ 1 ≤ r ≤ t+ n,

25In the FOT-hybrid model, let πF ′ denote the protocol for the functionality F ′ defined in Lemma 8. The parties
execute πF ′ . If the execution of πF ′ aborts, we are assuming that all (honest) parties are aware of the round when
the execution of πF ′ aborts, that is, when the adversary has decided to abort the execution of πF ′ . Since we are
working in the FMPC-hybrid model, we know that in the ideal model, this is the case when the honest parties receive
⊥ as their output. If we assume that in the case when the the adversary decides to let the honest parties obtain their
outputs, no honest party ever receives ⊥, this could be used to identify the scenario when the adversary has decided
to abort the execution of πF ′ . Thus, we could, in principle, replace this instruction with: If party Pi receives ⊥ as its
output, it aborts. Furthermore, since we are considering the case of unanimous abort, if the adversary has decided
to abort the execution of πF ′ , all honest parties abort the protocol.
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– If party Pa for a ∈ S has not received the output of the computation and an instance of
FSyX involving party Pa is first triggered in round t+ 1 ≤ r ≤ t+ n− 1 using a “good”
witness, it triggers each instance of FSyX that it is involved in during round r + 1 using
the output out it receives from the instance of FSyX as follows:

∗ If
out1 =

(
id, t,

−→
cπ ,
−→
ωπ,−→π ,

−→
ind
)

it prepares the witness

w =
(
id, t,

−→
cπ ,
−→
ωπ ′,−→π ′,

−→
ind′
)

where

· |−→π ′| = r + 1, −→π ′|[r] = −→π |[r], π′r+1 = πa

·
∣∣∣−→ωπ ′∣∣∣ = r + 1,

−→
ωπ ′
∣∣∣
[r]

=
−→
ωπ
∣∣∣
[r]

, ωπr+1
′ = ωπa

·
∣∣∣−→ind′∣∣∣ = r + 1,

−→
ind′
∣∣∣
[r]

=
−→
ind
∣∣∣
[r]

, ind′r+1 = a

Once all instances of FSyX involving party Pa have been triggered, Pa obtains hid,a,b for
every b ∈ S \ {a}. Using these values, it computes encryption key-pairs (pka,b, ska,b) by

invoking Gen(1λ;hid,a,b) for every b ∈ S \ {a}. Then, it computes

ka,b = Dec(cta,b; ska,b)

for every b ∈ S \ {a}. Then, it computes

sk =
⊕
b∈S

ka,b

and
z = Dec(ct; sk)

Finally, Pa parses z as z1‖ . . . ‖zn where |zj | = |yj | for all j ∈ [n] and computes the value
ya = zinda ⊕ αa to obtain its output, where inda is the index of a in S.

5.3 Proof sketch of Security

We sketch the proof of security of the above protocol. The correctness of the computation of
the functionality F ′ follows by definition from the correctness of the ideal functionality FMPC.
Furthermore, we have that at the end of the invocation of the ideal functionality FMPC, either all
honest parties unanimously abort or all honest parties unanimously continue. Thus, assuming that
FMPC did not abort, and that all honest parties continue, every party receives the output of the
first stage of F ′. If the honest parties also receive the output of the third stage of F ′, there is
nothing to prove and correctness is obvious. This is the optimistic setting. We now consider the
case that all honest parties obtained the output of the first and second stages of F ′ but not the
third stage of F ′. Note that a valid witness to trigger an instance of FSyX in round t+1 ≤ r ≤ t+n

consists of, apart from id and t, a set of proof values and openings
(−→
ωπ,−→π

)
of size r− t. By valid,

we mean that the values of
(
id, t,

−→
cπ
)

are the ones picked during the execution of F ′. Triggering

the instances of FSyX with other values will produce some output but will not be useful because the
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values hi,j are computed by hashing Vi,j along with
(
id, t,

−→
cπ
)

. Also note that if and only if a party

does manage to have all the instances of FSyX that it is involved in triggered with valid witnesses
during the course of the protocol, it is able to reconstruct its output correctly. If the honest party
Pi obtained the output of the second stage of F ′, then Pi is able to prepare the valid witness

w =
(
id, t,

−→
cπ , ωπi , πi, i

)
and trigger all instances of FSyX that it is involved in in round r = t + 1,

and is thus able to reconstruct its output correctly. Suppose the honest parties receive the output
of the first stage but not the second or third stages of F ′. It is now possible that the adversary
has received its output corresponding to the first and second stages of F ′. At this point, if the
adversary wishes to learn the output, it must do so by obtaining ki,js for i ∈ I and j ∈ S \ I. For
this, it must be the case that for some corrupt party Pi with i ∈ I, all instances of FSyX involving
Pi and an honest party must be triggered, either by the honest parties or by Pi. Since none of the
honest parties possess valid witnesses to trigger an instance of FSyX (as they do not have

