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Abstract. Let Fq be a finite field and Eb : y2 = x3 + b be an ordinary elliptic Fq-curve of

j-invariant 0 such that
√
b ∈ Fq. In particular, this condition is fulfilled for the curve BLS12-

381 and for one of sextic twists of the curve BW6-761 (in both cases b = 4). These curves are
very popular in pairing-based cryptography. The article provides an efficient constant-time
encoding h : Fq → Eb(Fq) of an absolutely new type for which q/6 6 #Im(h). We prove that at
least for q ≡ 4 (mod 9) the hash function H : {0, 1}∗ → Eb(Fq) induced by h is indifferentiable
from a random oracle. The main idea of our encoding consists in extracting in Fq (for q ≡
1 (mod 3)) a cubic root instead of a square root as in the well known (universal) SWU
encoding and in its simplified analogue. Besides, the new hashing can be implemented without
quadratic and cubic residuosity tests (as well as without inversions) in Fq. Thus in addition to
the protection against timing attacks, H is much more efficient than the SWU hash function,
which generally requires to perform 4 quadratic residuosity tests in Fq. For instance, in the
case of BW6-761 this allows to avoid approximately 4·761 ≈ 3000 field multiplications.

Key words: cubic residue symbol and cubic roots, elliptic surfaces, hashing to elliptic
curves, indifferentiability from a random oracle, pairing-based cryptography.

Introduction

Many protocols of pairing-based cryptography [1] use a hash function H : {0, 1}∗ → Eb(Fq)
indifferentiable from a random oracle [2, Definition 2]. In particular, H should be constant-
time, i.e., the computation time of its value is independent of an input argument. The latter
is necessary in order to be protected against timing attacks [1, §8.2.2, §12.1.1]. A survey of
this kind of hashing is well represented in [1, §8], [3].

In practice, almost all hash functions H are induced from some mapping h : Fq → Eb(Fq),
called encoding, such that #Im(h) = Θ(q). Here q ≈ #Eb(Fq) according to the Hasse inequal-
ity [4, Theorem V.1.1]. In other words, h should cover most Fq-points of Eb. However there are
no surjective encodings h for ordinary (i.e., non-supersingular) curves Eb. As is well known,
only such curves are applied in pairing-based cryptography. Thus the trivial composition
h ◦ h with a hash function h : {0, 1}∗ → Fq is not appropriate.

Instead, it is often considered the composition H := h⊗2 ◦ h of a hash function h :
{0, 1}∗ → F2

q and the tensor square

h⊗2 : F2
q → Eb(Fq), h⊗2(t, t′) := h(t) + h(t′).
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In this case the indifferentiability of H follows from [2, Theorem 1] if h is so and h⊗2 is
admissible in the sense of [2, Definition 4].

There is the so-called SWU encoding [1, §8.3.4], which is applicable to any elliptic Fq-
curve (not necessarily of j = 0). Nevertheless, it generally requires the computation of two
Legendre symbols (i.e., quadratic residuosity tests) in Fq. Unfortunately, this operation (as
well as the inversion one in Fq) is vulnerable to timing attacks if it is not implemented as the
exponentiation in Fq. But the latter is known to be a fairly laborious operation.

There is also the simplified SWU encoding [2, §7], which, on the contrary, can be im-
plemented without Legendre symbols at all by virtue of [5, §2]. This encoding exists for
all elliptic curves E with j(E) 6= 0. The most difficult case j(E) = 1728 is processed in [6].
Besides, it exists for Eb in the case 3

√
b ∈ Fq, that is 2 | #Eb(Fq) (see [7, Remark in §2]).

Therefore throughout the article we will assume the converse. However at the moment the
encoding is still not applicable to some curves Eb, including the sextic twist (with b = 4) of
the curve BW6-761 from [8].

The simplified SWU encoding is sometimes constructed by means of a vertical Fq-isogeny
(the Wahby–Boneh approach [9]) or Fq2-isogeny (the Koshelev approach [5]) ψ : E → Eb of
small degree d. For example, the curve BLS12-381 (also with b = 4) [9, §2.1] benefits from a
vertical Fq-isogeny of degree d = 11. More precisely, for ψ defined over Fq (unlike that over
Fq2) the encoding can be realized simply as the composition h := ψ ◦ h′ : Fq → Eb(Fq), where
h′ : Fq → E(Fq).

