Algorithm for SIS and MultiSIS problems

Igor Semaev

Department of Informatics, University of Bergen, igor@ii.uib.no

August 16, 2020

Abstract

SIS problem has numerous applications in cryptography. Known algorithms for solving that problem are exponential in complexity. A new algorithm is suggested in this note, its complexity is sub-exponential for a range of parameters.

1 Introduction

Let A be any integer $m \times n$ matrix, where m > n and q be a prime. Assume A is of rank n modulo q. Let $c = (c_1, \ldots, c_m)$ be an integer vector of length m and $|c| = (c_1^2 + \ldots + c_m^2)^{1/2}$ denote its norm (Euclidean length) and ν be a positive real. The SIS (Short Integer Solution) problem is to construct a non-zero integer row vector c of length m and norm at most ν such that $cA \equiv 0 \mod q$. The problem of constructing several such short vectors is called MultiSIS problem.

The inhomogeneous SIS problem asks for a short vector c such that $cA \equiv a \mod q$ for a non-zero row vector a of length n. The inhomogeneous SIS problem may be reduced to a homogeneous SIS problem. Let $A_1 = \begin{pmatrix} A \\ a \end{pmatrix}$ be a concatenation of the matrix A and the vector a. Assume one constructs a number of short solutions c_1 to $c_1A_1 \equiv 0 \mod q$ with non-zero last entry. One of them may likely be $c_1 = (c, 1)$ and that gives a solution to $cA \equiv a \mod q$, or such a vector may be found as a combination of the solutions to the SIS problem.

Typical SIS problem parameters are $\nu \ge \sqrt{n \log_2 q}$ and $m > n \log_2 q$, where q is bounded by a polynomial in n. The problem may be reduced to constructing short vectors in general lattices, which is considered hard, see [1]. The SIS problem has a number of applications in cryptography, see [6]. For instance, the hash function $x \to xA$ was suggested in [1].

Integer vectors c such that $cA \equiv 0 \mod q$ is a lattice of dimension m and volume q^n . So all vectors of norm $\leq \nu$ may be computed with a lattice enumeration in time $m^{O(m)}$, see [3]. Alternatively, one may apply a lattice reduction algorithm. The reduction cost is $2^{O(m)}$ operations according to [3]. The so-called combinatorial algorithms to solve the SIS problem and its inhomogeneous variant, where the entries of c are 0 or 1, are surveyed in [2]. They have complexity $2^{O(m)}$ operations. All above methods are thus exponential in complexity. In this note a new algorithm for solving SIS and MultiSIS problems is introduced. The complexity of the algorithm is sub-exponential for a range of parameters.

2 MultiSIS Problem

How to construct N different non-zero vectors c of norm at most ν such that $cA \equiv 0 \mod q$? The vectors generated by the rows of the matrix qI_m , where I_m denotes a unity matrix of size $m \times m$, are trivial solutions and not counted. We call this MultiSIS problem. Obviously, a solution to the MultiSIS problem implies a solution to the homogeneous SIS problem. That may also imply a solution to a relevant inhomogeneous problem as it is explained earlier.

The MultiSIS problem may be solved by lattice enumeration. Alternatively, one perturbs the initial basis of the lattice N times and apply a lattice reduction algorithm after each perturbation. So the overall complexity is $N2^{O(m)}$, though we do not know if that really solves the problem as the vectors in the reduced bases may repeat.

If $m = o(\nu^2)$, then the number of integer vectors c of norm at most ν is approximately the volume of a ball of radius ν centred at the origin. With probability $1/q^n$ the vector csatisfies $cA \equiv 0$. Therefore the number of such relations is around

$$\frac{\pi^{m/2}\,\nu^m}{\Gamma(m/2+1)\,q^n} \approx \frac{(2\pi e)^{m/2}}{\sqrt{\pi m}} \left(\frac{\nu}{\sqrt{m}}\right)^m \frac{1}{q^n}$$

and should be at least N to make the problem solvable. That fits the so-called Gaussian heuristic, see [4].

According to [5], if $\nu = O(\sqrt{m})$ the Gaussian heuristic does not generally hold. We will use a different argument still heuristic. Let $\nu < \sqrt{m}$ and $d = \lfloor \nu^2 \rfloor$. For each subset A_{i_1}, \ldots, A_{i_r} of $r \leq d$ rows of A there are 2^r linear combinations $c_1 A_{i_1} + \ldots + c_r A_{i_r}$, where $c_i = \pm 1$ and so $c = (c_1, \ldots, c_r)$ is of norm $\leq \nu$. We do not distinguish between c and -c. So the expected number of such zero combinations is $2^{r-1}/q^n$. For the whole matrix the expected number of different c of norm at most ν such that $cA \equiv 0$ is at least $\sum_{r=1}^{d} {m \choose r} 2^{r-1}/q^n$. Therefore, N such relations do exist if $\sum_{r=1}^{d} {m \choose r} 2^{r-1}/q^n \geq N$, minding that the inequality is approximate.

2.1 MultiSIS Algorithm

Let $\delta = m/n \ln q$ and $\eta = \nu^2/n \ln q$. In this section we present the algorithm to construct vectors c of norm at most ν such that $cA \equiv 0 \mod q$. In Section 2.2 we will show that if at least one of δ or η tends to infinity, then one may construct $q^{\frac{n}{t}(1+o(1))}$ such vectors with the complexity $q^{\frac{n}{t}(1+o(1))}$ operations, where $t = [\log_2 \sqrt{\eta \ln \delta}] (1 + o(1))$. The latter tends to infinity, so the complexity is sub-exponential. If both δ and η are bounded, then the complexity is represented by the same expression for some bounded t and therefore exponential. The analysis is heuristic.

