Algorithm for SIS and MultiSIS problems

Igor Semaev
Department of Informatics, University of Bergen, igor@ii.uib.no

August 16, 2020

Abstract

SIS problem has numerous applications in cryptography. Known algorithms for solving that problem are exponential in complexity. A new algorithm is suggested in this note, its complexity is sub-exponential for a range of parameters.

1 Introduction

Let A be any integer $m \times n$ matrix, where $m>n$ and q be a prime. Assume A is of rank n modulo q. Let $c=\left(c_{1}, \ldots, c_{m}\right)$ be an integer vector of length m and $|c|=\left(c_{1}^{2}+\ldots+c_{m}^{2}\right)^{1 / 2}$ denote its norm (Euclidean length) and ν be a positive real. The SIS (Short Integer Solution) problem is to construct a non-zero integer row vector c of length m and norm at most ν such that $c A \equiv 0 \bmod q$. The problem of constructing several such short vectors is called MultiSIS problem.

The inhomogeneous SIS problem asks for a short vector c such that $c A \equiv a \bmod q$ for a non-zero row vector a of length n. The inhomogeneous SIS problem may be reduced to a homogeneous SIS problem. Let $A_{1}=\binom{A}{a}$ be a concatenation of the matrix A and the vector a. Assume one constructs a number of short solutions c_{1} to $c_{1} A_{1} \equiv 0 \bmod q$ with non-zero last entry. One of them may likely be $c_{1}=(c, 1)$ and that gives a solution to $c A \equiv a \bmod q$, or such a vector may be found as a combination of the solutions to the SIS problem.

Typical SIS problem parameters are $\nu \geq \sqrt{n \log _{2} q}$ and $m>n \log _{2} q$, where q is bounded by a polynomial in n. The problem may be reduced to constructing short vectors in general lattices, which is considered hard, see [1]. The SIS problem has a number of applications in cryptography, see [6]. For instance, the hash function $x \rightarrow x A$ was suggested in [1].

Integer vectors c such that $c A \equiv 0 \bmod q$ is a lattice of dimension m and volume q^{n}. So all vectors of norm $\leq \nu$ may be computed with a lattice enumeration in time $m^{O(m)}$, see [3]. Alternatively, one may apply a lattice reduction algorithm. The reduction cost is $2^{O(m)}$ operations according to [3]. The so-called combinatorial algorithms to solve the

SIS problem and its inhomogeneous variant, where the entries of c are 0 or 1 , are surveyed in [2]. They have complexity $2^{O(m)}$ operations. All above methods are thus exponential in complexity. In this note a new algorithm for solving SIS and MultiSIS problems is introduced. The complexity of the algorithm is sub-exponential for a range of parameters.

2 MultiSIS Problem

How to construct N different non-zero vectors c of norm at most ν such that $c A \equiv 0$ $\bmod q$? The vectors generated by the rows of the matrix $q I_{m}$, where I_{m} denotes a unity matrix of size $m \times m$, are trivial solutions and not counted. We call this MultiSIS problem. Obviously, a solution to the MultiSIS problem implies a solution to the homogeneous SIS problem. That may also imply a solution to a relevant inhomogeneous problem as it is explained earlier.

The MultiSIS problem may be solved by lattice enumeration. Alternatively, one perturbs the initial basis of the lattice N times and apply a lattice reduction algorithm after each perturbation. So the overall complexity is $N 2^{O(m)}$, though we do not know if that really solves the problem as the vectors in the reduced bases may repeat.

If $m=o\left(\nu^{2}\right)$, then the number of integer vectors c of norm at most ν is approximately the volume of a ball of radius ν centred at the origin. With probability $1 / q^{n}$ the vector c satisfies $c A \equiv 0$. Therefore the number of such relations is around

$$
\frac{\pi^{m / 2} \nu^{m}}{\Gamma(m / 2+1) q^{n}} \approx \frac{(2 \pi e)^{m / 2}}{\sqrt{\pi m}}\left(\frac{\nu}{\sqrt{m}}\right)^{m} \frac{1}{q^{n}}
$$

and should be at least N to make the problem solvable. That fits the so-called Gaussian heuristic, see [4].