The disadvantage of using such isogenies is increasing the computational time of h as
d→∞, even though this correlation is linear. Indeed, since 2 - #Eb(Fq), it is sufficient to
assume that 2 - d. According to Vélu’s formulas [10, §12.3] we have

ψ(x, y) =

(
ψ0(x)

ψ1(x)
, y

ψ2(x)

ψ3(x)

)
,

where ψi are polynomials of degrees

deg(ψ0) = d, deg(ψ1) = d− 1, deg(ψ2) = deg(ψ3) = 3(d− 1)/2.

Thus the computing ψ requires ≈ 5d field multiplications if Horner’s method is applied to
evaluate ψi.

As a consequence, new constructions of efficient constant-time encodings h : Fq → Eb(Fq)
are desirable in order to be independent of the existence of isogenies. The given work discovers
one such encoding provided that

√
b ∈ Fq. We also prove that h⊗2 is admissible (at least for q ≡

4 (mod 9)) and hence the corresponding hash function H : {0, 1}∗ → Eb(Fq) is indifferentiable
from a random oracle.

1 Geometric results

We everywhere assume that char(Fq) > 3 and q ≡ 1 (mod 3), i.e., ω := 3
√

1 ∈ F∗q , where ω 6= 1.
By virtue of [4, Example V.4.4] this is true if Eb is an ordinary elliptic curve. Further, for i ∈
{0, 1, 2} consider the elliptic curves E

(i)
b : y2i = bix3i + b. Note that E

(1)
b , E

(2)
b are two different

cubic Fq-twists of Eb = E
(0)
b . There is on E

(i)
b the Fq-automorphism [ω] : (xi, yi) 7→ (ωxi, yi) of

order 3.
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Take the quotient T := (Eb×E(1)
b ×E

(2)
b )/[ω]×3, which is a Calabi–Yau threefold according

to [11, §1.3]. It is readily seen that it has the affine model

T :

{
y21 − b = bt31(y

2
0 − b),

y22 − b = b2t32(y
2
0 − b)

⊂ A5
(y0,y1,y2,t1,t2)

,

where tj := xj/x0. By the way, the SWU encoding deals with another Calabi–Yau Fq-
threefold.

Putting t := t1 = t2, we obtain the Fq(t)-curve given as the intersection of two quadratic
Fq(t)-surfaces

E :

{
y21 − b = bt3(y20 − b),
y22 − b = b2t3(y20 − b)

⊂ A3
(y0,y1,y2)

,

where Fq(t) denotes the rational function field in one variable t over the constant field Fq.

Lemma 1 ([12]). E is an elliptic Fq(t)-curve of j-invariant

256·
(
b4t6 − b2(b+ 1)t3 + b2 − b+ 1

)3(
b(b− 1)(b2t3 − 1)(bt3 − 1)

)2 .

In other words, E ⊂ A4
(y0,y1,y2,t)

is an elliptic Fq-surface (see, e.g., [13, Chapter III]), whose

the elliptic fibration is the projection to t. In [10, §2.5.4] it is described how to transform E
into Weierstrass form.

Using the theory of the Mordell–Weil lattices of elliptic Fq-surfaces, we establish the
following result, which can be readily checked. At the same time, in order not to complicate
the text we do not explain how exactly the formulas are derived.

Theorem 1 ([12]). E has the Fq(t)-point (i.e., Fq-section) ϕ, whose the coordinates are the
irreducible fractions yi(t) := numi(t)/den(t), where

num0(t) :=
√
b ·
(
−b2(b− 1)2 ·t6 − 2b(b+ 1)·t3 + 3

)
,

num1(t) :=
√
b ·
(
b2(b+ 3)(b− 1)·t6 − 2b(b− 1)·t3 + 1

)
,

num2(t) :=
√
b ·
(
b2(3b+ 1)(b− 1)·t6 − 2b(b− 1)·t3 − 1

)
,

den(t) := b2(b− 1)2 ·t6 − 2b(b+ 1)·t3 + 1.

Moreover, y0(t)− y1(t) + y2(t) =
√
b.

For the frequent case b = 4 we obtain

num0(t) = 2·
(
−2432 ·t6 − 235·t3 + 3

)
, num1(t) = 2·

(
243·7·t6 − 233·t3 + 1

)
,

num2(t) = 2·
(
243·13·t6 − 233·t3 − 1

)
, den(t) = 2432 ·t6 − 235·t3 + 1.

Consider the Fq-curves

Ci :

{
y2 = x3 + b,

den(t)y = numi(t)
⊂ A3

(t,x,y).
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We will identify Ci with their projective closures in P1×Eb ⊂ P1×P2. Also, let

∞ := (1 : 0) ∈ P1, P0 := (0,
√
b) ∈ Eb, O := (0 : 1 : 0) ∈ Eb

and
Q0 := (∞,−P0), Q1 := (0, P0), Q2 := (0,−P0).

