# Sign in finite fields 

Abraham Westerbaan*1 and Bas Westerbaan ${ }^{\dagger 2}$<br>${ }^{1}$ Radboud Universiteit Nijmegen<br>${ }^{2}$ University College London \& Cloudflare

August 28, 2020

In cryptography it is often required to make a choice of square root. Often in a finite field $\mathbb{F}_{p}$, with $p$ and odd prime, one chooses the root whose least positive integer representative is odd. Such an element is called positive, so that one can utter the familiar phrase "the positive square root". Following the terminology, one defines a sign on the finite field:

$$
\operatorname{sign}: \mathbb{F}_{p} \rightarrow\{-1,0,1\} \quad \operatorname{sign}(n)=\left\{\begin{array}{ll}
1 & n \text { is odd } \\
0 & n=0 \\
-1 & n \text { is even }
\end{array} \quad \text { where } n \leq p\right.
$$

This map has few properties.

1. $\operatorname{sign}(-x)=-\operatorname{sign}(x)$.
2. If $\operatorname{sign}(x)=0$, then $x=0$.
3. $\operatorname{sign}(T x)=\operatorname{sign}(x)$ for any isomorphism $T$.

The existence of such a sign map is equivalent to being able to make a choice of square root independent of the construction of $\mathbb{F}_{p}$. Indeed given such a sign map one simply chooses the root with sign 1 . Conversely, suppose we can make a choice of root independent of the construction of $\mathbb{F}_{p}$, then we define

$$
\operatorname{sign}(x)= \begin{cases}1 & x \neq 0 \text { and } \sqrt{x^{2}}=x \\ 0 & x=0 \\ -1 & \text { otherwise }\end{cases}
$$

This sign satisfies the three axioms above. In this paper we will study when such a sign exists for a finite field $\mathbb{F}_{p^{k}}$ with odd $p \neq 1$ and $k \neq 0$. We will show it exists if and only if $k$ is odd.

[^0]Assume $k$ is even. Reasoning towards contradiction, assume a sign map with the listed properties exists. Note that any non-zero $x \in \mathbb{F}_{p} \subseteq \mathbb{F}_{p^{k}}$ (i.e. $x^{p}=x$ ) has a root in $\mathbb{F}_{p^{k}}$. Indeed:

$$
x^{\frac{p^{k}-1}{2}}=\left(x^{\frac{p-1}{2}}\right)^{1+p+\ldots+p^{k-1}} \stackrel{\circledast}{=}\left(x^{\frac{p-1}{2}}\right)^{k}=1 .
$$

(Equality $\circledast$ holds because $x^{\frac{p-1}{2}} \in\{-1,1\}$ and so $\left(x^{\frac{p-1}{2}}\right)^{a}$ only depends on the parity of $a$.) Pick any $x \in \mathbb{F}_{p}$ that has no square root in $\mathbb{F}_{p}$ (which exists as $p \geq 3$.) Thus $x^{\frac{p-1}{2}}=-1$. We just saw that $x$ does have a square root $\alpha$ in $\mathbb{F}_{p^{k}}$, i.e. $\alpha^{2}=x$. Then $\alpha^{p}=\alpha\left(\alpha^{\frac{p-1}{2}}\right)^{2}=\alpha x^{\frac{p-1}{2}}-\alpha$. Recall that the Frobenius $\operatorname{map} \varphi(x) \equiv x^{p}$ is an automorphism of $\mathbb{F}_{p^{k}}$. Combined with the previous we see

$$
\operatorname{sign}(\alpha)=\operatorname{sign}\left(\alpha^{p}\right)=\operatorname{sign}(-\alpha)=-\operatorname{sign}(\alpha)
$$

Thus $\operatorname{sign}(\alpha)=0$, whence $\alpha=0$, quod non. We have now shown that no such sign can exist for even $k$.

Now assume $k$ is odd. We will construct a sign map. We must choose $\operatorname{sign}(0)=$ 0 . We will proceed in steps. Pick any element $x$ for which sign is not yet defined. We choose $\operatorname{sign}(x)=1$. We are then also forced to define $\operatorname{sign}(-x)=$ $-\operatorname{sign}(x)$. As our characteristic $p$ is odd, we know $x \neq-x$ and so this does not directly lead a contradiction. For any automoprhism $T$ we are forced to define $\operatorname{sign}(T(x))=\operatorname{sign}(x)$ and $\operatorname{sign}(-T(x))=-\operatorname{sign}(x)$. To show this can be done consistently, assume reasoning towards contradiction that it cannot be done consistently. Then there must be automorphisms $T$ and $S$ such that $T x=-S x$ for some $x \in \mathbb{F}_{p^{k}}$. As the only automorphisms of $\mathbb{F}_{p^{k}}$ are the powers of the Frobenius map, i.e. $\varphi, \varphi^{2}, \ldots, \varphi^{k}=\mathrm{id}$, we see that then there are $n$ and $m$ with $\varphi^{n}(x)=-\varphi^{m}(x)$. Thus $-x=\varphi^{\ell}(x)=x^{p^{\ell}}$ for some $\ell$.

Note that we have $\left(x^{2}\right)^{p^{\ell}}=(-x)^{2}=x^{2}$. Recall $\left\{y ; y^{p^{\ell}}=y\right\}$ is a subfield (in fact it's the fixed field of $\left\langle\varphi^{\ell}\right\rangle$.) It is non-trivial because it contains $x^{2}$. Thus $p^{\ell}-1 \mid p^{k}-1$. As $\operatorname{gcd}\left(p^{\ell}-1, p^{k}-1\right)=p^{\operatorname{gcd}(\ell, k)}-1$ [Lin], we must have $\ell \mid k$. In particular $\ell$ is odd.

We had $x^{p^{\ell}}=-x$ and so $x^{p^{\ell a}}=(-1)^{a} x$ for any $a$ and in particular $x=$ $x^{p^{k}}=x^{p^{\ell \frac{k}{\ell}}}=-x$. Thus $x=0$, quod non. Contradiction.

## References

[Lin] Juan Liner. Prove that $\operatorname{gcd}\left(a^{n}-1, a^{m}-1\right)=a^{\operatorname{gcd}(n, m)}-1$. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/7473 (version: 2015-07-05).


[^0]:    *bram@westerbaan.name
    $\dagger$ bas@westerbaan.name

