
Moderated Redactable Blockchains: A Definitional
Framework with an Efficient Construct

Mohammad Sadeq Dousti1 and Alptekin Küpçü2

1 Johannes Gutenberg University of Mainz, Mainz, Germany
modousti@uni-mainz.de

2 Koç University, İstanbul, Turkey
akupcu@ku.edu.tr

Abstract. Blockchain is a multiparty protocol to reach agreement on the order of events, and to record
them consistently and immutably without centralized trust. In some cases, however, the blockchain can
benefit from some controlled mutability. Examples include removing private information or unlawful con-
tent, and correcting protocol vulnerabilities which would otherwise require a hard fork. Two approaches to
control the mutability are: moderation, where one or more designated administrators can use their private
keys to approve a redaction, and voting, where miners can vote to endorse a suggested redaction. In this
paper, we first present several attacks against existing redactable blockchain solutions. Next, we provide a
definitional framework for moderated redactable blockchains. Finally, we propose a provable and efficient
construct, which applies a single digital signature per redaction, achieving a much simpler and secure result
compared to the prior art in the moderated setting.

Keywords: Blockchain · Bitcoin · Moderated Redactable Blockchain ·
Formal Threat Model · Signature Scheme

1 Introduction

The concept of blockchain was pioneered by Bitcoin [16]. It is a distributed protocol that
allows all honest parties to keep a ledger of event logs in a consistent manner and without
any trust assumption. There are various incarnations of blockchains, which may relax or
strengthen some of the conditions. The original blockchain is permissionless, meaning any
party can participate in the protocol. Permissioned blockchains operate in an authenticated
environment, where joining the network is subject to an administrative decision. A private
blockchain is a specific type of permissioned blockchain, where every participant can view
the ledger, but only an authorized set of entities can append. For further discussion, see [13].

In DPM 2020, CBT 2020: Data Privacy Management, Cryptocurrencies and Blockchain Technology, pp 355-373.
https://doi.org/10.1007/978-3-030-66172-4_23

https://doi.org/10.1007/978-3-030-66172-4_23

One of the most important properties of blockchain is the immutability of the ledger.
After all, cryptocurrencies require that once a transaction is recorded, it cannot be undone.
However, this desirable property has its downsides. Criminals have occasionally appended
arbitrary contents to the ledger that is forbidden by national or international laws—such as
child abuse [11,12] and malware [18]. Another use case is where some information about a
user is stored in the ledger, and later the user requests them to be removed [15], exercising
the “right to be forgotten” under privacy laws such as the General Data Protection Regu-
lation (GDPR) [4]. A third case is when a massive fraud has been made possible due to a
flaw in the blockchain protocol. In immutable blockchains, the only way to invalidate such
fraudulent transactions is by updating the protocol and the software—a process known as
a hard fork. The DAO Attack [3] is an example, which resulted in a hard fork in Ethereum
[20] back in 2016. For further discussion, see [1].

To overcome the limitations associated with immutability, several researchers proposed
solutions for controlled mutability. The literature has two approaches for controlling the
mutability: Moderated [1,5,10], where redactions can only be applied by a designated set
of users (known as the administrators), and unmoderated (or voting-based) [19,7] where
suggested redactions are voted on, and applied only if they receive a quorum of votes within
a specific period. Notice that the terms permissioned and moderated are orthogonal: In
permissioned blockchains, users need administrative permission to join the network. In
moderated blockchains, administrators must approve redactions (changes to the blocks in
the ledger). Even in a blockchain that is both moderated and permissioned, the adminis-
trators in charge of admitting users can be different from the administrators in charge of
approving redactions.

In this paper, four novel attacks are presented against existing redactable blockchains:
Two attacks against moderated constructs, and two against the unmoderated ones. Learning
from the attacks, we suggest the goals for a definitional framework for redactable block-
chains, and put forward an adversarial model and a security definition satisfying those
goals. Finally, two constructs of redactable blockchains are presented: The former serves
as an instrumental example, and is proven incorrect and insecure. The latter resolves the
issues, and we prove it both correct and secure in our definitional framework.

2

2 Previous Work

Moderated Redactable Blockchains. In their seminal work, Ateniese et al. [1] con-
structed the first redactable blockchain. They proposed a special primitive called an en-
hanced chameleon hash function. A chameleon hash function is a collision-resistant hash
function, such that finding collisions is easy given a private (trapdoor) key. The enhanced
version satisfies the additional property that finding collisions (without the private key)
is hard, even if the adversary can get collisions for inputs of her choice from an oracle.
The primitive is rather complex and involved: In the standard model, it requires a witness
whose size is 18 group elements under the SXDH assumption, or 39 group elements under
the DLIN assumption [1]. Derler et al. [6] extended the above idea above to attribute-
based chameleon hashes. Instead of applying redactions freely at the block level, the ad-
ministrators are bound by a fine-grained policy on what attributes they can change. They
employ ciphertext-policy attribute-based encryptions and chameleon hashes with ephemeral
trapdoors. Recently, Grigoriev and Shpilrain [10] proposed a simple construct based on
textbook RSA. However, Section 4 shows that it is insecure.

Interestingly, none of the work listed above provides a security model/definition tai-
lored specifically for redactable blockchains, and therefore their constructs have no security
proofs: While [1,6] focus on proving the security of the underlying cryptographic primitives
(e.g., the enhanced chameleon hash function), [10] has no rigorous proof of security. We also
show that all constructs succumb to reversion attacks.

