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Abstract. We propose a new cryptanalytic technique and key recov-
ery attack for the Sparx cipher, Partly-Pseudo-Linear Cryptanalysis, a
meet-in-the-middle attack combining linear and pseudo-linear approxi-
mations. We observe improvements over the linear hull attacks in the
literature for Sparx 128/128 and 128/256. Additionally, we generate an-
other attack for comparison purposes, using the Cho-Pieprzyk property
for a fully-linear approximation and a corresponding key recovery attack.
We observe improvements on the data complexity, bias, and number of
recovered key bits, over all variants of Sparx, when compared to the use
of only the Cho-Pieprzyk approximation.

Keywords: Sparx · Pseudo-Linear cryptanalysis · Linear Cryptanalysis
· Partly-Pseudo-Linear cryptanalysis.

1 Introduction

Sparx is a lightweight cipher, intended for use in cryptographic applications on
devices with power constraints. It is designed to have low memory, computational
capacity and power requirements. It is an instance of an ARX block cipher—
which rely on Addition-Rotation-XOR operations performed a number of times,
and provide a common approach to lightweight cipher design. The use of addition
makes ARX ciphers more robust to traditional linear cryptanalysis, and new
approaches to cryptanalysis are necessary to analyze ARX ciphers. This paper
presents a new approximation and corresponding key recovery attack, the Partly-
Pseudo-Linear Attack on the Sparx family.

1.1 Our Contributions

We propose the Partly-Pseudo-Linear Attack which combines pseudo-linear ap-
proximation with a linear approximation of addition modulo 2n using Cho and
Pieprzyk’s property of modular addition [4, 3]. We are able to demonstrate an
improvement over linear hull attacks on Sparx in the literature. In particular,
our contributions are as follows:

1. For the purposes of comparison with our main contribution, the Partly-
Pseudo-Linear Attack, we apply fully linear cryptanalysis on the Sparx
family using the Cho-Pieprzyk property to obtain a linear approximation
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and a corresponding key recovery attack. We use the approach presented by
Ashur and Bodden for Speck [1].

2. We propose the Partly-Pseudo-Linear Attack on Sparx: a combination of
a pseudo-linear approximation for a few rounds and a linear approximation
for the rest. We describe and analyze the corresponding key recovery attacks
and perform the following comparisons:

– We are not aware of linear key recovery attacks for Sparx in the liter-
ature. We compare our key recovery attacks to recent contributions of
linear trails on Sparx using linear hulls, by extending the linear trails
in a natural way to include as many decryption rounds as allowed by
computational complexity considerations. Our results are better for the
larger variants.

– We observe improvements across all variants due to our partly-pseudo-
linear approximation when compared to the use of only the Cho-Pieprzyk
approximation.

1.2 Comparison with Closest Other Work

The Sparx cipher is a very recent design, proposed in 2016 [8, 5]. The litera-
ture on Sparx is hence limited. Most of the literature is focused on differential
and linear (hull) cryptanalysis. The closest work is a 2020 report on linear hull
cryptanalysis [7]. Huang and Wang present an automatic algorithm to search
for the optimal linear (hull) characteristics on ARX ciphers using Wallen’s al-
gorithm for modular addition [12]. Table 1 summarizes the comparison between
our contributions and [7].

Table 1. The results of this work and the linear hull cryptanalysis on Sparx cipher.

N Ref. Type Number of Guessed Bias Data Time
Rounds Key Bit/K

64 [7] Linear Hull 11 LT 2−28 N/A N/A
[7] Linear Hull 10 LT 2−22 N/A N/A

This work LC 9 60/128 2−23 246 2106

This work PPLC 9 93/128 2−15.84 232 2125

128 [7] Linear Hull 10 LT 2−23 N/A N/A
[7] Linear Hull 9 LT 2−18 N/A N/A

This work LC 9 44/128 2−19 238 282

This work LC 10 140/256 2−19 238 2178

This work PPLC 9 98/128 2−13.73 228 2126

This work PPLC 11 195/256 2−20.42 242 2237

∗ N is the block size and K is the key size.
∗ LT refers to a Linear Trail used as a distinguisher and NA refers to Not Available.
∗ PPLC refers to the Partly-Pseudo-Linear Cryptanalysis and LC refers to the Linear

Cryptanalysis
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Huang and Wang do not describe key recovery, but their work could possibly
be extended to key recovery attacks by appending rounds of decryption.

