
A Study on Privacy-Preserving
GRU Inference Framework*

SHOU-CHING HSIAO

jasmie8431@gmail.com

ZI-YUAN LIU

zyliu@cs.nccu.edu.tw

RAYLIN TSO
raylin@cs.nccu.edu.tw

Department of Computer Science
National Chengchi University

Taipei, Taiwan

*The previous version of this work appears at Journal of Intelligent & Fuzzy System[26]. This is the extended work that
aims to provide a more reliable construction, safety proof, and experimental results than previous version. Please note that
the content of this version is the same with Hsiao’s dissertation of National Chengchi University, Taiwan.

Abstract

Gated Recurrent Unit (GRU) has broad application fields, such as sentiment analysis, speech recog-
nition, malware analysis, and other sequential data processing. For low-cost deployment and efficient
machine learning services, a growing number of model owners choose to deploy the trained GRU mod-
els through Machine-learning-as-a-service (MLaaS). However, privacy has become a significant concern
for both model owners and prediction clients, including model weights privacy, input data privacy, and
output results privacy. The privacy leakage may be caused by either external intrusion or insider at-
tacks. To address the above issues, this research designs a framework for privacy-preserving GRU
models, which aims for privacy scenarios such as predicting on textual data, network packets, heart
rate data, and so on. In consideration of accuracy and efficiency, this research uses additive secret
sharing to design the basic operations and gating mechanisms of GRU. The protocols can meet the se-
curity requirements of privacy and correctness under the Universal Composability framework with the
semi-honest adversary. Additionally, the framework and protocols are realized with a proof-of-concept
implementation. The experiment results are presented with respect to time consumption and inference
accuracy.

Keywords: Privacy-preserving, Gated Recurrent Unit Model, Secret Sharing, Universal Composability
Framework

1

Contents

Abstract 3

1 Introduction 4
1.1 Motivations and Purposes . 4
1.2 Contributions . 5

2 Definitions and Preliminaries 7
2.1 Additive Secret Sharing (ASS) . 7
2.2 Gated Recurrent Unit (GRU) Model . 8
2.3 Universal Composability (UC) Framework . 9

3 Technical Literature 11
3.1 Privacy-preserving Techniques . 11
3.2 Privacy-preserving Deep Neural Network . 12

4 Privacy-preserving GRU Inference Framework 13
4.1 Architecture . 13
4.2 Security Model . 13

4.2.1 Non-colluding Cloud Servers . 14
4.2.2 Prediction Clients . 14
4.2.3 Outsiders . 14
4.2.4 Network Transmission . 14

4.3 Basic Protocols . 15
4.3.1 Hadamard Product . 16
4.3.2 Division . 17
4.3.3 Share Re-generation . 17
4.3.4 Sigmoid Activation Function . 18
4.3.5 Tanh Activation Function . 19

4.4 Gating Protocols . 19
4.4.1 Update Gate and Reset Gate . 20
4.4.2 Current Memory . 20
4.4.3 Activation of Current Cell . 20

4.5 Putting It All Together . 20

5 Security Analysis 23
5.1 Security of Basic Protocols . 23
5.2 Security of Gating Protocols . 28
5.3 Security of GRU Inference . 30

6 Experiments and Results 33
6.1 Dataset . 33
6.2 Implementation . 33
6.3 Results . 34

2

CONTENTS 3

7 Discussions and Future Works 36
7.1 Discussions on Accuracy . 36
7.2 Discussions on Time Consumption . 36
7.3 Potential Collusion Problems . 37
7.4 Extended Future Works . 37

8 Conclusion 39

Bibliography 40

Chapter 1

Introduction

Nowadays, many machine learning services are provided through cloud servers. In these scenarios,
machine learning is outsourced as a service via cloud-based platforms, which is also known as Machine-
learning-as-a-service (MLaaS) [43]. The model owners benefit from easily deploying the models with
low cost and providing the efficient model services that can be accessed by individual users, agents, web
services, IoT sensors, and so on. (Figure 1.1). However, the main obstacle to adopting such a scheme
lies in data privacy issues. In recent years, data privacy rights have been highly valued. The privacy
concerns are raised not only by individuals but also by governments. In Taiwan, Personal Information
Protection Act (PDPA)* has been amended for more strict regulations on private data collection and
usage. In 2016, the General Data Protection Regulation (GDPR)† has become an official regulation in
Europe. Although there is often a non-disclosure agreement (NDA) to regulate the data disclosure in
the outsourcing scenario, the unwilling data breach caused by malicious hackers or insiders is difficult
to prevent. Therefore, addressing the above data privacy problem is the main point of this research.

This research focuses on GRU model to design the privacy-preserving protocols. GRU is one of the
Recurrent Neural Network (RNN) that is suitable for processing sequential data [13], which can im-
prove the memory consumption and performance of long short-term memory (LSTM). GRU has been
applied to many different fields, including sentiment analysis [4], spam detection [41], traffic flow pre-
diction [20], and malware classification [2]. Take sentiment analysis as an example: it has gained in
popularity recently due to a wide range of applications, such as corporations collecting feedback from
users, politicians analyzing political sentiment on social media, and online service providers rating of
customer sentiment services. In these applications, deploying the predicting models on cloud servers is
always the option because there are millions of tweets or reviews transmitted from different clients or
agents.

1.1 Motivations and Purposes

MLaaS is a common choice to deploy trained models in recent years. However, privacy issues have
become a dominance for individuals or corporations to decide whether to use MLaaS [29]. There are
several privacy concerns in such scenarios that we describe as follows. For the model owners, model
weights are valuable intellectual property that remains private due to the business value and model
security [19]. On the other hand, it is easy for client-side applications to access machine learning
services, but uploading the user data may have privacy concerns. Specifically, if the data contains
textual messages, comments, or posts, it always involves private information or position [15].

The primary purpose of this research is to design a privacy-preserving GRU inference framework
that can be adopted to preserve privacy in a MLaaS scheme. A fundamental solution is to make none
of the cloud parties own the private data but still able to compute for prediction collaboratively. In
short, the problem is modeled as follows: different cloud parties securely evaluate the GRU inference on
shared weights and data such that the privacy of weights, data, and prediction results are kept secret
from the point of any single cloud party view. Secret sharing splits a secret into shares to maintain the

*https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=I0050021
†https://gdpr-info.eu/

4

CHAPTER 1. INTRODUCTION 5

Figure 1.1: MLaaS Scheme.

privacy of the original secret in a distributed way. In consideration of the practicability in real-world im-
plementation, we adopt additive secret sharing in a secure three-party computation setting, which has
been empirically proved efficient than other cryptographic primitives while applying to convolutional
neural networks [51].

1.2 Contributions

This research proposes a new framework for privacy-preserving GRU inference. A high-level architec-
ture is shown in Figure 1.2, where P0, P1, and P2 conduct privacy-preserving three-party computation
in cloud. In addition to presenting the architecture, we also design protocols for basic operations and
gating mechanisms. Our protocols can replace the original operations of GRU inference straightfor-
wardly in a modular way and do not require re-training the models. As the UC framework [6, 7] is
adopted to prove the security of each protocol against the honest-but-curious adversary, the universal
composition theorem can be applied to leave a flexible model structure for future implementation. That
is, our protocols possess high practicability that can compose different privacy-preserving GRU models,
and we can deduce the security of these models under the UC framework. Besides, we give a proof-of-
concept implementation to show the feasibility and correctness of our protocols. Finally, the discussions
provide a deeper insight into the experiment results and extended future works. In summary, the main
contributions of this research are listed below:

• Present a privacy-preserving GRU inference framework to protect model weights privacy, input
data privacy, and output results privacy.

• Design basic and gating protocols for GRU inference based on additive secret sharing.

• Show our protocols satisfy UC-security under the honest-but-curious corruption model.

• Conduct a proof-of-concept implementation for a binary sentiment classification case. The ac-
curacy loss is no more than 1.5% compared with the inference without applying the privacy-
preserving protocols.

• Discuss the experiment results and explain the strategies for potential collusion problems.

CHAPTER 1. INTRODUCTION 6

Figure 1.2: High-level Architecture.

Chapter 2

Definitions and Preliminaries

This chapter explains the preliminaries and definitions that are used in the following chapters. Our
research adopts additive secret sharing as the primary privacy-preserving technique and focuses on the
GRU model. Then, security is proved using the UC framework. As a result, we describe the concepts
of additive secret sharing, GRU model, and UC framework respectively. For the sake of simplicity, the
notations used in this research are presented in Table 2.1.

2.1 Additive Secret Sharing (ASS)

Secret sharing is a notorious cryptographic technique with long history, and there are many existing
real-world applications, such as digital rights management [37], bitcoin [52], and privacy-preserving
machine learning [36, 39, 42, 51]. Compared with other cryptographic primitives like homomorphic
encryption, secret sharing has higher computational performance due to relatively fewer cryptographic
assumptions on hard problems. This advantage has attracted many practical implementations. Secret
sharing was firstly presented by Adi Shamir [49] and George Blakley [5] respectively in 1979. They
design a t-out-of-n threshold secret sharing scheme. The threshold t is the bound of share numbers that
can successfully reconstruct secret using Lagrange polynomial interpolation. Another type of secret
sharing method is called n-out-of-n secret sharing, where the secret is split into n pieces of shares and
the reconstruction is achieved by adding up all the shares. When the shares are further computed for
different neural network operations, it is more suitable to adopt n-out-of-n secret sharing method.

This research designs a three-party privacy-preserving GRU inference framework for cloud comput-
ing, where P0 and P1 are two main computing parties that hold the shares and the remaining party P2
is responsible for supporting the computation. Accordingly, we adopt 2-out-of-2 secret sharing method
in this research. Each main cloud party holds only the secret share, and no individual shareholder is
able to recover the original secret. The share generation of secret is shown in the Eq. 2.1:

(〈X〉0,〈X〉1)← Share(X)= (P⊙X+R, (1−P)⊙X−R) (2.1)

where we assume the secret matrix is denoted as X ∈Qm×n, and P $←Qm×n is the random matrix for

multiplicative perturbation, R $←Qm×n is the random matrix for additive perturbation. These random
matrices act as the blinding factors for the secret, which are re-generated every usage like the concept
of one-time pad. The secret owner generates P and R locally and sets two secret shares 〈X〉0 and 〈X〉1
as "P⊙X+R" and "(1−P)⊙X−R" respectively, where 〈X〉0 is sent to P0 and 〈X〉1 is sent to P1. As
the random matrix P and R are randomly chosen every time and only known to the secret owner, any
one part of the share reveals no information about the secret from the view of P0 or P1. Please note
that additive secret sharing is information-theoretically secure, which is the highest level of security.
The original secret can be reconstructed by Eq. 2.2. The secret can only be reconstructed when the two
shares are known.

X←Reconstruct(〈X〉0,〈X〉1)= 〈X〉0 +〈X〉1 (2.2)

7

CHAPTER 2. DEFINITIONS AND PRELIMINARIES 8

Symbols Definitions

〈X〉i The share of X which is held by P i
· Dot product (matrix multiplication)
⊙ Hadamard product (element-wise matrix multiplication)
σ Sigmoid activation function

tanh Tanh activation function
ΠY Protocol of Y executed in real world for privacy-preserving purposes
FY Ideal functionality of Y in ideal world which is secure by definition

P0, P1 Main computing cloud parties
P2 Supporting cloud party
M Model owner
C Prediction client
Z Interactive environment in the UC framework
A Real-world adversary
S Ideal-world simulator

Table 2.1: Notations.

In addition to generating shares and reconstructing secret, it is necessary for shareholders to con-
duct various computations on shares in a privacy-preserving machine learning scenario. To ensure the
correctness of the computing results, we need to design protocols for different operations except for
addition and subtraction, for additive secret sharing has additively homomorphic property.

2.2 Gated Recurrent Unit (GRU) Model

Gated recurrent unit (GRU) model is proposed by Kyunghyun Cho et al. in 2014 [13]. GRU is a newer
version of the recurrent neural network (RNN) that is more computationally efficient than long short-
term memory (LSTM) due to its simpler gating mechanisms [14]. It can address the vanishing gradient
problem of RNN and achieve similar results with lower computational overhead. GRU model contains
the GRU layer that is composed of a series of GRU cells (Figure 2.1). The input of the cell includes both
user data D[j] and the state of the previous cell H[j−1]. Each cell contains four kinds of gates: update
gate, reset gate, current memory, and activation of the current cell. The following formulas describe the
gating computations within the j-th cell. The update gate denoted as Z[j] is shown as Eq. 2.3.

Z[j]=σ(D[j] ·Wz +H[j−1] ·Uz +bz) (2.3)

where D[j] is the input user data, and H[j−1] represents the state of the previous cell. Wz and Uz
are the weights of update gate, while the former one is to multiply with user data and the latter one is
multiplied by the previous state. In addition, bz denotes the bias values. The linear computations are
followed by σ to make each element in a matrix between 0 and 1. The calculation of reset gate is shown
as Eq. 2.4. The inputs of reset gate are the same as the update gate, but the trained weights differ.

R[j]=σ(D[j] ·Wr +H[j−1] ·Ur +br) (2.4)

The usage of update gate and reset gate is to determine how much the previous state is preserved
and how much it is forgot. The reset gate is applied in computing the current memory H[j]′, while
the update gate is applied in the activation of current cell H[j], which are shown as Eq. 2.5 and Eq.
2.6 respectively. The separation of update gate and reset gate can capture long-term and short-term
dependencies in time series [56].

H[j]′ = tanh(D[j] ·W+ (R[j]⊙H[j−1]) ·U+b) (2.5)

H[j]=Z[j]⊙H[j−1]+ (1−Z[j])⊙H[j]′ (2.6)

CHAPTER 2. DEFINITIONS AND PRELIMINARIES 9

Figure 2.1: GRU Layer.

Figure 2.2: Construction of UC Proof.

2.3 Universal Composability (UC) Framework

UC framework is presented by Canetti et al. [6, 7], which gives very strong definitions of security that
can support the modularity of protocols. The main difference between the UC framework and other
stand-alone security models, such as the simulation paradigm, is that the UC framework considers
more of the threats coming from the execution environment, malicious requests from the adversary,
and concurrent execution with other protocols. When a protocol is proved UC-secure, it can be composed
with other UC-secure protocols in an arbitrary manner. UC framework is one of the simulation-based
proofs that the security is evaluated through the construction of two models: an ideal world and a real
world [24].

All of the computing elements in the UC framework are in the forms of Interactive Turing Machines
(ITMs) with special tapes as I/O and communicating data structures. The conceptual structures of the
ideal world and the real world are shown in Figure 2.2. In the real world, the dashed double-headed
arrows between P0, P1, and P2 represent the execution of our designed protocol Π. In correspondence
to Π in the real world, an ideal functionality F carries out the same task of Π in an ideally-secure way
upon activation with the input shares from dummy P i. Furthermore, two additional ITM instances
(ITIs), environment Z and adversary, act as the external roles to represent different aspects of the rest
of the system. The adversary in real world is denoted by A , while S denotes the simulator that gives a
simulation of the real-world adversary in ideal world. Z handles the initial input to P i and adversary
in the beginning, and receives the outputs from them at the end of the protocol. Besides, Z can interact
with adversary at anytime during protocol execution, which implies that the adversary can send any
potential distinguishable information to Z , including intermediate computing values, eavesdropped
communication, and any artifacts written to the adversary backdoor tapes. According to the combined
view produced by adversary and P i, Z determines which model it is interacting with and outputs a bit.
To prove a protocol Π UC-realizes the corresponding ideal functionality F , one needs to first prove Π

UC-emulates F (Definition 1 [7]). Therefore, an ideal world running F with the dummy parties and S

needs to be simulated and conforms to Definition 2 [7].