Lemma 2 ([12]). The curves Ci are absolutely irreducible and Qi is the unique singular point
on Ci ⊂ P1×P2. Moreover, Qi is an ordinary one of multiplicity 3.

Let σi : C
′
i → Ci be the corresponding normalizations. As is known,

#σ−1i (Qi) = 3, σi : C
′
i \ σ−1i (Qi) ∼−→ Ci \ {Qi}.

We have the projections prP1 : Ci → P1 and prEb
: Ci → Eb as well as the coverings

πi := prP1 ◦ σi : C ′i → P1, ρi := prEb
◦ σi : C ′i → Eb

of degrees 3 and 6 respectively. Moreover, πi are cyclic (i.e., Kummer) coverings.

Lemma 3. The geometric genus g(C ′i) = 13.

Proof. Applying the Riemann–Hurwitz formula [4, Theorem II.5.9] to πi, we see that g(C ′i) =
r − 2, where r is the number of ramified elements t ∈ P1. It is easily checked that t is ramified
if and only if

(
yi(t) = ±

√
b and pr−1P1 (t) 6= Qi

)
or den(t) = 0. In turn,

y0(t) =
√
b ⇔ t3 =

±1

b(b− 1)
, y0(t) = −

√
b ⇔ t =∞ or t3 =

1

b(b+ 1)
,

y1(t) =
√
b ⇔ t = 0 or t3 =

−1

b(b− 1)
, y1(t) = −

√
b ⇔ t3 =

1

b(b± 1)
,

y2(t) =
√
b ⇔ t3 =

1

b(1± b)
, y2(t) = −

√
b ⇔ t = 0 or t3 =

1

b(b− 1)

and

den(t) = 0 ⇔ t3 =
1

b(
√
b± 1)2

.

Thus for every curve r = 15 and the lemma is proved.

Lemma 4. Coverings ρi : C
′
i → Eb don’t factor through a non-trivial unramified one E → Eb.

Proof. Assume the converse. Also, there is obviously the decomposition ρi = ψi ◦ ϕi into
ϕi : C

′
i → D′i and ψi : D

′
i → Eb such that

Fq(C ′i) ' Fq(D′i)[t]/(t3 − s), Fq(D′i) ' Fq(Eb)[s]/pi(s),

where pi(s) := den( 3
√
s)y − numi( 3

√
s). In particular, deg(pi) = deg(ψi) = 2 and hence ψi is

ramified. Thus Fq(C ′i) is the compositum of Fq(E) and Fq(D′i). By virtue of Abhyankar’s
Lemma [14, Theorem 3.9.1] for any P ∈ C ′i we obtain that the ramification index

e
(
P | ρi(P )

)
= e
(
ϕi(P ) | ρi(P )

)
6 2.

At the same time, there is P ∈ C ′i such that

e
(
P | ρi(P )

)
> e
(
P | ϕi(P )

)
= 3.

This contradiction proves the lemma.
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2 New encoding

For a ∈ F∗q denote by
(
a
q

)
3

:= a(q−1)/3 the cubic residue symbol, which is a group homomor-

phism F∗q → {ωi}2i=0.

Lemma 5 ([15, Remark 2.3]). An element a ∈ F∗q is a cubic residue if and only if
(
a
q

)
3

= 1.
Moreover, in this case

3
√
a =


[16, Proposition 1] if q ≡ 1 (mod 9) and q 6≡ 1 (mod 27),

a−(q−4)/9 = a(8q−5)/9 if q ≡ 4 (mod 9),

a(q+2)/9 if q ≡ 7 (mod 9).

Without loss of generality we will assume that
(
b
q

)
3

= ω.

This paragraph clarifies how the section ϕ : A1
t 99K E ⊂ A4

(y0,y1,y2,t)
from Theorem 1 gives a

constant-time encoding h : Fq → Eb(Fq). It will be considered the cases q ≡ 4 (mod 9) (occurs
for BW6-761) and q ≡ 10 (mod 27) (does for BLS12-381). The cases q ≡ 7 (mod 9) and
q ≡ 19 (mod 27) are processed in a similar way.

Letting gi := y2i − b for i ∈ {0, 1, 2}, we get E : {gj = bjt3g0 for j ∈ {1, 2}. It is obvious

that
{(

gi
q

)
3

}2
i=0

= {ωi}2i=0 whenever gi, t ∈ F∗q . Besides, denote by n ∈ {0, 1, 2} the position

number of an element t ∈ F∗q in the set
{
ωit
}2
i=0

ordered with respect to some order in F∗q .
For example, if q is a prime, then this can be the usual numerical one.

