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Abstract. We show that the underlying permutation of ChaCha20
stream cipher does not behave as a random permutation for up to 17
rounds with respect to rotational cryptanalysis. In particular, we derive a
lower and an upper bound for the rotational probability through ChaCha
quarter round, we show how to extend the bound to a full round and then
to the full permutation. The obtained bounds show that the probability
to find what we call a parallel rotational collision is, for example, less
than 2−488 for 17 rounds of ChaCha permutation, while for a random
permutation of the same input size, this probability is 2−511. We remark
that our distinguisher is not an attack to ChaCha20 stream cipher, but
rather a theoretical analysis of its internal permutation from the point of
view of rotational cryptanalysis.
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1 Introduction

Salsa20 [9] and ChaCha20 [8] are two closely related stream ciphers developed
by Daniel J. Bernstein. Salsa20, the original cipher, was designed in 2005, then
later submitted to the eSTREAM project by Daniel J. Bernstein [5]. Its detailed
specification can be found in [5]. ChaCha20 is a modification of Salsa20, published
by Bernstein in 2008, aimed at increasing diffusion and performance on some
architectures. Google has selected ChaCha20 along with Bernstein’s Poly1305
message authentication code as a replacement for RC4 in TLS, and its specifica-
tions can be found in [15]. Both ciphers are ARX (Add-Rotate-Xor) ciphers, i.e.
built on a pseudorandom function based only on the following three operations:
32-bit modular addition, circular rotation, and bitwise exclusive or (XOR). This
pseudorandom function is itself built upon a 512 bit permutation. According to
[10], both permutations are not designed to simulate ideal permutations: they
are designed to simulate ideal permutations with certain symmetries, i.e., ideal
permutations of the orbits of the state space under these symmetries. The input
of the Salsa and ChaCha function is partially fixed to specific asymmetric con-
stants, guaranteeing that different inputs lie in different orbits. To our knowledge,
while for Salsa some of these properties of ”non-pseudorandomness” are well
known, this is not the case for ChaCha (see Section subsection 1.3). Again to our
knowledge, because of the use of asymmetric constants injected into the input



state of the permutation, none of these properties can be used to attack the entire
stream cipher, or other ciphers where these permutations have been reused, as
Salsa20 permutation in the Rumba20 compression function [7], a tweaked version
of the ChaCha20 permutation in the BLAKE and BLAKE2 hash functions [1], or
ChaCha12 permutation in the original SPHINCS post-quantum signature scheme
[10] 3.

That said, studying mathematical properties of the Salsa and ChaCha per-
mutations is still of theoretical interest, and it is useful to understand how these
permutations can be reused to design other cryptographic primitives.

1.1 Our contribution

In this work, we show that ChaCha permutation does not behave as a random
permutation, with respect to rotational cryptanalysis. To do so, we first derive and
formally prove a lower and an upper bound for the probability of the propagation
of rotational pairs through ChaCha quarter round. We provide experimental
evidence of the correctness of the bounds by testing them on a toy version of
ChaCha permutation. We then show how to extend the bounds to a full round
and then to the full permutation. The obtained bounds allow us to distinguish
ChaCha permutation, with for example 17 rounds, from a random permutation by
using 2489 calls to an oracle running either ChaCha permutation or the random
permutation. To do so, we prove that what we call a parallel rotational collision,
is more likely to happen in ChaCha permutation, rather than in a random
permutation. For example, such a collision happens with probability less than
2−488 for ChaCha permutation with 17 rounds, while with probability 2−511 for
a random permutation. This distinguisher is not an attack to ChaCha20 stream
cipher, but rather a theoretical analysis of its permutation from the point of view
of rotational cryptanalysis.

1.2 Outline of the paper

In subsection 1.3 we briefly summarize the existing studies on the core function
of Salsa and ChaCha stream ciphers. In section 2, we introduce the notation
used throughout this manuscript and recall ChaCha permutation specifications.
In section 3, we derive the lower and upper bound on the probability of the
propagation of a rotational pair for ChaCha quarter round, for the full rounds,
and for the full permutation. In section 4, we describe a distinguihser exploiting
the above mentioned bounds. Finally, in section 5, we conclude the manuscript.

1.3 Related works

Often, rather than only considering the underlying permutation of Salsa and
ChaCha, researchers study the so called Salsa (or ChaCha) core function (also

3 The current SPHINCS submission to the NIST post-quantum standardization process
does not use ChaCha anymore.



called ChaCha block function in [15]), whose output consists in applying the
permutation and then xoring the output of the permutation with its input.

Already in the specifications of Salsa20 [6], there is an example showing how
the 0 vector is a fixed point for Salsa core function. This is also true for ChaCha.