CHAPTER 2. DEFINITIONS AND PRELIMINARIES 10

Definition 1 (UC Security). Protocol Π UC-realizes ideal functionality F if Π UC-emulates F .

Definition 2 (UC Emulation). Let Π(P0, P1, P2) be a multi-party protocol that emulates the computa-
tion of ideal functionality F (P0, P1, P2) which is secure by definition. If for every possible real-world
adversary A during the execution of Π(P0, P1, P2), there exists an ideal-world simulator S perfectly
simulating A and F (P0, P1, P2) such that the combined view of environment Z between real world
VZ ,A ,Π and ideal world VZ ,S ,F is indistinguishable, then Π(P0, P1, P2) UC-emulates F (P0, P1, P2).

Protocols that UC-realize corresponding ideal functionalities can securely combine with other UC-
secure protocols regardless of the executing environment or other concurrent processes. That is, for any
real-world A , there exists an ideal-world S to perfectly conduct the simulation such that Z cannot
distinguish between combined protocols in the real world and combined ideal functionalities in the
ideal world. The formal description of universal composition theorem is presented in Definition 3 [7].
Typically, the universal composition operation can be viewed as "subroutine substitution" [7]. If ΠB

calls FA as its subroutine and ΠA UC-realizes FA , the parties executing ΠB can substitute a call
to an instance of ΠA for an instance of FA because they achieve the same security under arbitrary
composition. Accordingly, consider a protocol Π invokes other designed privacy-preserving protocols
(ΠA ,ΠB , · · · ,ΠN) as subroutines, Π can be formalized as (FA, FB , · · · ,FN)-hybrid model that securely
invokes corresponding ideal functionalities using universal composition theorem [9].

Definition 3 (Universal Composition Theorem). Let ΠA be a protocol that UC-realizes FA , while ΠB be
a composed protocol that UC-realizes FB with a call to FA as its subroutine. If ΠA is identity-compatible
with FA and FB , protocol ΠFA →ΠA

B
UC-realizes FB .

Chapter 3

Technical Literature

With the development of machine learning applications, how to protect data privacy has become an im-
portant topic. Many privacy-preserving techniques exist nowadays, but choosing the required methods
for machine learning is a multi-factor issue. As trained weights and users’ input are the determinants
for the accuracy of the machine-learning models, we should take into account the data utility while
enforcing the privacy-preserving measures. Additionally, time consumption is also an crucial considera-
tion for highly computational machine learning models, which largely depends on the essence of applied
techniques. Since various machine learning models require different arithmetic and boolean opera-
tions, the scalability of each option is concerned with completing the task. To sum up, when it comes
to applying privacy-preserving techniques, one needs to consider data utility, time consumption, sys-
tem scalability, and the level of privacy. The following sections discuss the existing privacy-preserving
techniques and focus on the previous works for privacy-preserving neural networks.

3.1 Privacy-preserving Techniques

Privacy-preserving techniques mainly include two directions: perturbation methods and cryptographic
protocols. Perturbation methods use the randomness to make data incomprehensible or to build noisy
function. Differential privacy [18] is one of the state-of-the-art perturbation standards for privacy-
preserving machine learning. According to the perturbation target, it can be further categorized as
output perturbation and objective perturbation mechanisms [30]. The former methods add noise to
data before publishing, while the latter mechanisms utilize the noisy function as the machine learning
model [1]. Using ϵ-differential privacy should make a trade-off between utility and privacy protection
level by privacy budget ϵ. Perturbation methods have minimal overheads on the efficiency, but they will
affect the model accuracy according to the privacy-preserving level.

Cryptographic protocols design the protocols using cryptographic techniques that can preserve the
original model accuracy. State-of-the-art research tends to mix different cryptographic primitives to
support linear and non-linear computations. Commonly adopted techniques come in three folds: homo-
morphic encryption (HE) [45], garbled circuit (GC) [53], and secret sharing (SS) [5, 49]. HE ensures
the effective computation on ciphertext that is equal to computation on plaintext after decryption. To
support the addition between ciphertexts, additively HE (AHE) is needed. If the system computes both
addition and multiplication between ciphertexts, fully homomorphic encryption (FHE) or leveled ho-
momorphic encryption (LHE) is required. LHE is limited to the number of homomorphic operations,
while FHE adopts bootstrapping to reduce the noise [36]. In short, HE often needs high computation
and is faced with noise increasing issues. Yao’s GC protocols realize secure two-party computation by
constructing functions as boolean circuits [53]. Although garbled circuits can achieve secure function
evaluation, the trade-off is heavy communication and thus leads to inefficiency [39, 51]. SS splits the
privacy data into several parts and conducts computation on shares by different shareholders. Additive
SS (ASS) is a fundamental solution to simply generate the shares from random numbers. Shamir’s
SS defines the shares as the point on specific polynomial, where the secret can be reconstructed only
when the number of held shares is above the threshold n, which is also called (t,n)-threshold SS [49].
SS is efficient and intuitive for addition and multiplication but difficult for designing secure non-linear

11

CHAPTER 3. TECHNICAL LITERATURE 12

operations [42]. To sum up, GC is largely applied to computing secure non-linear operations in machine
learning algorithms [31, 36, 39, 42, 46], while HE [21, 31, 36, 50] and secret sharing [36, 39, 42, 51]
often realize secure linear operations.

3.2 Privacy-preserving Deep Neural Network

As deep learning has become prominent in machine learning fields, more and more researches focus on
developing privacy-preserving deep neural network (DNN). CryptoNets [21] is presented by Microsoft
Research in 2016, which applies neural networks to encrypted data based on LHE. DeepSecure [46] is
proposed by Rouhani et al. to mainly use GC as the privacy-preserving technique. To improve the per-
formance, MiniONN [36] separates the protocols into offline and online phases. It adopts AHE with op-
timized techniques like SIMD batch processing in offline phase, and utilizes GC and SS for lightweight
computation in online phase. Chameleon [42] further categorizes the computation as linear and non-
linear operations, where ASS is adopted to construct linear functions and GC and GMW are used for
non-linear operations. In consideration of the massive communication overheads caused by GC, Gazelle
[31] introduces the properties of packed AHE to gain improvement in performance. SecureNN [51] gives
up the combination of privacy-preserving techniques and adopts only ASS. The authors show that Se-
cureNN is the most efficient compared with the previously mentioned researches in the experiments.
They also give a deeper insight into the results and show the reasons for the prevalence in performance.
In contrast to previous works utilizing hybrid techniques, SecureNN uses only ASS to avoid the commu-
nication overheads of sharing conversion. In addition, most of the previous works adopt GC for secure
non-linear operations, but SecureNN improves the efficiency of non-linear computations by replacing
GC with ASS.

DNN has achieved promising results in various applications, which includes two main types: Convo-
lutional Neural Network (CNN) and Recurrent Neural Network (RNN). Many state-of-the-art privacy-
preserving neural networks have implemented the operations of CNN, and experimented well on
MNIST data for hand-written digit image recognition [11, 36, 39, 42, 51]. However, for the scenario
of learning on time-series data like nature language processing (NLP), RNN is often adopted. For ex-
ample, in [54], the authors conduct a systematic comparison of CNN and RNN on a wide range of NLP
tasks and give the conclusion that the more critical the semantic of the sentence is, the more suitable it
is to adopt RNN [25, 48]. Besides, RNN algorithms are stated as the backend techniques of Apple Siri
[10] and Google voice transcription [12]. In 2014, GRU, one of the improved versions of RNN, is intro-
duced in [13] to improve the memory consumption and efficiency of long short-term memory (LSTM). For
the privacy-preserving issues, MiniONN [36] is the first time language modeling research that designs
specifically for LSTM. Ying et al. propose a privacy-preserving heart failure prediction system based on
GRU [55]; however, they do not provide rigorous security proofs for their protocols by UC framework.
That means the GRU model structure cannot be arbitrarily constructed with security confirmation and
may suffer from coordinated attacks under concurrent real-world scenarios [23]. To the best of our
knowledge, designing cryptographic protocols for a general privacy-preserving GRU framework under
the UC framework is still an open problem.

Some related researches deal with privacy problems on time-series tasks, among which text repre-
sentation learning is one of the popular fields. In [15], the authors present a framework for privacy-
preserving detection of hate speech in text messages with secure multi-party computation. They mainly
design the protocols for Logistic Regression (LR) or Adaboost model instead of GRU. In [3], G Beigi et
al. present a text representation learning framework, DPText, using differential privacy. In [34], Y
Li et al. adopt adversarial learning to obscure private information and learn the unbiased represen-
tations. Although it is common to adopt GRU for text representation learning tasks, there is seldom
research discussing privacy-preserving GRU for text applications. Our research not only proposes a
general privacy-preserving GRU inference framework in Chapter 4 but also provides complete security
proofs in Chapter 5 and a proof-of-concept implementation on a binary sentiment classification task in
Chapter 6.

Chapter 4

Privacy-preserving GRU Inference
Framework

In this chapter, we introduce the whole privacy-preserving GRU inference framework. The processes
and roles are first discussed in the architecture, followed by the security model. Then, we define differ-
ent basic and gating protocols that are executed by cloud servers. Finally, a privacy-preserving GRU
inference system can be constructed by combining the defined protocols.

4.1 Architecture

The roles in our framework are separated into the shareholders (cloud servers) and the dealers (model
owner M and prediction client C). The cloud servers are denoted as P0, P1, and P2, where P0 and
P1 are the main computing servers, and P2 acts as a supporting role to receive intermediate values
and generate correlated randomness [51]. To deploy the GRU model in cloud, M first generates shares
of model weights locally using Eq. 2.1, and send the corresponding part of shares to P0 and P1 re-
spectively. Similar to the processing of model weights, C generates the shares of prediction data before
uploading to P0 and P1. Please note that M only participates in the initial model deployment and the
update of model weights. That means M only provides the shares of model weights and has neither
the intermediate processing values nor information of prediction results. In comparison, every time C

requests for model service, C will get the final prediction result so that our framework should resist
the model weights privacy breach from the corruption of C . During the inference, P0, P1, and P2 are
responsible for privacy-preserving GRU computations, where any single server is unable to learn pri-
vate data from one part of shares. The servers should follow the designed protocols to reach the final
prediction, since all of the inputs and intermediate results are in the form of shares. At the end of the
computing, P0 and P1 hold the result shares of the fully-connected layer. They finally invoke an in-
stance of private comparison on shares. The masked results of comparison are then held by P2 and sent
back to C to remove the blinding factors so that the results of the inference are also kept secret from
P2. We present a privacy-preserving GRU inference framework that contains required protocols and is
flexible in the composed model structure. An example of the overall inference process with three-layer
GRU model is shown in Figure 4.1.

4.2 Security Model

Our framework adopts honest-but-curious model (semi-honest adversary) as corruption option under
the UC security [6, 7, 22]. The honest-but-curious model is commonly used in privacy-preserving neural
networks because the correctness of prediction results are also concerned under privacy construction.
That is, the adversary can corrupt one party in maximum and view all of the processing values and
internal states held by that party; however, the adversary is not able to make the corrupted party
malicious for breaking the protocols, which may destroy the predicting power of the original inference
systems. As this research is to address the privacy issues for MLaaS, the attacks from outer environ-
ment and unsafe networks should be considered, which is simulated in the UC framework. To state

13

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 14

Figure 4.1: Overall GRU Inference Process.

the feasibility of practical applications, this research ensures that all of the protocols are UC-secure so
that our protocols remain secure in any real-world composition. Please note that the protected privacy
targets include model weights privacy, input data privacy, and output results privacy. Thus, every party
except for privacy holders should not learn the values of the privacy targets. The security analysis and
proofs are presented in Chapter 5, and the potential adversaries and network transmission settings are
described as follows.

4.2.1 Non-colluding Cloud Servers

We define P0, P1, and P2 as honest-but-curious non-colluding cloud servers. They follow the instruc-
tions of designed protocols without colluding but try to learn any private values as much as possible.
The information held by P0 and P1 includes the inputs, processing values, and final results, all of which
are in the form of shares. On the other hand, the values held by P2 are the generated randomness and
some protocol intermediate values. No matter which cloud party A corrupts, all of the values accessible
by A should be indistinguishable from simulated values output by S in the ideal world.

4.2.2 Prediction Clients

Prediction client C owns the input data in our scheme and is one of the privacy owners on the one
hand. On the other hand, C can get access to the model results and may try to launch model extraction
attacks [27] to cause a privacy breach on the model owner M . Since the clients do not participate in the
processes of inference, the privacy threats caused by C will mainly focus on the security analysis of the
GRU inference outputs, which is discussed in Theorem 7.

4.2.3 Outsiders

In addition to the insider attacks, privacy threats may also come from the outsiders. In our security
model, the adversary can only corrupt at most one of the cloud servers and obtain the information that
corrupted party holds. Accordingly, the simulation of outsider attacks is the same as the insider attacks
among non-colluding servers and prediction clients.

4.2.4 Network Transmission

UC framework gives the adversary the power of controlling the network transmission to view the sent
values. As we adopt honest-but-curious adversary options, the network transmission holds the prop-
erties of integrity and authentication, which can be implemented by the hash function and public-key

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 15

Figure 4.2: Protocol Hierarchy.

encryption system. However, the adversary is able to eavesdrop the network transmission values as the
passive attacks. That means any confidential transmitted values should be protected by secure trans-
mission mechanisms [7]. We use ΠST (Protocol 1) to share the data securely. If Pa is about to securely
send a message M to Pb, they first create a shared key through a non-interactive mechanism such
as a Diffie-Hellman key exchange (DHKE) protocol [16]. Then, Pa and Pb can use secure symmetric
encryption such as Advanced Encryption Standard (AES) [44] with the pre-shared key k to conduct the
encryption and decryption.

Protocol 1 Secure Transmission ΠST(Pa,Pb)
Input: Pa inputs a message M.
Output: Pa and Pb share the message M securely.

1: Setup: Pa and Pb constructs a shared key k through a non-interactive key exchange protocol.
2: Pa encrypts M with k and sets C = Enck(M).
3: Pa sends C to Pb.
4: Pb decrypts C with k and obtains M through M = Deck(C).

4.3 Basic Protocols

Basic protocols are in the bottom layer in the protocol hierarchy as shown in Figure 4.2. These protocols
not only support the gating protocols but also compose other layers of GRU model, such as the em-
bedding layer and the fully-connected layer. As DNN is typical for mixing various linear and non-linear
operations, our basic protocols define both linear and non-linear operations that are used in GRU model.
Linear operations include addition, subtraction, multiplication and division functions. ASS is additively
homomorphic so that the addition and subtraction of shares can be conducted directly by shareholders.
Matrix multiplication includes dot product and hadamard product. For dot product, this paper adapts
ΠMatMul in SecureNN [51] to the version against passive network attacks. Namely, we add the random-
ized protections on network transmission values, such as 〈E〉 j+RE and 〈F〉 j+RF , where RE and RF are
pre-shared random matrices between P0 and P1. Furthermore, hadamard product is defined by ΠHP1

and ΠHP2 in our protocols, and division on matrix elements is defined by ΠDivision. On the other hand,
Sigmoid and Tanh activation function are the main non-linear operations defined by ΠSigmoid and ΠTanh

respectively. Some of the basic protocols include a setup phase which is used to generate and distribute
required randomness. Since the randomness generated in setup phase is independent of the following
protocol computations, setup can be conducted offline to reduce the online communication amount.

