
A Scalable Simulation of the BB84 Protocol
Involving Eavesdropping

Mihai-Zicu Mina1[0000−0002−9793−9203] and Emil Simion2[0000−0003−0561−3474]

1 Faculty of Automatic Control and Computers, University POLITEHNICA of
Bucharest, 060042 Bucharest, Romania
mihai zicu.mina@stud.acs.upb.ro

2 Center for Research and Training in Innovative Techniques of Applied Mathematics
in Engineering, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania

emil.simion@upb.ro

Abstract. In this article we present the BB84 quantum key distribu-
tion scheme from two perspectives. First, we provide a theoretical dis-
cussion of the steps Alice and Bob take to reach a shared secret using
this protocol, while an eavesdropper Eve is either involved or not. Then,
we offer and discuss two distinct implementations that simulate BB84
using IBM’s Qiskit framework, the first being an exercise solved dur-
ing the “IBM Quantum Challenge” event in early May 2020, while the
other was developed independently to showcase the intercept-resend at-
tack strategy in detail. We note the latter’s scalability and increased
output verbosity, which allow for a statistical analysis to determine the
probability of detecting the act of eavesdropping.

Keywords: Quantum key distribution · BB84 · Intercept-resend attack
· Qiskit · Simulation

1 Introduction

The process of establishing a shared key is an essential operation in modern
cryptographic tasks and the distribution of such key between the communicating
parties can be ensured by using the Diffie-Hellman protocol or RSA. However, the
underlying security of these schemes is conditioned by the intractability of cer-
tain mathematical problems, an aspect that advanced quantum computers can
overcome. We would need another approach to the key sharing problem, one that
is provably secure. Fortunately, quantum theory offers a solution that fits this
criterion, quantum key distribution (QKD). The inherent features of quantum in-
formation make quantum key distribution secure from an information-theoretic
perspective [7,13,12]. However, flaws in practical implementations could be ex-
ploited by attackers. The downside of quantum key distribution is represented
precisely by such challenges in its practical deployment. The first QKD protocol
is BB84 [2], devised in 1984 and first implemented in 1989 over 32 cm [3], a
modest achievement in terms of distribution distance that has been impressively
exceeded ever since [15,11,4,5].

2 Mihai-Zicu Mina and Emil Simion

We take a closer look at the core idea behind this scheme by discussing the
operations performed by parties when an eavesdropper is absent and then when
tampering indeed occurs, which is of practical interest. For the second case, we
analyze the intercept-resend attack to which the intruder Ever resorts in her
attempt to acquire information. We give two examples to illustrate those cases
and emphasize the statistical aspect regarding Alice and Bob’s chances to detect
Eve. We then present two Qiskit simulations of the protocol, an exercise from the
“IBM Quantum Challenge” and a separate program that executes the scheme
with any number of qubits and details relevant information about each party’s
actions and the factors that lead to the conclusion.

2 BB84 protocol

The first quantum key distribution protocol was pioneered by Charles Ben-
nett and Gilles Brassard in 1984 and it exploits the uncertainty principle, which
essentially states that measuring one property of a quantum state will introduce
an indeterminacy in another property. Using BB84, Alice and Bob can arrive at a
shared key, which they can use afterwards with a symmetric encryption scheme,
such as a one-time pad. The original formulation of the protocol uses photons
as qubits, the information being encoded in their polarization. We will start our
discussion of the protocol with the case that doesn’t involve any eavesdropping.

2.1 No eavesdropping

Initially, Alice randomly generates an n-bit string k, from which the shared
key will be eventually derived. The protocol requires that she and Bob agree
on two distinct encodings of a classical bit using a qubit. For example, 0 can
be encoded by a photon that is polarized horizontally (→) and at an angle of
45◦ (↗), while 1 is then encoded by photon polarized vertically (↑) and at an
angle of 135◦ (↖). Thus, we have two bases in which a photon can be prepared
in order to represent one bit of information. The rectilinear basis is given by
{|→〉 , |↑〉}, while the diagonal basis is {|↗〉 , |↖〉}. They are conjugate bases,
because a measurement of a state from one of the basis performed in the other
basis is equally likely to return either state. In other words, an element from
one basis is a uniform superposition of the elements from the other basis. These
bases are in fact “practical” representations of the computational and Hadamard
basis. Thus, the encodings for the protocol are the following.

