
Profiled Deep Learning Side-Channel Attack on
a Protected Arbiter PUF Combined

with Bitstream Modification

Yang Yu, Michail Moraitis, and Elena Dubrova

KTH Royal Institute of Technology, Electrum 229, Kista, Sweden
{yang11, micmor, dubrova}@kth.se

Abstract. In this paper we show that deep learning can be used to
identify the shape of power traces corresponding to the responses of
a protected arbiter PUF implemented in FPGAs. To achieve that, we
combine power analysis with bitstream modification. We train a CNN
classifier on two 28nm XC7 FPGAs implementing 128-stage arbiter PUFs
and then classify the responses of PUFs from two other FPGAs. We
demonstrate that it is possible to reduce the number of traces required
for a successful attack to a single trace by modifying the bitstream to
replicate PUF responses.

Keywords: Profiled attack · deep learning · side-channel analysis · bit-
stream modification · arbiter PUF.

1 Introduction

Physical Unclonable Functions (PUFs) utilize variations in the characteristics of
transistors and interconnects which naturally occur when integrated circuits (ICs)
are fabricated to create responses that are unique to individual ICs [26,43]. Since
the process variation cannot be controlled during the IC fabrication, a hardware
clone of a PUF cannot be created. Due to these properties, PUFs are often used
as device ”fingerprints” [9, 59]. Furthermore, a PUF generates its responses only
upon request. Thus, the responses can only be captured by an attacker during
a short time interval when the PUF is challenged. It has also been shown that
physical attacks on powered-on devices are more difficult than the attacks on
power-off devices [52]. These features make PUFs an appealing tamper-resistant
cryptographic primitive.

Ideally, it should not be possible to predict the response of a PUF to a new
challenge with a probability higher than 50% regardless of how many Challenge-
Response Pairs (CRPs) have been observed. However, many PUFs, including the
ring oscillator PUFs and the Arbiter PUFs (APUFs), are vulnerable to machine
learning-based modelling attacks [2,49]. After observing a large number of CRPs,
it is possible to create a PUF model which simulates the PUF’s the response to
any challenge with high accuracy. To strengthen a PUF’s resistance to modelling
attacks, different modifications have been proposed, including XOR PUFs [25],



2 Y. Yu, et al.

lightweight PUFs [31], feed-forward PUFs [26], and interpose PUFs [42]. It has
also been proposed to encrypt/hash the challenges and/or the responses [12, 14].

Our Contribution. In this paper, we show that a deep-learning side-channel
attack can overcome cryptographic protection and “learn” the shape of power
traces corresponding to the “0” and “1” responses of an FPGA implementation
of an APUF if power analysis is complemented with bitstream modification. We
train a Convolutional Neural Network (CNN) classifier on one or two Xilinx
Artix-7 28nm Field Programmable Gate Arrays (FPGAs) implementing 128-
stage APUFs and then classify responses of APUFs from two other FPGAs. We
demonstrate that it is possible to reduce the number of traces required for a
successful attack to a single trace by modifying its bitstream to replicate the
synchronous flip-flop holding the PUF’s response. Those redundant flip-flops
change the signal-to-noise ratio in favour of the attacker.

One of our interesting findings is that, it is possible to attack APUF im-
plementations with a larger number of additional flip-flops using the classifier
trained on APUF implementations with a smaller number of additional flip-flops,
although more traces are required from the victim APUF in this case.

While the idea to combine side-channel attacks and fault injection attacks
is not new [24,44], we have not seen any work combining side-channel analysis
with bitstream modification.

Previous Work. The modelling attacks on strong PUFs can be classified into
two major groups: the machine learning-based and the side-channel-based [41].
In the former, the adversary uses CRPs from a victim PUF to learn a PUF’s soft-
ware model with some machine-learning algorithm, e.g. Support-Vector Machine
(SVM) [25], Logistic Regression (LR) [2, 49,58], or deep learning [20].

In the latter, information about some secret intermediate value, for example
k individual APUF responses of an k-XOR APUF, is first extracted by power [3,
10,29,50], EM [32] or timing analysis [10,50]. This information is then used to
construct a software model of the PUF using some machine-learning algorithm.

The attack presented in this paper belongs to the latter class. However,
unlike previous side-channel attacks on PUFs, it is done in a profiling setting:
we first train a deep-learning classifier on one set of PUF instances and then
attack another set of PUF instances. While profiled side-channel attacks are
known to work well on ASIC and FPGA implementations of cryptographic
algorithms [23,60], to the best of our knowledge, the only profiled attack on PUFs
is the template attack presented in [16]. In this attack, one 128-stage k-XOR
APUF instance is used to build k + 1 templates (one per each possible Hamming
weight of the k-bit vector of the individual APUFs) at the profiling stage, for
k = 8 and 16. At the attack stage, these templates are used to classify responses
of a different 128-stage k-XOR APUF instance with up to 80% accuracy. The
FPGAs used are Virtex 5 and Spartan 6 devices from Xilinx.

We believe that our work is the first profiled side-channel attack on strong
PUFs based on deep-learning. By combining side-channel analysis with bitstream



Profiled DLSCA on a Protected APUF Combined with BM 3

modification, we are capable to classify responses of a victim PUF instance based
on a single power trace with very high accuracy.

Note that, even if the victim PUF is reconfigured after each session and the
same PUF instance is never used for generating the response more than once (an
equivalent of never using the same session key more than once), the presented
attack can still recover the expected response with a high probability, even if
the challenges and responses are encrypted/hashed. Previously, only photonic
side-channel analysis [30,38] could achieve that. However, it requires expensive
equipment.