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 16

4.3.1 Hadamard Product

Hadamard product realizes the element-wise matrix multiplication. ΠHP1 (Protocol 2) and ΠHP2 (Proto-
col 3) both implement the computations of hadamard product. The difference between ΠHP1 and ΠHP2

is the input of the protocols. The inputs of ΠHP1 are shares of matrix X and Y, where P0 and P1 only
hold one part of the multiplicative operands (P0 holds 〈X〉0, 〈Y〉0 and P1 holds 〈X〉1, 〈Y〉1). In compari-
son, the inputs of ΠHP2 are not shares, which means P0 and P1 hold one of the complete multiplicative
operands respectively (P0 holds matrix X and P1 holds matrix Y). The reason why we separate the
computation of hadamard product into two protocols is the consideration of efficiency. Indeed, ΠHP1 can
also complete the task of ΠHP1 by setting one of the shares to zero matrix. However, the communication
amount of using ΠHP2 is lower than adopting ΠHP1 while P0 and P1 hold the complete multiplicative
operands. The comparison of ΠHP1 and ΠHP2 is shown in Table 4.1, where we assume the dimension of
input matrix is m×n and each element contains l bits.

At the beginning of the protocols, P0, P1, and P2 first run a protocol setup that generates the pre-
shared randomness and correlated randomness. The pre-shared matrices RD and RE are randomly
generated by P0, while P2 is responsible for generating random multiplication triples A, B, and C [28].
The randomness is used as the blinding factor to mask the secret during the computing; therefore, the
transmission in setup is conducted through the secure transmission channel ΠST. Our construction of
ΠHP1 is inspired by ΠMatMul in SecureNN [51], while ΠHP2 is inspired by A-SS Engine in Chameleon
[42] using Du-Atallah protocol [17]. In the final output, the shares of results are added by shares of zero
matrix 〈U〉0 and 〈U〉1, which are the common randomness that aims for retaining the fresh shares for
the following computations [51].

Protocol 2 Hadamard Product 1 ΠHP1(P0,P1,P2)
Input: P0 holds 〈X〉0,〈Y〉0 ∈Qm×n and P1 holds 〈X〉1,〈Y〉1 ∈Qm×n.
Output: P0, P1 obtain 〈X⊙Y〉0 and 〈X⊙Y〉1 respectively.

1: Setup: P0 picks random matrices RD
$←Qm×n, RE

$←Qm×n. P2 picks a zero matrix U ∈Qm×n and

random matrices A $← Qm×n, B $← Qm×n, where C = A⊙B. Then, P2 generates shares by calling
Share(U)= 〈U〉0, 〈U〉1; Share(A)= 〈A〉0, 〈A〉1; Share(B)= 〈B〉0, 〈B〉1; Share(C)= 〈C〉0, 〈C〉1. Finally, P2
and P0 call ΠST(P2,P0) with P2 having input (〈A〉0, 〈B〉0, 〈C〉0, 〈U〉0); P2 and P1 call ΠST(P2,P1)
with P2 having input (〈A〉1, 〈B〉1, 〈C〉1, 〈U〉1); P0 and P1 call ΠST(P0,P1) with P0 having input
(RD , RE).

2: P0 sets 〈D〉0 = 〈X〉0 +〈A〉0 +RD , 〈E〉0 = 〈Y〉0 +〈B〉0 +RE and P1 sets 〈D〉1 = 〈X〉1 +〈A〉1 +RD , 〈E〉1 =
〈Y〉1 +〈B〉1 +RE.

3: P0 sends 〈D〉0, 〈E〉0 to P1, while P1 sends 〈D〉1, 〈E〉1 to P0. Then, P0 and P1 can set D =
Reconstruct(〈D〉0, 〈D〉1)−2×RD and E = Reconstruct(〈E〉0, 〈E〉1)−2×RE.

4: P0 sets 〈X⊙Y〉0 =−D⊙E+〈X〉0⊙E+D⊙〈Y〉0+〈C〉0+〈U〉0 and P1 sets 〈X⊙Y〉1 = 〈X〉1⊙E+D⊙〈Y〉1+
〈C〉1 +〈U〉1.

Protocol 3 Hadamard Product 2 ΠHP2(P0,P1,P2)
Input: P0 holds X ∈Qm×n and P1 holds Y ∈Qm×n.
Output: P0, P1 obtain 〈X⊙Y〉0 and 〈X⊙Y〉1 respectively.

1: Setup: P0 picks random matrices RD
$← Qm×n, RE

$← Qm×n. P2 picks a zero matrix U ∈ Qm×n

and random matrices A $←Qm×n, B $←Qm×n, where C=A⊙B. Then, P2 generates shares by calling
Share(U)= 〈U〉0, 〈U〉1 and Share(C)= 〈C〉0, 〈C〉1. Finally, P2 and P0 call ΠST(P2,P0) with P2 having
input (A, 〈C〉0, 〈U〉0); P2 and P1 call ΠST(P2,P1) with P2 having input (B, 〈C〉1, 〈U〉1); P0 and P1
call ΠST(P0,P1) with P0 having input (RD , RE).

2: P0 sets D=X+A+RD and sends D to P1. Similarly, P1 sets E=Y+B+RE and sends E to P0.
3: P0 sets 〈X⊙Y〉0 =−A⊙ (E−RE)+〈C〉0 +〈U〉0 and P1 sets 〈X⊙Y〉1 =Y⊙ (D−RD)+〈C〉1 +〈U〉1.

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 17

Protocol Usage Rounds Offline Communication Online Communication

ΠHP1 ΠCM and ΠAC 2.5 10mnl 4mnl
ΠHP2 ΠSigmoid and ΠTanh 2.5 8mnl 2mnl

Table 4.1: Comparison of ΠHP1 and ΠHP2.

4.3.2 Division

ΠDivision (Protocol 4) realizes the element-wise division between matrix shares. Inspired by ΠDIV in
SecureNN [51], ΠDivision implements bit-by-bit long division on each matrix element. To determine
each bit of the quotient, the protocol needs a comparison function. In contrast to ΠDIV in SecureNN [51]
invoking one call to ΠDReLU, ΠDivision calls ΠPC [51] directly that can reduce the communication amount.
ΠPC is a private comparison protocol in SecureNN [51] that can compare the share with a known value
to both P0 and P1. However, one requirement is that the input share should be in the bit share format,
which is difficult to convert from the common share format. To avoid the format conversion problem,
we first generate a random matrix in different formats, where 〈(R)2〉i denotes the share in the bit share
format, and 〈R〉i denotes the share in the common share format. Then, the target share 〈a′〉i (share to
compare) is masked by the element of 〈R〉i so that the target share can be exchanged and reconstructed
without privacy breach. This way, we can transform the comparison from "target share 〈a〉i with zero"
to "the random value with the addition of target share 〈a〉i and random value". In ΠDivision, Ra and Rb
are random matrices only shared between P0 and P1 to prevent the eavesdrop from corrupted P2. Ra
is added to 〈a〉i and removed after network transmission, while Rb is a random binary matrix used to
mask the result of comparison and the result can be extracted by XORing with the element of Rb. We
expect the result to be 1 if the target value a is positive, so the returned value from P2 is subtracted
from 1.

ΠDivision launches two for loops. The outer loop iterates through each matrix element, while the
inner loop is to calculate the quotient bit-by-bit from the most significant bit (MSB). We set the quotient
value x as lQ-bit binary and thus the maximum value of x is 2lQ −1. Then, we determine the j-th bit x j
using Eq. 4.1, where ω represents the dividend and µ denotes the divisor. To conduct the comparison,
we utilize signed number representations to convert compared values to bit encoding, and the bit length
is set to lQ +2. The variable 〈ul〉i in ΠDivision is used to memorize the product of the divisor and binary
values of the quotient that have been calculated, which is exactly "µ×∑lQ

h= j+1 2h−1×xh" in Eq. 4.1. Before
conducting a comparison, 〈ul〉i is subtracted from the dividend. Please note that ΠDivision securely
computes the division and obtains the quotient in the truncated integer form. Therefore, we should
decide the precision by multiplying a multiple of ten to shift the dividend before invoking an instance
of ΠDivision. The results of ΠDivision are inversely shifted backwards after the end of ΠDivision. A trivial
issue is that the shift of dividends should not make the results exceed the upper bound of 2lQ −1.

x j =
{

1, if ω−µ×∑lQ

h= j+1 2h−1 × xh −µ×2 j−1 ≥ 0;

0, otherwise.
(4.1)

4.3.3 Share Re-generation

The main purpose of share re-generation is to prevent the overflowing problem. When P0 and P1
compute the protocols on shares after large dimensions of matrix operations like matrix multiplication,
it is likely to generate great differences between shares. Such shares with large values will lead to
overflowing especially for exponential calculation in ΠSigmoid (Protocol 6) and ΠTanh (Protocol 7). To
address the overflowing problems, re-generating the shares between P0 and P1 is necessary. P0 and P1
cannot directly exchange the share because we require either of P i should not learn the reconstructed
secrets. In ΠRegen (Protocol 5), 〈X〉0 is masked by a random matrix R to form the Mix ∈Qm×n such that
P1 can not obtain the secret X from Mix. In addition, as 〈X′〉1 is unknown to P0, X also remains a
secret to P0.

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 18

Protocol 4 Division ΠDivision(P0,P1,P2)
Input: P0 holds 〈X〉0,〈Y〉0 ∈Qm×n and P1 holds 〈X〉1,〈Y〉1 ∈Qm×n.
Output: P0, P1 obtain 〈D〉0 and 〈D〉1 respectively.

1: Setup: P0 picks lQ mn random bits Rb ∈ {0,1}mn×lQ and a random matrix Ra
$←Z

mn×lQ

2lQ
. P2 picks a

zero vector u[k] for k ∈Z+
mn, a zero matrix U ∈Qm×n, and three random matrices R $←Z

mn×lQ

2lQ
, Rα0

$←
Z

mn×lQ

2lQ
, Rα1

$←Z
mn×lQ

2lQ
. Then, P2 generates shares by calling Share(U)= 〈U〉0, 〈U〉1; Share(R)= 〈R〉0,

〈R〉1, Share(R)2 = 〈(R)2〉0, 〈(R)2〉1; Share(u) = 〈u〉0, 〈u〉1. Finally, P0 and P2 call ΠST(P2,P0) with
P2 having input (〈U〉0, 〈u〉0, 〈R〉0, 〈(R)2〉0, Rα0); P1 and P2 call ΠST(P2,P1) with P2 having input
(〈U〉1, 〈u〉1, 〈R〉1, 〈(R)2〉1, Rα1); P1 and P0 call ΠST(P0,P1) with P0 having input (Rb, Ra).

2: for k = {1, · · · ,m×n} do
3: For i ∈ {0,1}, P i sets 〈ulQ 〉i = 〈u[k]〉i
4: for l = {lQ , · · · ,1} do
5: For i ∈ {0,1}, P i sets 〈a〉i = 〈X[k]〉i −〈ul〉i −2l−1 ×〈Y[k]〉i.
6: For i ∈ {0,1}, P i sets 〈a′〉i = 〈a〉i +〈R[k][l]〉i +Ra[k][l].
7: P0, P1 exchange 〈a′〉0, 〈a′〉1 and reconstruct a′.
8: P0, P1, and P2 call ΠPC(P0,P1,P2) with P i, i ∈ {0,1} having input (〈(R)2[k][l]〉i, a′ − 2×

Ra[k][l], Rb[k][l]). Finally, P2 learns a bit δ and sets α= 1−δ.
9: P2 generates shares by calling Share(α) = 〈α〉0, 〈α〉1. Then, P2 sets 〈α′〉0 = 〈α〉0 +Rα0[k][l] and

〈α′〉1 = 〈α〉1 +Rα1[k][l].
10: P2 sends 〈α′〉0 to P0 and 〈α′〉1 to P1, so P0 and P1 can recover 〈α〉0 and 〈α〉1 respectively.
11: P0 sets 〈γ〉0 = 〈α〉0 +Rb[k][l]−2×Rb[k][l]×〈α〉0 and P1 sets 〈γ〉1 = 〈α〉1 −2×Rb[k][l]×〈α〉1.
12: P0, P1, and P2 call ΠHP1(P0,P1,P2) with P i, i ∈ {0,1} having input (〈γ〉i, 〈2l−1×Y[k]〉i). Then,

P0 learns 〈v〉0 and P1 learns 〈v〉1.
13: For i ∈ {0,1}, P i sets 〈ml〉i = 2l−1 ×〈γ〉i and 〈ul−1〉i = 〈ul〉i +〈v〉i.
14: end for

15: For i ∈ {0,1}, 〈D′[k]〉i =
lQ∑

l=1
〈ml〉i.

16: end for
17: Finally, P0 set 〈D〉0 = 〈D′〉0 + 〈U〉0 and P1 sets 〈D〉1 = 〈D′〉1 + 〈U〉1.

4.3.4 Sigmoid Activation Function

Sigmoid activation function is a non-linear function that squashes the input value between 0 and 1. If
the input is a negative value, the output will be lower than 1

2 . Contrarily, if the input is a positive value,
the output will be greater than 1

2 . The equation of Sigmoid activation function is 1
1+ e−x , so ΠSigmoid

requires ΠHP2 to compute e−x and requires ΠDivision to complete 1
1+ e−x . P0 and P1 input matrix shares

to ΠSigmoid (Protocol 6) and get the result matrix shares as noted above. At the beginning of the protocol,
the input shares need to be re-generated by calling the subroutine ΠRegen so that in the following step,
computing e to the power of the shares, will not suffer from overflowing. In addition, ΠSigmoid invokes
one call to ΠDivision. According to the lQ in ΠDivision, the maximum of division result is 2lQ −1. When
ΠSigmoid conducts the shift of dividends for the decimal point precision, it should not make the results
overflow. Hence, we set the shift of dividends as ⌊log10(2lQ −1)⌋, which is further proved in Theorem 5.
Besides, as the inputs of ΠSigmoid are matrix shares, the computations are conducted element-wise.

Protocol 5 Share Re-generation ΠRegen(P0,P1)
Input: P0 holds 〈X〉0 ∈Qm×n and P1 holds 〈X〉1 ∈Qm×n.
Output: P0, P1 obtain 〈X′〉0 and 〈X′〉1 respectively.

1: P0 picks a random matrix R $←Qm×n.
2: P0 sets Mix= 〈X〉0 +R and sends Mix to P1.
3: Finally, P0 sets 〈X′〉0 =−R, and P1 sets 〈X′〉1 = 〈X〉1 +Mix.

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 19

Protocol 6 Sigmoid ΠSigmoid(P0,P1,P2)
Input: P0, P1 hold 〈X〉0, 〈X〉1 ∈Qm×n respectively.
Output: P0, P1 get 〈R〉0 and 〈R〉1 respectively.

1: P0 and P1 call ΠRegen(P0,P1) with P0 and P1 having input 〈X〉0 and 〈X〉1 respectively. Then, P0
learns 〈X′〉0 and P1 learns 〈X′〉1.

2: for k = {1, · · · ,m×n} do
3: P0 computes α[k]= e−〈X

′[k]〉0 and P1 computes β[k]= e−〈X
′[k]〉1 .

4: end for
5: P0 and P1 call ΠHP2(P0,P1,P2) with P0 and P1 having input α and β respectively. Then, P0

learns 〈Y〉0 and P1 learns 〈Y〉1.
6: P0, P1, and P2 call ΠDivision(P0,P1,P2) with Pi, i ∈ {0,1} having input (1

2 ×10⌊log10(2lQ−1)⌋,〈Y〉i + 1
2)

and output 〈R′〉0 and 〈R′〉1.
7: For i ∈ {0,1}, P i conducts 〈R〉i = 〈R′〉i ×10−⌊log10(2lQ−1)⌋.
8: Finally, P0, P1 get 〈R〉0 and 〈R〉1 respectively.