In [13], the authors find4 an invariant for Salsa core main building block, the
quarterround function, that is then extended to the row-round and column-round
functions. This allows them to find an input subset of size 232 for which the
Salsa20 core behaves exactly as the transformation f(x) = 2x. This allows to
construct 231 collisions for any number of rounds. They also show a differential
characteristic with probability one that proves that the Salsa20 core does not
have 2nd preimage resistance. In [3], it is pointed out that none of the results in
[13] has an impact on security of Salsa20 stream cipher, due to the use of fixed
constants in the input. Indeed, Salsa20 is not designed to be a collision-resistant
compression function [4].

In the Salsa20 security document [2, Section 4], two other symmetries of the
cipher are reported, i.e.

– shifting the entire Salsa20 core input array along the diagonal has exactly
the same effect on the output, i.e.

y0,0 y0,1 y0,2 y0,3
y1,0 y1,1 y1,2 y1,3
y2,0 y2,1 y2,2 y2,3
y3,0 y3,1 y3,2 y3,3

 = Salsa



x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3





y3,3 y3,0 y3,1 y3,2
y0,3 y0,0 y0,1 y0,2
y1,3 y1,0 y1,1 y1,2
y2,3 y2,0 y2,1 y2,2

 = Salsa



x3,3 x3,0 x3,1 x3,2
x0,3 x0,0 x0,1 x0,2
x1,3 x1,0 x1,1 x1,2
x2,3 x2,0 x2,1 x2,2


 ;

– the Salsa20 core operations are almost compatible with rotation of each input
word by, say, 10 bits.

This shift and rotation structures are eliminated by the use of fixed constants in
the input diagonal. Precisely, the input diagonal is different from all its nontrivial
shifts and all its nontrivial rotations and all nontrivial shifts of its nontrivial
rotations. In other words, two distinct arrays with this diagonal are always in
distinct orbits under the shift/rotate group.

We are not aware of similar properties for the case of the ChaCha permutation.
In particular, we are not aware of any study of the rotational properties of the
ChaCha permutation.

4 According to the authors and to [3], most of these results were already informally
observed by Matt Robshaw in June 2005, and independently posted to sci.crypt by
David Wagner in September 2005, but we could not find any reference besides [16].



2 ChaCha permutation description

In this section, we first define our notation, then we describe the specifications
of ChaCha permutation. We do not describe the entire details of ChaCha as a
stream cipher.

2.1 Notation

Let F2 be the binary field with two elements, and Mn×n(Fw
2 ) the set of all n× n

matrices with elements in Fw
2 . We indicate with lowercase letters w-bit words, i.e.

x ∈ Fw
2 , with bold lower case letters vectors of n words, i.e. x ∈ (Fw

2 )n, and with
uppercase letters a n× n matrix of n2 words, i.e. X ∈Mn×n(Fw

2 ).
We use the following notation:

– ⊕ for the bitwise exclusive or (XOR), i.e. the addition in Fw
2 ;

– � for the w-bit addition mod 2w;
– �ki=1ai for the w-bit addition mod 2w of k words a1, . . . , ak
– ≪ r and ≫ r for constant-distance left and right, respectively, circular

rotation of r bits of a w-bit word (with w > r). When needed, we also use the
following more compact notation:

• ←−x r = x≪ r;

•
←−←−x r = (←−x0r, . . . ,←−−xn−1

r) the parallel left circular rotation of a n-word vector

•
←−←−
X r =


←−−x0,0r . . . ←−−−x0,n−1

r

...
. . .

...
←−−−xn−1,0

r . . .←−−−−−xn−1,n−1
r

 the parallel left circular rotation of the

w-bit elements of the matrix X ∈Mn×n(Fw
2 ).

When clear from the context, we omit the subscript r, and simply write ←−x ,
←−←−x , and

←−←−
X .

In the case of ChaCha, we have n = 4 and w = 32.

2.2 ChaCha permutation specification

ChaCha permutation has a state of 512 bits, which can be seen as a 4× 4 matrix
whose elements are binary vectors of w = 32 bits, i.e.

X = {xi,j}i=0,...,3
j=0,...,3

=


x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

 ∈Mn×n(Fw
2 ) .

Definition 1 (ChaCha quarter round). Let xi, yi, i = 0, 1, 2, 3 be w-bit words,
and let (y0, y1, y2, y3) = Q(x0, x1, x2, x3), where Q is ChaCha quarter round,
defined as follows:



b0 = x0 � x1 (1)

b3 = (b0 ⊕ x3)≪ r1 (2)

b2 = b3 � x2 (3)

b1 = (b2 ⊕ x1)≪ r2. (4)

and

y0 = b0 � b1 (5)

y3 = (y0 ⊕ b3)≪ r3 (6)

y2 = y3 � b2 (7)

y1 = (y2 ⊕ b1)≪ r4 (8)

≪ r2

≪ r3

≪ r4

≪ r1

x0 x1 x2 x3

y0 y1 y2 y3

b0

b1

b2

b3

Fig. 1: The ChaCha quarter round.