Obviously, if challenges are not encrypted and the PUF is not reconfigured
after each session, we can collect CRPs and construct a software model of the PUF
using some machine-learning algorithm, as in machine learning-based modelling
attacks. In this paper we focus on the side-channel analysis phase.

Paper Organization. The rest of the paper is organized as follows. Section 2
provides background information on PUFs. Section 3 presents deep-learning side-
channel attacks. Section 4 describes our experimental setup. Section 5 explains
how our classifiers were trained with a CNN model. Section 6 summarizes the
experimental results. Section 7 concludes this paper and discusses open problems.

2 Physical Unclonable Functions

This section provides background information on PUFs.

2.1 Classification of PUFs

PUFs are classified according to the number of challenges they accept into
weak and strong ones. A weak PUF can accept only one or a few challenges
per PUF instance. Examples of weak PUFs are coating PUFs [59] and Static
Random Access Memory (SRAM) based PUFs [9]. A strong PUF can accept
many challenges, in some cases up to 2n, where n is the challenge size. Ring
oscillator PUFs [53] and APUFs [26] are examples of strong PUFs.

2.2 Arbiter PUF

An APUF generates a response by measuring the propagation delay of a signal
across all switch blocks. The conventional n-stage APUF with 2×2 switch blocks,
shown in Figure 1, generates a 1-bit response to an n-bit challenge by letting two
symmetrically designed paths to compete. Each switch block i has two inputs,
two outputs, and one control input ci ∈ {0, 1}. If ci = 0, straight connections
are selected. Otherwise, crossed connections are selected. Each n-bit challenge
C = (c1, . . . , cn) thus makes a unique selection of two out of 2n possible paths. A
pulse is applied at the input and it propagates in parallel through n switch blocks
before arriving at the arbiter block. The arbiter outputs either 0 or 1 depending



4 Y. Yu, et al.

Trigger

0 1 01

Arbiter

n-bit challenge C=(c1,…,cn)

Switch 
Block

1-bit response

Arbiter

Arbiter

1

0

0

1

1

0

ci

Switch Block

Fig. 1. A block diagram of an n-stage APUF.

on which path, upper or lower, the pulse arrives first. In this way, a “random”
Boolean function of n arguments c1, . . . , cn is induced:

f(C) = sgn(∆(C)), (1)

where ∆(C) is the delay difference of the upper and lower paths for the challenge C
and sgn is defined as sgn(x) = 1 if x ≥ 0 otherwise sgn(x) = 0.

The function f is “random” in the sense that we do not know its output
values before the PUF is fabricated. Once the PUF is fabricated, the function
becomes deterministic (in the error-free case). Small differences in delays caused
by manufacturing process variation result in different functions in the individual
PUF instances. Extensions of APUF based on 4× 4 switch blocks has also been
proposed [11].

2.3 Model of Arbiter PUF

Apart from physical cloning, predicting a PUF’s responses should be infeasible
as well. However, for any n-input APUF, a linear additive delay model of size
n+ 1 exists with the form:

∆(C) =

n+1∑
i=1

wiΦi(C) = 〈w,Φ(C)〉 (2)



Profiled DLSCA on a Protected APUF Combined with BM 5

where w and Φ are the delay vector and the parity (or feature) vector, respectively,
defined by

w1 = δ0,1 − δ1,1,
wi = δ0,i−1 + δ1,i−1 + δ0,i − δ1,i, for 2 ≤ i ≤ n
wn+1 = δ0,n + δ1,n.

where δ0,i is the delay difference of straight connections of the switch block i, δ1,i
is the delay difference of crossed connections of switch block i, for i ∈ {1, . . . , n},
and

Φi(C) =

n∑
j=i

(1− 2cj), for 1 ≤ i ≤ n,

Φn+1 = 1,

(3)

where challenge bit cj ∈ {1,−1}.

3 Deep Learning Side-Channel Analysis

This section describes how deep learning is used in the context of side-channel
analysis.

3.1 Side-Channel Analysis

Usually the goal of side-channel analysis is to recover the key of some cryp-
tographic algorithm. To recover an n-bit k ∈ K key, where K is the set of all
possible keys, the attacker uses of a set of known input data X (e.g. the plaintext)
and a set of the physical measurements L (e.g. power consumption). Typically a
divide-and-conquer strategy is applied in which the key k is divided into m-bit
parts ki, called subkeys, and the subkeys ki are recovered independently, for
i ∈ {1, 2, . . . , n

m}.
After the attack, the attacker gets n

m vectors of probabilities pi = (pi,1, pi,2,
. . . , pi,2m), where pi,j is the probability that the subkey ki = j is the right subkey,
for j ∈ {1, 2, . . . , 2m}. The estimation metrics defined below are used to guide
the selection of the right candidate.

3.2 Deep Learning-Based Analysis

Deep learning can be used in side-channel analysis in two settings: profiled and
unprofiled. Profiled attacks [4,6,21,28,45–47,51] first learn a leakage profile of the
cryptographic algorithm under attack, and then attack. Unprofiled attacks [57]
attack directly, as the traditional Differential Power Analysis [22] or Correlation
Power Analysis (CPA) [5]. In this paper we focus on profiled attacks.

Profiled deep-learning side-channel attacks assume that:

1. The attacker has a device, called the profiling device, which is similar to the
device under attack.

2. The attacker has full control over the profiling device.



6 Y. Yu, et al.

FPGA3

FPGA4

FPGA1

FPGA2

CWPro

Fig. 2. Equipment for power analysis.