4.3.5 Tanh Activation Function

Tanh activation function is another non-linear function other than the Sigmoid activation function. The
difference is Tanh activation function transforms the input value into −1 and 1. That is, if the input
is a positive value, the output will be in the interval of 0 and 1. Otherwise, the output will be in the
interval of 0 and −1. The equation of Tanh activation function is 2

1+ e−2x −1, so ΠHP2 and ΠDivision

are both required for subroutines. The design of ΠTanh (Protocol 7) is similar to that of ΠSigmoid. ΠTanh

also needs to re-generate the input shares and conducts the computations in an element-wise manner.

In addition, ΠTanh invokes an instance of ΠDivision, and the shift of dividends is set to ⌊log10(2lQ −1
2)⌋,

which is discussed in Theorem 5.

Protocol 7 Tanh ΠTanh(P0,P1,P2)
Input: P0, P1 hold 〈X〉0, 〈X〉1 ∈Qm×n respectively.
Output: P0, P1 get 〈R〉0 and 〈R〉1 respectively.

1: P0 and P1 call ΠRegen(P0,P1) with P0 and P1 having input 〈X〉0 and 〈X〉1 respectively. Then, P0
learns 〈X′〉0 and P1 learns 〈X′〉1.

2: for k = {1, · · · ,m×n} do
3: P0 sets α[k]= e−〈X

′[k]〉0×2 and P1 sets β[k]= e−〈X
′[k]〉1×2.

4: end for
5: P0 and P1 call ΠHP2(P0,P1,P2) with P0 and P1 having input α and β respectively. Then, P0

learns 〈Y〉0 and P1 learns 〈Y〉1.

6: P0, P1, and P2 call ΠDivision(P0,P1,P2) with Pi, i ∈ {0,1} having input (10⌊log10(2
lQ −1

2)⌋,〈Y〉i + 1
2) and

output 〈R′〉0 and 〈R′〉1.

7: For i ∈ {0,1}, P i conducts 〈R〉i = 〈R′〉i ×10−⌊log10(2
lQ −1

2)⌋− 1
2 .

8: Finally, P0, P1 get 〈R〉0 and 〈R〉1 respectively.

4.4 Gating Protocols

Gating protocols define the gating mechanisms that appear within GRU cells. Each GRU cell includes
four gates, and we define them by ΠUG, ΠRG, ΠCM, and ΠAC. To realize the operations in gating mech-
anisms, gating protocols make calls to different basic protocols. The security of the subroutines and
composition are discussed in Chapter 5.

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 20

4.4.1 Update Gate and Reset Gate

The privacy preserving protocols of update gate and reset gate are demonstrated in Protocol 8 and
Protocol 9 respectively. ΠUG and ΠRG follow the gating computations as defined by Eq. 2.1 and Eq. 2.2
and further design for shares. The input shares of data 〈D〉i and previous hidden state 〈H〉i are both
the inputs of ΠUG and ΠRG. Each input matrix has specific dimensions, where d denotes the output
dimension of embedding layer, n denotes the batch size, and h represents the number of hidden unit.
On the other hand, ΠUG and ΠRG have different shares of weights and biases, which are denoted as
〈Wz〉i, 〈Uz〉i, 〈bz〉i and 〈Wr〉i, 〈Ur〉i, 〈br〉i respectively. Both Protocol 8 and Protocol 9 make two calls to
ΠMatMul [51] and one call to ΠSigmoid.

Protocol 8 Update Gate ΠUG(P0,P1,P2)
Input: P i holds 〈D〉i ∈Qn×d,〈H〉i ∈Qn×h,〈Wz〉i ∈Qd×h,〈Uz〉i ∈Qh×h,〈bz〉i ∈Q1×h, for i ∈ {0,1}.
Output: P0, P1 get 〈Z〉0 and 〈Z〉1 respectively.

1: P0, P1, and P2 call ΠMatMul(P0,P1,P2) with P i having input 〈D〉i and 〈Wz〉i, for i ∈ {0,1}. Then,
P0 and P1 learn 〈Z1〉0 and 〈Z1〉1 ∈Qn×h respectively.

2: P0, P1, and P2 call ΠMatMul(P0,P1,P2) with P i having input 〈H〉i and 〈Uz〉i, for i ∈ {0,1}. Then,
P0 and P1 learn 〈Z2〉0 and 〈Z2〉1 ∈Qn×h respectively.

3: For i ∈ {0,1}, P i sets 〈Z3〉i = 〈Z1〉i +〈Z2〉i +〈bz〉i.
4: P0, P1, and P2 call ΠSigmoid(P0,P1,P2) with P0, P1 having input 〈Z3〉0,〈Z3〉1 respectively. Finally,

P0 learns 〈Z〉0 and P1 learns 〈Z〉1.

Protocol 9 Reset Gate ΠRG(P0,P1,P2)
Input: P i holds 〈D〉i ∈Qn×d,〈H〉i ∈Qn×h,〈Wr〉i ∈Qd×h,〈Ur〉i ∈Qh×h,〈br〉i ∈Q1×h, for i ∈ {0,1}.
Output: P0, P1 get 〈R〉0 and 〈R〉1 respectively.

1: P0, P1, and P2 call ΠMatMul(P0,P1,P2) with P i having input 〈D〉i and 〈Wr〉i, for i ∈ {0,1}. Then,
P0 and P1 learn 〈R1〉0 and 〈R1〉1 ∈Qn×h respectively.

2: P0, P1, and P2 call ΠMatMul(P0,P1,P2) with P i having input 〈H〉i and 〈Ur〉i, for i ∈ {0,1}. Then,
P0 and P1 learn 〈R2〉0 and 〈R2〉1 ∈Qn×h respectively.

3: For i ∈ {0,1}, P i sets 〈R3〉i = 〈R1〉i +〈R2〉i +〈br〉i.
4: P0, P1, and P2 call ΠSigmoid(P0,P1,P2) with P0, P1 having input 〈R3〉0,〈R3〉1 respectively. Finally

P0 learns 〈R〉0 and P1 learns 〈R〉1.

4.4.2 Current Memory

The privacy-preserving computation of current memory is defined by ΠCM (Protocol 10). ΠCM makes
calls to ΠMatMul [51], ΠHP1, and ΠTanh respectively. The input shares 〈R〉i are the output results from
ΠRG, which are used to compute with previous hidden state 〈H〉i. Besides, 〈W〉i, 〈U〉i and 〈b〉i are the
shares of current memory weights and biases, where 〈W〉i is used to compute with 〈D〉i, and 〈U〉i is for
the part of processed 〈H〉i.

4.4.3 Activation of Current Cell

ΠAC (Protocol 11) only contains linear computations that invoke ΠHP1 as subroutines. The computations
in ΠAC determine the proportions of current memory 〈H′〉i and previous hidden state 〈H〉i to be passed
on. Please note that the output of ΠAC becomes one of the inputs of the next cell of GRU. That’s the core
of the GRU model to learn the context of data. The shared results of ΠAC in the last GRU cell is then
forwarded to the fully-connected layer.

4.5 Putting It All Together

A typical GRU model includes embedding layer, GRU layer, and fully-connected layer. Protocol 12
demonstrates a simple privacy-preserving GRU model that conducts complete inference on docu-

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 21

Protocol 10 Current Memory ΠCM(P0,P1,P2)
Input: P i holds 〈D〉i ∈Qn×d,〈H〉i ∈Qn×h,〈W〉i ∈Qd×h,〈R〉i ∈Qn×h,〈U〉i ∈Qh×h,〈b〉i ∈Q1×h, for i ∈ {0,1}.
Output: P0, P1 get 〈H′〉0 and 〈H′〉1 respectively.

1: P0, P1, and P2 call ΠMatMul(P0,P1,P2) with P i having input 〈D〉i and 〈W〉i, for i ∈ {0,1}. Then, P0
and P1 learn 〈H1′〉0 and 〈H1′〉1 ∈Qn×h respectively.

2: P0 and P1 call ΠHP1(P0,P1,P2) with P i having input 〈R〉i and 〈H〉i, for i ∈ {0,1}. Then, P0 and P1
learn 〈H2′〉0 and 〈H2′〉1 ∈Qn×h respectively.

3: P0, P1, and P2 call ΠMatMul(P0,P1,P2) with P i having input 〈H2′〉i and 〈U〉i, for i ∈ {0,1}. Then,
P0 and P1 learn 〈H3′〉0 and 〈H3′〉1 ∈Qn×h respectively.

4: For i ∈ {0,1}, P i sets 〈H4′〉0 = 〈H1′〉i +〈H3′〉i +〈b〉i.
5: P0, P1, and P2 call ΠTanh(P0,P1,P2) with P0, P1 having input 〈H4′〉0,〈H4′〉1 respectively. Finally

P0 learns 〈H′〉0 and P1 learns 〈H′〉1.

Protocol 11 Activation of Cell ΠAC(P0,P1)
Input: P i holds 〈Z〉i ∈Qn×d,〈H〉i ∈Qn×h,〈H′〉i ∈Qn×h, for i ∈ {0,1}.
Output: P0, P1 get 〈S〉0 and 〈S〉1 respectively.

1: P0 and P1 call ΠHP1(P0,P1,P2) with P i having input 〈Z〉i and 〈H〉i, for i ∈ {0,1}. Then, P0 and P1
learn 〈S1〉0 and 〈S1〉1 ∈Qn×h respectively.

2: P0 and P1 call ΠHP1(P0,P1,P2) with P i having input 〈1−Z〉i and 〈H′〉i, for i ∈ {0,1}. Then, P0 and
P1 learn 〈S2〉0 and 〈S2〉1 ∈Qn×h respectively.

3: For i ∈ {0,1}, P i sets 〈S〉i = 〈S1〉i +〈S2〉i.

ments/sentences for sentiment classification. The input 〈Do〉i denotes the shares of one-hot encoded
data received from C , where the dimension l′ and d′ represent the text length and vocabulary size,
and n represents the batch size. During the model deployment, the input weights are initialized by M .
〈We〉i is the shares of embedding layer weights, while 〈Wd〉i and 〈bd〉i represent the shares of fully-
connected layer weights and biases. In the first for loop, the cloud servers conduct the computation of
embedding layer by invoking n instances of ΠMatMul [51] to create dense representation of data. The
second for loop computes the GRU layer by iterating through the GRU cells. From the step 5 to 8 in
ΠGRU, it forms a nested loop to construct input data 〈D[t]〉i for t-th GRU cell. Then, the step 9 to 12 in
ΠGRU invokes instances of different gating protocols, and these gating protocols further invoke required
basic protocols. The security of such nested subroutines is guaranteed and stated in Chapter 5. Finally,
P0 and P1 get the result shares 〈res〉0 and 〈res〉1 respectively from the output of fully-connected layer.
We invoke an instance of ΠPC [51] to compare each element in the result share vector with zero to obtain
the prediction vectors G before outputting to C . Please note that we avoid sending the result values
〈res〉0 and 〈res〉1 directly to C to protect the model weights against privacy breach from corrupted C .
The results of comparison only indicate the labels of the prediction instead of exact computing values so
that corrupted C is unable to learn the model weights by tracing backward. After removing the masks,
the result values G′ are exactly the n-batch binary prediction vectors. The security threats and analysis
is discussed in Theorem 7.

CHAPTER 4. PRIVACY-PRESERVING GRU INFERENCE FRAMEWORK 22

Protocol 12 GRU ΠGRU(P0,P1,P2)

Input: P i holds 〈Do〉i ∈Ql′×d′
,〈We〉i ∈Qd′×d,〈Wz〉i,〈Wr〉i,〈W〉i ∈Qd×h,〈Wd〉i ∈Qh×1,〈Uz〉i,〈Ur〉i,〈U〉i ∈

Qh×h,〈bz〉i,〈br〉i,〈b〉i ∈Q1×h,〈bd〉i ∈Q1×1, for i ∈ {0,1}.
Output: C gets G′ as prediction results.

1: Setup: P0 picks n random bits r ∈ {0,1}n and a random matrix Ma
$← Zn

2lQ
. P2 picks a random

matrix M $←Zn
2lQ

. Then, P2 generates shares by calling Share(M)= 〈M〉0, 〈M〉1, Share(M)2 = 〈(M)2〉0,
〈(M)2〉1. Finally, P2 and P0 call ΠST(P2,P0) with P2 having input (〈M〉0, 〈(M)2〉0); P2 and P1 call
ΠST(P2,P1) with P2 having input (〈M〉1, 〈(M)2〉1); P0 and P1 call ΠST(P0,P1) with P0 having
input (r, Ma); P0 and C call ΠST(P0,C) with P0 having input r.

2: for k = {1,2, · · · ,n} do
3: P0, P1, and P2 call ΠMatMul with Pi, i ∈ {0,1} having input (〈Do[k]〉i,〈We〉i). Then, P0 and P1

learn 〈De[k]〉0 and 〈De[k]〉1 respectively.
4: end for
5: for t = {1,2, · · · , l′} do
6: for k = {1,2, · · · ,n} do
7: For i ∈ {0,1}, P i sets row k of 〈D[t]〉i with row t of 〈De[k]〉i.
8: end for
9: P0, P1, and P2 call ΠUG(P0,P1,P2) with P i having input (〈D[t]〉i,〈H〉i,〈Wz〉i,〈Uz〉i, and 〈bz〉i),

for i ∈ {0,1}. Then, P0 and P1 learn 〈Z〉0 and 〈Z〉1 respectively.
10: P0, P1, and P2 call ΠRG(P0,P1,P2) with P i having input (〈D[t]〉i,〈H〉i,〈Wr〉i,〈Ur〉i, and 〈br〉i),

for i ∈ {0,1}. Then, P0 and P1 learn 〈R〉0 and 〈R〉1 respectively.
11: P0, P1, and P2 call ΠCM(P0,P1,P2) with P i having input (〈D[t]〉i, 〈H〉i, 〈W〉i, 〈R〉i, 〈U〉i, and

〈b〉i), for i ∈ {0,1}. Then, P0 and P1 learn 〈H′〉0 and 〈H′〉1 respectively.
12: P0 and P1 call ΠAC(P0,P1,P2) with P i having input (〈Z〉i, 〈H〉i, and 〈H′〉i), for i ∈ {0,1}. Then,

P0 and P1 learn 〈S〉0 and 〈S〉1 respectively.
13: For i ∈ {0,1}, P i sets 〈H〉i = 〈S〉i.
14: end for
15: P0, P1, and P2 call ΠMatMul(P0,P1,P2) with P i having input 〈H〉i and 〈Wd〉i, for i ∈ {0,1}. Then,

P0 and P1 learn 〈FC〉0 and 〈FC〉1 respectively.
16: P i sets 〈res〉i = 〈FC〉i +〈bd〉i, for i ∈ {0,1}.
17: for w = {1,2, · · · ,n} do
18: For i ∈ {0,1}, P i sets 〈a′〉i = 〈res[w]〉i +〈M[w]〉i +Ma[w].
19: P0, P1 exchange 〈a′〉0, 〈a′〉1 and reconstruct a′.
20: P0, P1, and P2 call ΠPC(P0,P1,P2) with P i, i ∈ {0,1} having input (〈(M)2[w]〉i, a′−2×Ma[w],

r[w]). Finally, P2 learns a bit δ and sets α = 1−δ.
21: P2 sets G[w]=α.
22: end for
23: P2 and C call ΠST(P2,C) with P2 having input G.
24: C sets G′ = G⊕r.