– Sparx 64/128: The linear approximation of [7] is already deeper than our
key recovery attack.

– Sparx 128/128: The linear approximation of [7] cannot be used as a key
recovery attack since the round has 128 key bits.

– Sparx 128/256: [7] can add one more round to recover 128 key bits. Thus
the number of rounds they would be able to attack would be the same as
ours, but our attack provides more recovered key bits and has lower data
complexity.

1.3 Organization

This paper is organized as follows. In section 2, we present a brief description
of the Sparx cipher and the notation used in this paper. In section 3 we review
linear cryptanalysis and pseudo-linear cryptanalysis. In section 4, we present
our first contribution by applying the linear cryptanalysis on Sparx family. In
section 5, we present our proposed Partly-Pseudo-Linear attack on the Sparx
cipher. We conclude in section 6.

2 Preliminaries

This section presents our notation and briefly describes the Sparx cipher.

2.1 Notation

The following describes notation used in this paper.

– �n: Addition modulo 2n

– �n: Subtraction modulo 2n

– PL(CL): Left word of the Plaintext (Ciphertext)
– PR(CR): Right word of the Plaintext (Ciphertext)
– xlj−1: Left half of input to the jth round
– xrj−1: Right half of input to the jth round
– xljt (i, i+ w): window t with size w of the Left word x, where the MSB is at
i and the LSB is at i+ w − 1, for 0 ≤ i < n

2 and 1 ≤ w ≤ n
2

– xrjt (i, i + w): window t with size w of the Right word x, where the MSB is
at i and the LSB is at i+ w − 1, for 0 ≤ i < n

2 and 1 ≤ w ≤ n
2

2.2 The SPARX Cipher

In 2016, Dinu et al. proposed the Sparx family of ARX block ciphers [8, 5]. The
instance of the Sparx family with block size n and key size k is denoted Sparx
n/k. The only operations needed to implement an instance of Sparx are:
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– Addition modulo 216, denoted �

– 16-bit Rotation: right rotation by i, denoted ≫ i and left rotation by i,
denoted i≪

– 16-bit exclusive-or (XOR), denoted ⊕

The non-linearity in Sparx is provided by Speckey; a 32-bit block cipher
identical to Speck 32 except for its key injection (Speckey is denoted by A in
Figure 1 and Figure 2). The round function consists of exclusive-or with the
key, followed by Speckey. In Sparx 64/128, a linear permutation (denoted by L
in Figure 1) follows three rounds. In Sparx 128/128 and Sparx 128/256, the
linear permutation (denoted by L′ in Figure 2) follows four rounds.

Table 2. The Sparx Cipher Family.

Block Size, n No. Words, n/32 Key Size Steps No. Rounds/Step

64 2 128 8 3

128 4 128 8 4
4 256 10 4

Fig. 1. Sparx 64/128. (a) Three rounds function, (b) Speckey and (c) Linear permu-
tation.
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Fig. 2. Sparx 128/128 and Sparx 128/256. (a) Four rounds function, (b) Speckey and
(c) Linear permutation.

3 Related Work

In this section, We review linear cryptanalysis and pseudo-linear cryptanalysis,
as we will use these two approaches for our attack.

Linear cryptanalysis [9] is one of the most powerful and widely used attacks
on block ciphers. It was introduced by Matsui in 1998, and is a known plaintext
attack where the attacker has access to both the plaintext and its encrypted ver-
sion ciphertext [9, 6]. Using linear cryptanalysis, an adversary is able to find a
linear expression that approximates a non-linear function which connects plain-
text, ciphertext, and key bits with high probability.

The quality of the linear approximation is measured by the bias ε which is
defined as ε = |p− 1

2 |; a higher bias implies a better approximation and a more
efficient attack. The number of required known plaintexts and ciphertexts (data
complexity) is O(ε−2) [9, 6].