3. The attacker has physical access to the victim device for a limited time.

At the profiling stage, a deep-learning classifier is trained to learn a leakage
profile of the device for all possible values of the sensitive variable. The training
is typically done using a large number of traces captured from the profiling device
which are labelled according to the selected leakage model.

At the attack stage, the trained classifier is used to classify the traces captured
from the victim device.

4 Experimental Setup

The section describes our experimental setup.

4.1 Equipment for Power Analysis

The equipment we use for power analysis is shown in Figure 2. It consists of one
CW1200 ChipWhisperer-Pro and four CW305 Artix FPGA boards of two types:
XC7A100T-2FTG256 and XC7A35T-2FTG256.

The ChipWhisperer is a hardware security evaluation toolkit based on a combi-
nation of open-source hardware and supporting tools [39]. The ChipWhisperer-Pro
is a capture hardware with the maximum sampling rate of 10 Msamples/sec. It
is used to measure power consumption over the shunt resistor placed between
power supply and FPGA chip of the target device and communicate between
target device and computers.

Each of the CW305 Artix FPGA boards contains a Xilinx Artix-7 FPGA chip,
a custom USB interface for connecting to the FPGA, an external phase-locked



Profiled DLSCA on a Protected APUF Combined with BM 7

loop for synchronizing frequency with the ChipWhisperer-Pro, a 20-pin serial
communication port to the ChipWhisperer-Pro, and other features useful for
power analysis and fault injection attacks.

The FPGAs were running at 10MHz and sampled at 40MHz (i.e. 4 data points
per cycle). In the sequel, we refer to them as F1, F2 (XC7A100T-2FTG256) and
F3, F4 (XC7A35T-2FTG256).

4.2 Power Trace Acquisition

To collect training data, p power traces Ti are captured from each profiling device
during the execution of the APUF for randomly selected challenges Ci. The
corresponding single-bit responses of the APUF, ri = f(Ci), where f is APUF’s
function (1), are recorded as labels, for all i ∈ {1, 2, . . . , p}.

To collect testing data, power traces are captured from each victim device
during the execution of the APUF for n randomly selected challenges. Each
challenge Ci is repeated m times to collect traces T j

i , for j ∈ {1, 2, . . . ,m} and
i ∈ {1, 2, . . . , n}, So, in total n×m traces are collected from each victim device.

4.3 Locating a PUF’s Response in a Trace

Fig. 3(a) shows a power trace representing the computation of a single-bit response
by a 128-stage APUF (with 100 extra FFs, see Section 6.5) for the case when
challenges are encrypted by AES-128. One can clearly see the distinct shape of
the 10 rounds of AES-128 followed by the APUF evaluation. So, an attacker can
easily identify the segment of the trace corresponding to the PUF evaluation
(shown in Fig. 3(b)) and focus the deep-learning training on this segment.

For the case when responses are encrypted or hashed, the segment of the
trace corresponding to the PUF evaluation can be identified similarly.

5 Training of Classifiers

In this section we describe how classifiers are trained using a deep-learning model.

5.1 Choice of Neural Network Type

Previous work investigated which type of deep neural networks is suitable for
various side-channel analysis scenarios. For example, Convolutional Neural Net-
works (CNNs) can overcome trace misalignment and jitter-based countermea-
sure [7,15,45]. If traces are synchronized and there is no need to handle noise,
Multilayer Perceptron (MLP) networks are typically chosen.

In our case, traces are perfectly aligned because we use ChipWhisperer for
trace acquisition. However, noise is an issue. Artix-7 FPGAs which are used
in our experiments are fabricated with TSMC 28nm high-k metal gate, High
Performance, Low power (HPL) process technology [33]. Due to a number of
static and dynamic power saving features, the total power consumption of Artix-7



8 Y. Yu, et al.

(a) (b)

Fig. 3. A power trace from a 128-stage APUF FPGA implementation (with 100 ex-
tra FFs) in which challenges are encrypted with AES-128. (b) Zoomed-in segment
representing the APUF evaluation.

FPGAs is up to 50% lower compared to 45nm generation devices [18]. Typically
low-power circuits are highly sensitive to noise. For this reason, we opted for
CNNs.

5.2 Training Process

Given a set of power traces {T1, . . . , Tp} for challenges {C1, . . . , Cp} the objective
is to classify each trace Ti according to its response ri = f(Ci), where f is
APUF’s function (1), for i ∈ {1, . . . , p}.

A neural network can be viewed as a function M : Rd → I2 which maps a
trace Ti ∈ Rd into a score vector Si = M(Ti) ∈ I2 whose elements si,j represent
the probability of the response ri to have the value j ∈ {0, 1}, where d is the
number of data points in Ti and I := {x ∈ R | 0 ≤ x ≤ 1}.

We use categorical cross-entropy loss to quantify the classification error of
the network. To minimize the loss, the gradient of the loss with respect to the
score is computed and back-propagated through the network to tune its internal
parameters according to the RMSprop optimizer, which is one of the advanced
adaptations of the Stochastic Gradient Decent (SGD) algorithm [48]. This is
repeated for a chosen number of iterations called epochs.

Once the network is trained, to classify a trace Ti whose response ri is
unknown, we determine the most likely response r̃ among the two candidates as

r̃ = arg max
i∈{0,1}

Si. (4)

If r̃ = ri, the classification is successful.