Chapter 5

Security Analysis

We adopt UC framework [6, 7] to prove the security of privacy-preserving protocols, which is the strict
simulation-based proof that allows any modular composition and concurrent execution. As our protocols
may be composed for different structures of GRU models in real-world implementation, security of such
flexibility should be carefully examined and confirmed. To prove the notion of UC security, we analyze
each single protocol and check if the protocol conforms to Definition 1. The security proof is conducted
through an algorithmic reduction that simulates all of the information learnt by the real-world adver-
sary in ideal world, and evaluates if the combined view of environment conforms to Definition 2. Then,
with universal composition theorem in Definition 3, the privacy-preserving protocols that have been
proved UC-secure can be arbitrarily composed and still remain secure. Therefore, we utilize F -hybrid
model [9] in protocols and prove the security in a divide-and-conquer manner. This research analyzes
security for two requirements: correctness and privacy [35]. The correctness is proved by equality be-
tween the protocol reconstructed result and the output of corresponding ideal functionality, while the
privacy is confirmed by indistinguishability from the environment view between the real-world execu-
tion and the ideal-world simulation.

We have presented the basic and gating protocols for the real world in the previous chapter, and the
ideal-world functionalities are defined in the following sections. In the ideal world, the simulator S

executing the functionalities runs an internal copy of real-world adversary. With the UC framework, by
corrupting one of the cloud parties, A can get access to the internal states of the corrupted party as well
as all the messages transmitted in the network. In addition, A can interact with the environment Z at
any time so that the view of A is the subset of the view of Z . To simulate the view in the ideal world, S

generates the same numbers of simulated values and outputs them to Z . Please note that S can only
obtain the setting information such as matrix sizes, message lengths, and the domain of random values.
Implicitly, the security is confirmed only when the protocol values accessed by A are indistinguishable
from the simulated values generated via random values. To sum up, Z is the interactive distinguisher
between real world and ideal world through all of the messages from its point of view, including the
view of adversary, the eavesdropped network transmission, and the input/output values.

5.1 Security of Basic Protocols

Many basic protocols include a setup phase to securely transmit required randomness through ΠST.
Thus, the security of ΠST should be firstly stated. Then, we discuss the security of each basic protocol
in the following proofs.

Functionality 1 FST(Pa,Pb): FST interacted with Pa,Pb, adversary S is parameterized by message
length l.
Input: Upon receiving M from Pa, verify if the message length is l.
Output: Output M to Pb.

Theorem 1 (Security of ΠST). ΠST UC-realizes FST.

23

CHAPTER 5. SECURITY ANALYSIS 24

Proof. The ideal functionality FST is defined by Functionality 1. In ΠST, two notorious cryptographic
building blocks are used: key exchange protocol and symmetric encryption. As the UC security of these
two building blocks have already been discussed in the previous works [8, 32, 33], the details are omitted
here. Other than the subroutines of building blocks, no additional computation is conducted. Therefore,
by using Definition 3, the security of ΠST is easily been stated.

Functionality 2 FHP1(P0,P1,P2): FHP1 interacted with P0,P1,P2, adversary S is parameterized by
matrix size (m, n).
Input: Upon receiving (〈X〉0, 〈Y〉0) from P0 and (〈X〉1, 〈Y〉1) from P1 respectively, verify if all the matrix

shares ∈Qm×n.
Output: Output 〈Z〉0 to P0 and 〈Z〉1 to P1.

1: X = Reconstruct(〈X〉0, 〈X〉1)
2: Y = Reconstruct(〈Y〉0, 〈Y〉1)
3: Z = X⊙Y
4: (〈Z〉0, 〈Z〉1) = Share(Z)

Functionality 3 FHP2(P0,P1,P2): FHP2 interacted with P0,P1,P2, adversary S is parameterized by
matrix size (m, n).
Input: Upon receiving X from P0 and Y from P1 respectively, verify if X, Y ∈Qm×n.
Output: Send 〈Z〉0 to P0 and 〈Z〉1 to P1.

1: Z = X⊙Y
2: (〈Z〉0, 〈Z〉1) = Share(Z)

Theorem 2 (Security of ΠHP1 and ΠHP2). ΠHP1 and ΠHP2 UC-realize FHP1 and FHP2 respectively.

Proof. First, to show the correctness of ΠHP1 and ΠHP2, the reconstruction of shared results should be
equal to X⊙Y. In the final step of ΠHP1, P0 holds

〈X⊙Y〉0 =−D⊙E+〈X〉0 ⊙E+D⊙〈Y〉0 +〈C〉0 +〈U〉0
, and P1 holds

〈X⊙Y〉1 = 〈X〉1 ⊙E+D⊙〈Y〉1 +〈C〉1 +〈U〉1.

Accordingly, by expanding D and E, we can calculate

〈X⊙Y〉0 +〈X⊙Y〉1
=−X⊙Y−X⊙B−A⊙Y−A⊙B+〈X〉0 ⊙Y+〈X〉0 ⊙B+X⊙〈Y〉0 +A⊙〈Y〉0
+〈A⊙B〉0 +U0 +〈X〉1 ⊙Y+〈X〉1 ⊙B+X⊙〈Y〉1 +A⊙〈Y〉1 +〈A⊙B〉1 +U1

=X⊙Y.

In addition, ΠHP2 can also be proved correct by reconstructing 〈X⊙Y〉0 and 〈X⊙Y〉1. In the final step of
ΠHP2, P0 holds

〈X⊙Y〉0 =−A⊙ (E−RE)+〈C〉0 +〈U〉0
and P1 holds

〈X⊙Y〉1 =Y⊙ (D−RD)+〈C〉1 +〈U〉1.

By expanding D and E, we can calculate

〈X⊙Y〉0 +〈X⊙Y〉1
=−A⊙Y−A⊙B+〈A⊙B〉0 +〈U〉0 +Y⊙X+Y⊙A+〈A⊙B〉1 +U1

=X⊙Y.

CHAPTER 5. SECURITY ANALYSIS 25

Second, the privacy of ΠHP1 and ΠHP2 can be proved through Definition 1, Definition 2 and Defi-
nition 3. The ideal functionality of ΠHP1 and ΠHP2 are defined by Functionality 2 and Functionality
3 respectively. We first discuss the simulation of ΠHP1. For the simulation of the setup phase, ΠHP1

invokes calls to ΠST. By Definition 3, FST can directly substitute for ΠST as the security is stated in
Theorem 1. For the corruption model, if A corrupts P0, A can obtain: 〈X〉0, 〈Y〉0, 〈A〉0, 〈B〉0, 〈C〉0, RD ,
RE, and output them to Z . In the real world, the shares 〈A〉0, 〈B〉0 and 〈C〉0 are generated randomly
from random multiplication triples, while RD and RE are common randomness shared between P0 and
P1. In the ideal world, S can easily generate random matrices to simulate "〈A〉0, 〈B〉0, 〈C〉0, RD , and
RE" and outputs them to Z along with 〈X〉0 and 〈Y〉0. From the above analysis, we show that Z is
unable to distinguish between real world and ideal world from the computation part of view.

From the control of network transmission, A can get 〈D〉1 and 〈E〉1. Additionally, A will attempt
to cause privacy breach by processing 〈D〉1 and 〈E〉1 as: 〈D〉1 −RD and 〈E〉1 −RE. Then, A outputs all
of the values to Z , including 〈D〉1, 〈E〉1, 〈D〉1 −RD , and 〈E〉1 −RE. To simulate the view of network
transmission, S generates random matrices for 〈D〉1 and 〈E〉1, and calculates 〈D〉1−RD , and 〈E〉1−RE
before outputting to Z . In ΠHP1, 〈D〉1 −RD = 〈X〉1 + 〈A〉1, and 〈E〉1 −RE = 〈Y〉1 + 〈B〉1. However, as
the shares of multiplication triples 〈A〉1 and 〈B〉1 are generated randomly by P2 and sent to P1, Z

cannot get 〈A〉1 and 〈B〉1 while only corrupting P0 in our setting. Please note that 〈A〉1 and 〈B〉1 are the
fresh random matrices with the same dimension as 〈X〉1 and 〈Y〉1. Besides, each element in the random
matrix is independent from each other and acts as a good mask for each element in 〈X〉1 and 〈Y〉1.
Therefore, 〈A〉1 and 〈B〉1 are the blinding factors for 〈X〉1 and 〈Y〉1 to make 〈X〉1 +〈A〉1 and 〈Y〉1 +〈B〉1
random from the view of Z . Such concept is similar to the cryptographic primitive of one-time pad.
Accordingly, Z cannot distinguish between the real world and the ideal world from the view of network
transmission. The simulation of corrupting P1 is similar to the case of corrupting P0, so we omit
here. On the other hand, if A corrupts P2, A can only obtain the multiplication triples, for P2 merely
participates in the setup of the protocol. This part of computation is simply simulated by generating the
same length and number of random matrices. The eavesdropped network transmission values include
〈D〉0, 〈D〉1, 〈E〉0, and 〈E〉1. A can reconstruct D and E and remove the mask of multiplication triples
A and B by calculating: D−A and E−B. In the ideal world, S generates six random matrices for
〈D〉0, 〈D〉1, 〈E〉0, 〈E〉1, A and B. Then, S calculates D−A and E−B, and outputs all of the following
values to Z : 〈D〉0, 〈D〉1, 〈E〉0, 〈E〉1, D−A, and E−B. In the real world of ΠHP1, D−A = X+2RD , and
E−B = Y+2RE. Nevertheless, the common randomness RD and RE are only shared between P0 and
P1. Therefore, Z is unable to know RD and RE while only corrupting P2. RD and RE act as blinding
factors to mask the secrets X and Y so that Z cannot distinguish between real world and ideal world
from the view of network transmission.

Finally, Z can obtain the final results from both P0 and P1 so that Z can reconstruct the results of
both real world and ideal world. Since the correctness of ΠHP1 has been shown previously, the outputs
indicate no clues for Z . To sum up, no matter which party A corrupts, we can construct an ideal world
with S to make Z have negligible advantages to distinguish between the real world and the ideal
world. As the combined view of Z between the real world and the ideal world is indistinguishable,
ΠHP1 UC-emulates FHP1 from Definition 2, and therefore ΠHP1 UC-realizes FHP1 from Definition 1.
The proof of ΠHP2 is similar to the case of ΠHP1 and is omitted here.

Functionality 4 FDivision(P0,P1,P2): FDivision interacted with P0,P1,P2, adversary S is parameter-
ized by matrix size (m, n).
Input: Upon receiving (〈X〉0, 〈Y〉0) from P0 and (〈X〉1, 〈Y〉1) from P1 respectively, verify if all the matrix

shares ∈Qm×n.
Output: Send 〈Z〉0 to P0 and 〈Z〉1 to P1.

1: X = Reconstruct(〈X〉0, 〈X〉1)
2: Y = Reconstruct(〈Y〉0, 〈Y〉1)
3: Z = ⌊X

Y⌋
4: (〈Z〉0, 〈Z〉1) = Share(Z)

CHAPTER 5. SECURITY ANALYSIS 26

Theorem 3 (Security of ΠDivision). ΠDivision UC-realizes FDivision in the (FPC [51], FHP1)-hybrid model.

Proof. The correctness of ΠDivision is easily shown by using repeated subtraction for division. We set the
quotient as lQ-bit binary, so the division can be achieved by calculating each binary value using Eq. 4.1.
Please note that any decimal value of one bit is larger than the sum of decimal values less than that bit;
therefore, we can determine the binary values of quotient bit-by-bit within a loop starting from MSB.

The privacy of ΠDivision is discussed through the corruption of P0, P1, and P2 respectively. We first
define the ideal functionality of ΠDivision by Functionality 4. ΠDivision contains a setup phase to generate
required randomness and transmit them through ΠST. Since ΠST has been proved UC-secure, it can
be replaced with FST using Definition 3 so that these random values can be easily simulated by S in
the ideal world. If A corrupts P0, A holds the input shares 〈X〉0 and 〈Y〉0. All of the computations in
ΠDivision utilize the inputs and random values, so S can simulate "〈a〉0, 〈a′〉0, 〈γ〉0, 〈ml〉0, 〈ul−1〉0" by
computing the inputs with randomness from the setup phase. Every time ΠDivision is invoked, different
random values are generated such that these computed results are indistinguishable between the real
world and the ideal world from the view of Z . Before invoking an instance of ΠPC [51], A can eavesdrop
〈a′〉1 from network transmission. Please note that 〈a′〉1 = 〈a〉1+〈R[k][l]〉1+Ra[k][l] in ΠDivision. If Z gets
the intermediate value 〈a〉1, Z can identify real-world protocol by obtaining the secret shares 〈X〉1 and
〈Y〉1 via solving equation. In the setup phase, Z can obtain Ra[k][l] from A , but 〈a〉1 and 〈R[k][l]〉1 are
still unknown without corrupting P1 and P2. For Z , the random value 〈R[k][l]〉1, which is generated
by P2 and sent to P1, acts as the blinding factor to mask 〈a〉1. Even if A outputs 〈a′〉1 to Z , S can
generate a random value to perfectly simulate 〈a′〉1. Another network transmission value is the result
shares of ΠPC [51], where A can eavesdrop 〈α′〉1 and output it to Z . Comparatively, S does not know
the computation of 〈α′〉1 and generates a random value to simulate 〈α′〉1. If Z can deduce the value
〈α〉1 from 〈α′〉1, Z can identify real-world protocol by obtaining the results of the private comparison.
However, 〈α〉1 is masked by the common randomness Rα1[k][l], which is shared only between P2 and
P1. Therefore, Z has no information about Rα1[k][l], which makes 〈α′〉1 random from the view of Z .
The other part of computations include several invokes of privacy-preserving protocols. Since ΠPC and
ΠHP1 have been proved secure in [51] and Theorem 2 respectively, they can be substituted for FPC and
FHP1 securely through Definition 3. Accordingly, ΠDivision can be represented as a (FPC [51], FHP1)-
hybrid model such that the parts of subroutines hold security. The situation of corrupting P1 is similar
to corrupting P0 that has been discussed previously.

On the other hand, if A corrupts P2, A controls most of the randomness in the setup phase, but has
no information about the computations executed by P0 and P1 in the local part. From the eavesdropped
transmission values, A obtains: 〈a′〉0, 〈a′〉1, and reconstructs them to get a′. Then, A can output all
of the held values to Z , including the generated randomness and eavesdropped network transmission.
However, Z is still unable to distinguish the real values from ΠDivision in the real world and the random
values from S in the ideal world, because a is masked by the blinding factor Ra[k][l] held between P0
and P1. While A only corrupts P2, Z has no chance to obtain Ra[k][l]. At the end of FPC [51], A can
get the reconstructed results δ, for P0 and P1 send the shares of results to P2. In comparison, S does
not know the result of comparison and will send a random bit to Z . Nevertheless, Z cannot distinguish
between δ from A and the random bit from S because δ is not the exact result of private comparison.
Instead, the exact result should be obtained by: δ⊕Rb[k][l], where Rb is randomly generated by P0 and
sent to P1 through FST in the setup phase. Thus, while A only corrupts P2, Z has no opportunity to
get Rb[k][l], so the result δ is indistinguishable from the random bit. To sum up, for Z , any real-world
view is indistinguishable from the ideal-world view whoever A corrupts. In addition, the correctness
of output has been shown so that this part also indicates no advantage for Z . That means for any
real-world A , we can construct an ideal-world S to simulate perfectly.

Theorem 4 (Security of ΠRegen). ΠRegen UC-realizes FRegen.

CHAPTER 5. SECURITY ANALYSIS 27

Functionality 5 FRegen(P0,P1): FRegen interacted with P0,P1, adversary S is parameterized by
matrix size (m, n).
Input: Upon receiving (〈X〉0, 〈Y〉0) from P0 and (〈X〉1, 〈Y〉1) from P1 respectively, verify if all the matrix

shares ∈Qm×n.
Output: Send 〈X′〉0 to P0 and 〈X′〉1 to P1.