According to [5], if $\nu=O(\sqrt{m})$ the Gaussian heuristic does not generally hold. We will use a different argument still heuristic. Let $\nu<\sqrt{m}$ and $d=\left\lfloor\nu^{2}\right\rfloor$. For each subset $A_{i_{1}}, \ldots, A_{i_{r}}$ of $r \leq d$ rows of A there are 2^{r} linear combinations $c_{1} A_{i_{1}}+\ldots+c_{r} A_{i_{r}}$, where $c_{i}= \pm 1$ and so $c=\left(c_{1}, \ldots, c_{r}\right)$ is of norm $\leq \nu$. We do not distinguish between c and $-c$. So the expected number of such zero combinations is $2^{r-1} / q^{n}$. For the whole matrix the expected number of different c of norm at most ν such that $c A \equiv 0$ is at least $\sum_{r=1}^{d}\binom{m}{r} 2^{r-1} / q^{n}$. Therefore, N such relations do exist if $\sum_{r=1}^{d}\binom{m}{r} 2^{r-1} / q^{n} \geq N$, minding that the inequality is approximate.

2.1 MultiSIS Algorithm

Let $\delta=m / n \ln q$ and $\eta=\nu^{2} / n \ln q$. In this section we present the algorithm to construct vectors c of norm at most ν such that $c A \equiv 0 \bmod q$. In Section 2.2 we will show that if at least one of δ or η tends to infinity, then one may construct $q^{\frac{n}{t}(1+o(1))}$ such vectors with the complexity $q^{\frac{n}{t}(1+o(1))}$ operations, where $t=\left[\log _{2} \sqrt{\eta \ln \delta}\right](1+o(1))$. The latter tends to infinity, so the complexity is sub-exponential. If both δ and η are bounded, then
the complexity is represented by the same expression for some bounded t and therefore exponential. The analysis is heuristic.

Let $d \geq 2, k<m, N$ be integer parameters such that $\nu=d \sqrt{k}$. We may assume that $d=2^{t}$ for an integer $t=\log _{2} d$ and $n=s t$ for an integer s. Otherwise, the algorithm below is easy to adjust. Let $\mathfrak{m}(k)$ be the number of integer vectors of length m and of norm $\leq \sqrt{k}$ up to a multiplier -1 . It is easy to see that $\mathfrak{m}(k) \geq \sum_{i=1}^{k}\binom{m}{i} 2^{i-1}$.

1. Put $\mathfrak{A}_{0}=C_{0} A$, where C_{0} be a matrix of size $\mathfrak{m}(k) \times m$ and each row of C_{0} is an integer vector of norm at most \sqrt{k}.
2. Let N_{i} for i in $0, \ldots, t-1$ be integers such that $N_{i}=q^{s(1+o(1))}$, where $N_{0} \leq \mathfrak{m}$ and $N_{t}=N$.
3. For $i=0, \ldots, t-1$ do the following. Represent $\mathfrak{A}_{i}=\mathfrak{A}_{i 1} \mid \mathfrak{A}_{i 2}$ as a concatenation of two matrices, where $\mathfrak{A}_{i 1}$ is of size $N_{i} \times s$ and $\mathfrak{A}_{i 2}$ is of size $N_{i} \times s(t-i-1)$. As $N_{i}=q^{s(1+o(1))}$ there are $N_{i+1}=q^{s(1+o(1))}$ relations $c \mathfrak{A}_{i 1} \equiv 0$, where c is a vector of length N_{i} and it has at most two non-zero entries which are ± 1. Let C_{i+1} be a matrix of size $N_{i+1} \times N_{i}$ with such rows. Equivalently, there are $q^{s(1+o(1))}$ pairs of rows in $\mathfrak{A}_{i 1}$, where one row differs from another by a multiplier ± 1, and zero rows in $\mathfrak{A}_{i 1}$. Such pairs of rows and zero rows in $\mathfrak{A}_{i 1}$ may be computed in $N_{i}^{1+o(1)}$ operations by sorting. Put $\mathfrak{A}_{i+1}=C_{i+1} \mathfrak{A}_{i 2}$ and repeat the step.
4. The matrix $C=C_{t} \ldots C_{1} C_{0}$ is of size $N \times m$ and it satisfies $C A \equiv 0$. Each row of C has norm $\leq \nu=d \sqrt{k}$.