The case q ≡ 4 (mod 9). Under this assumption(ω
q

)
3

= ω(q−1)/3 = ω(q−4)/3 ·ω = ω3(q−4)/9 ·ω = ω.

Let θ := g
(8q−5)/9
0 and cj := 3

√
(b/ω)j ∈ F∗q . We obtain

gj = bjt3g0 = (cjθt)
3 if θ3 = ωjg0, i.e.,

(g0
q

)
3

= ω3−j.

Consider the auxiliary map

h′ : E(Fq)→ Eb(Fq), (y0, y1, y2, t) 7→


(
ωnθ, y0

)
if θ3 = g0,(

c1θt, y1
)

if θ3 = ωg0,(
c2θt, y2

)
if θ3 = ω2g0.

Since
θ3 = g

−(q−4)/3
0 = g

q−1−(q−4)/3
0 = g

(2q+1)/3
0 = g

2(q−1)/3
0 ·g0,

this map is well defined everywhere on E(Fq).
It is worth noting that the element θ can be computed with the cost of one exponenti-
ation in Fq even if g0 is given as a fraction u/v for any u ∈ Fq, v ∈ F∗q . Indeed,

θ = (u/v)(8q−5)/9 = u(8q−5)/9 ·v(q−4)/9 = u3(u8v)(q−4)/9. (1)
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The case q ≡ 10 (mod 27). Take any ζ := 9
√

1 ∈ F∗q such that ζ3 = ω. In this case(ζ
q

)
3

= ζ(q−1)/3 = ω(q−1)/9 = ω(q−10)/9 ·ω = ω3(q−10)/27 ·ω = ω.

Let θ := g
(2q+7)/27
0 and cj := 3

√
(b/ζ)j ∈ F∗q . Given i ∈ {0, 1, 2} we obtain

gj = bjt3g0 = (cjθt)
3/ωi if θ3 = ωiζjg0, i.e.,

(g0
q

)
3

= ω3−j.

Consider the auxiliary map

h′ : E(Fq)→ Eb(Fq), (y0, y1, y2, t) 7→


(
ωnθ/ζ i, y0

)
if ∃i : θ3 = ωig0,(

c1θt/ζ
i, y1

)
if ∃i : θ3 = ωiζg0,(

c2θt/ζ
i, y2

)
if ∃i : θ3 = ωiζ2g0.

Since
θ3 = g

(2q+7)/9
0 = g

2(q−1)/9
0 ·g0,

this map is well defined everywhere on E(Fq).
It is worth noting that the element θ can be computed with the cost of one exponenti-
ation in Fq even if g0 is given as a fraction u/v for any u ∈ Fq, v ∈ F∗q . Indeed,

θ = (u/v)(2q+7)/27 = u(2q+7)/27 ·vq−1−(2q+7)/27 = u(2q+7)/27 ·v(25q−34)/27 =

= u·u2(q−10)/27 ·v3v5(5q−23)/27 = uv8(u2v25)(q−10)/27.
(2)

In both cases, for any t ∈ Fq we put

h(t) :=

{
(h′ ◦ ϕ)(t) if den(t) 6= 0,

O if den(t) = 0.

We emphasize that in the definition of h′ (a fortiori, ϕ) the cubic residue symbol (in
other words, cubic residuosity test) does not appear. In turn, by returning the value of h
in (weighted) projective coordinates, we entirely avoid inversions in the field. Besides, the
constants ω, cj (and ζ, ζ−1 = ζ8 if q ≡ 10 (mod 27)) are found once at the precomputation
stage. Finally, by virtue of the formulas (1), (2) the value θ(t) = 0 if den(t) = 0, because
g0 = u/v for u := num2

0 − b·den2 and v := den2. In other words, h(t) = O if and only if
θ(t) = 0, but u(t) 6= 0. Calculating the value θ(t) every time regardless of whether uv(t) = 0
or not, we eventually obtain

Remark 1. The encoding h is computed in constant time, namely in that of one exponenti-
ation in Fq.

Sometimes it will be convenient to use the notation S := h−1
(
{±P0,O}

)
.