5.3 Choice of Neural Network Architecture

The architecture of CNN used in our experiments is shown in Table 1. The
network contains an input layer, one convolution layer, one pooling layer, one



Profiled DLSCA on a Protected APUF Combined with BM 9

flatten layer, three dense layers and an output layer. The input size (150, 1)
corresponds to the total number of data samples in the trace, d = 150. The
output size 2 corresponds to the number of labels, i.e. possible different responses.

Table 1. CNN model architecture summary.

Layer Type Output Shape # Parameters

Input (None, 150, 1) 0
Conv1D (None, 150, 11) 55
AveragePooling (None, 75, 11) 0
Flatten (None, 825) 0
Dense 1 (None, 32) 26432
Dense 2 (None, 32) 1056
Dense 3 (None, 32) 1056
Output (Dense) (None, 2) 66

Total Parameters: 28,665

6 Experimental Results

This section presents experimental results. All experiments are performed on
128-stage APUFs implemented in several different ways.

For the training of CNN classifiers, for each implementation, p = 500K traces
in total were captured for randomly selected challenges from our profiling FPGAs.
Among them, 100K traces were randomly selected for validation during training.

For testing the CNN classifiers, for each implementation, n = 100 groups of
traces were captured for 100 randomly selected challenges from all of the FPGAs.
In each group, the same challenge was repeated m times to collect traces. The
number of repetitions m within each group varied from 500 to 10K based on our
expectations for the outcome, which is much more than needed so that the extra
randomness gives consistency to the results.

Given m test traces Ti, i ∈ {1, . . . ,m}, are captured for the same challenge
Ci, to determine the APUF response ri to Ci using the CNN classifier M , we
first combine the score vectors Si = M(Ti) by element-wise majority voting and
then apply arg max to the result as in equation (4).

6.1 Attacking a Conventional APUF

We trained CNN classifiers on 500K traces captured from our implementation
of a 128-stage APUF on FPGA F1 using the process described in Section 5.2.
We tried many different options for learning rate, learning rate decay, number
of epochs, and number of dense and convolutional layers. However, in all cases
the validation accuracy remained 0.58, which is the expected fraction of “1”s in
our slightly biased APUF implementation. We concluded that, for our APUF



10 Y. Yu, et al.

implementation, it is very difficult to classify “0” and “1” responses with a high
accuracy.

We would like to stress that this conclusion may not apply to other APUF
implementations. The complexity of power analysis varies a lot for different
implementation types. For example, implementations which route the output of
all APUF instances to the output pins, as the interpose PUF implementation
analyzed in [1], are typically easier to handle since output pins have high load
capacitance and thus contribute more to dynamic power consumption. As another
example, Becker and Kumar [3] have shown in that power analysis is easier for
the case when the single-bit APUF responses are accumulated in a shift register
(which is necessary if the response vector is encrypted by a block cipher).

In our APUF implementations, the output of APUF is not routed directly to
an output pin and APUF responses are not accumulated in a shift register.

6.2 Modifying the Bitstream to Replicate the APUF Response

The attacker may be able to strengthen the APUF response signal by modifying
the bitstream implementing the APUF. The bitstream can be extracted from
the victim FPGA, for example, by reading the bitstream with a probe when it is
transferred from the Flash memory to the FPGA during configuration. Several
successful bitstream modification attacks on FPGA implementations of encryp-
tion algorithms have been demonstrated recently, including AES [54], SNOW
3G [36], and Trivium [40]. Countermeasures currently available in commercial
FPGA devices against bitstream modification do not provide sufficient protection.
Bitstream encryption can be defeated by extracting the encryption key stored
on-chip by side-channel analysis [34, 35], optical probing [56], thermal laser stim-
ulation [27], or by exploiting the Starbleed vulnerability [13] which allows the
attacker to use the FPGA as a decryption oracle. Secret proprietary bitstream
obfuscation algorithms are typically broken a few years after the introduction
of each new FPGA family. For example the X-Ray project provides a bitstream
documentation database for Xilinx XC7 devices [55]. Recently proposed opaque
predicates obfuscation technique [17] is very promising, but not yet available in
commercial FPGAs.

In our experiments, we consider two different attack scenarios:

Scenario 1: The victim APUF has a constant placement and the attacker has
zero knowledge about the design.

Scenario 2: APUF is frequently reconfigured and the attacker has zero knowledge
about the design.

In both cases, the attack steps are:

1. Retrieve the bitstream from the victim FPGA.

2. Add the extra FFs through bitstream modification.

3. Load the modified bitstream on the the profiling FPGA and train the classifier.

4. Load the modified bitstream on the victim FPGA and perform the attack.



Profiled DLSCA on a Protected APUF Combined with BM 11

In both scenarios, the attacker does not need to take care of the pre- or post-
processing modules since they do not affect the attack. If far field electromagnetic
emissions [8] are used instead of the power consumption as a side channel, then
the attacker can potentially extract the key on a distance from the target device.
Note that it is also potentially possible to get a remote access to the FPGA’s
JTAG or SelectMAP configuration interface and the bitstream of the device
under attack. For example, if the FPGA is configured using a microcontroller
connected to the FPGA’s SelectMAP or JTAG interface and the microcontroller
is connected to a network, then the attacker can access to the microcontroller
via the remote channel by installing a rootkit, as in the Thrangrycat attack on
Cisco routers [19]. The bitstream of the device under attack can be extracted
from the firmware of the microcontroller [13].