Unmoderated (Voting-based) Redactable Blockchains. Puddu et al. [19] defined an
idea called µchain for enabling mutability for proof-of-work blockchains. The mutability
is controlled by fiat, imposed by consensus, and is publicly verifiable. It can be used in
both moderated and unmoderated settings: In the moderated setting, the sender can create
multiple mutations of a transaction, and encrypt all but one (the active transaction). The
decryption key is distributed between miners using a secret-sharing scheme. The sender also
proposes a policy as to how other mutations can be activated, and by whom. If a mutation
request is approved by this policy, miners decrypt the intended mutation by a multi-party
decryption protocol. In the unmoderated setting, the mutation to be activated is voted on.
Deuber et al. [7] discuss various issues with µchain. They also propose a distributed consen-
sus protocol for redaction. Their protocol does not require heavy cryptographic operations
or trusting a set of administrators. It starts when a participant proposes a redaction. If the

3

proposed block satisfies the verification algorithm, it enters a voting phase. If enough miners
vote for it within a certain period of time, the change is applied to the ledger.

In Section 4, we show that care must be taken when dealing with votes. In particular, if
not properly designed and implemented, it is possible to redact a block containing a vote for
some previous block, which may render the corresponding redactions invalid. Furthermore,
we explore possible ways where a minority group can prevent a policy to be applied, or even
go against the policy.

3 Preliminaries

Assignment Notation. Assignments are denoted as x ← 2. To say something holds by
definition, we use x def= y. The symbol x = y is used for checking or asserting equality.

List Manipulation. Let L def= [B0, . . . ,B`] be a list. The elements of the list can be addressed
by their index: Bi

def= L[i] for 0 ≤ i ≤ `. We use the following notation to address sublists: For
integers i, j with 0 ≤ i ≤ j ≤ len(L), define L[i : j] def= [Bi, . . . ,B j]. If j < i, the sublist is empty.
If L1 and L2 are two list, their concatenation is denoted by L1 +L2.

Blocks. A block B is denoted by a tuple, such as (P,C,V ,W), containing various components.
Each component can be set to a default value, such as the empty string ε. Blockchains may
add other or remove components of their choice to the block structure. Here is the description
of the most common components: P is the prefix of the block. It is often a function of previous
blocks in the ledger. C is the content of the block (in cryptocurrency nomenclature, it is the
set of transactions). V is the version of the block. W is the witness of the block. It is used in
redactions. We assume the existence of efficient algorithms Prefix(B), Content(B), Version(B),
and Witness(W), which efficiently extract the relevant component from block B. If we are
interested in a block except one of its components, we denote it by striking through that
component: BW is block B except its W component.

sUF-CMA Secure Signatures. The main primitive used in our construct is a signature
schemes strongly unforgeable under adaptive chosen-message attack (sUF-CMA). Let us
define the syntax and security for this primitive.

4

1. GenSig(1λ) is run to obtain pk and sk.
2. The adversary A is given pk and access to the signing oracle Signsk(·), and she returns

a pair (m,σ). Let t be the number of queries A asks its oracle, and Q def= {(mi,σi)}t
i=1 be

the set of query-response pairs. That is, mi is the ith query, and σi is the corresponding
response from the oracle.

3. The adversary is said to win if VerifySig(pk,m,σ) = 1 and (m,σ) 6= Q. In this case, the
experiment outputs 1. Otherwise, it outputs 0.

Experiment 1. The strong signature forgery experiment SSig-forgecma
A,Π(λ), where the adversary can mount a chosen-

message attack.

Definition 1 (Syntax of Signature Schemes). A signature scheme consists of three effi-
cient algorithms Π def= (GenSig,Sign,VerifySig), satisfying the following:

– On input the security parameter 1λ, the key generation algorithm GenSig creates a pair of
keys (pk, sk). We assume that |pk|, |sk| ≥λ, and λ can be inferred from each key.

– On input any message m in the message space, the signing algorithm generates a signa-
ture: σ← Sign(sk,m).

– On input any message m in the message space, and any signature σ created on m by the
signing algorithm, the (deterministic) verification algorithm must return 1: VerifySig(pk,
m,Sign(sk,m))= 1.

The strong security of signature schemes is defined as follows:

Definition 2 (Strong Unforgeability of Signature Schemes). A signature scheme Π def=
(GenSig,Sign,VerifySig) is strongly unforgeable under adaptive chosen-message attack (sUF-
CMA) if for every efficient adversary A taking part in Experiment 1, there exists a negligible
function negl, such that

Pr[SSig-forgecma
A,Π(λ)= 1]≤ negl(λ) .

The main assumption of this section is the existence of sUF-CMA secure signature
schemes. There are efficient transformations that convert any UF-CMA secure signature to
an sUF-CMA secure one [14]. Boneh et al. [2, p. 230] provide a list of many constructions of
efficient sUF-CMA signatures in the literature, both in the standard and the random oracle
models.

5

Wi

Ci

Pi

Wi+1

Ci+1

Pi+1
ei ← f(Pi, Ci)

Pi+1 ←Wi
ei (mod n)

Fig. 1. The relationship between two consecutive blocks in the GS Construct. Ci is the content. Wi is the witness, which
is picked uniformly from Zn such that it does not to have order 2. The prefix Pi+1 depends on all parts of block Bi via the
relation Pi+1 ←W f (Pi ,Ci)

i (mod n), where n is an RSA modulus and f is an efficient integer-valued function.

4 Novel Attacks on Previous Constructs

In this section, we explain several attacks against certain previous constructs, which carry
over their desired security properties from immutable blockchain models [9,17], to the re-
dactable setting. We stress that most attacks can be easily prevented by small modifications
in the corresponding construct. However, the mere existence of the attacks in the face
of security proofs shows that one should consider an adversarial model tailored for the
redactable blockchains. Due to a lack of space, we only provide an overview of the attacks.
The interested reader may refer to the full version of this paper [8] for further details.

Moderator Circumvention Attack: The attack is specific to the GS Construct [10], whose
block relationship is depicted in Fig. 1. The attacker can craft two blocks B and B′, append
B to the ledger, and at any point in time replace it with B′. It works without administrator
involvement, since the witness verification simply holds for both blocks. It works as follows:

1. Pick Z from Zn uniformly at random. Retry this step if Z has order 2.
2. Let e ← f (P,C) and e′ ← f (P,C′).
3. Let W ← Ze′ (mod n) and W ′ ← Ze (mod n).
4. Output B ← (P,C,W) and B′ ← (P,C′,W ′).