We show in Fig. 1 a schematic drawing of the Chacha quarter round. The
permutation used in ChaCha20 stream cipher performs 20 rounds or, equiva-
lently, 10 double rounds. Two consecutive rounds (or a double round) of ChaCha
permutation consist in applying the quarter round four times in parallel to the
columns of the state (first round), and then four times in parallel to the diagonals
of the state (second round). More formally:

Definition 2 (ChaCha column/diagonal round). Let X = {xi,j}i=0,...,3
j=0,...,3

and Y = {yi,j}i=0,...,3
j=0,...,3

be two matrices in Mn×n(Fw
2 ).



A column round Y = RC(X) is defined as follows, with i = 0, 1, 2, 3:

(y0,i, y1,i, y2,i, y3,i) = Q(x0,i, x1,i, x2,i, x3,i) .

A diagonal round Y = RD(X) is defined as follows, for i = 0, 1, 2, 3 and
where each pedix is computed modulo n = 4:

(y0,i, y1,i+1, y2,i+2, y3,i+3) = Q(x0,i, x1,i+1, x2,i+2, x3,i+3) .

3 Propagation of rotational pairs

In this section, we first define a set of necessary and sufficient conditions for the
propagation of rotational pairs through ChaCha quarter round. We then use
these conditions to derive a lower and an upper bound for the probability of this
propagation to happen through the quarter round. Then, we describe how to
extend the bounds to a full round, and finally to the full permutation.

3.1 Conditions for rotational pairs propagation

We are interested in studying the probability of the propagation through the
quarter rounds of rotational pairs, i.e., of

p = Pr[(←−y0 r,←−y1 r,←−y2 r,←−y3 r) = Q(←−x0r,←−x1r,←−x2r,←−x3r)] . (9)

To do so, we first prove the following proposition.

Proposition 1. Given ChaCha quarter round Q defined as above with the non
negative integers r1, r2, r3, r4 ≤ w− 1, and given the rotational amount r ≤ w− 1,
then

(y0≪ r, y1≪ r, y2≪ r, y3≪ r) = Q(x0≪ r, x1≪ r, x2≪ r, x3≪ r)

⇐⇒
(x0≪ r)� (x1≪ r) = (x0 � x1)≪ r

(b3≪ r)� (x2≪ r) = (b3 � x2)≪ r

((x0 � x1)≪ r)� (b1≪ r) = (x0 � x1 � b1)≪ r

(y3≪ r)� ((b3 � x2)≪ r) = (y3 � b3 � x2)≪ r .

Proof. Let us consider what happens to the output if, instead of the input
(x0, x1, x2, x3), we use the input (x0≪ r, x1≪ r, x2≪ r, x3≪ r), where every
string is rotated r places to the left. First of all we find

b̃0 = (x0≪ r)� (x1≪ r) (10)

b̃3 =
(
b̃0 ⊕ (x3≪ r)

)
≪ r1 (11)

b̃2 = b̃3 � (x2≪ r) (12)

b̃1 =
(
b̃2 ⊕ (x1≪ r)

)
≪ r2 (13)



and

ỹ0 = b̃0 � b̃1 (14)

ỹ3 =
(
ỹ0 ⊕ b̃3

)
≪ r3 (15)

ỹ2 = ỹ3 � b̃2 (16)

ỹ1 =
(
ỹ2 ⊕ b̃1

)
≪ r4 (17)

Now, the conditions that must be simultaneously fulfilled in order to obtain

(y0≪ r, y1≪ r, y2≪ r, y3≪ r) = (ỹ0, ỹ1, ỹ2, ỹ3) , (18)

are the following:

ỹ0 = y0≪ r⇐⇒ b̃0 � b̃1 = (b0 � b1)≪ r (19)

ỹ3 = y3≪ r⇐⇒
(
ỹ0 ⊕ b̃3

)
≪ r3 = ((y0 ⊕ b3)≪ r3)≪ r (20)

ỹ2 = y2≪ r⇐⇒ ỹ3 � b̃2 = (y3 � b2)≪ r (21)

ỹ1 = y1≪ r⇐⇒
(
ỹ2 ⊕ b̃1

)
≪ r4 = ((y2 ⊕ b1)≪ r4)≪ r (22)

These constraints can be simplified, observing that from (20), considering the
condition ỹ0 = y0 ≪ r and thanks to the distributive property of bit rotation
with respect to ⊕, we have(

(y0≪ r)⊕ b̃3
)
≪ r3 = ((y0 ⊕ b3)≪ r3)≪ r

= ((y0≪ r)⊕ (b3≪ r))≪ r3 .