Our work relies on Cho and Pieprzyk’s [4, 3] linear approximation of modular
addition. They provide the following expression

P [λ.(a� b) = λ.(a⊕ b)] =
3

4
(1)

where λ is a mask identifying the consecutive bits we are interested in. Impor-
tantly, one may use this approximation over multiple rounds in an ARX cipher
only so long as any masks encountered in the round function entering into the
modular addition do not containing non-consecutive bits.

McKay and Vora [11, 10] present pseudo-linear cryptanalysis which aims to
overcome the limitations of traditional linear cryptanalysis by approximating
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addition modulo 2n with addition modulo 2w where, 0 < w ≤ n. In other words,
the pseudo-linear approximations use addition modulo 2w and exclusive-or over
w-bit strings of contiguous bits (or windows) instead of using the whole n-bit
strings.

This approximation is in error only when the carry into the last bit of the
window is one. If the value of the carry is equally likely to be zero or one, the
approximation is correct with probability slightly greater than a half, which is
much larger than the probability of a random guess which is 1

2w . The approx-
imation involves the use of some key bits in non-linear operations, but enables
attacks more efficient than the brute force attack because it reduces the number
of key bits from those required by the cipher.

The only linear cryptanalysis available to date on SPARX is that of Huang
and Wang [7], described in section 1.2.

4 Linear Cryptanalysis on SPARX cipher

The purpose of this contribution is to explore the improvement of our proposed
Partly-Pseudo-Linear Cryptanalysis on a fully-linear attack. In particular, we
study the effect of replacing some rounds of linear cryptanalysis with pseudo-
linear cryptanalysis. For this reason, we first study the fully-linear attack.

In this section, we analyze the ARX lightweight block cipher family, Sparx,
to determine its resistance to the Cho-Pieprzyk approximation of modular ad-
dition. In the next section, section 5, we demonstrate the improvement in this
cryptanalysis if a couple of rounds of linear approximations are replaced with
pseudo-linear approximations.

For linear cryptanalysis, we take the approach of Ashur and Bodden’s crypt-
analysis of the Speck family [1]. We search for the best approximation using
Cho-Pieprzyk’s property. The left word is divided into two blocks, left and right
block. We start by fixing one mask (left block) λLx with a pair of consecutive
bits (0x3, 0x6, ...) and zeroing the other mask (right block) λLy . For the right
word, we zero both left and right block masks. We check how the masks evolve
both in the forward and backward direction taking into consideration the linear
permutation after every three (or four, for the larger variants) rounds.

First we present the linear approximation and the corresponding key recovery
attack on Sparx 64/128 then on Sparx 128/128 and Sparx 128/256.

The longest linear trail we were able to find for Sparx 64/128 covers 7 rounds
(we are able to go to 8 rounds for the right word). Table 9 shows how the mask
changes: λLxi represents the input mask of the left block of the left word of Sparx
and λLyi represents the input mask of the right block of the left word of Sparx.

Similarly, λRxi and λRyi are input masks for the left and right blocks of the right
word. We observe that the first linear permutation does not change anything
since the left word is masked by zero.

With λ = 0x000c000000000000 (λL = 0x000c0000 λR = 0x00000000), we
can go 5 rounds in the backward direction and 2 rounds in the forward direction.
For the right word of Sparx 64/128, the mask can go one more round deeper.
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To implement a key recovery attack over nine rounds, we decrypt two more
rounds for the left word, trying all possibilities for the active key bits in our
linear approximation. For the right word, we need to decrypt a single round
by trying all possibilities for the key bits that lead to the mask of the eighth
round of the right word (see Figure 3). Table 9 in the Appendix summarizes the
progression of the mask for the linear key recovery attack on Sparx 64/128.

As for Sparx 64/128, we begin by searching for the best Cho-Pieprzyk ap-
proximation for Sparx 128/128 and 128/256. With

λ = 0x000c0000000000000000000000000000

we can approximate 8 rounds, 4 in each direction. To implement a key recovery
attack, we decrypt one more round by trying all possibilities for the key bits
that lead to the mask of the eighth rounds for Sparx 128/128 and decrypt two
rounds for Sparx 128/256. Table 3 summarizes the results of linear key recovery
with Cho-Pieprzyk approximations on the Sparx family.