1: X′ = Reconstruct(〈X〉0, 〈X〉1)
2: (〈X′〉0, 〈X′〉1) = Share(X′)

Proof. The correctness of ΠRegen is easily shown by reconstructing 〈X′〉0 and 〈X′〉1 as follows.

〈X′〉0 +〈X′〉1
=−R+〈X〉1 +Mix=−R+〈X〉1 +〈X〉0 +R
= 〈X〉0 +〈X〉1.

. To state the privacy, we concentrate on the one-sided network transmission from P0 to P1. If A

corrupts P0, A obtains the P0-held input 〈X〉0, and gets the following computing values: R, Mix, and
〈X′〉0. In ΠRegen, R is a random matrix generated by P0 and 〈X′〉0 is set to the negative of R. The
network transmission value Mix is the addition of input 〈X〉0 and R. Therefore, S can easily simulate
them by generating a random matrix followed by the addition with input. On the other hand, if A

corrupts P1, A obtains P1-held input 〈X〉1, 〈X′〉1 as well as the network transmission value Mix. As
〈X′〉1 = 〈X〉1 +Mix in ΠRegen, we first discuss the part of Mix. Z can receive all of the views from A ,
and now our setting is corrupting P1, which means R, generated and only held by P0, is unknown
to Z . Hence, Z is unable to find any privacy information of 〈X〉0 from Mix that is random from the
view of Z . Then, S can simulate Mix by easily generating a random matrix with the same dimension.
Furthermore, S can add 〈X〉1 with the previously generated random matrix to simulate 〈X′〉1 without
difficulty. To conclude, for any A in the real world, we can find a corresponding S in the ideal world so
that ΠRegen UC-realizes FRegen with Definition 1.

Functionality 6 FSigmoid(P0,P1,P2): FSigmoid interacted with P0,P1,P2, adversary S is parameter-
ized by matrix size (m, n) and precision lQ .
Input: Upon receiving 〈X〉0 from P0 and 〈X〉1 from P1, verify if the matrix shares ∈Qm×n.
Output: Send 〈R〉0 to P0 and 〈R〉1 to P1.

1: X = Reconstruct(〈X〉0, 〈X〉1)
2: R[k] = 1

1+ e−X[k] (⌊log10(2lQ −1)⌋ decimal place accuracy), for k = {1, · · · ,m×n}

3: (〈R〉0, 〈R〉1) = Share(R)

Functionality 7 FTanh(P0,P1,P2): FTanh interacted with P0,P1,P2, adversary S is parameterized
by matrix size (m, n) and precision lQ .
Input: Upon receiving 〈X〉0 from P0 and 〈X〉1 from P1, verify if the matrix shares ∈Qm×n.
Output: Send 〈R〉0 to P0 and 〈R〉1 to P1.

1: X = Reconstruct(〈X〉0, 〈X〉1)

2: R[k] = 2
1+ e−X[k]×2 −1 (⌊log10(2lQ −1

2)⌋ decimal place accuracy), for k = {1, · · · ,m×n}

3: (〈R〉0, 〈R〉1) = Share(R)

Theorem 5 (Security of ΠSigmoid and ΠTanh). ΠSigmoid and ΠTanh UC-realize FSigmoid and FTanh respec-
tively in the (FRegen, FHP2, FDivision)-hybrid model.

Proof. For the correctness of ΠSigmoid, the reconstruction of final result needs to be equal to 1
1+ e−x .

In ΠSigmoid, ΠHP2 is used to generate the shares of e−x, and ΠDivision is used to get the shares of

CHAPTER 5. SECURITY ANALYSIS 28

10⌊log10(2lQ−1)⌋
1+ e−x . Before invoking an instance of ΠDivision, the dividends are shifted by multiplying with

10⌊log10(2lQ−1)⌋ and then the result shares are shifted backward by multiplying with 10−⌊log10(2lQ−1)⌋. We
discuss the setting of shifting value n as follows. Please note that the scale of n should comply with:

10n × 1
1+ e−x ≤ 2lQ −1

The maximum of 1
1+ e−x holds while x →∞. Assume 1

1+ e−x is set with the maximum value 1. Then,
we get the bound of shift value that will not make the quotients suffer from overflowing.

10n ≤ 2lQ −1⇒ n ≤ log10(2lQ −1)

As a result, we set n as ⌊log10(2lQ −1)⌋. Finally, the reconstruction of final result is equal to 1
1+ e−x .

On the other hand, the equation of Tanh activation function is 2
1+ e−2x −1, so the shift of dividends in

ΠDivision should satisfy the following bound.

10n × 2
1+ e−2x ≤ 2lQ −1

In the same way, 2
1+ e−2x has the maximum when x → ∞, and we assume 2

1+ e−2x is set with the

maximum value 2. Thus, we get the shift of ΠDivision as ⌊log10(2lQ −1
2)⌋.

10n ×2≤ 2lQ −1⇒ n ≤ log10(
2lQ −1

2
)

The overall computing process of ΠTanh is similar to ΠSigmoid. Therefore, the correctness of both ΠSigmoid

and ΠTanh are easily presented because the subroutines ΠHP2, ΠDivision, and ΠRegen are already shown
correct from Theorem 2 to Theorem 4.

To state the privacy, ΠSigmoid and ΠTanh are defined in the (FRegen, FHP2, FDivision)-hybrid model.
Since ΠRegen, ΠHP2 and ΠDivision have been proved to UC-realize FRegen, FHP2 and FDivision respectively,
ΠSigmoid and ΠTanh can replace (ΠRegen, ΠHP2, ΠDivision) with (FRegen, FHP2, FDivision) in the arbitrary
combination using Definition 3. Other than the subroutines, there is no additional transmitted values
between P0 and P1. The only computation is the local-side exponential calculation that P0 computes
α[k] = e〈X

′[k]〉0 , and P1 computes β[k] = e〈X
′[k]〉1 respectively. If A corrupts P0, A holds 〈X′[k]〉0 and

obtains the intermediate value α. In contrast, if A corrupts P1, A holds 〈X′[k]〉1 and gets the in-
termediate value β. No matter which party A corrupts, S can directly calculate e〈X

′[k]〉0 and e〈X
′[k]〉1 to

simulate α and β respectively in ideal world. The probability of Z to distinguish between real world and
ideal world is negligible. Thus with Definition 2, we can prove that ΠSigmoid UC-emulates FSigmoid and
ΠTanh UC-emulates FTanh. Furthermore, ΠSigmoid and ΠTanh UC-realize FSigmoid and FTanh respectively
with Definition 1.

5.2 Security of Gating Protocols

The security of gating protocols largely depends on the security of invoking subroutines. According to
the Definition 3, substituting a call to Π for a call to its corresponding ideal functionality F remains
UC-secure if the Πcaller and Πcallee are both secure under UC framework. For the sake of simplicity
in security proof, we use F to substitute for real-world protocols of subroutines with the support of
universal composition theorem [7]. The protocols with calls to ideal functionalities form a F -hybrid
model [9].

Theorem 6 (Security of ΠUG, ΠRG, ΠCM, and ΠAC). ΠUG, ΠRG, ΠCM, and ΠAC UC-realize FUG, FRG,
FCM, and FAC respectively.

CHAPTER 5. SECURITY ANALYSIS 29

Functionality 8 FUG(P0,P1,P2): FUG interacted with P0,P1,P2, adversary S is parameterized by
matrix sizes (n, d), (n, h), (d, h), (h, h), (1, h).
Input: Upon receiving (〈D〉0, 〈H〉0, 〈Wz〉0, 〈Uz〉0, 〈bz〉0) from P0 and (〈D〉1, 〈H〉1, 〈Wz〉1, 〈Uz〉1, 〈bz〉1)

from P1, verify if all the shares are in the correct sizes.
Output: Send 〈Z〉0 to P0 and 〈Z〉1 to P1.

1: D = Reconstruct(〈D〉0, 〈D〉1)
2: H = Reconstruct(〈H〉0, 〈H〉1)
3: Wz = Reconstruct(〈Wz〉0, 〈Wz〉1)
4: Uz = Reconstruct(〈Uz〉0, 〈Uz〉1)
5: bz = Reconstruct(〈bz〉0, 〈bz〉1)
6: Z=σ(D ·Wz +H ·Uz +bz)
7: (〈Z〉0, 〈Z〉1) = Share(Z)

Functionality 9 FRG(P0,P1,P2): FRG interacted with P0,P1,P2, adversary S is parameterized by
matrix sizes (n, d), (n, h), (d, h), (h, h), (1, h).
Input: Upon receiving (〈D〉0, 〈H〉0, 〈Wr〉0, 〈Ur〉0, 〈br〉0) from P0 and (〈D〉1, 〈H〉1, 〈Wr〉1, 〈Ur〉1, 〈br〉1)

from P1, verify if all the shares are in the correct sizes.
Output: Send 〈R〉0 to P0 and 〈R〉1 to P1.

1: D = Reconstruct(〈D〉0, 〈D〉1)
2: H = Reconstruct(〈H〉0, 〈H〉1)
3: Wr = Reconstruct(〈Wr〉0, 〈Wr〉1)
4: Ur = Reconstruct(〈Ur〉0, 〈Ur〉1)
5: br = Reconstruct(〈br〉0, 〈br〉1)
6: R=σ(D ·Wr +H ·Ur +br)
7: (〈R〉0, 〈R〉1) = Share(R)

Proof. Gating protocols invoke basic protocols as subroutines, which are already proved UC-secure from
Theorem 2 to Theorem 5. In addition to the subroutines, the only computations are the addition of
shares computed locally by P0 and P1. Thus, the correctness of ΠUG, ΠRG, ΠCM, and ΠAC are easily
demonstrated.

Consider the proof of privacy, the ideal functionalities of four gating protocols are defined from
Functionality 8 to Functionality 11. The part of subroutines are perfectly simulated using Definition
3 and there is no other transmitted messages. If A corrupts either P0 or P1, all of the intermediate
values are kept in shares. In addition, every time an instance of subroutine is invoked, the output
remains a fresh share. Thus, we can construct an ideal world with S for each gating protocol and
make a perfect simulation individually. Since Z cannot get any clue to distinguish between real-world
execution and ideal-world execution, all of the gating protocols are proved to UC-realize corresponding
ideal functionalities with Definition 1.

Functionality 10 FCM(P0,P1,P2): FCM interacted with P0,P1,P2, adversary S is parameterized by
matrix sizes (n, d), (n, h), (d, h), (n, h), (h, h), (1, h).
Input: Upon receiving (〈D〉0, 〈H〉0, 〈W〉0, 〈R〉0, 〈U〉0, 〈b〉0) from P0 and (〈D〉1, 〈H〉1, 〈W〉1, 〈R〉0, 〈U〉1,

〈b〉1) from P1, verify if all the shares are in the correct sizes.
Output: Send 〈H′〉0 to P0 and 〈H′〉1 to P1.

1: D = Reconstruct(〈D〉0, 〈D〉1)
2: H = Reconstruct(〈H〉0, 〈H〉1)
3: W = Reconstruct(〈W〉0, 〈W〉1)
4: R = Reconstruct(〈R〉0, 〈R〉1)
5: U = Reconstruct(〈U〉0, 〈U〉1)
6: b = Reconstruct(〈b〉0, 〈b〉1)
7: H′ = tanh(D ·W+ (R⊙H) ·U+b)
8: (〈H′〉0, 〈H′〉1) = Share(H′)

CHAPTER 5. SECURITY ANALYSIS 30

Functionality 11 FAC(P0,P1,P2): FAC interacted with P0,P1,P2, adversary S is parameterized by
matrix sizes (n, d), (n, h).
Input: Upon receiving (〈Z〉0, 〈H〉0, 〈H′〉0) from P0 and (〈Z〉1, 〈H〉1, 〈H′〉1) from P1, verify if all the

shares are in the correct sizes.
Output: Send 〈S〉0 to P0 and 〈S〉1 to P1.

1: Z = Reconstruct(〈Z〉0, 〈Z〉1)
2: H = Reconstruct(〈H〉0, 〈H〉1)
3: H′ = Reconstruct(〈H′〉0, 〈H′〉1)
4: S=Z⊙H+ (1−Z)⊙H′

5: (〈S〉0, 〈S〉1) = Share(S)

5.3 Security of GRU Inference

Functionality 12 FGRU(P0,P1,P2): FGRU interacted with C ,P0,P1,P2, adversary S is parameter-
ized by matrix sizes (l′, d′), (d′, d), (d, h), (h, 1), (h, h), (1, h), (1, 1).
Input: Upon receiving (〈Do〉i, 〈We〉i, 〈Wz〉i, 〈Wr〉i, 〈W〉i, 〈Wd〉i, 〈Uz〉i, 〈Ur〉i, 〈U〉i, 〈bz〉i, 〈br〉i, 〈b〉i,

〈bd〉i) from P i for i ∈ {0,1}, verify if all the shares are in the correct sizes.
Output: Send G′ to C .

1: Do = Reconstruct(〈Do〉0, 〈Do〉1); We = Reconstruct(〈We〉0, 〈We〉1); Wz = Reconstruct(〈Wz〉0, 〈Wz〉1);
Wr = Reconstruct(〈Wr〉0, 〈Wr〉1); W = Reconstruct(〈W〉0, 〈W〉1); Wd = Reconstruct(〈Wd〉0, 〈Wd〉1);
Uz = Reconstruct(〈Uz〉0, 〈Uz〉1); Ur = Reconstruct(〈Ur〉0, 〈Ur〉1); U = Reconstruct(〈U〉0, 〈U〉1); bz =
Reconstruct(〈bz〉0, 〈bz〉1); br = Reconstruct(〈br〉0, 〈br〉1); b = Reconstruct(〈b〉0, 〈b〉1); bd = Recon-
struct(〈bd〉0, 〈bd〉1)

2: for k = {1,2, · · · ,n} do
3: De[k] = Do[k] ·We
4: end for
5: for t = {1,2, · · · , l′} do
6: for k = {1,2, · · · ,n} do
7: Set row k of D[t] with row t of De[k]
8: end for
9: Z=σ(D[t] ·Wz +H ·Uz +bz)

10: R=σ(D[t] ·Wr +H ·Ur +br)
11: H′ = tanh(D[t] ·W+ (R⊙H) ·U+b)
12: S=Z⊙H+ (1−Z)⊙H′

13: H = S
14: end for
15: res = H ·Wd + bd
16: for w = {1,2, · · · ,n} do
17: if res[w] > 0, set G′[w] = 1; else set G′[w] = 0.
18: end for

Theorem 7 (Security of ΠGRU). ΠGRU UC-realizes FGRU to complete privacy-preserving GRU inference.

Proof. In ΠGRU, we construct the whole inference process. The correctness of ΠGRU relies on the correct-
ness of each subroutine protocol. Since we have presented the correctness of basic protocols and gating
protocols in the previous sections, the correctness of ΠGRU is straightforward. The ideal functionality
of ΠGRU is defined by Functionality 12. To state the privacy of ΠGRU, we can sufficiently utilize the
Definition 3. If all of the required subroutine protocols have been proved UC-secure, the composition of
them is also UC-secure.