It can be verified that Pnext = W e = W ′e′ = Ze·e′ (mod n). Thus, replacing B with B′ does not
affect the prefix of the next block.

Reversion Attack: The attack can be applied to both the GS [10] and the AMVA [1]
constructs, both of which are in the moderated settings. Consider a block B, which was
later redacted to B′ with the help of the administrators. An adversary can simply revert a

6

redacted block B′ to its previous state B: Since no versioning scheme is in place, all versions
of a block are valid.

Vote Erasure Attack: The vote erasure is a special kind of attack where a series of valid
actions on the ledger puts it in an inconsistent state, meaning that at least one block is no
longer valid. Erasing votes already collected for a redaction is only applicable to the voting
(unmoderated) settings, like the DMTS Construct [7]. In this construct, a redaction B∗

i is
suggested by a participant. After validating this block, a voting period starts. It comprises
the next t blocks appended to the ledger. If at least a ρ fraction of these t blocks endorse this
redaction, it is considered approved, and every (honest) participant applies the redaction.
Miners who want to endorse this redaction must include the hash H(B∗

i) in the content of
blocks they mine. The authors use t = 4 and ρ = 3/4. This means that in the next four mined
blocks, at least three must include H(B∗

i), as illustrated below:

· · ·→ Bi︸︷︷︸
redact to B∗

i

→···→ B`︸︷︷︸
last block

→ B`+1 → B`+2 → B`+3 → B`+4︸ ︷︷ ︸
voting period

→···

When the redaction B∗
i is suggested, the last block was B`. In the voting period, four blocks

B`+1, . . . ,B`+4 are mined. If at least three of them include the hash H(B∗
i) in their content,

then the redaction is approved, and every honest participant updates its local ledger to
include B∗

i instead of Bi.

For concreteness, assume that except for B`+4, all other blocks in the voting period
endorsed this redaction. An adversary can now propose a redaction B∗

`+1, which is identical
to B`+1, but does not include the hash H(B∗

i). This suggestion goes through the voting
period, and since nothing in the DMTS Construct forbids redacting “ballot blocks” it might
be approved. However, removing the vote results in the ledger being in an inconsistent
state: On the one hand, the ledger of honest participants includes B∗

i . On the other hand,
the ledger now has only two votes for it, which means the redaction is not approved. Any
joining party who receives a copy of the ledger and verifies it can observe this discrepancy.

It is easy to prevent this attack by designating the blocks including votes as special
“ballot blocks.” It must be required that ballot blocks are not redactable, or at least their
redaction cannot remove the vote from the block.

Miner Corruption Attack: The attack is applicable to the DMTS Construct [7]. Let the
approval quorum be ρ def= 3

4 , as suggested by the paper: When a redaction is proposed, at least

7

three out of the next four mined blocks should carry a vote approving the redaction. Consider
an adversary who controls 49% of the miners, all of whom abstain from endorsing any redac-
tions. A simple combinatorial analysis shows that even if all honest miners vote in favor of
all redactions, only

(4
3

)
(0.51)3(0.49)+ (0.51)4 ≈ 33% of them are approved. Furthermore, for

an adversarially suggested redaction, even if all honest miners refrain from voting, there is
a

(4
3

)
(0.49)3(0.51)+ (0.49)4 ≈ 30% chance of approval. Increasing ρ decreases the chance of

honest redactions, while decreasing it increases the chance of adversarial redactions.

5 Defining Moderated Redactable Blockchain

5.1 Design Goals

Section 4 demonstrates that adapting existing models and definitions of immutable block-
chains to the redactable setting is challenging, as mutability opens a variety of ways for an
adversary to attack the blockchain. We propose decoupling the two notions: A challenger is
introduced, who enforces most of the restrictions imposed by an immutable blockchain. On
the other hand, we allow the adversary to control the participants in the network, receive
an arbitrary number of redactions, and install an arbitrary number of blocks in the ledger.
In designing our definitional framework, we pursued the following goals:

– Bitcoin independence: The framework should not impose Bitcoin protocol or data
structures. For instance, the blockchain designer might opt not to include the hash of
the previous block in the current block.

– Consensus independence: The framework should not impose a specific consensus
mechanism, such as the proof of work (PoW) or the proof of stake (PoS). Rather, it should
depend on an abstraction that provides consensus.

– General content: The framework should not assume that the content of each block
includes a set of transactions. Rather, the content must be treated as an arbitrary bit
string.

– Simplicity: The framework should be as simple as possible. With this aim, we abstract
out the distributed nature of the network by a centralizing challenger.

– Moderation: The framework should support the moderated setting. This is by choice
rather than merit, meaning a framework for the unmoderated setting is equally impor-
tant, but is left as future work.

8

A
dv

er
sa

ry

Challenger

Ledger

Read Read & Write

pk

INST(i, B)

1 or 0

REDC(i, C)

B or ε

Fig. 2. The proposed adversarial model. The challenger creates a key pair and the ledger. It gives the public key pk to
the adversary, and provides her with read-only access to the ledger. All write operations (installations) should go through
the challenger’s INST interface, by specifying the location i pointing to a valid block index in the ledger, and the block B
to be installed. The challenger returns 1 if the installation is successful, and 0 otherwise. The adversary can also request
redactions via the challenger’s REDC interface. She provides the redaction location i, as well as the new block’s content C. If
the operation is successful, the challenger returns a redacted block B, which can then be installed using its INST interface.
Otherwise, the challenger returns an empty block ε. The adversary is deemed successful if she installs a redacted block
which is not obtained via the REDC interface.