−→
cπ), the

corrupt party must be the first to trigger. Pi would only have at most |I| openings to commitments

in
−→
cπ and thus, if the adversary learns the output, it must be the case that Pi triggers an instance

of FSyX with an honest party Pj for some j ∈ S \ I in round r ≤ t+ |I| ≤ t+ n− 1. At this point,

Pj learns
−→
cπ and a set of openings to commitments in

−→
cπ corresponding to some set of r− t indices

−→
ind in S \ {j}. Combining this information with id, t and the opening

(
ωπj , πj

)
received from the

output of the first stage of F ′, Pj is able to prepare a valid witness to trigger all instances of FSyX

that it is involved in in round r + 1 ≤ t + n and is thus able to reconstruct its output correctly.
Finally, consider any honest party Pj for j ∈ S \ I. If no instance of FSyX involving Pj is triggered
in a round r ≤ t+ n− 1, then for all i 6= j, party Pi does not learn hi,j and hence, does not learn
ki,j . Without ki,j , Pi does not learn sk and hence does not learn its output. In particular, this
means that the adversary does not learn its output. Thus, if the adversary learns its output, that
for all honest parties Pj for j ∈ S \ I, some instance of FSyX involving Pj is triggered in a round
r ≤ t+ n− 1 which in turns means that Pj learns its output as well. This completes the proof of
security.

5.4 Security

We now prove the following lemma.

Lemma 10. If (Com,Open) is a commitment scheme, (Gen,Enc,Dec) is a non-interactive non-
committing encryption scheme and H a random oracle, then the protocols ΠPreprocess,ΠFMPC-preprocess

securely preprocess for and compute an arbitrary (polynomial) number of instances of FMPC with
fairness in the (FMPC,FSyX)-hybrid model.

Proof. Let A be an adversary attacking the execution of the protocols described in Section 5.2 in
the (Fbc,FMPC,FSyX)-hybrid model. We construct an ideal-model adversary S in the ideal model
of type fair. Let I be the set of corrupted parties. If I is empty, then there is nothing to simulate.
S begins by simulating the first stage, namely, preprocessing.

STAGE I: PREPROCESSING

S has to simulate the invocations of the load phases of the instances of the ideal functional-
ity FSyX that involve corrupt parties. Here, S behaves as the ideal functionality FSyX. Recall that
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the type of FSyX is g.d.. For any a, b ∈ [n] with a < b and a ∈ I and b ∈ [n] \ I, if A instructs Pa to

invoke the load phase of Fa,bSyX with no input, S executes fa,b1 as defined in ΠPreprocess. S picks two

strings va,b, vb,a
$← {0, 1}λ and computes and stores

Va,b = Vb,a = va,b ⊕ vb,a

It also computes

(cva,b, ω
v
a,b)

$← Com(va,b)

and
(cvb,a, ω

v
b,a)

$← Com(vb,a)

Finally, it forwards (va,b, c
v
a,b, ω

v
a,b, c

v
b,a) to the adversary. S behaves symmetrically if for any a, b ∈ [n]

with a < b and b ∈ I and a ∈ [n] \ I, if A instructs Pb to invoke the load phase of Fa,bSyX. The
final case to consider is if for any a, b ∈ [n] with a < b and a, b ∈ I, if A instructs Pa, Pb to invoke

the load phase of Fa,bSyX with no input, S executes fa,b1 as defined in ΠPreprocess. S picks two strings

va,b, vb,a
$← {0, 1}λ and computes and stores

Va,b = Vb,a = va,b ⊕ vb,a

It also computes

(cva,b, ω
v
a,b)

$← Com(va,b)

and
(cvb,a, ω

v
b,a)

$← Com(vb,a)

Finally, it forwards va,b, vb,a, c
v
a,b, ω

v
a,b, c

v
b,a, ω

v
b,a to the adversary. If in any of the invocations, the

adversary instructs a corrupt party to invoke the load phase of an instance of FSyX incorrectly,
S simply aborts simulating the load phase of this particular instance of FSyX. At the end of this
phase, let PreprocessSuccess denote the set of all {a, b} with a < b such that Pa and Pb successfully

invoked the load phase of Fa,bSyX.