Let $d \ge 2, k < m, N$ be integer parameters such that $\nu = d\sqrt{k}$. We may assume that $d = 2^t$ for an integer $t = \log_2 d$ and n = st for an integer s. Otherwise, the algorithm below is easy to adjust. Let $\mathfrak{m}(k)$ be the number of integer vectors of length m and of norm $\le \sqrt{k}$ up to a multiplier -1. It is easy to see that $\mathfrak{m}(k) \ge \sum_{i=1}^{k} {m \choose i} 2^{i-1}$.

- 1. Put $\mathfrak{A}_0 = C_0 A$, where C_0 be a matrix of size $\mathfrak{m}(k) \times m$ and each row of C_0 is an integer vector of norm at most \sqrt{k} .
- 2. Let N_i for i in $0, \ldots, t-1$ be integers such that $N_i = q^{s(1+o(1))}$, where $N_0 \leq \mathfrak{m}$ and $N_t = N$.
- 3. For $i = 0, \ldots, t 1$ do the following. Represent $\mathfrak{A}_i = \mathfrak{A}_{i1}|\mathfrak{A}_{i2}$ as a concatenation of two matrices, where \mathfrak{A}_{i1} is of size $N_i \times s$ and \mathfrak{A}_{i2} is of size $N_i \times s(t - i - 1)$. As $N_i = q^{s(1+o(1))}$ there are $N_{i+1} = q^{s(1+o(1))}$ relations $c\mathfrak{A}_{i1} \equiv 0$, where c is a vector of length N_i and it has at most two non-zero entries which are ± 1 . Let C_{i+1} be a matrix of size $N_{i+1} \times N_i$ with such rows. Equivalently, there are $q^{s(1+o(1))}$ pairs of rows in \mathfrak{A}_{i1} , where one row differs from another by a multiplier ± 1 , and zero rows in \mathfrak{A}_{i1} . Such pairs of rows and zero rows in \mathfrak{A}_{i1} may be computed in $N_i^{1+o(1)}$ operations by sorting. Put $\mathfrak{A}_{i+1} = C_{i+1}\mathfrak{A}_{i2}$ and repeat the step.
- 4. The matrix $C = C_t \dots C_1 C_0$ is of size $N \times m$ and it satisfies $CA \equiv 0$. Each row of C has norm $\leq \nu = d\sqrt{k}$.

The rows of C_0 are different and non-zero. At each step of the algorithm one may choose C_i such that the rows of $C_i \ldots C_1 C_0$ are different. As the rows of C_{i+1} have at most two non-zero entries which are ± 1 , the rows of $C_{i+1}C_i \ldots C_0$ are all non-zero. Though we can not guarantee theoretically that all constructed vectors are different, the algorithm works well in practice.

2.2 Analysis of the Algorithm

The algorithm constructs $q^{\frac{n}{t}(1+o(1))}$ integer vectors c of norm at most ν such that $cA \equiv 0$ mod q and its complexity is $q^{\frac{n}{t}(1+o(1))}$ operations. We will define an optimal $t = \log_2 d$. For any input parameters n, q, m, ν one may find t by solving numerically the system $\mathfrak{m}(k) \geq q^{\frac{n}{t}}$ and $\nu = 2^t \sqrt{k}$.

Let $\delta = m/n \ln q$ and $\eta = \nu^2/n \ln q$ and at least one of them is an increasing function in n. We will represent t as a function of δ, η . First, we find k such that $\mathfrak{m}(k) \geq q^{\frac{n}{t}}$ for large n. One may solve a stronger inequality $\binom{m}{k}2^{k-1} \geq q^{\frac{n}{t}}$ instead. With the Stirling approximation to the factorial function, it is easy to see that one may take $k = \frac{\alpha n}{t}(1+o(1))$, where

$$\alpha = \frac{\ln q}{\ln m - \ln \ln q^{\frac{n}{t}}} = \frac{\ln q}{\ln(\delta t)}.$$

So $k = \frac{n \ln q}{t \ln(\delta t)} (1 + o(1))$ and the equation $\nu = d\sqrt{k}$ is equivalent to

$$\eta = \frac{4^t}{t \ln(\delta t)} (1 + o(1)).$$
(1)

The solution to (1) is

$$t = \log_2 \sqrt{\eta \ln \delta} \left(1 + o(1)\right).$$

Experimentally, $t > \log_2 \sqrt{\eta \ln \delta}$ and they converges for very large parameters. The complexity of the algorithm is $q^{\frac{n}{\log_2 \sqrt{\eta \ln \delta}}(1+o(1))}$.

References

- [1] M. Ajtai, *Generating hard instances of lattice problems*. Proceedings of the twentyeighth annual ACM symposium on Theory of computing. ACM, 1996.
- [2] S. Bai, S. Galbraith, L. Li, D. Sheffield, Improved Combinatorial Algorithms for the Inhomogeneous Short Integer Solution Problem, J Cryptol 32, pp. 35–83 (2019)
- [3] G. Hanrot, X. Pujol and D. Stehlé, Algorithms for the Shortest and Closest Lattice Vector Problems, in IWCC 2011. LNCS 6639, Springer, Berlin, Heidelberg, pp. 159– 190.
- [4] P.Q. Nguyen and B. Vallée(eds), The LLL Algorithm. Survey and Applications, Springer-Verlag, Berlin, Heidelberg, 2010.
- [5] Mazo, J.E., Odlyzko, A.M. Lattice points in high-dimensional spheres. Monatshefte für Mathematik 110 (1990), pp. 47–61.
- [6] C. Peikert, A decade of lattice cryptography. Cryptology ePrint Archive, Report 2015/939, 2015.