– Operation segregation: The framework should not combine operations which are se-
mantically different. For instance, consider redaction and installation: When an admin-
istrator is asked for a redaction, he should merely return a redacted block, rather than
installing the block in the ledger. The installation must be performed separately.

– Allowing adversarial transformation: The framework should allow the adversary to
append any valid block at the end of the ledger. Also, she must be able to receive the
redaction of as many blocks as she wants. Finally, she must be able to install any valid
redaction.

– Ledger consistency: The ledger must remain consistent at all times. That is, there
should not be a valid transformation that invalidates one or more blocks already in-
stalled in the ledger (cf. Section 4).

9

5.2 Informal Model

Fig. 2 illustrates our definitional framework informally. Notice that it resembles a game
between a challenger and a single adversary. It is as if she has total control over the
participants in the blockchain: As long as she plays by the rules, she can append any
valid block to the ledger, request any block content to be redacted to an arbitrary yet valid
value, and install any valid redacted block. Furthermore, no modification is made to the
chain without the adversary saying so. In fact, the challenger is an abstraction of an ideal
consensus protocol. The goal of the adversary is to create a redacted block which is not
provided by the administrators controlled by the challenger, and install it in the ledger.

Observe the similarity with the way signature schemes are modeled: Obtaining redac-
tions for arbitrary content are akin to acquiring a signature on arbitrary messages (the
adaptive chosen message attack). Furthermore, the security definition is similar: Any new
redaction constitutes an attack, which is akin to existential forgery in signature schemes. In
fact, as shown in Section 6, a strongly unforgeable signature scheme can be used to construct
a secure redactable blockchain in our model.

In what follows, we abstract out a redactable blockchain as a tuple of efficient algo-
rithms. The abstraction pertains to a centralized setting, where there is a challenger with
a private key, playing against an adversary with the public key and read-only access to the
ledger. The adversary can install blocks by asking the challenger, who accepts the request
as long as the adversary abides by the rules. The verification algorithm distinguishes valid
blocks from invalid ones. Contrary to previous work such as [1,7], which explicitly use the
proof-of-work verification in their model, we let each construct decide on its own verification
algorithm. For instance, a construct may use separate verification algorithms for normal
and redacted blocks. This simplifies and generalizes the scheme. The adversary can also
ask the challenger to redact block contents, in hope that she learns how to redact a block
without the challenger’s help. The adversary is deemed successful if she can generate a new
redaction.

We realize that block versioning is useful, and therefore incorporate it into our formal-
ization below. If a solution does not employ versioning, those parts in the definition may be
ignored.

10

5.3 Definition

The blockchain storage (the ledger) is modeled as a list of blocks L def= [B0,B1, . . . ,B`]. The list
starts at index 0, and the block at L[0] is called the genesis block. This block is generated
initially, and it helps in simplifying the presentation. We assume that the variable ` always
keeps the number of real (non-genesis) blocks: ` def= len(L)−1. Initially, `← 0, as there is only
one block in the ledger (the genesis block) Upon appending each new block, ` is incremented.
The value ` is not an upper bound: L can grow to include any polynomial number of blocks.
The ledger is published as a read-only list. The only way an adversary can modify L is via a
call to the challenger’s INST interface, as depicted by Fig. 2.

Definition 3 defines five efficient algorithms that constitute a moderated redactable
blockchain scheme. We then express two syntactical requirements: Every block created cor-
rectly must be verifiable, and so is every block redacted correctly. Throughout, the following
transformation is used: It expresses the effect of installing a block B at position i of ledger
L, where 1≤ i ≤ `+1:

Transform(L, i,B) def= L[0 : i−1]+ [B]+L[i+1 : `] . (1)

Notice that Transform returns a new ledger, rather than changing L. By list manipulation
rules defined in Section 3, if i+1> `, the rightmost sublist L[i+1 : `] is empty. The resulting
ledger has the same length as L if 1≤ i ≤ `, and is longer than L by one block if i = `+1.

Definition 3. A moderated redactable blockchain scheme is a tuple of probabilistic polynomial-
time algorithms RBC def= (Gen,Create,Verify,Redact, Install) satisfying the following:

1. The key-generation algorithm Gen(1λ): Takes as input a unary security parameter 1λ

and outputs (pk, sk,L), where pk is the public key, sk is the private key, and L is the ledger.
We assume that |pk| , |sk| are polynomial in λ, and λ can be inferred from pk or sk.

2. The block-creator algorithm Create(pk,L,C): Takes as input the public key pk, the
ledger L, and a content C. It generates and returns a block B containing C, to be appended
at the end of L.

3. The block-verifier algorithm Verify(pk,L, i,B): Takes as input the public key pk, the
ledger L, a positive integer i ≤ `+1, and a block B. It performs two verifications, denoted

11

Φ and Ψ, which are specified as part of Verify description by the blockchain designer. Let:

V ←Version(B) , (2)
~V ← [

Version(L[0]), . . . ,Version(L[`])
]
, (3)

L∗ ←Transform(L, i,B) . (4)

Verify returns 1 if and only if bothΦ(~V , i,V) andΨ(pk,L∗) return 1. AlgorithmΦ prevents
reversion attacks by comparing the version of B with (possibly all) existing block versions.
Algorithm Ψ checks the the consistency of the ledger for L∗ that results from installing B
at position i of L.

4. The redaction algorithm Redact(sk,L, i,C): Takes as input the private key sk, the ledger
L, a positive integer i ≤ `, and a content C. It returns a block B containing C, to replace
L[i].

5. The block-installer algorithm Install(pk,L, i,B): Takes as input the public key pk, the
ledger L, a positive integer i ≤ `+1, and a block B. If Verify(pk,L, i,B) is 0, it returns
0. Otherwise, it installs B at index i of L (replacing an existing block in case i ≤ `),
and returns 1. Formally, a successful installation of B at index i is denoted by L ←
Transform(L, i,B), as defined by Equation (1).