STAGE II: FAIR SECURE FUNCTION EVALUATION

Let F be the n-input n-output functionality to be computed. Let S be the set of n parties
that are participating in this instance of fair secure function evaluation. If S ∩ I = φ, then there
is nothing to simulate. S then checks that for every a, b ∈ S with a < b and either a ∈ [N ] \ I or
b ∈ [N ] \ I, {a, b} ∈ PreprocessSuccess. If not, then S aborts this instance of fair secure function
evaluation as the honest parties would have done so in the real execution as well. S then begins
by simulating the first step of the protocol, namely, the invocation of the ideal functionality FMPC.
Here, S behaves as the ideal functionality FMPC. Recall that the type of FMPC is abort. S obtains
the inputs {(Xi, fi)}i∈I of the corrupted parties from A. If (Xi, fi) = abort for any i ∈ I, S for-
wards {(Xi, fi)}i∈I to the trusted party computing FMPC with fairness, receives ⊥ as the output of
all parties, which it forwards A. Suppose (Xi, fi) 6= abort for all i ∈ I. If there exists a j ∈ I such
that fj 6= F ′ as defined in protocol ΠFMPC-preprocess, S forwards {(Xi, fi)}i∈I to the trusted party
computing FMPC with fairness, which aborts, and then aborts this instance of fair secure function
evaluation. If there exists a j ∈ I such that (Xj , fj) is not of the specified format, S replaces
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(Xj , fj) with a default value. Going forward, we assume that for all i ∈ I, (Xi, fi) is well-formed,
that is,

Xi =

(
xi, ti,

{
v∗i,j , c

∗,v,i
i,j , ω∗,v,ii,j , c∗,v,ij,i

}
j∈S\{i}

)
Xi =

(
xi, ti, {v∗i,j}j∈S\{i}

)
and that fi = F ′ as defined in ΠFMPC-preprocess. Note that v∗i,j may not equal vi,j as picked by S in

the simulation of the preprocessing stage, c∗,v,ii,j may not equal cv,ii,j , and so on.
S now needs to simulate the outputs received by the corrupted parties from the ideal function-

ality FMPC. S estimates the round number t when the secure function evaluation of F ′ using the
ideal functionality FMPC will be complete. It checks that t = ti for all i ∈ I and aborts this instance
of fair secure function evaluation otherwise. It then checks that c∗,v,ii,j = cv,ii,j , c

∗,v,i
j,i = cv,ij,i and that

Open
(
cv,ii,j , ω

∗,v,i
i,j , v∗i,j

)
= 1 for all i ∈ I and j ∈ S \ {i}. If not, it aborts this instance of fair secure

function evaluation. Note that if these checks pass, we also have that v∗i,j = vi,j and ω∗,v,ii,j = ωv,ii,j
for all i ∈ I and j ∈ S \ {i}. It then samples a random identifier id ∈ {0, 1}λ for this instance of

secure function evaluation. For each i ∈ S, S samples a random string αi
$← {0, 1}∗ of length equal

to the length of the ith output of F . Let

α = α1‖ . . . ‖αn

S samples a random encryption key-pair (pk, sk) by invoking Gen(1λ) and a ciphertext ct repre-
senting the encryption of the output z under a secret key sk. Note that z is not known to S at
this point. However, since (Gen,Enc,Dec) is a non-committing encryption scheme, S can sample
ct and later equivocate it. For each i ∈ I, S samples random additive n-out-of-n secret sharings
ki,1, . . . , ki,n of sk such that

sk =
⊕
j∈[n]

ki,j

S samples random proof values π1, . . . , πn
$← {0, 1}λ and compute commitments along with their

openings (cπi , ω
π
i )

$← Com(πi) to each of the proof values πi. Let

−→
cπ = (cπ1 , . . . , c

π
n)

and −→
ωπ = (ωπ1 , . . . , ω

π
n)

and
−→π = (π1, . . . , πn)

S then computes

hi,j = hj,i = H
(
Vi,j‖id‖t‖

−→
cπ
)

where
Vi,j = Vj,i = vi,j ⊕ vj,i

for every i ∈ I and j ∈ S with i 6= j. S then samples encryption key-pairs (pki,j , ski,j) by invoking

Gen(1λ;hi,j) for every i ∈ I and j ∈ S with i 6= j, and computes

cti,j = Enc(ki,j ; pki,j)
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for every i ∈ I and j ∈ S with i 6= j. Thus, the simulator constructs the first stage output(
αi, id, t, ct, {cti,j}j∈S\{i}, ki,i, ωπi , πi

)
for each i ∈ I and forwards it to A. If A then sends abort, S forwards {(xi, fi)}i∈I to the trusted
party computing FMPC with fairness, with (xj , fj) replaced with abort for some j ∈ I, receives ⊥
as the output of all parties, which it forwards A. Otherwise, A responds with continue. S then
forwards

−→
cπ to A.