6.3 Proof of concept

To prove that bitstream modification attacks are applicable to APUFs, we
manually routed in 50 redundant flip flops (FF’s) into a bitstream implementing
the 128-stage APUF on FPGA F4. The redundant FFs were added directly after
the FF implementing the arbiter. Each redundant FF takes the arbiter FF’s
output as its input. The outputs of redundant FFs are not connected to any
load. To add the FFs, we used the interconnect-oriented bitstream modification
approach presented in [37].

The bitstream modification process consists of two steps. The first is finding
the target in the bitstream. In our case, the target is the FF implementing the
arbiter which holds the response of the APUF. To find it, we start from the output
pin and backtrack by examining which Programmable Interconnects (PIPs) are
activated and which FPGA elements are enabled. Every time we find a FF in
the path, we check its clock input CLK. If it is a regular clock, we continue.
Otherwise, its the FF implementing the arbiter which is clocked with the signal
from one of the competing paths.

The second step is to create the redundant FFs and route them. The arbiter
FF’s output Q is directly fed to the D input of another FF with a synchronous
clock. This is the flip-flop that we want to replicate. To do this, we search for
unused FDRE1 elements and corresponding unused routing paths that lead from
the arbiter FF to their D input. Every time we find an unused FDRE-routing
pair, we route it by activating the necessary PIPs. It is important to do that
rather than first finding all the flip-flops and then routing because some of the
routing paths may be overlapping. Once the routing is placed, we enable the FFs
and route their clock CLK, clock enable CE and synchronous reset SR inputs to
the same sources as the flip-flop we are replicating by following the same process
(finding valid routing paths and enabling their corresponding PIPs one at a time).

Since the redundant FFs are added after the arbiter response, the propagation
delays of paths determining the APUF’s functionality are not affected. So, when

1 FDRE is the name of D flip-flops with clock enable CE and synchronous reset SR in
Xilinx XC7 FPGAs [61].



12 Y. Yu, et al.

Table 2. Average number of traces required to recover the APUF response from the
implementation with N = 50 manually added extra FFs (for 100 tests).

F4 is used for profiling

N
Victim FPGA
F3 F4

50 30.44 32.02

the modified bitstream is loaded back into the FPGA, it implements the same
APUF instance as the original bitstream. However, the APUF response signal is
considerably strengthened 50 times.

Table 2 shows the results from the attacks on the FPGAs F3 and F4 running
the modified bitstream with 50 manually added redundant FFs using the CNN
classifier trained on the FPGA F4 running the bitstream generated by Vivado
from the APUF HDL code with 50 redundant flip-flops. As we can see, the
redundant FFs enable the recovery of the APUF response from the FPGAs F3

and F4 using 30.44 and 32.02 traces on average, respectively.

To further investigate how the number of extra FFs affects the expected
number of traces, we carried additional experiments with different degrees of
redundancy. However, since manual addition of FFs to the bitstream is a tedious
process, in the rest of the experiments, the bitstreams are generated from Vivado
with the redundant FFs added on the design’s HDL description.

6.4 Adding Redundant Flip-Flops in Different Ways

We analyzed two cases of redundant FF addition.

In the first case, case 1, the redundant FFs take the arbiter FF’s output
as their input and do not connect their output to any load (as in the case of
manually routed bitstream discussed in the previous subsection).

In the second case, case 2, the redundant FFs’ outputs are (indirectly)
connected to an output pin by a path through a wrapper implementing Chip-
Whisperer’s communication protocol.

Tables 3 and 4 show the results for three different profiling settings: (a) F1

is used for profiling, (b) F4 is used for profiling, and (c) F1 and F4 are used for
profiling. Recall from Section 4.3 that the boards for F1 and F2 are mounted
with a XC7A100T-2FTG256 FPGA, while the boards for F3 and F4 are mounted
with a XC7A35T-2FTG256 FPGA.

We can see that in case 2 the number of traces required for a successful attack
is considerably lower compared to the one in Table 3. This is because, in case 2,
there is a path connecting each redundant FF to the output pin. As we discussed
in Section 6.1, power analysis of such an APUF implementation is easier.



Profiled DLSCA on a Protected APUF Combined with BM 13

Table 3. Average number of traces required to recover the APUF response from the
implementation with N extra FFs for the case 1 (for 100 tests).

(a) F1 is used for profiling

N
Victim FPGA
F1 F2

350 1.64 2.15

200 3.62 6.27

150 7.2 15.06

100 11.99 26.58

50 -* 1422.77

(b) F4 is used for profiling

N
Victim FPGA
F3 F4

350 1.06 1.09

200 2.2 1.88

150 3.94 3.59

100 10.67 10.18

50 38.67 61.73

(c) F1 and F4 are used for profiling

N
Victim FPGA

F1 F2 F3 F4

350 1.67 2.2 1.2 1.32

200 4.06 4.67 2.64 2.38

150 6.99 9.26 4.64 4.47

100 12.04 22.58 11.2 10.97

50 -* -* 68.87 241.31

* The accuracy of recovering correct response within 1000
traces is below 60%

6.5 Attacking a Protected APUF

To justify the claim we made in Section 4.3, we also attacked an APUF imple-
mentation in which challenges are encrypted using AES-128. The redundant FFs
were added as in case 1.

Tables 5 shows the results from the case of 100 extra FFs with F4 used for
profiling. We can see that there is no significant difference between the average
numbers of traces required to recover the APUF response from F3 and F4 (17.57
and 8.39) and the corresponding numbers in Table 3(b)(10.67 and 10.18).