For any moderated redactable blockchain scheme RBC, the following correctness re-
quirements must be satisfied.

Definition 4 (Correctness). It is required that for every λ, every (pk, sk,L) output by
Gen(1λ), and any valid content C:

(a) Anyone can create a valid block to be appended to the ledger: Let B ← Create(pk,
L,C). Then

Content(B)= C ∧ Verify(pk,L,`+1,B)= 1 .

(b) The administrator can change any block of the ledger to contain any valid
content: For any positive integer i < `, let B ←Redact(sk,L, i,C). Then

Content(B)= C ∧ Verify(pk,L, i,B)= 1 .

Let RBC be a moderated redactable blockchain scheme per Definition 3, and consider Ex-
periment 2 for an adversary A and security parameter λ.

12

1. Gen(1λ) is run to obtain (pk, sk,L). The set Hist←; is set to empty.
2. Adversary A is given pk, a read-only view of L, and access to oracles REDCsk,L(·, ·) and

INSTpk,L(·, ·).
– The REDC oracle responds to queries of the form (i,C) by returning a redacted block

B ←Redact(sk,L, i,C). It also adds (i,B) to the set Hist, i.e., Hist←Hist∪{(i,B)}.
– The INST oracle responds to queries of the form (i,B) by returning a bit b ←

Install(pk,L, i,B).
3. Finally, A outputs (i∗,B∗). She succeeds, and the experiment returns 1, if and only if

all of the following conditions hold:
(a) 0< i∗ < `, (b) Verify(pk,L, i∗,B∗)= 1, (c) (i∗,B∗) ∉Hist .

Experiment 2. The redaction experiment RedactA,RBC (λ). The success conditions can be explained as: (a) The index i
points to an internal block of the ledger (as otherwise it is not an attack), (b) The block B∗ is valid for position i∗, and (c)
The pair (i∗,B∗) is new, meaning that B∗ is not received from the redaction oracle in response to a query for index i∗. A
particular observation is that the adversary wins if B∗ is received from REDC, but for another location i′ 6= i∗.

Definition 5. A redactable blockchain schemeRBC is existentially unredactable under chosen-

redaction attacks, or just secure, if for all probabilistic polynomial-time adversaries A taking
part in Experiment 2, there is a negligible function negl such that Pr

[
RedactA,RBC(λ) = 1

]≤
negl(λ).

6 A Construct Based on Signature Schemes

In this section, we present Construct 1 which, based on a simpled assumption explained
below, is proven secure under Definition 5. The interested reader may read Appendix A be-
forehand, which contains a simple construct which is proven both incorrect and insecure. It
is not a prerequisite to the rest of this paper, but serves an illustrative purpose in explaining
the inner working of the adversarial model.

The adversarial model completely delegates the blockchain functionality to the chal-
lenger of Fig. 2: Any write operation must go through the challenger. We are therefore not
worried about keeping an immutable total ordering of the blocks. It is similar in nature to
the ideal functionality in a hybrid multi-party setting, except that our model is game-based
rather than simulation-based.

This construct uses the block structure B def= (C,V ,W), where each block contains content
C, version V , and witness W . The blocks do not have a prefix whatsoever, in which the hash
of the previous block is included. This is because, as explained above, our adversarial model

13

idealizes the total ordering of blocks in the ledger by preventing direct write access from the
adversary.

The block content C is arbitrary, but the version V and witness W must follow some
rules that might not seem obvious at first. Appendix A shows that a careless choice of
protocol for determining these fields can lead to correctness and security issues.

Each block must have a unique version number: The jth block to be installed (be it
appended or redacted) should carry version j. This guarantees the uniqueness of each block
in the ledger.

The witness W is the empty string ε when the block is being appended. However, when
the block is being redacted, the administrator uses the private key of the blockchain (which
is also the private key of an sUF-CMA secure signature scheme) to sign the concatenation of
three fields: The content of this block, the version of this block, and the version of the next
block in the ledger.

If the next block is redacted later, its version number will change, effectively rendering
any signature in the current block invalid. To prevent correctness issues, the signature is
verified only when its block is newer than the next block. This check is easily conducted due
to the unique versioning that we introduced: For any two consecutive blocks B def= (C,V ,W)
and B′ def= (C′,V ′,W ′) in the ledger, define:

ψ(pk,B,B′) def=
1 if V ′ >V ,

VerifySig(pk,C ||V ||V ′,W) if V ′ <V .
(5)

As we will see, the algorithm Ψ calls ψ for each pair of blocks in the ledger, and returns the
logical AND of their results.

Construction 1 (Secure). The redactable blockchain RBCgood is defined as follows. The
block structure is B def= (C,V ,W), where each block contains content C, version V , and witness
W .

– Gen(1λ) simply calls the generator for the underlying signature scheme to obtain the public
and private keys: (pk, sk)←GenSig(1λ). It sets L← [B0], where B0 ← (ε,1,ε).

– Create(pk,L,C) returns B ← (C,V ,ε), where V is larger than any version in the ledger
(and is thus unique). Symbolically, V ← MaxV(~V), where ~V is defined as in Equation (3),

14

and
MaxV(~V) def= 1+ max

0≤i≤`
~V [i] . (6)

– Verify(pk,L, i,B) returns 1 if and only if all conditions below are satisfied:
• B has correct structure, and 0< i ≤ `+1.
• Φ(~V , i,V) returns 1: This happens if and only if V =MaxV(~V).
• Ψ(pk,L∗) returns 1: This happens if and only if for every pair (B,B′) of subsequent

blocks in L∗, it holds that ψ(pk,B,B′)= 1, as per Equation (5).
– Redact(sk,L, i,C): If i points to an internal block (i.e., 0< i < `), it creates a block B ← (C,

V ,W) using content C, where V ←MaxV(~V) and

W ← Sign
(
sk,C ||V ||Version(L[i+1])

)
.