Fig. 3. Key Recovery Attack on Sparx 64/128 - 9 rounds

5 Partly-Pseudo-Linear Cryptanalysis on the SPARX
Family

In this section, we present a new attack for the ARX block cipher which we term
the Partly-Pseudo-Linear Attack.
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Table 3. Linear Key Recovery Attack on Sparx family

N/K
No. Rounds No. Rounds Guessed

Bias
Data Time

of Linear Trail Key Recovery Bits Complexity Complexity

64/128 8 9 60 2−23 246 2106

128/128 8 9 44 2−19 238 282

128/256 8 10 140 2−19 238 2178

∗ N is the block size and K is the key size.

Definition 1. Partly-Pseudo-Linear Attack is a meet-in-the-middle combina-
tion of pseudo-linear and linear attacks.

We show that linear cryptanalysis relying on Cho-Pieprzyk approximations of
modular addition is improved by replacing some rounds of linear approximation
with pseudo-linear approximations. Using the approach of Bodden and Ashur [2,
1], we find the longest linear trails to approximate a window of two consecutive
bits in each direction (forward and backward). Of these, we choose the trail(s)
that would combine with a lower-error pseudo-linear attack.

The bias of the resulting Partly-Pseudo-Linear approximation hence consists
of two parts. The first part is the bias of the xor of the bits of the window when
the window is computed using the pseudo-linear approximation; this is deter-
mined experimentally. The second part is the bias for the linear approximation
computed using traditional linear approaches. The combination of these two bi-
ases using the piling up lemma allows us to determine the number of plaintext
and ciphertext pairs that we should use in our experiments. We illustrate and
analyze the efficiency of our Partly-Pseudo-Linear cryptanalysis attack on all
variants of the Sparx family.

5.1 The Partly-Pseudo-Linear Attack on Sparx 64/128

We first describe the Partly-Pseudo-Linear attack obtained by approximating
nine rounds of Sparx 64/128. In the 9-round attack, we encrypt one round
using all possibilities of the key bits that leads to our linear approximation (32
key bits of the right word). Then we approximate five rounds in the forward
direction using linear approximation and three rounds in the backward direction
using pseudo-linear approximation.

For the pseudo-linear approximation, the window size is two, w = 2, and 61
key bits are required for the approximation. In the last round the addition oper-
ation (subtraction) is before the key round injection; thus, it can be performed
exactly for the full word without any need for an approximation.

For the linear approximation, we start the mask with λLx = 0x0000 and λLy
= 0x0000 for the left word and λRx = 0x07f8 and λRy = 0xfdf4 for the right
word. Table 4 shows how the mask changes through the five rounds and the
approximation for the Partly-Pseudo-Linear attack for 9 rounds is available in
the appendix (see Table 8).
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Table 4. Linear trail of Sparx 64/128 for 6 rounds

Round Cost
Left Word Right Word

λL
xi λL

yi λL
xi+1 λL

yi+1 λR
xi λR

yi λR
xi+1 λR

yi+1

1 0 0x0000 0x0000 0x0000 0x0000 Encrypt trying all key possibilities
2 4 0x0000 0x0000 0x0000 0x0000 0x07f8 0xfdf4 0xc7e3 0x37ec

3 5 0x0000 0x0000 0x0000 0x0000 0xc7e3 0x37ec 0x0600 0xc18f

Linear Permutation

4 1 0x0600 0xc18f 0x0603 0x060f 0x0000 0x0000 0x0000 0x0000

5 2 0x0603 0x060f 0x0600 0x000c 0x0000 0x0000 0x0000 0x0000

6 1 0x0600 0x000c 0x000c 0x0000 0x0000 0x0000 0x0000 0x0000

Linear Permutation

0x0c0c 0x0c00 0x000c 0x0000

5.2 The Partly-Pseudo-Linear Attack on Sparx 128/128 and Sparx
128/256

The Partly-Pseudo-Linear attack on Sparx 128/128 is obtained by approximat-
ing 9 rounds: 4 in the forward direction using pseudo-linear approximation, 4 in
the backward direction using linear approximation and one decryption round us-
ing all possibilities of the key bits that lead to our linear approximation (44 key
bits of the first, second, and third words). For the pseudo-linear approximation,
the window size is two, w = 2, and 54 key bits are required for the approxima-
tion. Table 5 shows how the mask for the linear approximation changes through
the four rounds.