6.6 Profiling and Attacking APUFs with Different Number of
Redundant Flip-Flops

We also investigated if it is possible to use implementations with a different number
of redundant FFs for the profiling and the attack stages. Table 6 shows the results
of attacks on an APUF implementation with N extra FFs using classifiers trained
on APUF implementations with 50 extra FFs, for N = 100, 150, 200, 350. The
redundant FFs were added as in case 1.

We can see that it is indeed possible to attack APUF implementations with a
larger number of extra flip-flops even if the profiling was done on implementations
with a smaller number of extra flip-flops. However, more traces are required from
the victim APUF in this case.



14 Y. Yu, et al.

Table 4. Average number of traces required to recover the APUF response from the
implementation with N extra FFs for the case 2 (for 100 tests).

(a) F1 is used for profiling

N
Victim FPGA
F1 F2

100 1.18 1.17

50 2.52 2.84

25 17.38 16.54

12 -* 122.35

(b) F4 is used for profiling

N
Victim FPGA
F3 F4

100 1.0 1.0

50 1.39 1.55

25 6.15 5.8

12 122.24 111.44

(c) F1 and F4 are used for profiling

N
Victim FPGA

F1 F2 F3 F4

100 1.4 1.34 1.0 1.01

50 2.12 2.81 1.38 1.53

25 14.41 13.86 6.57 5.53

12 78.06 59.09 33.28 32.66

* The accuracy of recovering correct response within 1000
traces is below 60%

Table 5. Average number of traces required to recover the APUF response from the
implementation with 100 extra FFs for the case when challenges are encrypted with
AES (for 100 tests).

F4 is used for profiling

N
Victim FPGA
F3 F4

100 17.57 8.39

Table 6. Average number of traces required to recover the response from the APUF im-
plementation with N extra FFs for the case when profiling is done on the implementation
with 50 extra FFs (for 100 tests).

F4 is used for profiling

N
Victim FPGA
F3 F4

350 18.65 35.65

200 15.35 16.06

150 16.95 23.41

100 10.83 10.55

6.7 Profiling and Attacking APUFs with Different Placement

We created two APUF instances with different manual placements to investigate if
we can recover the response from one APUF using the classifier trained on another
APUF. We refer to the two APUF instances as APUF1 and APUF2. Table 7 shows



Profiled DLSCA on a Protected APUF Combined with BM 15

the results of attacks on APUF1 and APUF2 with N extra FFs using classifiers
trained on APUF1 implementations with N extra FFs, for N = 200, 300, 350.
The redundant FFs were added as in case 1.

We can see that it is indeed possible to use APUFs with different placements
for profiling and attack stages. With enough extra FFs added, the average number
of trace required for a successful attack is similar to one in case 1. However, a
large number of extra FFs are required to recover the response.

Table 7. Average number of traces required to recover the response from APUF1

and APUF2 implementations with N extra FFs for the case when profiling is done on
APUF1 implementation with N extra FFs on F4 (for 100 tests).

(a) APUF1 response recovery

N
Victim FPGA
F3 F4

350 1.06 1.09

300 1.3 1.17

200 2.2 1.88

(b) APUF2 response recovery

N
Victim FPGA
F3 F4

350 1.8 1.84

300 3.97 4.48

200 8.81 8.95

7 Conclusion

We demonstrated that profiled deep-learning side-channel attacks combined with
bitstream modification can successfully classify “0” and “1” responses of an
arbiter PUF implemented in 28nm FPGAs. By adding redundant flip-flops to
the bitstream implementing an APUF, it is possible to reduce the number of
traces required for a successful attack to a single one. Implementations with a
different number of redundant FFs can be used for profiling and attack stages,
although more traces are required from the victim APUF in this case.

Our results suggest that it might be possible to attack true random number
generators in a similar way, which is very alarming. Furthermore, they indicate
that the number of traces from a victim device required in profiled side-channel
attacks on FPGA implementations of cryptographic algorithms, e.g. AES [60],
can be potentially reduced by combining them with bitstream modification. This
paper is hoped to attract more attention to this problem in order to intensify
research efforts on designing suitable countermeasures.

References

1. Aghaie, A., Moradi, A.: TI-PUF: Toward side-channel resistant physical unclonable
functions. IEEE Transactions on Information Forensics and Security 15, 3470–3481
(2020). https://doi.org/10.1109/TIFS.2020.2986887



16 Y. Yu, et al.

2. Becker, G.T.: The gap between promise and reality: On the insecurity of XOR
arbiter PUFs. In: Güneysu, T., Handschuh, H. (eds.) Cryptographic Hardware and
Embedded Systems – CHES 2015. pp. 535–555. Springer Berlin Heidelberg, Berlin,
Heidelberg (2015)

3. Becker, G.T., Kumar, R.: Active and passive side-channel attacks on delay based
PUF designs. IACR Cryptology ePrint Archive 2014, 287 (2014)

4. Bhasin, S., Chattopadhyay, A., Heuser, A., Jap, D., Picek, S., Shrivastwa, R.R.:
Mind the portability: A warriors guide through realistic profiled side-channel
analysis. In: Network and Distributed System Security Symposium (01 2020)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2004. pp. 16–29. Springer Berlin Heidelberg, Berlin, Heidelberg
(2004)

6. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2017. pp. 45–68. Springer
International Publishing, Cham (2017)

7. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
Cryptographic Hardware and Embedded Systems – CHES 2017. pp. 45–68. Springer
International Publishing, Cham (2017)

8. Camurati, G., Francillon, A., Standaert, F.X.: Understanding screaming channels:
From a detailed analysis to improved attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2020(3), 358–401 (Jun 2020)