– Install(pk,L, i,B): Works exactly as specified in Definition 3.

Notice that for redacting the block at i = `, the private key is not required. For any C,
replacing the existing block L[`] with B ← (C,MaxV(~V),ε) is valid. This is because there is
no next block B′ for which ψ(pk,B,B′)= 1 must hold. However, the ability to redact the last
block without the private key does not constitute an attack. In our model (Experiment 2),
the adversary succeeds only if she redacts a block inside the ledger (i.e., 0< i < `).

Theorem 1. RBCgood is correct per Definition 4.

Proof. There are two conditions to check.

Condition (a): Create(pk,L,C) returns B ← (C,MaxV(~V),ε). Clearly, the content of this
block is C. Furthermore, if L is already a valid chain, so is L∗ ←L+ [B]. This is because
the version of B is correctly computed as required by Φ. Moreover, ψ returns 1 on all
pairs of blocks in L∗ prior to the last pair (due to the validity of L). Finally, for the last
pair (L[`],B), since Version(L[`]) < Version(B), the return value of ψ is trivially 1. As a
result, all block pairs verify, and Ψ returns 1 as well.

Condition (b): Redact(sk,L, i,C) returns B ← (C,MaxV(~V),W). Clearly, the content of this
block is C. Furthermore, if L is already a valid chain, so is L∗ ← Transform(L, i,B). This
is because the version of B is correctly computed as required by Φ. Moreover, ψ returns 1
on all pairs of blocks in L∗, except perhaps the two special pairs involving B (the validity
of other pairs is due to the validity of L). We show that ψ also returns 1 on those special
pairs, which involve B:

15

– The first special pair is (L[i − 1],B). Since Version(L[i − 1]) < Version(B), the return
value of ψ is trivially 1.

– The second special pair is (B,L[i+1]). Since Version(L[i+1]) < Version(B), algorithm
ψ requires the block B to hold a proper witness. This holds due to the correctness of
the underlying signature scheme.

As a result, all block pairs verify, and Ψ returns 1 as well. ut

Theorem 2. If the signature scheme (GenSig,Sign,VerifySig) is strongly unforgeable under
chosen-message attack (sUF-CMA), then RBCgood is secure per Definition 5.

Proof. Let A be an adversary who, for infinitely many λ values, succeeds in the experiment
RedactA,RBCgood(λ) with probability at least ε

def= ε(λ). We construct a forger algorithm F
which, for infinitely many λ values, forges a signature with probability ε.

The forger F receives as input the public key pk of the signature scheme, as well
as oracle access to the signing oracle Signsk(·). It sets Hist ← ;, generates L← [B0] as in
Construct 1, runs A(pk,L), and answers its queries as follows:

– Installation queries INST(i,B): The forger F simply calls b ← Install(pk,L, i,B), and
returns b.

– Redaction queries REDC(i,C): If i ≤ 0 or i ≥ `, the forger F returns ε. Otherwise, F
creates block B ← (C,V ,W), where V ← MaxV(~V), and W is computed by querying the
signature oracle on

(
C ||V ||Version(L[i+1])

)
. It then adds (i,B) to Hist, and returns B.

If the adversary stops but does not succeed in outputting (i,B) as required in Experi-
ment 2, the forgerF outputs ⊥ and halts. Otherwise, parse B def= (C,V ,W). Since B is verified,
W is a valid signature on m ← (C ||V ||Vi+1), where Vi+1

def= Version(L[i+1]). Subsequently, F
outputs (m,W) as a forgery.

To show that the forgery is new, we must prove that W was never returned by the
signing oracle in response to query m. Since (i,B) ∉ Hist, we consider the two remaining
possibilities:

– (i′,B) ∈Hist for some i′ 6= i: Impossible because Version(L[i+1]), which constitutes a part
of m, is unique due to the uniqueness of version numbers in our solution. Therefore, no
other position i′ may correspond to the same m.

16

– (i,B′) ∈ Hist for some B′ 6= B, where B can be efficiently computed from B′ def= (C′,V ′,
W ′), and W ′ is valid on m: For this to happen, it must be the case that B and B′ are
identical except in their witnesses. Then, both W and W ′ are valid signatures on m. This
constitutes a strong forgery on the signature scheme, and F can output (m,W) as a valid
forgery.

We conclude that the success probability of F in producing a valid forgery is the same
as the success probability of A in producing a valid redaction. ut

7 Conclusion and Future Work

In this paper, we discussed two settings for redactable blockchains: The moderated setting,
where redactions are handled by administrators, and the unmoderated setting, where redac-
tions are voted on. Four novel attacks were discussed against previous constructs in both
settings. We argued the attacks are the result of the lack of a definitional framework for
redactable blockchains. We suggested the first attempt at such a framework, and explained
our design decisions. A simple constructs based on signature schemes was proposed, and
proven to be correct and secure.

The simple definitional framework of Section 5 can be extended in many ways, some of
which are explored below.

Privacy. A desirable property is to make it impossible to show that a block was once in the
ledger. For instance, consider Construct 1, where a redacted block B contains a signature on
itself and the next block. Assume B is redacted to B′. While B no longer belongs to the ledger,
anyone can verify its witness and conclude that it once belonged to the ledger, potentially
violating users’ privacy.

Distributed Administration. Currently, the model supports a single administrator. As
in [1], one can conceive of a model where the key pair of the blockchain is jointly generated
by several administrators, where each administrator receives a share of the private key.
Redactions are applied by running a multiparty computation between the administrators.
For instance, in our construct, a threshold signature can be used. An idea (novel in the
context of redactable blockchains) is to allow the set of administrators to grow or shrink

17

over time. The policies governing joining and leaving an administrator, as well as the redis-
tribution of private key shares, are of particular interest.