CHAPTER 5. SECURITY ANALYSIS 31

The previous proofs for basic and gating protocols are under the construction of corrupting one of
the cloud parties P0, P1, or P2. However, on the whole, ΠGRU needs to include one additional role C . In
addition to corrupting one of the cloud parties, we need to take into consideration privacy breach from
the prediction client C because C holds the input data Do and can get access to the final reconstructed
result G′. If A corrupts C , the target of privacy breach is the model weights privacy. Consider the
embedding layer, the initial input is first computed by one call to ΠMatMul [51]. Please note that we have
altered the original ΠMatMul [51] to compute the network transmission values as: 〈E〉 j = 〈X〉 j−〈A〉 j+RE
and 〈F〉 j = 〈Y〉 j − 〈B〉 j +RF , for j ∈ {0,1}. The input shares "〈X〉0, 〈X〉1" are generated from one-hot
encoded data Do, and "〈Y〉0, 〈Y〉1" are generated from model weights We. We first assume that A

corrupts P0 and colludes with C . A obtains 〈X〉0 from P0 and X from C respectively. Then, A can
get 〈X〉1 by calculating: 〈X〉1 = X−〈X〉0. In the ideal world, S can also get 〈X〉0 and X and compute
the value of 〈X〉1. Thus, Z receives 〈X〉0, 〈X〉1, and X from both the real world and the ideal world
without distinguishability. In the computation part, A obtains: 〈A〉0, 〈B〉0, 〈C〉0, 〈E〉0, 〈F〉0, RE, RF ,
and outputs them to Z . For simulation, S generates five random matrices to simulate 〈A〉0, 〈B〉0, 〈C〉0,
RE, RF respectively, and sets: 〈E〉0 = 〈X〉0 −〈A〉0 +RE, and 〈F〉0 = 〈Y〉0 −〈B〉0 +RF . From the network
transmission, A acquires 〈E〉1 and 〈F〉1. With "〈X〉1, RE and 〈E〉1", A can obtain 〈A〉1 that is used
to mask 〈X〉1 by calculating: 〈A〉1 = 〈X〉1 −〈E〉1 +RE. Then, A outputs all the obtained values to Z ,
including 〈E〉1, 〈F〉1, 〈A〉1. In the ideal world, S generates two random matrices to simulate 〈A〉1 and
〈F〉1, and then sets 〈E〉1 = 〈X〉1 −〈A〉1 +RE. Similarly, S outputs the simulated 〈E〉1, 〈F〉1, and 〈A〉1 to
Z . From the view of Z , 〈A〉1 from the real world and the simulated 〈A〉1 from the ideal world are both
randomly generated so that Z is unable to distinguish between 〈A〉1 and the simulated 〈A〉1. Besides,
both 〈E〉1 and the simulated 〈E〉1 are computed with known 〈X〉1 and two fresh random matrices 〈A〉1
and RE. As a result, Z is also unable to distinguish between 〈E〉1 and the simulated 〈E〉1. As for 〈F〉1,
it is composed by 〈Y〉1, 〈B〉1, and RF . Under the corruption of P0 and C , Z has no chance to access
〈Y〉1 and 〈B〉1 in the real world; therefore, 〈F〉1 is indistinguishable to a randomly generated matrix
from the view of Z so that S can successfully simulate 〈F〉1 with a random matrix. In short, Z is
unable to distinguish between all of the real-world values and the corresponding simulated values. The
simulation of corrupting P1 and C is similar to corrupting P0 and C .

On the other hand, we assume A corrupts P2 and colludes with C . A obtains X from C and controls
all of the random multiplication triples and shares, including 〈A〉0, 〈A〉1, 〈B〉0, 〈B〉1, 〈C〉0, 〈C〉1. In the
ideal world, S also gets X and generates random multiplication triples and shares. From the network
transmission, A eavesdrops 〈E〉0, 〈E〉1, 〈F〉0, and 〈F〉1. To simulate 〈E〉0 and 〈E〉1, S first generates
a random matrix to simulate RE and uses X and A to calculate: E = X−A+2RE. Then, S can call
Share to generate 〈E〉0 and 〈E〉1. For simulating 〈F〉0 and 〈F〉1, S only needs to generate two random
matrices and outputs them to Z . From the view of Z , it is indistinguishable between 〈E〉0 and 〈E〉1
from the real world and the ideal world, because the component X is known to both A and S . Besides,
A and RE are generated randomly. As for 〈F〉0, it is composed by 〈Y〉0, 〈B〉0, and 〈R〉F . Although Z can
remove the mask 〈B〉0, two unknown values 〈Y〉0 and 〈R〉F still exist so that 〈F〉0 is indistinguishable to
a simulated random matrix from the view of Z . The simulation of 〈F〉1 is similar to 〈F〉0 that 〈Y〉1 and
〈R〉F are unknown to Z .

Consider the processing of the final result, where ΠGRU invokes an instance to ΠPC [51]. The proof
of ΠPC is presented in [51]. Here we directly substitute FPC for ΠPC with Definition 3. The result
of comparison is sent to C via P2. First discuss the corruption of cloud servers. If A corrupts P0 or
P1, A does not receive any results. If A corrupts P2, A receives δ and outputs it to Z . In the ideal
world, S simulates δ by generating a random binary vector. Please note that δ is not the real result
of comparison, which is masked by a random binary vector r shared between P0, P1, and C . As our
current setting is to corrupt P2, Z does not obtain r. Thus, Z cannot distinguish between δ and the
simulated random binary vector. Furthermore, if A corrupts P0 or P1 and colludes with C , A can hold
either 〈(M)2[w]〉0 or 〈(M)2[w]〉1 and obtain the final prediction results from C and output them to Z .
However, following the setting of corruptions, ideal-world S can also get one share of input from P0 or
P1 and the results from C and send to Z . That means it does not cause additional privacy problems
while corrupting either P0 or P1 and colluding with C , since prediction result is supposed to be known
by C originally in our setting. If A corrupts P2 and colludes with C , A does not hold any input but

CHAPTER 5. SECURITY ANALYSIS 32

only the results, which is easily simulated by S . Above all, we show that ΠGRU is UC-secure and A

cannot cause any privacy leakage even though A colludes with C .

Chapter 6

Experiments and Results

In this chapter, we present a proof-of-concept implementation of our framework using Python. Many
deep learning libraries nowadays like Keras * are convenient to construct a machine learning model.
However, our research designs protocols on shares to preserve privacy during GRU inference, so the
normal computations need to be replaced with our protocols instead of directly calling the off-the-shelf
modules. We conduct the experiments on a binary sentiment classification case and evaluate the results
with respect to accuracy and time consumption.

6.1 Dataset

GRU is known for processing sequential data such as comments or reviews. In real-world scenarios,
these data often contain personal privacy that is suitable to apply our framework. In the experiments,
we use the ACL Internet Movie Database (IMDb), which is a well-known dataset for binary sentiment
classification created by A.L. Maas et al. [38]. The IMDb dataset contains 5,0000 labeled movie reviews,
where 2,5000 is for training and 2,5000 is for testing. The label of the dataset is in the binary form that
the positive reviews are labeled 1, and the negative reviews are labeled 0.

6.2 Implementation

The experiments were conducted on a desktop computer with Intel Core (TM) i7-8700HQ CPU @
3.20GHz, 16GB of DDR3 RAM, and NVIDIA GeForce GTX 1060M 6GB DDR5 GPU. For data pre-
processing, we fix the length of all reviews to 80 by padding 0 or abandoning the excessive part, and
then transform them to one-hot encoded data. During the inference, the word vectors are computed
through a GRU model that contains the embedding layer, GRU layer, and fully-connected layer. Table
6.1 summarizes the model structure and hyper-parameters used in the experiment. In our scenario, the
training part is conducted in plaintext at the local side of model owners, so we use Keras to train a GRU
model and save the trained weights. The privacy-preserving inference part is implemented according
to our protocols and the matrix computations are based on Numpy module [47]. The model weights are
represented in floating points and mostly range in [−1, 1] due to the weights regularization, and the
IMDb testing dataset [38] is transformed into one-hot encoded matrices. Accordingly, for generating the
share, we implement Eq. 2.1 and draw the random matrix P and R uniformly distributed over [0, 1)
and [−1, 1) respectively in our experiments. In addition to the implementation of our protocols, we build
two baseline methods for accuracy comparison. One is to call the inference module in Keras directly,
and the other one is to use Numpy for inference without privacy-preserving protocols. Since the two
baseline methods carry out the normal inference, the purpose is to observe the accuracy change after
applying the privacy-preserving protocols.

*https://keras.io/

33

CHAPTER 6. EXPERIMENTS AND RESULTS 34

Layer Hyper-parameters Description Value

Embedding
max feature Number of features in the dataset 2,0000
max length Length of each review 80
output dimension Dimension of embedding output 128

GRU
units Number of units 80
batch size Number of data within one prediction request 1 to 200

Dense output dimension Dimension of prediction output 1 to 200

Table 6.1: Model Structure and Hyper-parameters.

Testing data size (N)

200 400 600 800 1000

Keras 83.0 81.0 82.5 82.125 82.1
Numpy 84.5 81.75 84.0 83.75 83.4
Our work 83.0 81.0 82.5 82.375 82.4

Table 6.2: Comparison of Accuracy Performance.

6.3 Results

The results are evaluated from two points of view: accuracy performance and time consumption. The
GRU model conducts binary classification on the IMDb dataset [38], and the accuracy (acc) is calculated
as Eq. 6.1, where C denotes the number of correct predictions, and N is the total number of testing
data.

acc= 100× C
N

(%) (6.1)

To compare the inference accuracy, we fix the testing data by filtering the top N pieces of IMDb
testing sequences. The results of accuracy performance are summarized in Table 6.2. It shows that
the accuracy has at most 1.5% differences between our work and the baseline methods. Compared with
inference using Numpy without privacy-preserving protocols, our work has a small loss in accuracy.
Theoretically, ASS belongs to cryptographic methods that do not affect the accuracy during privacy-
preserving inference. However, we get loss of precision on the decimal shares because of lQ we set in
ΠDivision and the conversion from decimals into binary floating points. The loss is amplified after large
dimensions of matrix computation. The precision problems are further discussed with more details in
Chapter 7. Fortunately, compared with inference using Keras, our work has almost the same accuracy.

We evaluate the time consumption in two folds: the whole inference process and the execution of
atomic protocols. Firstly, the time consumption of the whole inference process is recorded for different
batch sizes. The results are shown in Figure 6.1, where the x-axis is the batch size in the interval of 10
and 110, and the y-axis is the time consumption in terms of the total inference time and the average
inference time. Intuitively, the total inference time has a positive correlation with the batch size, which
is confirmed by the left plot of Figure 6.1. On the other hand, the average inference time is used to
assess the time cost within one prediction. As shown in the right plot of Figure 6.1, the average time
has a negative correlation with the batch size, which is because Numpy is optimized for larger matrix
dimensions. Since the matrix dimension is affected by the batch size, the average time can be shortened
and benefit from a larger batch size. As the batch size increases, the average time will approach to 26
seconds. In addition, time consumption is also influenced by the size of the model structure. We set the
GRU units as 80 shown in Table 6.1, which is a practical setting for real-world implementation. To sum
up, running one prediction takes 26 to 34 seconds approximately while the batch size is in the interval
of 10 and 110. We give more insights on time consumption in Chapter 7.

Secondly, to benchmark each protocol execution during the inference, the time consumption of indi-
vidual basic and gating protocol is also evaluated. We record the execution time of each basic protocol

CHAPTER 6. EXPERIMENTS AND RESULTS 35

Figure 6.1: Time Consumption for Different Batch Sizes.

at the initial call within the first GRU cell. For example, ΠHP1 is first called in ΠCM, and ΠHP2 is first
called in ΠSigmoid. In addition, we calculate the time consumption of each gating protocol by averaging
the sum of execution time in every cell. The results are shown in Table 6.3 and Table 6.4. From the
results of basic protocols, we can find that the activation protocols ΠSigmoid and ΠTanh cost much more
time than the multiplication protocols ΠHP1 and ΠHP2. We further investigate the processes of ΠSigmoid

and ΠTanh and find that the most time-consuming part is the call to the subroutine ΠDivision. In ΠDivision,
it iterates through the elements in the matrix shares to calculate the division and processes the values
bit-by-bit in a nested for loop, which takes relatively much time. The time consumption of ΠSigmoid and
ΠTanh in Table 6.3 is the optimized results after implementing parallel processing for each element. In
the gating protocols, the time consumption of ΠAC is less than any other gating protocols due to the
absence of activation function. Moreover, most of the basic protocols and gating protocols take more
time while batch size increases.

Basic Protocols

ΠHP1 ΠHP2 ΠSigmoid ΠTanh

batch = 1 < 1e-9 < 1e-9 0.3261286 0.3111683
batch = 10 < 1e-9 < 1e-9 1.3583679 1.3464006
batch = 50 < 1e-9 < 1e-9 5.5073051 5.1851663
batch = 100 0.0010323 < 1e-9 10.203750 10.799164
batch = 200 0.0019943 0.0009974 18.741894 20.749527

Table 6.3: Time Consumption of Basic Protocols (s).

Gating Protocols

ΠUG ΠRG ΠCM ΠAC

batch = 1 0.320841845 0.319994473 0.320380994 0.000186988
batch = 10 1.404619816 1.405903897 1.403148714 0.000211948
batch = 50 5.878167242 5.862324658 5.872755495 0.001060020
batch = 100 10.76596359 10.58045899 10.69874744 0.001957434
batch = 200 20.39673255 20.48360203 20.42475094 0.003740885

Table 6.4: Time Consumption of Gating Protocols (s).

Chapter 7

Discussions and Future Works

The experiment results show that our protocols are practicable in terms of both accuracy and time
consumption, and we further explore the issues from these points. Section 7.1 discusses the precision
part. Although the accuracy is affected by precision, most of the predictions are correct under the
requirements of preserving privacy. In addition, Section 7.2 analyzes the time consumption. We adopt
ASS for both linear and non-linear functions. Since ASS is not based on the assumptions about the
hardness of specific mathematical problems, GRU inference on secret sharing is efficient in computing
time. To be more comprehensive, the communication amount is also evaluated in this section. Then,
Section 7.3 describes the potential collusion problems and strategies. Finally, Section 7.4 presents the
extended future works.

7.1 Discussions on Accuracy

We further investigate the data that is prone to error predictions, and we find that the inference results
of these data are closed to the boundary value. In the final step, the model will give the prediction as 0
or 1 by determining each output of the fully-connected layer as negative or positive. The reasons why
the computing results with secret sharing are not completely equal to the original computing results
(Table 6.2) lie in the precision problem. Firstly, please note that the computer hardware uses a binary
form to represent the floating-point numbers. We use float64 in Numpy [47] as the data type to handle
floating-point arithmetic in our experiments, and thus we get loss of precision while the decimal values
are being converted into binary floating point. For example, decimal values like 0.1 or 0.3, are repeating
binary floating point, and the system will round them according to the data type we set. The loss of
precision starts with generating the shares and amplifies along with the computations. Secondly, the
precision of ΠDivision should also be considered. In ΠDivision, lQ represents the bit length of the quotient.
If we need higher precision on the quotient, lQ should be set with a larger value. However, the time
consumption will also increase while computing more bits. To strike a balance, we set lQ as 15 in our
experiments. Since ΠDivision is called by ΠSigmoid and ΠTanh, the precision affects the results of activation
functions. Although precision causes minuscule differences on values, it might amplify after repeatedly
large dimensions of matrix operations while delivering among the series of GRU cells. Therefore, the
precision loss leads to error for a few data points that locate near the boundary of binary classification.
Fortunately, the experiment results show that the precision issues only affect the accuracy slightly on
the dataset we use.