Thus, we must have

b̃3 = b3≪ r (23)

and from (22) in an analogous way, using the condition ỹ2 = y2 ≪ r, we find
that

b̃1 = b1≪ r (24)

must hold. Now considering (23) and equalities (2) and (11) we easily observe
that(

b̃0≪ r1

)
⊕ ((x3≪ r)� r1) = ((b0≪ r)≪ r1)⊕ ((x3≪ r)≪ r1)

and we find

b̃0 = b0≪ r. (25)

In a similar way, considering (24) and equalities (4) and (13) we have(
b̃2≪ r2

)
⊕ ((x1≪ r)� r2) = ((b2≪ r)≪ r2)⊕ ((x1≪ r)≪ r2)



obtaining
b̃2 = b2≪ r. (26)

Thus condition (18) corresponds to the following four conditions

b̃0 = b0≪ r (27)

b̃2 = b2≪ r (28)

(b0≪ r)� (b1≪ r) = (b0 � b1)≪ r (29)

(y3≪ r)� (b2≪ r) = (y3 � b2)≪ r (30)

or equivalently

(x0≪ r)� (x1≪ r) = (x0 � x1)≪ r (31)

(b3≪ r)� (x2≪ r) = (b3 � x2)≪ r (32)

((x0 � x1)≪ r)� (b1≪ r) = (x0 � x1 � b1)≪ r (33)

(y3≪ r)� ((b3 � x2)≪ r) = (y3 � b3 � x2)≪ r (34)

ut

Remark 1. Before trying to estimate the probability p, i.e., that all conditions
(31), (32), (33) and (34) simultaneously hold, we observe that the rotation r4
used in ChaCha quarter round function is not involved in any of these equations,
neither implicitly nor explicitly.

3.2 Bounds for the quarter round

We recall the result obtained in Corollary 4.12 by Daum [12] on the propagation
of the rotational probability with respect to modular addition.

Proposition 2. Let a and b be independent and uniformly distributed strings of
w bits, and 1 ≤ r ≤ w − 1 an integer. Then

D = Pr[(a≪ r)� (b≪ r) = (a� b)≪ r] =

=
1 + 2−(w−r) + 2−r + 2−w

4
=

(2r + 1)(2w−r + 1)

2w+2
.

(35)

The previous result can be generalized for the case where we have more than 2
addends.

Proposition 3. Let a1, a2, . . . , ak be independent and uniformly distributed bit-
strings of w bits, and 1 ≤ r ≤ w − 1 an integer. Then

Pr
[
�ki=1 (ai≪ r) =

(
�ki=1ai

)
≪ r

]
=
F (r, k,w)F (w − r, k,w)

2kw
(36)

where, for 1 ≤ q ≤ w − 1,

F (q, k,w) =
∑⌊

k(2q−1)
2w

⌋
h=0

∑k
j=0(−1)j

(
k
j

) ((
h2w−(j−1)2q−1+k
h2w−(j−1)2q−1

)
−
(
h2w−j2q−1+k
h2w−j2q−1

))
. (37)



Proof. In order to evaluate the number of solutions to

�ki=1 (ai≪ r) =
(
�ki=1ai

)
≪ r (38)

i.e., how many w-bit words a1, . . . , ak satisfy (38), we represent every binary
string ai and its left rotation by r as integers:

ai = aLi 2w−r + aRi ,

ai≪ r = aRi 2r + aLi

where 0 ≤ aLi ≤ 2r − 1 and 0 ≤ aRi ≤ 2w−r − 1, are, respectively, the integers
represented by the left r places and right w − r places of the binary string ai.
Now, if

k∑
i=1

aLi = m2r + w,
k∑
i=1

aRi = t2w−r + s (39)

with m, t, w, s non negative integers such that w ≤ 2r − 1 and s ≤ 2w−r − 1, we
have

(
�ki=1ai

)
=

((
k∑
i=1

aLi

)
2w−r +

k∑
i=1

aRi

)
mod 2w = ((w+ t)2w−r + s) mod 2w

thus, since s ≤ 2w−r − 1(
�ki=1ai

)
≪ r = s2r + u, u = (w + t) mod 2r (40)

On the other hand

�ki=1 (ai≪ r) =

((
k∑
i=1

aRi

)
2r +

k∑
i=1

aLi

)
mod 2w (41)

= ((s+m)2r + w) mod 2w (42)

and since w ≤ 2r − 1

�ki=1 (ai≪ r) = v2r + w, v = (s+m) mod 2w−r (43)

Thus from (40) and (43) we have that (38) holds if and only if

s2r + u = v2r + w (44)