The Partly-Pseudo-Linear attack on Sparx 128/256 is obtained by approx-
imating 11 rounds: two encryption rounds using all possibilities of the key bits
leading to our linear approximation (64 key bits of the third word), 6 rounds
in the forward direction using linear approximation and three rounds in the
backward direction using pseudo-linear approximation. For the pseudo-linear
approximation, the window size is two, w = 2, and 124 key bits are required
for the approximation. In the last round the addition operation (subtraction)
is before the key round injection; thus, it can be performed exactly for the full
word without any need for an approximation. Table 6 shows how the mask for
the linear approximation changes through the 6 rounds. Figure 4 describes the
Partly-Pseudo-Linear attack on Sparx 128/128 and Sparx 128/256 and Table
7 summarizes the characteristics of the Partly-Pseudo-Linear attack on Sparx
family.
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Table 5. Linear trail of Sparx 128/128 for 9-round Partly-Pseudo-Linear Approxima-
tion

Round Cost
First Word Second Word Third Word Fourth Word
λL1
xi λR1

yi λL2
xi λR2

yi λL3
x λR3

yi λL4
xi λR4

yi

5 1
0x000c 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0x7800 0x6000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

6 2
0x7800 0x6000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0x8331 0x83c1 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

7 3
0x8331 0x83c1 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0xe019 0x831f 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

8 3
0xe019 0x831f 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0xf0be 0xc37e 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

Linear Permutation

0x308d 0xc033 0xc033 0x034d 0xf0be 0xc37e 0x0000 0x0000

Table 6. Linear trail of Sparx 128/256 for 11-round Partly-Pseudo-Linear approxi-
mation

Round Cost
First Word Second Word Third Word Fourth Word
λL1
xi λR1

yi λL2
xi λR2

yi λL3
x λR3

yi λL4
xi λR4

yi

1 0
0x0000 0x0000 0x0000 0x0000

Try all 32 key bits
0x0000 0x0000

0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

2 0
0x0000 0x0000 0x0000 0x0000

Try all 32 key bits
0x0000 0x0000

0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

3 4
0x0000 0x0000 0x0000 0x0000 0x07f8 0xfdf4 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000 0xc7e3 0x37ec 0x0000 0x0000

4 5
0x0000 0x0000 0x0000 0x0000 0xc7e3 0x37ec 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000 0x0600 0xc18f 0x0000 0x0000

Linear Permutation

5 1
0x0600 0xc18f 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0x0603 0x060f 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

6 2
0x0603 0x060f 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0x0600 0x000c 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

7 1
0x0600 0x000c 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0x000c 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

8 1
0x000c 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0x7800 0x6000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

Linear Permutation

0x7818 0x0018 0x0018 0x6018 0x7800 0x6000 0x0000 0x0000
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Fig. 4. The Partly-Pseudo-Linear Cryptanalysis on (a) Sparx 128/128 and (b) Sparx
128/256

Table 7. The Partly-Pseudo-Linear Attack on Sparx family

N/K
No. Rounds Guessed

Bias
Data Time

Key Recovery Bits Complexity Complexity

64/128 9 93 2−15.84 232 2125

128/128 9 98 2−13.73 228 2126

128/256 11 195 2−20.42 242 2237

∗ N is the block size and K is the key size.

6 Conclusion

We present a new key recovery attack on the Sparx block cipher: Partly-Pseudo-
Linear cryptanalysis. We illustrate it by combining linear approximations using
the Cho-Pieprzyk property and McKay’s pseudo-linear approximations to design
a key recovery attack. We are able to recover 93 encryption key bits for 9 rounds
of Sparx 64/128, 98 key bits for 9 rounds of Sparx 128/128 and 195 key bits
for 11 rounds of Sparx 128/256. We see that we are able to improve on the
current literature on linear cryptanalysis of larger variants of Sparx.

We compare our results with those using only Cho-Pieprzyk approximations,
extended to key recovery attacks, and observe improvements. For all variants of
the Sparx family, we recover more encryption key bits with better bias and lower
data complexity by replacing some rounds of Cho-Pieprzyk approximations with
pseudo-linear approximations.
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Appendix

Table 8 shows the pseudo-linear approximation for the left word of the Sparx
64/128 and same way, we can write the pseudo-linear approximation of the
right word. Table 9 shows how the linear mask changes through the 8 rounds.
Additionally, for Sparx 128/128 and Sparx 128/256, we can write the pseudo-
linear approximation that leads to the active bits of the mask of the linear trail.