The rows of C_{0} are different and non-zero. At each step of the algorithm one may choose C_{i} such that the rows of $C_{i} \ldots C_{1} C_{0}$ are different. As the rows of C_{i+1} have at most two non-zero entries which are ± 1, the rows of $C_{i+1} C_{i} \ldots C_{0}$ are all non-zero. Though we can not guarantee theoretically that all constructed vectors are different, the algorithm works well in practice.

2.2 Analysis of the Algorithm

The algorithm constructs $q^{\frac{n}{t}(1+o(1))}$ integer vectors c of norm at most ν such that $c A \equiv 0$ $\bmod q$ and its complexity is $q^{\frac{n}{t}(1+o(1))}$ operations. We will define an optimal $t=\log _{2} d$. For any input parameters n, q, m, ν one may find t by solving numerically the system $\mathfrak{m}(k) \geq q^{\frac{n}{t}}$ and $\nu=2^{t} \sqrt{k}$.

Let $\delta=m / n \ln q$ and $\eta=\nu^{2} / n \ln q$ and at least one of them is an increasing function in n. We will represent t as a function of δ, η. First, we find k such that $\mathfrak{m}(k) \geq q^{\frac{n}{t}}$ for large n. One may solve a stronger inequality $\binom{m}{k} 2^{k-1} \geq q^{\frac{n}{t}}$ instead. With the Stirling approximation to the factorial function, it is easy to see that one may take $k=\frac{\alpha n}{t}(1+o(1))$, where

$$
\alpha=\frac{\ln q}{\ln m-\ln \ln q^{\frac{n}{t}}}=\frac{\ln q}{\ln (\delta t)} .
$$

So $k=\frac{n \ln q}{t \ln (\delta t)}(1+o(1))$ and the equation $\nu=d \sqrt{k}$ is equivalent to

$$
\begin{equation*}
\eta=\frac{4^{t}}{t \ln (\delta t)}(1+o(1)) \tag{1}
\end{equation*}
$$

The solution to (1) is

$$
t=\log _{2} \sqrt{\eta \ln \delta}(1+o(1)) .
$$

Experimentally, $t>\log _{2} \sqrt{\eta \ln \delta}$ and they converges for very large parameters. The complexity of the algorithm is $q^{\frac{n}{\log _{2} \sqrt{\eta \ln \delta}}}(1+o(1))$.

References

[1] M. Ajtai, Generating hard instances of lattice problems. Proceedings of the twentyeighth annual ACM symposium on Theory of computing. ACM, 1996.
[2] S. Bai, S. Galbraith, L. Li, D. Sheffield, Improved Combinatorial Algorithms for the Inhomogeneous Short Integer Solution Problem, J Cryptol 32, pp. 35-83 (2019)
[3] G. Hanrot, X. Pujol and D. Stehlé, Algorithms for the Shortest and Closest Lattice Vector Problems, in IWCC 2011. LNCS 6639, Springer, Berlin, Heidelberg, pp. 159190.
[4] P.Q. Nguyen and B. Vallée(eds), The LLL Algorithm. Survey and Applications, Springer-Verlag, Berlin, Heidelberg, 2010.
[5] Mazo, J.E., Odlyzko, A.M. Lattice points in high-dimensional spheres. Monatshefte für Mathematik 110 (1990), pp. 47-61.
[6] C. Peikert, A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939, 2015.