9. Chellappa, S., Clark, L.T.: SRAM-based unique chip identifier techniques. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 24(4), 1213–1222
(April 2016). https://doi.org/10.1109/TVLSI.2015.2445751

10. Delvaux, J., Verbauwhede, I.: Side channel modeling attacks on 65nm arbiter
PUFs exploiting CMOS device noise. In: 2013 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST). pp. 137–142 (June 2013).
https://doi.org/10.1109/HST.2013.6581579

11. Dubrova, E.: A reconfigurable arbiter PUF with 4 x 4 switch blocks. In: 2018 IEEE
48th International Symposium on Multiple-Valued Logic (ISMVL’2018). pp. 31–37
(May 2018). https://doi.org/10.1109/ISMVL.2018.00014

12. Dubrova, E., Näslund, O., Degen, B., Gawell, A., Yu, Y.: CRC-PUF: A machine
learning attack resistant lightweight PUF construction. In: 2019 IEEE European
Symposium on Security and Privacy Workshops (EuroS PW). pp. 264–271 (June
2019). https://doi.org/10.1109/EuroSPW.2019.00036

13. Ender, M., Moradi, A., Paar, C.: The unpatchable silicon: A full break of the bit-
stream encryption of Xilinx 7-series FPGAs. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association (Aug 2020)

14. Gassend, B., Dijk, M.V., Clarke, D., Torlak, E., Devadas, S., Tuyls, P.: Controlled
physical random functions and applications. ACM Trans. Inf. Syst. Secur. 10(4),
3:1–3:22 (Jan 2008). https://doi.org/10.1145/1284680.1284683

15. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). pp. 106–111 (May 2015)

16. Hoffman, C., Gebotys, C., Aranha, D.F., Cortes, M., Araújo, G.: Circumventing
uniqueness of XOR arbiter PUFs. In: 2019 22nd Euromicro Conference on Digital
System Design (DSD). pp. 222–229 (Aug 2019)



Profiled DLSCA on a Protected APUF Combined with BM 17

17. Hoffmann, M., Paar, C.: Stealthy opaque predicates in hardware - Obfuscating
constant expressions at negligible overhead. IACR Transactions on Cryptographic
Hardware and Embedded Systems 2018(2), 277–297 (May 2018)

18. Hussein, J., Klein, M., Hart, M.: Lowering power at 28 nm with Xilinx 7 series
devices (v1.3) (2015), white Paper: 7 Series FPGAs

19. Kataria, J., Housley, R., Pantoga, J., Cui, A.: Defeating Cisco trust anchor: A
case-study of recent advancements in direct FPGA bitstream manipulation. In: 13th
USENIX Workshop on Offensive Technologies (WOOT 19). USENIX Association,
Santa Clara, CA (Aug 2019)

20. Khalafalla, M., Gebotys, C.: PUFs deep attacks: Enhanced modeling attacks using
deep learning techniques to break the security of double arbiter PUFs. In: 2019
Design, Automation Test in Europe Conference Exhibition (DATE). pp. 204–209
(2019)

21. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. Unleashing
the power of convolutional neural networks for profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2019(3), 148–179
(May 2019)

22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
Advances in Cryptology — CRYPTO’ 99. pp. 388–397. Springer Berlin Heidelberg,
Berlin, Heidelberg (1999)

23. Kubota, T., Yoshida, K., Shiozaki, M., Fujino, T.: Deep learning side-channel attack
against hardware implementations of AES. In: 2019 22nd Euromicro Conference on
Digital System Design (DSD). pp. 261–268 (Aug 2019)

24. Kumar, R., Burleson, W.: Side-channel assisted modeling attacks on feed-forward
arbiter PUFs using silicon data. In: Mangard, S., Schaumont, P. (eds.) Radio
Frequency Identification. pp. 53–67. Springer International Publishing, Cham (2015)

25. Lim, D.: Extracting secret keys from integrated circuits. Master’s thesis, Mas-
sachusetts Institute of Technology (2004)

26. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. on VLSI Systems 13(10), 1200–
1205 (Oct 2005). https://doi.org/10.1109/TVLSI.2005.859470

27. Lohrke, H., Tajik, S., Krachenfels, T., Boit, C., Seifert, J.P.: Key extraction using
thermal laser stimulation. IACR Transactions on Cryptographic Hardware and
Embedded Systems pp. 573–595 (2018)

28. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
Security, Privacy, and Applied Cryptography Engineering. pp. 3–26. Springer
International Publishing, Cham (2016)

29. Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Combined modeling
and side channel attacks on strong PUFs. IACR Cryptol. ePrint Arch. 2013, 632
(2013)

30. Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF using programmable delay
lines. In: 2010 IEEE International Workshop on Information Forensics and Security.
pp. 1–6 (2010)

31. Majzoobi, M., Koushanfar, F., Potkonjak, M.: Testing techniques for hardware
security. In: 2008 IEEE International Test Conference(ITC). pp. 1–10 (Oct 2008)

32. Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., Sigl, G.: Localized
electromagnetic analysis of RO PUFs. In: 2013 IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST). pp. 19–24 (June 2013).
https://doi.org/10.1109/HST.2013.6581559



18 Y. Yu, et al.

33. Mohsen, E.: Artix-7 FPGAs: Performance and bandwidth in a cost-optimized device
(v2.5.1) (2018), white Paper: Artix-7 FPGAs