Accountability. It might be beneficial to hold administrators accountable for redactions.
That is, when a block is last redacted, how many times has it been redacted, and which
subset of administrators approved the redaction (in the case of distributed administration).

Supporting Block Removals and Insertions. Currently, our model only supports block
modifications. Ateniese et al. [1] show how block removals can be supported, by modifying
the block before the one being removed. Removing blocks is beneficial in that it can shrink
the ledger. It is also possible to add support block insertions. We extended our definitional
framework to support both operations, and constructed a blockchain satisfying the corre-
sponding security requirements. It will appear in the full version of this paper.

Multiparty Setting. In our model, a single adversary plays a game against a challenger.
We think the model is elegant in its simplicity, which allowed us to find various attacks
against [1,7,10] (as well as Construct 2 presented in Appendix A). It also idealizes modifica-
tions to the ledger by regulating writes through the challenger, effectively separating redact-
ability from other properties of a blockchain. Furthermore, the model does not care about
the underlying consensus mechanism, while prior models (for the immutable blockchains)
are bound to the specific consensus protocol such as proof-of-work [9,17]. We stipulate that
our model is good for quickly proofread a particular moderated redactable blockchain, but
it is only a first step. Since there is no composition theorem for the game-based security
proofs, one cannot simply replace the ideal functionality in the hybrid model with a real
one, and hope the proof carries over to the real model. Furthermore, the simplified model
might be unable to capture some attacks in the real world. For these reasons, we propose
extending the ideas in this paper to the multiparty setting, where various parties are joining
and leaving the network (as well as an adversary who can corrupt a minority of them).

Acknowledgment. The second author acknowledges support from TÜBİTAK, the Scientific
and Technological Research Council of Turkey, under project number 119E088.

References

1. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable Blockchain–or–Rewriting History in Bitcoin and Friends.
In: EuroS&P. IEEE (2017)

18

2. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Computational Diffie-Hellman. In: PKC.
Springer (2006)

3. CoinDesk: Understanding The DAO Attack (2016), https://tinyurl.com/dao-attack
4. Council of European Union: Regulation (EU) 2016/679: General Data Protection Regulation (GDPR) (2016), https:

//gdpr-info.eu

5. Derler, D., Ramacher, S., Slamanig, D., Striecks, C.: I Want to Forget: Fine-Grained Encryption with Full Forward
Secrecy in the Distributed Setting. IACR Cryptology ePrint Archive (2019)

6. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-Grained and Controlled Rewriting in Blockchains: Chameleon-
Hashing Gone Attribute-Based. IACR Cryptology ePrint Archive (2019)

7. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable Blockchain in the Permissionless Setting. In: Symposium on
Security and Privacy. IEEE (2019)

8. Dousti, M.S., Küpçü, A.: Moderated Redactable Blockchains: A Definitional Framework with an Efficient Construct.
IACR Cryptology ePrint Archive (2020)

9. Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and Applications. In: EUROCRYPT.
Springer (2015)

10. Grigoriev, D., Shpilrain, V.: RSA and Redactable Blockchains (2020), arXiv report 2001.10783
11. Hargreaves, S., Cowley, S.: How Porn Links and Ben Bernanke Snuck Into Bitcoin’s Code (2013), https://tinyurl.

com/bitcoin-snuck

12. Hopkins, C.: If You Own Bitcoin, You Also Own Links to Child Porn (2020), https://tinyurl.com/bitcoin-child
13. Kolb, J., AbdelBaky, M., Katz, R.H., Culler, D.E.: Core Concepts, Challenges, and Future Directions in Blockchain: A

Centralized Tutorial. ACM Computing Surveys 53(1), 1–39 (2020)
14. Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Short Generic Transformation to Strongly Unforgeable Signature in the

Standard Model. In: ESORICS. Springer (2010)
15. Lumb, R.: Downside of Bitcoin: A Ledger That Can’t Be Corrected (2016), https://tinyurl.com/btc-immutable
16. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009), available from http://www.bitcoin.org/

bitcoin.pdf

17. Pass, R., Shi, E.: FruitChains: A Fair Blockchain. In: Symposium on Principles of Distributed Computing (2017)
18. Pearson, J.: The Bitcoin Blockchain Could Be Used to Spread Malware, INTERPOL Says (2015), https://tinyurl.

com/bitcoin-malware

19. Puddu, I., Dmitrienko, A., Capkun, S.: µchain: How to Forget Without Hard Forks. IACR Cryptology ePrint Archive
(2017)

20. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger (2014), Ethereum Project yellow paper

A An Incorrect and Insecure Construct

In this appendix, we present a construct that is both incorrect and insecure, but helps in
understanding the way our definitional framework works. Normal blocks do not include any
information about each other (such as the hash of the previous block). Such information,
necessary for the secure operation of an ordinary blockchain, is abstracted via the ideal func-
tionality in the model: The adversary is not allowed to make any direct writes to the ledger,
and therefore the challenger can keep the ledger blocks in their total order. The redactability
is achieved with a signature scheme strongly unforgeable under adaptive chosen-message

19

https://tinyurl.com/dao-attack
https://gdpr-info.eu
https://gdpr-info.eu
https://tinyurl.com/bitcoin-snuck
https://tinyurl.com/bitcoin-snuck
https://tinyurl.com/bitcoin-child
https://tinyurl.com/btc-immutable
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://tinyurl.com/bitcoin-malware
https://tinyurl.com/bitcoin-malware

attack (sUF-CMA), denoted (GenSig,Sign,VerifySig): The challenger installs a redacted block
only if its witness holds the signature of itself and the next block. The reversion attack
(Section 4) is prevented by introducing version numbers in the block structure: Initially,
each block carries version 1. Upon each redaction, the version number is incremented. The
verification function of the blockchain checks whether the version of a redacted block is
strictly greater than the version of the block being replaced. This way, the adversary cannot
reinstall a previously valid block again.