Hence by (40) and since w ≤ 2r − 1 we have

u = (w + t) mod 2r = w mod 2r

which implies

t = c2r c ∈ N (45)



and also that u = w. Thus we find from equality (44) that s must be equal to v,
which implies

m = d2w−r d ∈ N (46)

since from (43) we have v = (s+m) mod 2w−r. Therefore substituting (45) and
(46) in (39) we observe that in order to count the number of solutions to (38) we
have to count the number F (q, k,w) of solutions in non negative integers yi of
the systems {∑k

i=1 yi = h2w + l

0 ≤ yi ≤ 2q − 1
(47)

with l = 0, 1, . . . , 2q − 1 and where h = 0, . . . ,
⌊
k(2q−1)

2w

⌋
since we must have

h2w + l ≤ k(2q − 1) or equivalently

h+
l

2w
≤ k(2q − 1)

2w
, 0 ≤ l

2w
< 1

Thanks to Theorem 4.3 p. 138 of [11] the number of solutions of (47) for a fixed
value of l is

k∑
j=0

(−1)j
(
k

j

)(
h2w + l − j2q + k − 1

h2w + l − j2q

)
,

thus summing for all the values of l gives

2q−1∑
l=0

k∑
j=0

(−1)j
(
k

j

)(
h2w + l − j2q + k − 1

h2w + l − j2q

)
=

=

k∑
j=0

(−1)j
(
k

j

) h2w−(j−1)2q−1∑
i=h2w−j2q

(
i+ k − 1

i

)
=

=

k∑
j=0

(−1)j
(
k

j

)((
h2w − (j − 1)2q − 1 + k

h2w − (j − 1)2q − 1

)
−
(
h2w − j2q − 1 + k

h2w − j2q − 1

))
and with a final summation on the values of h we obtain (37). Therefore the
number of solutions to (38) clearly is the product F (r, k,w)F (w − r, k,w) and
since we have 2kw possible choices for the k w-bit strings ai we easily obtain
(36). ut
Remark 2. In Proposition 3 we have derived a formula for the probability that
equality (38) holds. This result is in general different from the one on chained
modular addictions in Lemma 2 of [14] since we do not deal with a chain and so
we do not request that all the conditions similar to (38) involving a1, a2, . . . , ah
with h = 2, . . . , k − 1 must also be simultaneously satisfied.

Corollary 1. Let a, b, c be independent and uniformly distributed strings of w
bits, and 1 ≤ r ≤ w − 1 an integer. Then

Pr [(a≪ r)� (b≪ r)� (c≪ r) = (a� b� c)≪ r] =

=
D(2r + 2)(2w−r + 2)

9 · 2w
+ 1{r=1∨r=w−1}

4

23w

(
2w−1

2w−1 − 3

)
= P (r,w)

(48)



where with 1Z we indicate the usual characteristic function of Z, which is equal
to 1 when Z is true and equal to 0 when Z is false.

Proof. If we use formula (36) with k = 3 and 1 ≤ q ≤ w − 1 we observe that

3(2q − 1)

2w
=

2q+1 + 2q − 3

2w
=

2q+1

2w
+

2q − 3

2w

thus since 0 < 2q−3
2w < 1 we have⌊

3 (2q − 1)

2w

⌋
= 1

when q = w − 1. Therefore when we use (36) with r = w − 1 or, equivalently,
r = 1 we find from (37)

F (1, 3,w) = 4, F (w − 1, 3,w) =

(
2w−1 + 2

2w−1 − 1

)
+

(
2w−1

2w−1 − 3

)
while if 2 ≤ r ≤ w − 2 we have

F (r, 3,w) =

(
2r + 2

2r − 1

)
, F (w − r, 3,w) =

(
2w−r + 2

2w−r − 1

)
since in these situations 0 < 3(2q−1)

2w < 1 for q = r,w − r. Thus a straightforward
calculation shows that (48) holds. ut

Remark 3. We observe that when 2 ≤ r ≤ w − 2 this result shows a value equal
to case k = 3 of Lemma 2 in [14] , in which we have the probability of chained
modular additions for a1, a2, . . . , ak, w-bits words chosen at random given by

Pr[E ] =
1

23w

(
2r + 2

2r − 1

)(
2w−r + 2

2w−r − 1

)
=
D(2r + 2)(2w−r + 2)

9 · 2w
(49)

where

E = [(a1 � a2)≪ r = (a1≪ r)� (a2≪ r)]∩
[(a1 � a2 � a3)≪ r = (a1≪ r)� (a2≪ r)� (a3≪ r)] .

(50)

On the other hand when r = 1 or r = w − 1 from (48) we find the different value

P (1,w) = P (w − 1,w) =
4(22w−3 + 1)

3 · 22w
.

which is greater than the corresponding one given by (49) This is an immediate
consequence of the fact that if k = 3 we have one more addend to be considered
in (37) only when r = 1,w− 1, i. e., more solutions to (38) than to the system of
equalities in (50).

We now show how to obtain an upper and lower bound for the rotational
probability.