Case A. The adversary lets the honest parties obtain the output of the second stage
of F ′. In this case, A has responded with continue after receiving

−→
cπ . At this point, all parties

are going to obtain their outputs. S forwards {(xi, fi)}i∈I to the trusted party computing FMPC

with fairness. It receives the corrupt parties outputs, namely, {yi}i∈I . S chooses the outputs of

the honest party completely at random, that is, it samples random strings yi
$← {0, 1}∗ of length

equal to the length of the ith output of F , for i ∈ [n] \ I. S then constructs

y = y1‖ . . . ‖yn

It then defines
z = y ⊕ α

S now ensures that Dec(ct; sk) = z. S then sends the outputs of the corrupt parties, namely,
{yi}i∈I , to A. At this point, S has completed simulating the invocation of the ideal functionality
FMPC. If A responds with continue, then S simply terminates. Otherwise, in round r = t + 1,
it simulates the honest parties triggering all the instances of FSyX they are involved in with the
corrupt parties and hence for every i ∈ I and j ∈ S \ I, S sends Pi (the adversary A) the set of

values
((

id, t,
−→
cπ , ωπj , πj , j

)
, hi,j

)
.

Case B. The adversary does not let the honest parties obtain the output of the second
stage of F ′. In this case, A has responded with abort after receiving

−→
cπ . At this point, S

has completed simulating the invocation of the ideal functionality FMPC. We first discuss how S
simulates certain invocations of the trigger phases of the instances of the ideal functionality FSyX

that the adversary instructs the corrupt parties to trigger.

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance of
FSyX involving another corrupt party, say Pj for j ∈ I, with a valid witness. S sends (w, hi,j)
to parties Pi and Pj .

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

Suppose the adversary does not instruct a corrupt party, say Pi for some i ∈ I, to trigger an
instance of FSyX involving an honest party, say Pj for some j ∈ S \ I, with a valid witness and the
round counter exceeds t + n, S forwards {(xi, fi)}i∈I to the trusted party computing FMPC with
fairness, with (xj , fj) replaced with abort for some j ∈ I, receives ⊥ as the output of all parties,
and aborts itself. Otherwise, at the first instant r ≤ t+n−1 that the adversary instructs a corrupt
party Pi for i ∈ I to trigger an instance of FSyX involving an honest party Pj for j ∈ S \ I with
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a valid witness w =
(
id, t,

−→
cπ ,
−→
ωπ,−→π ,

−→
ind
)

, S forwards {(xi, fi)}i∈I to the trusted party computing

FMPC with fairness. It receives the corrupt parties outputs, namely, {yi}i∈I . S chooses the outputs

of the honest party completely at random, that is, it samples random strings yi
$← {0, 1}∗ of length

equal to the length of the ith output of F , for i ∈ [n] \ I. S then constructs

y = y1‖ . . . ‖yn
It then defines

z = y ⊕ α
S now ensures that Dec(ct; sk) = z. S then sends (w, hi,j) to Pi. In round r + 1, it simulates the
Pj triggering all the instances of FSyX they are involved in with the corrupt parties and hence for
every i ∈ I, S sends Pi the set of values((

id, t,
−→
cπ ,
−→
ωπ ′,−→π ′,

−→
ind′
)
, hi,j

)
where

• |−→π ′| = r + 1, −→π ′|[r] = −→π |[r], π′r+1 = πj

•
∣∣∣−→ωπ ′∣∣∣ = r + 1,

−→
ωπ ′
∣∣∣
[r]

=
−→
ωπ
∣∣∣
[r]

, ωπr+1
′ = ωπj

•
∣∣∣−→ind′∣∣∣ = r + 1,

−→
ind′
∣∣∣
[r]

=
−→
ind
∣∣∣
[r]

, ind′r+1 = j

Finally, for every k ∈ S \ I such that Pk did not have an instance of FSyX involving itself and
some corrupt party triggered in round r, S simulates Pk triggering all instances of FSyX involving
Pk and every corrupt party in round r + 2. Note that by the existence of j, k, |I| ≤ n − 2 and
hence r ≤ t + n − 2, or, r + 2 ≤ t + n. To simulate the triggers, S sends along the appropriate
valid witnesses and hi,ks. Note that this is possible to do as by this point, S has all the values it
will ever need in the simulation. Going forward, S simulates invocations of the trigger phases of
the instances of the ideal functionality FSyX that the adversary instructs corrupt parties to trigger
as follows.