7.2 Discussions on Time Consumption

The time consumption in the previous chapter is evaluated by the proof-of-concept implementation,
which is executed within a lab computer environment. In fact, our architecture relies on two main
computing parties and one supporting party. The computing time can be shortened by distributed
computing on shares in the real outsourced scenario, and each party can still benefit from powerful
cloud computing, for the party is not limited to one computer or server. Besides, communication time
is not evaluated in our proof-of-concept experiment, so we compare the communication amount of basic

36

CHAPTER 7. DISCUSSIONS AND FUTURE WORKS 37

Protocol
Offline Online

Rounds Communication Rounds Communication

ΠHP1 1.5 10mnl 1 4mnl

ΠHP2 1.5 8mnl 1 2mnl

ΠDivision 1.5 4lQ mn(lQ +2)⌈log2 p⌉+
lQ mn(15l+1)+4mnl

4lQ
2lQ mn(lQ +2)⌈log2 p⌉+

8lQ mnl

ΠRegen 0.5 mnl 0 0

ΠSigmoid 1.5 4lQ mn(lQ +2)⌈log2 p⌉+
lQ mn(15l+1)+13mnl

4lQ +1 2lQ mn(lQ +2)⌈log2 p⌉+
8lQ mnl+2mnl

ΠTanh 1.5 4lQ mn(lQ +2)⌈log2 p⌉+
lQ mn(15l+1)+13mnl

4lQ +1 2lQ mn(lQ +2)⌈log2 p⌉+
8lQ mnl+2mnl

Table 7.1: Comparison of Communication Amount.

protocols in Table 7.1. We assume the inputs of our protocols are m×n matrices and each element in
the matrix contains l bits. The bit length l is set with different values according to the protocols and
implementation. The main data type is float64 in our experiments, so l is set to 64. On the other hand,
ΠDivision invokes ΠPC [51] to conduct comparison on bit shares, where the bit shares are in Zp such that
the length is directly set to ⌈log2 p⌉ instead of l. We follow the setting of ΠPC in [51] and set p as 67 in the
experiments. The amount of communication in Table 7.1 represents the sum of communication amount
in all rounds. For example, ΠSigmoid and ΠTanh invoke each one call to ΠRegen, ΠHP2, and ΠDivision, so the
value shown in Table 7.1 is the sum of the communication amount in these subroutines. By separating
the offline and online communication, we can minimize the online communication for the consideration
of real-time efficiency. The offline communication holds randomness that should be distributed via a
secure channel and thus will consume more time. Fortunately, we can adopt optimized techniques to
reduce the amount of communication, such as pre-sharing a secure pseudorandom function (PRF) with
the PRF key and utilize known inputs to generate the randomness [51]. Finally, the communication
amount of gating protocols can be easily calculated by adding up the communication amount of required
basic protocols.

7.3 Potential Collusion Problems

The security model of this research allows the adversary to corrupt either P0, P1, or P2 in an honest-
but-curious way. A lot of research toward privacy-preserving machine learning has adopted such a
corruption option for the correctness of the prediction. Under this security model, it is not allowed
for any collusion between the computing parties. However, collusion between cloud parties is indeed a
potential problem that may occur in the unknown and complicated network. We explain the strategies
toward this concern as follows. Firstly, many scenarios can hold the non-colluding condition, such as the
cooperative model [40]. If the computing parties are in a competitive relationship, it is intuitive that
they will not collude with each other and thus suitable to adopt our framework. Secondly, another way
to address the collusion problem is to adapt the system roles. We let M and C become the roles of P0
and P1. Every time C launches a prediction request, M and C will exchange shares of model weights
and prediction data. This way, M gets shares of prediction data, while C gets shares of model weights.
Since M and C will definitely value their own privacy, they will not collude with each other.

7.4 Extended Future Works

In this research, we mainly focus on privacy-preserving GRU inference. A complete machine learn-
ing process includes the training phase and the inference phase. We design protocols to protect model

CHAPTER 7. DISCUSSIONS AND FUTURE WORKS 38

weights privacy, prediction data privacy, and output data privacy. However, training data privacy, an-
other important privacy target, is not discussed in this research. Broadly speaking, the current protocols
defined for inference are sufficient for privacy-preserving back-propagation, such as derivative of Sig-
moid, derivative of Tanh, and so on. In addition, due to the UC security proof, the privacy-preserving
training protocols can be easily designed with the support of basic protocols and gating protocols. A
future direction of this work can be to add training protocols for the protection of training data privacy.
On the other hand, our protocols are designed through three-party secure multi-party computation. An-
other future work can be to generalize our protocols to N-party computation, which is flexible for users
to decide the number of involved cloud parties. Finally, this research uses ASS to make privacy values
unknown to any single cloud party. However, it is difficult for these computing parties to confirm the
correctness of predictions. In the future, we can add some checking mechanisms for the robustness of
the results.

Chapter 8

Conclusion

This research presents a framework for privacy-preserving GRU inference that can be deployed in cloud.
Our framework includes basic protocols and gating protocols that define the basic and gating operations
of GRU inference respectively. We provide the security analysis of our protocols in the strict UC frame-
work. Each protocol has been proved secure and can be composed into any GRU model structure with
universal composition theorem. This flexibility makes our research useful for many practical scenarios
while nowadays people value their privacy increasingly. In addition, we implement our protocols and
experiment on a binary sentiment classification case. The results show that the accuracy of predictions
is only slightly reduced due to the precision issues while computing on secret shares. To conclude, our
framework can build a privacy-preserving GRU inference system that is feasible to implement in a
real-world scenario.

39

Bibliography

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep learn-
ing with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 308–318, 2016.

[2] A. F. Agarap and F. J. H. Pepito. Towards Building an Intelligent Anti-Malware System: A
Deep Learning Approach using Support Vector Machine (SVM) for Malware Classification. arXiv
preprint arXiv:1801.00318, 2017.

[3] G. Beigi, K. Shu, R. Guo, S. Wang, and H. Liu. Privacy Preserving Text Representation Learning.
Proceedings of the 30th on Hypertext and Social Media (HT’19). ACM, 2019.

[4] S. Biswas, E. Chadda, and F. Ahmad. Sentiment Analysis with Gated Recurrent Units. Department
of Computer Engineering. Annual Report Jamia Millia Islamia New Delhi, India, 2015.

[5] G. R. Blakley. Safeguarding cryptographic keys. In 1979 International Workshop on Managing
Requirements Knowledge (MARK), pages 313–318. IEEE, 1979.

[6] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of CRYP-
TOLOGY, 13(1):143–202, 2000.

[7] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages 136–145. IEEE,
2001.

[8] R. Canetti. Security and composition of cryptographic protocols: a tutorial (part i). ACM SIGACT
News, 37(3):67–92, 2006.

[9] R. Canetti, A. Cohen, and Y. Lindell. A Simpler Variant of Universally Composable Security for
Standard Multiparty Computation. In Annual Cryptology Conference, pages 3–22. Springer, 2015.

[10] T. Capes, P. Coles, A. Conkie, L. Golipour, A. Hadjitarkhani, Q. Hu, N. Huddleston, M. Hunt, J. Li,
M. Neeracher, et al. Siri On-Device Deep Learning-Guided Unit Selection Text-to-Speech System.
In INTERSPEECH, pages 4011–4015, 2017.

[11] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff. Privacy-preserving Classification
on Deep Neural Network. IACR Cryptology ePrint Archive, 2017:35, 2017.

[12] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen, Z. Chen, A. Kannan, R. J. Weiss,
K. Rao, E. Gonina, et al. State-of-the-art Speech Recognition with Sequence-to-sequence Models. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
4774–4778. IEEE, 2018.

[13] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning Phrase Representations using RNN Encoder-decoder for Statistical Machine Translation.
arXiv preprint arXiv:1406.1078, 2014.

[14] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. arXiv preprint arXiv:1412.3555, 2014.

40

BIBLIOGRAPHY 41

[15] M. De Cock, R. Dowsley, A. C. Nascimento, D. Reich, and A. Todoki. Privacy-Preserving Clas-
sification of Personal Text Messages with Secure Multi-Party Computation: An Application to
Hate-Speech Detection. arXiv preprint arXiv:1906.02325, 2019.

[16] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE transactions on Information
Theory, 22(6):644–654, 1976.

[17] W. Du and M. J. Atallah. Protocols for Secure Remote Database Access with Approximate Match-
ing. In E-Commerce Security and Privacy, pages 87–111. Springer, 2001.

[18] C. Dwork. Differential Privacy. Encyclopedia of Cryptography and Security, pages 338–340, 2011.

[19] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in pharmacogenetics:
An end-to-end case study of personalized warfarin dosing. In 23rd {USENIX} Security Symposium
({USENIX} Security 14), pages 17–32, 2014.

[20] R. Fu, Z. Zhang, and L. Li. Using LSTM and GRU Neural Network Methods for Traffic Flow
Prediction. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation
(YAC), pages 324–328. IEEE, 2016.

[21] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy. In International
Conference on Machine Learning, pages 201–210, 2016.

[22] O. Goldreich. Foundations of Cryptography: volume 1, basic tools. Cambridge university press,
2007.

[23] O. Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge university
press, 2009.

[24] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game, or A Completeness
Theorem for Protocols with Honest Majority. In Providing Sound Foundations for Cryptography:
On the Work of Shafi Goldwasser and Silvio Micali, pages 307–328. 2019.

[25] Q. Gu, N. Lu, and L. Liu. A Novel Recurrent Neural Network Algorithm with Long Short-term
Memory Model for Futures Trading. Journal of Intelligent & Fuzzy Systems, 37(4):1–8.

[26] S.-C. Hsiao, Z.-Y. Liu, R. Tso, D.-Y. Kao, and C.-M. Chen. PrivGRU: Privacy-preserving GRU
Inference using Additive Secret Sharing. Journal of Intelligent & Fuzzy Systems, (Preprint):1–12,
2020.

[27] X. Hu, L. Liang, L. Deng, S. Li, X. Xie, Y. Ji, Y. Ding, C. Liu, T. Sherwood, and Y. Xie. Neural
network model extraction attacks in edge devices by hearing architectural hints. arXiv preprint
arXiv:1903.03916, 2019.

[28] Y. Huang. Practical Secure Two-party Computation. PhD thesis, Citeseer, 2012.

[29] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel. Chiron: Privacy-preserving Machine
Learning as a Service. arXiv preprint arXiv:1803.05961, 2018.

[30] Z. Ji, Z. C. Lipton, and C. Elkan. Differential Privacy and Machine Learning: A Survey and Review.
arXiv preprint arXiv:1412.7584, 2014.

[31] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. GAZELLE: A Low Latency Framework for
Secure Neural Network Inference. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1651–1669, 2018.

[32] R. Küsters and D. Rausch. A framework for universally composable diffie-hellman key exchange.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 881–900. IEEE, 2017.

BIBLIOGRAPHY 42

[33] R. Küsters and M. Tuengerthal. Universally composable symmetric encryption. In 2009 22nd
IEEE Computer Security Foundations Symposium, pages 293–307. IEEE, 2009.

[34] Y. Li, T. Baldwin, and T. Cohn. Towards Robust and Privacy-preserving Text Representations.
arXiv preprint arXiv:1805.06093, 2018.

[35] Y. Lindell. How to Simulate It–A Tutorial on the Simulation Proof Technique. In Tutorials on the
Foundations of Cryptography, pages 277–346. Springer, 2017.

[36] J. Liu, M. Juuti, Y. Lu, and N. Asokan. Oblivious Neural Network Predictions via Minionn Trans-
formations. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 619–631. ACM, 2017.

[37] L. Ma, S. Liu, and Y. Wang. A DRM model based on Proactive Secret Sharing Scheme for P2P
Networks. In 9th IEEE International Conference on Cognitive Informatics (ICCI’10), pages 859–
862. IEEE, 2010.

[38] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors
for Sentiment Analysis. In Proceedings of the 49th annual meeting of the association for com-
putational linguistics: Human language technologies, volume 1, pages 142–150. Association for
Computational Linguistics, 2011.

[39] P. Mohassel and Y. Zhang. Secureml: A System for Scalable Privacy-preserving Machine Learning.
In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38. IEEE, 2017.

[40] T. B. Pedersen, Y. Saygın, and E. Savaş. Secret Sharing vs. Encryption-based Techniques for Pri-
vacy Preserving Data Mining. 2007.

[41] P. Poomka, W. Pongsena, N. Kerdprasop, and K. Kerdprasop. Sms spam detection based on long
short-term memory and gated recurrent unit. International Journal of Future Computer and Com-
munication, 8(1), 2019.

[42] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar.
Chameleon: A Hybrid Secure Computation Framework for Machine Learning Applications. In
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pages
707–721. ACM, 2018.

[43] M. Ribeiro, K. Grolinger, and M. A. Capretz. Mlaas: Machine learning as a service. In 2015 IEEE
14th International Conference on Machine Learning and Applications (ICMLA), pages 896–902.
IEEE, 2015.

[44] V. Rijmen and J. Daemen. Advanced encryption standard. Proceedings of Federal Information
Processing Standards Publications, National Institute of Standards and Technology, pages 19–22,
2001.

[45] R. L. Rivest, L. Adleman, M. L. Dertouzos, et al. On Data Banks and Privacy Homomorphisms.
Foundations of secure computation, 4(11):169–180, 1978.

[46] B. D. Rouhani, M. S. Riazi, and F. Koushanfar. Deepsecure: Scalable Provably-secure Deep Learn-
ing. In Proceedings of the 55th Annual Design Automation Conference, page 2. ACM, 2018.

[47] S. van der Walt, S.C. Colbert, and G. Varoquaux. The NumPy Array: A Structure for Efficient
Numerical Computation. Computing in Science Engineering, 13(2):22–30, March 2011.

[48] N. Saleem, M. Irfan Khattak, and A. B. Qazi. Supervised Speech Enhancement based on Deep
Neural Network. Journal of Intelligent & Fuzzy Systems, 37(4):5187–5201, 2019.

[49] A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613, 1979.

BIBLIOGRAPHY 43

[50] D. Takabi, R. Podschwadt, J. Druce, C. Wu, and K. Procopio. Privacy Preserving Neural Network
Inference on Encrypted Data with GPUs. arXiv preprint arXiv:1911.11377, 2019.

[51] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-Party Secure Computation for Neural Network
Training. Proceedings on Privacy Enhancing Technologies, 1:24, 2019.

[52] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang. Cryptographic Primitives in Blockchains. Journal of
Network and Computer Applications, 127:43–58, 2019.

[53] A. C.-C. Yao. How to Generate and Exchange Secrets. In 27th Annual Symposium on Foundations
of Computer Science (SFCS 1986), pages 162–167. IEEE, 1986.

[54] W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative Study of CNN and RNN for Natural Lan-
guage Processing. arXiv preprint arXiv:1702.01923, 2017.

[55] Z. Ying, S. Cao, P. Zhou, S. Zhang, and X. Liu. Lightweight outsourced privacy-preserving heart
failure prediction based on gru. In International Conference on Algorithms and Architectures for
Parallel Processing, pages 521–536. Springer, 2019.

[56] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into Deep Learning. 2020. https://d2l.ai.

https://d2l.ai

	Abstract
	Introduction
	Motivations and Purposes
	Contributions

	Definitions and Preliminaries
	Additive Secret Sharing (ASS)
	Gated Recurrent Unit (GRU) Model
	Universal Composability (UC) Framework

	Technical Literature
	Privacy-preserving Techniques
	Privacy-preserving Deep Neural Network

	Privacy-preserving GRU Inference Framework
	Architecture
	Security Model
	Non-colluding Cloud Servers
	Prediction Clients
	Outsiders
	Network Transmission

	Basic Protocols
	Hadamard Product
	Division
	Share Re-generation
	Sigmoid Activation Function
	Tanh Activation Function

	Gating Protocols
	Update Gate and Reset Gate
	Current Memory
	Activation of Current Cell

	Putting It All Together

	Security Analysis
	Security of Basic Protocols
	Security of Gating Protocols
	Security of GRU Inference

	Experiments and Results
	Dataset
	Implementation
	Results

	Discussions and Future Works
	Discussions on Accuracy
	Discussions on Time Consumption
	Potential Collusion Problems
	Extended Future Works

	Conclusion
	Bibliography