Theorem 1. The rotational probability p of a single ChaCha quarter round is
such that,

D3P (r,w) ≤ p ≤
(
D(2r + 2)(2w−r + 2)

9 · 2w

)2

(51)

Proof. Let us suppose that we can couple equations (31), (33) and equations (32),
(34), considering respectively x0, x1, b1 and y3, b3, x2 as two triplets of random w-
bits words. Then we may find an upper bound for p multiplying the probabilities
of the two chains

E1 = [(x0 � x1)≪ r = (x0≪ r)� (x1≪ r)]∩

[(x0 � x1 � b1)≪ r = (x0≪ r)� (x1≪ r)� (b1≪ r)]

E2 = [(b3 � x2)≪ r = (b3≪ r)� (x2≪ r)]∩

[(y3 � b3 � x2)≪ r = (y3≪ r)� (b3≪ r)� (x2≪ r)]

obtaining p ≤ Pr[E1] Pr[E2] = Pr[E ]2 , i.e., p ≤
(
D(2r+2)(2w−r+2)

9·2w

)2
since in the

real situation, where those triplets of words are in general not all independent,
there are less possible values which satisfy conditions (31), (32), (33), (34), with
respect to all possible value that they may assume.

In order to obtain a lower bound we observe that (31) and (32) hold with
probability D since we may consider (x0, x1) and (b3, x2) as couples of independent
and uniformly distributed random variables. Moreover we may also request the
restrictive condition that (y3, b3 � x2) are independent and uniformly distributed
random variables such that also (34) hold with probability D, considering for
(33) the probability given by (48) and obtaining p ≥ D3P (r,w) . Thus we have

D3P (r,w) ≤ p ≤
(
D(2r+2)(2w−r+2)

9·2w

)2
. ut

3.3 Experimental result

To have an additional experimental confirmation of the correctness of the bounds
in Theorem 1, we implemented a toy version of ChaCha quarter round, us-
ing smaller word bit size and several different combinations of round rota-
tions r0, r1, r2, r3,. To run the experiment, we exhaustively search through
all possible values of (x0, x1, x2, x3), then we computed (←−x0r, . . . ,←−x3r), evalu-
ated both 4tuples over the quarter round function Q, and finally checked if
the condition (←−y0 r, . . . ,←−y3 r) = Q(←−x0r, . . . ,←−x3r) was verified, and counted how
many times we would happen (#collisions column in Table 1). In Table 1,
we show some of the results for word size of 4, 5, and 6 bits. The value p is
the probability to have a rotational collision for a random permutation f , i.e.
p = Pr[(←−y0 r, . . . ,←−y3 r) = f(←−x0r, . . . ,←−x3r)]. Notice that the case r is equal to w − r,
so we do not report it in the table.



w = 4, (r0, r1, r2, r3) = (1, 3, 2, 1)

r #collisions Lower Bound p Upper Bound p

1 747 0.00880 ∼ 2−6.83 0.01140 0.01373 ∼ 2−6.19 2−16.00

2 388 0.00582 ∼ 2−7.42 0.00592 0.00954 ∼ 2−6.71 2−16.00

w = 5, (r1, r2, r3, r4) = (4, 3, 2, 1)

r #collisions Lower Bound p Upper Bound p

1 8917 0.00630 ∼ 2−7.31 0.00850 0.00992 ∼ 2−6.66 2−20.00

2 3405 0.00318 ∼ 2−8.30 0.00325 0.00536 ∼ 2−7.54 2−20.00

w = 6, (r1, r2, r3, r4) = (5, 3, 2, 1)

r #collisions Lower Bound p Upper Bound p

1 123317 0.00528 ∼ 2−7.57 0.00735 0.00834 ∼ 2−6.91 2−24.00

2 39482 0.00228 ∼ 2−8.78 0.00235 0.00388 ∼ 2−8.01 2−24.00

3 32628 0.00174 ∼ 2−9.17 0.00194 0.00302 ∼ 2−8.37 2−24.00

Table 1. Experimental results on a toy version of ChaCha quarter round.

3.4 Bounds propagation through the full round

We indicate with

– Y = R(X) the application of one round of the ChaCha permutation (either
a column or a diagonal round).

– Y = Ri(X) the application of i consecutive round of the ChaCha permutation,
alternating column to diagonal rounds (where the first round R1 is a column
round).

The following theorem shows how to extend the lower and upper bounds of
Theorem 1 from the ChaCha quarter round to one full round of the ChaCha
permutation.