Theorem 2. For any point P ∈ Eb(Fq) we have #h−1(P ) 6 6 and hence q/6 6 #Im(h).
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Proof. First, suppose that h(t) = ±P0. Then θ(t) = g0(t) = 0 or t = 0. In the first case,

y0(t) = ±
√
b. In the second one, y0(0) = 3

√
b, g0(0) = 8b, and hence

(g0(0)
q

)
3

= ω. Since

y2(0) = −
√
b, we have h(0) = −P0. As a result, #h−1(P0) 6 6 and #h−1(−P0) 6 4. In turn,

since deg(den) = 6, we get #h−1(O) 6 6.
Now take t ∈ Fq \ S. Let the value gi(t) is a cubic residue in Fq. Then for t′ ∈ Fq from

the collision h(t) = h(t′) it follows that exists k ∈ {0, 1, 2} such that yi(t) = yk(t′). Every
given equation has at most 6 solutions in Fq with respect to t′. However the x-coordinates of
h(t′) and h(ωt′) are different, because θ(t′) = θ(ωt′). Hence we can take into account only 2
solutions (with the different cubic powers). The theorem is proved.

3 Indifferentiability from a random oracle

For i ∈ {0, 1, 2} let Ti :=
{
t ∈ Fq | 3

√
gi(t) ∈ F∗q

}
. Therefore Fq = T0 t T1 t T2 t S. Besides,

we will need the functions f0 := x and fj := x/t (for j ∈ {1, 2}) on the curves Ci.
In this paragraph q ≡ 4 (mod 9) and for t ∈ T0 we put h(t) :=

(
θ(t), y0(t)

)
, that is the

x-coordinate is not multiplied by ωn. Also, without loss of generality suppose that
( cj

q

)
3

=

ωj(8q−5)/9. These assumptions are necessary in order to
(
fi
q

)
3

= 1 whenever t ∈ Ti and x =

x
(
h(t)

)
. We use this in our proof of the following theorem. However we do not state that the

previous definition of h (or that for q ≡ 10 (mod 27)) leads to the hash function H : {0, 1}∗ →
Eb(Fq) differentiable from a random oracle.

Theorem 3. The new encoding h : Fq → Eb(Fq) is B-well-distributed in the sense of [17,
Definition 1], where B := 156 +O(q−1/2).

Proof. Fix a non-trivial character χ : Eb(Fq)→ C∗. Note that

∑
t∈Ti

χ
(
h(t)

)
=
∑

P∈C′
i(Fq)

1 +
(fi(P )

q

)
3

+
(f2

i (P )

q

)
3

3
· χ
(
ρi(P )

)
+O(1).

Here notation O(1) is used to avoid handling a finite number of ramification points (with
respect to πi) and those from π−1i

(
{0,∞}

)
. As a consequence,∣∣∣∣∣∑

t∈Ti

χ
(
h(t)

)∣∣∣∣∣ 6 1

3

∑
k∈{0,1,2}

∣∣∣∣∣∣
∑

P∈C′
i(Fq)

(fk
i (P )

q

)
3
·χ
(
ρi(P )

)∣∣∣∣∣∣+O(1).

It can easily be checked that [17, Theorem 7] remains valid if the Legendre symbol is
replaced by the cubic residue symbol. And we can use it with respect to ρi because of Lemma
4. Therefore according to Lemma 3 and the fact that

deg(x) = deg(prx ◦ ρi) = 12, deg(x/t) = deg(x) + deg(t) = 15

(where prx is the projection Eb → A1
x) we obtain∣∣∣∣∣∣

∑
P∈C′

i(Fq)

(fk
i (P )

q

)
3
·χ
(
ρi(P )

)∣∣∣∣∣∣ 6 2
(
g(C ′i)− 1 + k deg(fi)

)√
q 6

{
24(1 + k)

√
q if i = 0,

6(4 + 5k)
√
q if i ∈ {1, 2}.
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Thus ∣∣∣∣∣∑
t∈Ti

χ
(
h(t)

)∣∣∣∣∣ 6 O(1) +

{
48
√
q if i = 0,

54
√
q if i ∈ {1, 2}

and hence ∣∣∣∣∣∣
∑
t∈Fq

χ
(
h(t)

)∣∣∣∣∣∣ 6
∑

i∈{0,1,2}

∣∣∣∣∣∑
t∈Ti

χ
(
h(t)

)∣∣∣∣∣+O(1) 6 156
√
q +O(1).

The theorem is proved.

From [17, Corollary 4] it immediately follows that

Corollary 1. The distribution on Eb(Fq) defined by h⊗2 is ε-statistically indistinguishable
from the uniform one [2, Definition 3], where ε := 1562q−1/2 +O(q−3/4).

According to Remark 1 the encoding h⊗2 is efficiently computable in constant time (of two
exponentiations in Fq). In turn, [2, Algorithm 1] is readily modified, so h⊗2 is also samplable
[2, Definition 4]. Therefore we establish

Corollary 2. The encoding h⊗2 is admissible.
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