34. Moradi, A., Oswald, D., Paar, C., Swierczynski, P.: Side-channel attacks on the
bitstream encryption mechanism of Altera Stratix II: Facilitating black-box analysis
using software reverse-engineering. In: Proceedings of the ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays. p. 91–100. FPGA ’13,
Association for Computing Machinery, New York, NY, USA (2013)

35. Moradi, A., Schneider, T.: Improved side-channel analysis attacks on Xilinx bit-
stream encryption of 5, 6, and 7 series. In: Int. Workshop on Constructive Side-
Channel Analysis and Secure Design. pp. 71–87. Springer (2016)

36. Moraitis, M., Dubrova, E.: Bitstream modification attack on SNOW 3G. In: Pro-
ceedings of the 2020 Design, Automation & Test in Europe Conf. & Exhibition
(DATE’20) (2020)

37. Moraitis, M., Dubrova, E.: Interconnect-aware bitstream modification. Cryptology
ePrint Archive, Report 2020/821 (2020), https://eprint.iacr.org/2020/821

38. Morozov, S., Maiti, A., Schaumont, P.: An analysis of delay based PUF implemen-
tations on FPGA. In: Sirisuk, P., Morgan, F., El-Ghazawi, T., Amano, H. (eds.)
Reconfigurable Computing: Architectures, Tools and Applications. pp. 382–387.
Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

39. NewAE Technology Inc.: Chipwhisperer, https://newae.com/tools/

chipwhisperer

40. Ngo, K., Dubrova, E., Moraitis, M.: Bitstream modification of Trivium. Cryptology
ePrint Archive, Report 2020/597 (2020), https://eprint.iacr.org/2020/597

41. Nguyen, P.H., Sahoo, D.P.: Lightweight and secure PUFs: A survey (invited paper).
In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) Security, Privacy, and
Applied Cryptography Engineering. pp. 1–13. Springer International Publishing,
Cham (2014)

42. Nguyen, P.H., Sahoo, D.P., Jin, C., Mahmood, K., Rührmair, U., van Dijk, M.:
The interpose PUF: Secure PUF design against state-of-the-art machine learning
attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems
2019(4), 243–290 (Aug 2019)

43. Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589), 2026–2030 (2002). https://doi.org/10.1126/science.1074376

44. Patranabis, S., Breier, J., Mukhopadhyay, D., Bhasin, S.: One plus one is more than
two: A practical combination of power and fault analysis attacks on PRESENT and
PRESENT-like block ciphers. In: 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC). pp. 25–32 (Sep 2017)

45. Perin, G., Ege, B., van Woudenberg, J.: Lowering the bar: Deep learning for
side-channel analysis (white paper) (August 2018), BlackHat’2018

46. Pfeifer, C., Haddad, P.: Spread: a new layer for profiled deep-learning side-channel
attacks. Cryptology ePrint Archive, Report 2018/880 (2018)

47. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Canovas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive, 2018:053 (2018)

48. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statist.
22(3), 400–407 (09 1951)

49. Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., Schmidhuber, J.:
Modeling attacks on physical unclonable functions. In: Proc. of the 17th ACM
Conference on Computer and Communications Security. pp. 237–249. CCS’10,
ACM, New York, NY, USA (2010)



Profiled DLSCA on a Protected APUF Combined with BM 19

50. Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Majzoobi, M., Koushanfar, F.,
Burleson, W.: Efficient power and timing side channels for physical unclonable func-
tions. In: Batina, L., Robshaw, M. (eds.) Cryptographic Hardware and Embedded
Systems – CHES 2014. pp. 476–492. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014)

51. Samiotis, I.P.: Side-channel attacks using convolutional neural networks. Master’s
thesis, TU Delft (2018)

52. Skorobogatov, S.: Physical Attacks and Tamper Resistance, pp. 143–173. Springer
New York, New York, NY (2012)

53. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and
secret key generation. In: Proc. of the 44th Annual Design Automation Conference.
pp. 9–14. New York, NY, USA (2007). https://doi.org/10.1145/1278480.1278484

54. Swierczynski, P., Fyrbiak, M., Koppe, P., Paar, C.: FPGA trojans through detecting
and weakening of cryptographic primitives. IEEE Trans. on Computer-Aided Design
of Integrated Circuits and Systems 34(8), 1236–1249 (Aug 2015)

55. SymbiFlow Team: Project X-Ray. https://prjxray.readthedocs.io/en/latest/
56. Tajik, S., Lohrke, H., Seifert, J.P., Boit, C.: On the power of optical contactless

probing: Attacking bitstream encryption of FPGAs. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. p. 1661–1674.
CCS ’17, Association for Computing Machinery, New York, NY, USA (2017)

57. Timon, B.: Non-profiled deep learning-based side-channel attacks. Cryptology ePrint
Archive, Report 2018/196 (2018)

58. Tobisch, J., Becker, G.T.: On the Scaling of Machine Learning Attacks on PUFs
with Application to Noise Bifurcation, pp. 17–31. Springer International Publishing,
Cham (2015)

59. Tuyls, P., Schrijen, G.J., Škorić, B., van Geloven, J., Verhaegh, N., Wolters, R.:
Read-Proof Hardware from Protective Coatings, pp. 369–383. Springer Berlin
Heidelberg, Berlin, Heidelberg (2006)

60. Wang, H., Dubrova, E.: Tandem deep learning side-channel attack against FPGA
implementation of AES. Cryptology ePrint Archive, Report 2020/373 (2020), https:
//eprint.iacr.org/2020/373

61. Xilinx: 7 series FPGAs Configurable Logic Block User Guide (v1.8) (2016)