Theorem 2. Let L,U be such that L ≤ Pr
[←−←−y = Q(

←−←−x )
]
≤ U. Then

Ln ≤ Pr

[←−←−
Y = R(

←−←−
X )

]
≤ Un (52)

Proof. Since a full round applies n quarter rounds independently in parallel, to
extend the bounds from Theorem 1 it is sufficient to multiply the probabilities,
i.e., for the rounds where the quarter round is applied to the columns we have

Pr

[←−←−
Y = R(

←−←−
X )

]
=

Pr



←−−y0,0

...
←−−−yn−1,0

 = Q


←−−x0,0

...
←−−−yn−1,0

 ∧ · · · ∧

←−−−y0,n−1

...
←−−−−−yn−1,n−1

 = Q


←−−−x0,n−1

...
←−−−−−yn−1,n−1


 =

Pr



←−−y0,0

...
←−−−yn−1,0

 = Q


←−−x0,0

...
←−−−yn−1,0


 · . . . · Pr



←−−−y0,n−1

...
←−−−−−yn−1,n−1

 = Q


←−−−x0,n−1

...
←−−−−−yn−1,n−1


 .



For the rounds where the quarter round is applied to the diagonals, the proof is
alike. ut

Recall that, in Theorem 1, for n = 4, we proved that L = D3P (r,w) and

U =
(
D(2r+2)(2w−r+2)

9·2w

)2
.

3.5 Bounds propagation through the full permutation

The following theorem shows how to extend the lower and upper bounds of
Theorem 2 from one round of ChaCha to i consecutive rounds. To prove the
theorem, we make an assumption that seems to be a good approximation of
what happens in practice, i.e. we assume that the input states of each round are
independent and uniformly distributed.

Theorem 3. Let L,U be such that L ≤ Pr
[←−←−y = Q(

←−←−x )
]
≤ U. Then

Lni ≤ Pr

[←−←−
Y = Ri(

←−←−
X )

]
≤ Uni (53)

Proof. Because of Theorem 2, we have that Ln ≤ Pr

[←−←−
Y = R1(

←−←−
X )

]
≤ Un. For the

inductive step, notice that Pr

[←−←−
Y = Ri(

←−←−
X )

]
= Pr

[←−←−
Y = R(Ri−1(

←−←−
X ))

]
. Thus,

for the assumption of independence of each state, we have that the equal-

ity Pr

[←−←−
Y = R(Ri−1(

←−←−
X ))

]
= Pr

[←−←−
Y = R(

←−−−−−−←−−−−−−
Ri−1(X))

]
holds with probability

bounded by Ln and Un. ut

4 Distinguisher description

When
←−←−y r = F (

←−←−x r), we say that F has a parallel rotational collision (or simply a
rotational collision) in x with respect to r. In this section, we show that, up to a
certain number of rounds, ChaCha permutation has more rotational collisions
with respect to a random permutation with a fixed point. We first describe what
is the probability to have a rotational collision for a random permutation Π with
a fixed point. Then, we use this probability and the bounds from subsection 3.5
to distinguish ChaCha permutation from Π.

4.1 Rotational collisions of a random permutation

For every set A, let S(A) be the group of permutations over A. Moreover, for each

permutation Π : (Fw
2 )k → (Fw

2 )k let CΠ := #
{
x ∈ (Fw

2 )k : Π(
←−←−x ) =

←−−−←−−−
Π(x)

}
be

the number of rotational collisions of Π. We want first to compute the expected
number of rotational collisions of a random permutation.



Proposition 4. We have #
{
x ∈

(
Fw
2

)k
: x =

←−←−x
}

= 2k gcd(w,r) .

Proof. For each x = (x1, . . . , xk) ∈
(
Fw
2

)k
we have x =

←−←−x if and only if xi =←−xi
for each i ∈ {1, . . . , k}. Hence, it is enough to show that #

{
x ∈ Fw

2 : x =←−x
}

=

2gcd(w,r) . In turn, this is equivalent to the assertion that the permutation of
Z/wZ given by k 7→ k + r has gcd(w, r) cycles, which is a well-known fact. ut

We can now compute the expected number of rotational collisions of a random
permutation.

Proposition 5. Let Π be a uniformly random variable in S
(
(Fw

2 )k
)
. Then

E[CΠ ] =
2wk + 22k gcd(w,r) − 2k gcd(w,r)+1

2wk − 1
.

Proof. By the definition of expected value, we have

E[CΠ ] =
1

#S
(
(Fw

2 )k
) ∑
Π∈S((Fw

2)
k)

#
{
x ∈ (Fw

2 )k : Π(
←−←−x ) =

←−−−←−−−
Π(x)

}
=

1

(2wk)!

∑
Π∈S((Fw

2)
k)

∑
x∈(Fw

2)
k

1
[
Π(
←−←−x ) =

←−−−←−−−
Π(x)

]
=

1

(2wk)!

∑
x∈(Fw

2)
k

∑
Π∈S((Fw

2)
k)

1
[
Π(
←−←−x ) =

←−−−←−−−
Π(x)

]
=

1

(2wk)!

∑
x∈(Fw

2)
k

#
{
Π ∈ S

(
(Fw

2 )k
)

: Π(
←−←−x ) =

←−−−←−−−
Π(x)

}
=

1

(2wk)!