Table 8. The pseudo-linear approximation for Partly-pseudo-Linear 9-round attack -
Left word of the Sparx 64/128.

Round Decryption

7 xl71 = ((xl83 � ((xr83 ⊕ xl85)≫ 2))≪ 7)⊕ kl71(12, 14)
xl72 = ((xl81 � ((xr81 ⊕ xl82)≫ 2))≪ 7)⊕ kl72(4, 6)
xr71 = ((xl84 ⊕ xr82)≫ 2)⊕ kr71(4, 6)

8 xl81 = ((xl97 � ((xr95 ⊕ xl98)≫ 2))≪ 7)⊕ kl81(11, 13)
xl82 = ((xl98 � ((xr91 ⊕ xl91)≫ 2))≪ 7)⊕ kl82(9, 11)
xl83 = ((xl92 � ((xr92 ⊕ xl94)≫ 2))≪ 7)⊕ kl83(3, 5)
xl84 = ((xl93 � ((xr93 ⊕ xl95)≫ 2))≪ 7)⊕ kl84(2, 4)
xl85 = ((xl94 � ((xr94 ⊕ xl96)≫ 2))≪ 7)⊕ kl85(1, 3)
xr81 = ((xl95 ⊕ xr93)≫ 2)⊕ kr81(9, 11)
xr82 = ((xl98 ⊕ xr95)≫ 2)⊕ kr82(2, 4)
xr83 = ((xl99 ⊕ xr96)≫ 2)⊕ kr83(1, 3)

9 NewCR = (CL⊕ CR)≫ 2
NewCL = (CL�NewCR)≪ 7
xl91 = NewCL(14, 16)⊕ kl91(14, 16)
xl92 = NewCL(10, 12)⊕ kl92(10, 12)
xl93 = NewCL(9, 11)⊕ kl93(9, 11)
xl94 = NewCL(8, 10)⊕ kl94(8, 10)
xl95 = NewCL(7, 9)⊕ kl95(7, 9)
xl96 = NewCL(6, 8)⊕ kl96(6, 8)
xl97 = NewCL(2, 4)⊕ kl97(2, 4)
xl98 = NewCL(0, 2)⊕ kl98(0, 2)
xl99 = NewCL(15, 17mod 16)⊕ kl99(15, 17mod 16)
xr91 = NewCR(14, 16)⊕ kr91(14, 16)
xr92 = NewCR(8, 10)⊕ kr92(8, 10)
xr93 = NewCR(7, 9)⊕ kr93(7, 9)
xr94 = NewCR(6, 8)⊕ kr94(6, 8)
xr95 = NewCR(0, 2)⊕ kr95(0, 2)
xr96 = NewCR(15, 17mod 16)⊕ kr96(15, 17mod 16)
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Table 9. Linear trail of Sparx 64/128 for 6 rounds - Linear key recovery attack.

Round Cost
Left Word Right Word

λL
xi λL

yi λL
xi+1 λL

yi+1 λR
xi λR

yi λR
xi+1 λR

yi+1

1 4 0x0000 0x0000 0x0000 0x0000 0x07f8 0xfdf4 0xc7e3 0x37ec

2 5 0x0000 0x0000 0x0000 0x0000 0xc7e3 0x37ec 0x0600 0xc18f

3 1 0x0000 0x0000 0x0000 0x0000 0x0600 0xc18f 0x0603 0x060f

Linear Permutation

4 2 0x0603 0x060f 0x0600 0x000c 0x0000 0x0000 0x0000 0x0000

5 1 0x0600 0x000c 0x000c 0x0000 0x0000 0x0000 0x0000 0x0000

6 1 0x000c 0x0000 0x7800 0x6000 0x0000 0x0000 0x0000 0x0000

Linear Permutation

7 5 0x7818 0x6018 0x7351 0x43a1 0x7800 0x6000 0x8331 0x83c1

8 3 Stop 0x8331 0x83c1 0xe019 0x831f