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance of
FSyX involving another corrupt party, say Pj for j ∈ I, with a valid witness w, S sends
(w, hi,j) to parties Pi and Pj .

• Suppose the adversary instructs a corrupt party, say Pi for i ∈ I, to trigger an instance of
FSyX involving an honest party, say Pj for j ∈ S \ I, with a valid witness w, S sends (w, hi,j)
to Pi.

• Suppose the adversary instructs a corrupt party to trigger an instance of FSyX with an invalid
witness. S simply sends no response.

Finally, S outputs whatever A outputs. It is easy to see that the view of A is indistinguishable in
the execution of the protocols ΠPreprocess,ΠFMPC-preprocess and the simulation with S, if (Com,Open)
is a commitment scheme(Gen,Enc,Dec) is a non-interactive non-committing encryption scheme and
H a random oracle. We therefore conclude that the protocols ΠPreprocess,ΠFMPC-preprocess securely
preprocess for and compute an arbitrary (polynomial) number of instances of FMPC with fairness
in the (FMPC,FSyX)-hybrid model, as required.
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Remark. In the proof of Lemma 9, we ignore some annoying technicalities. For instance, the
adversary may cause the honest parties to abort, will be unable to obtain its output but still
pointlessly interact with some of the ideal functionalities. In the proof, however, the simulator
would have aborted. We note that these details are not particularly enlightening and are of no
consequence. One can deal with these sorts of attacks by asking the simulator to wait in these
scenarios until the adversary says that it is done and then finally abort if it has to. Thus, we
assume, for the purpose of the proof, that if the adversary forces the honest parties to abort in a
situation where it will be unable to obtain its output, without loss of generality, it halts. Other
examples of such technicalities are when the adversary sends “unexpected” messages, “incomplete”
messages, etc. Note that such messages can be easily detected and ignored, and do not affect the
protocol in any way.

5.5 Getting to the FSyX-hybrid model

Combining Lemmas 1, 8 and 10, we obtain the following theorem.

Theorem 3. Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming the exis-
tence of one-way permutations, there exists a protocol π in the programmable random oracle model
which securely preprocesses for and computes an arbitrary (polynomial) number of instances of FMPC

with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n in the (FOT,FSyX)-hybrid
model.

As discussed in Section 3, F2PC, and hence FOT, can be realized in the FSyX-hybrid model. We
thus have the following theorem.

Theorem 4. Consider n parties P1, . . . , Pn in the point-to-point model. Then, assuming the exis-
tence of one-way permutations, there exists a protocol π in the programmable random oracle model
which securely preprocesses for and computes an arbitrary (polynomial) number of instances of
FMPC with fairness in the presence of t-threshold adversaries for any 0 ≤ t < n in the FSyX-hybrid
model.
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tion secure processors. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 260–289, 2017.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA,
pages 73–85, 1989.

53



[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May
13-17, 1990, Baltimore, Maryland, USA, pages 387–394, 1990.

[SGK19] Rohit Sinha, Sivanarayana Gaddam, and Ranjit Kumaresan. Luciditee: Policy-based
fair computing at scale. IACR Cryptology ePrint Archive, 2019:178, 2019.

[WW06] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Advances
in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28
- June 1, 2006, Proceedings, pages 222–232, 2006.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,
27-29 October 1986, pages 162–167, 1986.

54


	Introduction
	Preliminaries
	Notation and definitions
	Secure Computation
	Functionalities
	Adversaries
	Model
	Protocol
	Security with Guaranteed Output Delivery
	Security with Fairness
	Security with Fairness and Identifiable Abort
	Security with Abort
	Security with Identifiable Abort

	The Hybrid Model
	Fairness versus Guaranteed Output Delivery
	Computing with an Honest Majority
	Oblivious Transfer
	Broadcast
	Honest-Binding Commitment Schemes
	Digital Signatures
	Receiver Non-Committing Encryption
	Non-interactive Non-Committing Encryption

	Synchronizable Exchange
	Fair Secure Computation in the –hybrid model
	Intuition
	Protocol
	Proof sketch of Security
	Security
	Getting to the –hybrid model

	Preprocessing 
	Intuition
	Protocol
	Proof sketch of Security
	Security
	Getting to the –hybrid model