Construction 2 (Insecure and Incorrect). The redactable blockchainRBCbad is defined
as follows. The block structure is B def= (C,V ,W), where each block contains content C, version
V , and witness W .

– Gen(1λ) simply calls the generator for the underlying signature scheme to obtain the public
and private keys: (pk, sk)←GenSig(1λ). It sets L← [B0], where B0 ← (ε,1,ε).

– Create(pk,L,C) returns B ← (C,1,ε).

– Verify(pk,L, i,B) returns 1 if and only if all of the following conditions hold:

• B has correct structure, and i ≤ `+1 is a positive integer.

• Φ(~V , i,V) returns 1: This happens if and only if (i = `+1)∧ (V = 1) (the block is being
appended and has version 1), or (i ≤ `)∧(~V [i]<V) (an existing block is being redacted,
and the new version is greater than the existing one to foil reversion attacks).

• Ψ(pk,L∗) returns 1: This happens if and only if for every pair (B,B′) of subsequent
blocks in L∗, if Version(B)> 1 (i.e., if B is redacted), then

VerifySig(pk,BW ||B′,W)= 1 , (7)

where W def= Witness(B), and BW def= (C,V) (i.e., block B except W). Put simply, this means
that W is a valid signature on C ||V ||C′ ||V ′ ||W ′.

– Redact(sk,L, i,C): Creates B ← (C,V ,W) using content C, where V ←Version(L[i])+1 and
W is a signature on the current block except W itself (denoted BW), as well as the next
block L[i+1]:

W ← Sign(sk,BW ||L[i+1]) .

Notice that incrementing the version number, as well as the computation of witness by
signing the current and next blocks, are consistent with the requirements of Verify.

– Install(pk,L, i,B): Works exactly as specified in Definition 3.

20

Correctness Issues. A series of valid actions can put the ledger in a state that block
creation for appending is no longer possible, violating the first requirement of Definition 4.
For instance, let C1, C′

1 and C2 be any valid contents, and consider the following actions,
following (pk, sk,L)←Gen(1λ):

B1 ←Create(pk,L,C1), Install(pk,L,1,B1)

B′
1 ←Redact(sk,L,1,C′

1), Install(pk,L,1,B′
1)

B2 ←Create(pk,L,C2), Install(pk,L,2,B2)

The first line creates and appends a block, the second line redacts it, and the third line tries
to append a new block. The last Install fails as it calls Verify, which in turn calls Ψ: Since
the version of B′

1 is greater than 1, Ψ requires it to hold a signature containing information
about the next block, as per Equation (7), which is not the case.

The underlying reason is that, in this particular construct, it is meaningless for the
last block of the ledger to be redacted, as there is no next block to sign. It is possible not to
increase version number for redacting the last block, or disallow such redaction by requiring
i 6= ` in designing Redact.

One can violate the second requirement of Definition 4 as well, by following a series of
valid actions that put the ledger in a state where redaction of some blocks are impossible.
Let L← [B0,B1,B2,B3] be a ledger constructed by appending three blocks, and C′

1 and C′
2

be valid contents. Consider the following actions:

B′
1 ←Redact(sk,L,1,C′

1), Install(pk,L,1,B′
1)

B′
2 ←Redact(sk,L,1,C′

2), Install(pk,L,1,B′
2)

Again, the last install fails: For the pair (B′
1,B′

2), algorithmΨ requires B′
1 to hold a signature

on B′W
1 ||B′

2 (see Equation (7)). However, B′
1 is redacted prior to B′

2: As a result, B′
1 holds a

signature on BW
1 ||B2, which becomes invalid after B2 is redacted. Consequently, the second

requirement of Definition 4 is violated.

The underlying reason is the indifference in the verification algorithms as to which
block is newer. The next section shows how using unique versions can resolve this issue.

21

Security Issues. On the surface, it seems that the adversary cannot succeed in Experi-
ment 2. An informal (and false) argument is as follows: We use an adversary who succeeds
in the game as a subroutine, to forge a valid signature on an arbitrary message. The forger
simulates the challenger. It gives the public key of the signature scheme to the adversary,
and answers all redaction queries by using the signing oracle. When the adversary outputs
a successful redaction (i,B), the witness W is a valid signature on the message m ← BW ||
L[i+1]. The forger outputs (m,W) as a valid message-signature pair.

The fallacy in the above argument is that the forger must output a new pair (m,W),
as required by sUF-CMA signature forgery. However, the informal proof does not show that
this pair is new. In fact, as is explained below, it is easy for an adversary to succeed in the
game without forging any signature.

AdversaryA proceeds as follows: It creates a block B ← (�original�,1,ε), and appends
it three times by calling the INST interface of the challenger on queries (1,B), (2,B) and
(3,B), respectively. At this point, L= [B0,B,B,B].

Next, A queries the REDC interface of the challenger on (1,�modified�), and receives
B′ ← (�modified�,2,W), where W is a signature on m ← B′W ||B, where B′W is �modified� ||
2.

While the redaction was requested for position 1, the adversary uses position 2: She
outputs (2,B′), and halts.

At this point, Hist = {(1,B′)}, and therefore (2,B′) is new. Furthermore, B′ is a valid
redaction for position 2, since L[3] = L[2] = B. We conclude that the adversary breaks
the security by outputting a successful reduction, without forging a new signature. The
underlying reason for this attack is duplicate blocks in the ledger. Construct 1 in Section 6
resolved this issue by incorporating unique versioning.

22

	Moderated Redactable Blockchains: A Definitional Framework with an Efficient Construct
	1 Introduction
	2 Previous Work
	3 Preliminaries
	4 Novel Attacks on Previous Constructs
	5 Defining Moderated Redactable Blockchain
	5.1 Design Goals
	5.2 Informal Model
	5.3 Definition

	6 A Construct Based on Signature Schemes
	7 Conclusion and Future Work
	A An Incorrect and Insecure Construct