∑
x,y∈(Fw

2)
k

Nx,y,

where Nx,y := #
{
Π ∈ S

(
(Fw

2 )k
)

: Π(x) = y ∧Π(
←−←−x ) =

←−←−y
}
, for every x,y ∈

(Fw
2 )k. Hence, we have to compute Nx,y. There are four cases:

1. If x =
←−←−x and y =

←−←−y , then Nx,y = (2wk − 1)!

2. If x 6=
←−←−x and y 6=

←−←−y , then Nx,y = (2wk − 2)!

3. If x 6=
←−←−x and y =

←−←−y , then Nx,y = 0

4. If x =
←−←−x and y 6=

←−←−y , then Nx,y = 0



Consequently, using also Proposition 4, we get the claimed formula:

E[CΠ ] =
1

(2wk)!


∑

x,y∈(Fw
2)

k

x=
←−←−x , y=

←−←−y

(2wk − 1)! +
∑

x,y∈(Fw
2)

k

x6=
←−←−x , y 6=

←−←−y

(2wk − 2)!


=

1

2wk

∑
x,y∈(Fw

2)
k

x=
←−←−x , y=

←−←−y

1 +
1

2wk(2wk − 1)

∑
x,y∈(Fw

2)
k

x 6=
←−←−x , y 6=

←−←−y

1

=
1

2wk
· 22k gcd(w,r) +

1

2wk(2wk − 1)
·
(
2wk − 2k gcd(w,k)

)2
=

2wk + 22k gcd(w,r) − 2k gcd(w,r)+1

2wk − 1
.

ut

For w = 32, n = 4, and r = 1, then E[CΠ ] is basically 1. As a consequence,
for a random permutation Π with a fixed point, then E[CΠ ] is basically 2.

4.2 ChaCha permutation vs random permutation

In Table 2, we display the lower and upper bounds of subsection 3.5, Theorem 3,
for w = 32, n = 4, r = 1, and rounds from 1 to 20. As we showed in subsection 4.1,
for a random permutation Π ∈ S(Fnw

2 ) with one fixed point, a rotational collision
happens with probability very close to 2/2nw. In the case of ChaCha parameters
this probability is 1/2511. Thus, we can build a distinguisher A with access to
an oracle Oracle running either ChaChaπ with ρ rounds or Π. Let Lni and Uni

be, respectively, the upper and lower bound of Theorem 3, with i = 1, . . . , ρ.
The algorithm A runs as follow: generate binary strings Xi ∈ Fnw

2 for i =
1, . . . , d1/Unie; ask the oracle the corresponding output Yi = Oracle(Xi); if there

exists i such that
←−←−
Yi = Oracle(

←−←−
Xi) then the algorithm says the oracle is running

ChaChaπ. If such i does not exists, then the oracle is running Π.
The complexity of the algorithm A is dominated by the 2d1/Unie calls to the

oracle. For example, to distinguish ChaChaπ with 8 rounds, A performs 2231 calls
to the oracle, while for ChaChaπ with 17 rounds, the calls are 2489. After the
17th round, A can not distinguish ChaChaπ from Π anymore.

5 Conclusion

We showed that parallel rotational collisions are more likely to happen in ChaCha
underlying permutation with up to 17 rounds, than in a random permutation
of the same input size. We are not aware of any theoretical study of ChaCha
rotational properties, and we leave to future research finding an application of
our results to the cryptanalysis of ChaCha stream cipher.



Round Lower Bound Lni Upper Bound Uni Round Lower Bound Lni Upper Bound Uni

1 ∼ 2−27.32 ∼ 2−28.68 11 ∼ 2−300.52 ∼ 2−315.48

2 ∼ 2−54.64 ∼ 2−57.36 12 ∼ 2−327.84 ∼ 2−344.16

3 ∼ 2−81.96 ∼ 2−86.04 13 ∼ 2−355.16 ∼ 2−372.84

4 ∼ 2−109.28 ∼ 2−114.72 14 ∼ 2−382.48 ∼ 2−401.52

5 ∼ 2−136.60 ∼ 2−143.40 15 ∼ 2−409.80 ∼ 2−430.20

6 ∼ 2−163.92 ∼ 2−172.08 16 ∼ 2−437.12 ∼ 2−458.88

7 ∼ 2−191.24 ∼ 2−200.76 17 ∼ 2−464.45 ∼ 2−487.55

8 ∼ 2−218.56 ∼ 2−229.44 18 ∼ 2−491.77 ∼ 2−516.23

9 ∼ 2−245.88 ∼ 2−258.12 19 ∼ 2−519.09 ∼ 2−544.91

10 ∼ 2−273.20 ∼ 2−286.80 20 ∼ 2−546.41 ∼ 2−573.59

Table 2. Bounds propagation through ChaCha rounds with w = 32, n = 4, and r = 1.
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