R : 0 7→ |→〉 , 1 7→ |↑〉 , D : 0 7→ |↗〉 , 1 7→ |↖〉

After agreeing on which bases are to be used, Alice generates again a random
sequence of n bits a, where each bit ai in turn indicates the basis she will choose
for encoding the i-th qubit. Both parties must again establish a convention here,
for example ai = 0 means that the corresponding qubit will be prepared in
the rectilinear basis. After encoding each bit ki into a qubit, Alice sends the

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 3

photon to Bob, who then measures in his own basis. Since he doesn’t know what
basis was chosen by Alice, Bob randomly picks a basis for measuring the i-th
qubit. According to the previous convention for denoting the basis, his choice is
given by a bit bi. Therefore, the bases he chooses for the total n qubits that are
transmitted constitute another bit sequence b.

Given the uncertainty revolving around Bob’s measurements, the next step
for the parties is to publicly announce the bases each of them picked, information
stored in bitstrings a and b. Following this phase, bit ki will be kept as valid only
if Alice and Bob’s choices coincided, i.e. ai = bi. The new bitstring k̃ composed
of all these ki is the shared key. Of course, Bob could obtain the correct state
even though he chose the wrong basis, but this only happens probabilistically.
On average, he chooses right 50% of the time, making the length of k̃ half the
length of the initial k.

To illustrate an example, we consider the following sequences and then ex-
amine Table 1.

k = 11000100, a = 11010011, b = 01011001

Table 1: Example of BB84 protocol without eavesdropping

Initial bit sequence k 1 1 0 0 0 1 0 0

Alice encodes: ↖ ↖ → ↗ → ↑ ↗ ↗

Bob measures: ↑ ↖ → ↗ ↖ ↑ → ↗

Bases comparison: 7 3 3 3 7 3 7 3

Shared key k̃ 1 0 0 1 0

When Bob performs his measurement, the result is colored blue to indicate that
it is probabilistic. As it can be noticed, out of all three wrong guesses he took,
the first and last states he observes are indeed the correct encodings of the bits
in the rectangular basis, but he only owes this to chance. In the end, they arrive
at a 5-bit shared key.

2.2 Intercept-resend attack

It is natural to ask how the derivation of the key is impacted by the presence
of an eavesdropper Eve. The type of attack we consider for this case is called
intercept-resend, a strategy that implies capturing the photons, measuring them
and then sending them to Bob, their intended recipient. Once she intercepts a
photon, Eve cannot do anything more than just pick a random basis in which to

4 Mihai-Zicu Mina and Emil Simion

measure it, as Bob does. Inevitably, her action will alter the state of the qubit.
It is noteworthy that she has to resort to this kind of technique because she
has to send the photons to Bob, otherwise she would compromise her presence.
Ideally, she would copy each qubit and wait for the transmission to end in order
to find out the bases used by Alice and Bob, so she could know the correct ones.
Unfortunately for her, copying arbitrary qubits is forbidden by the no-cloning
theorem [14,6], a fundamental result that sets quantum information apart from
the basic idea of copying bits, which we take for granted.

Before looking at another example that involves Eve this time, it is important
to identify several scenarios that are possible when she is present. Specifically,
we analyze how the correlation between Alice’s basis and Eve’s basis determines
what Bob will measure on his side.

Eve chooses the wrong basis: ei = ai −→ qubit is altered.

Bob chooses correctly: bi = ai −→ Eve introduces error with 50% probability.

Bob chooses incorrectly: bi = ai −→ random outcome, Eve is undetected.

Eve chooses the correct basis: ei = ai −→ qubit is unaltered.

Bob chooses correctly: bi = ai −→ Eve is undetected and has one bit of the key.

Bob chooses incorrectly: bi = ai −→ random outcome, Eve is undetected.

These possibilities reveal that for each transmitted qubit, there is 75% prob-
ability that Eve’s action goes undetected. The remaining 25% probability is due
to Bob’s correct choice when Eve chooses incorrectly: he obtains the wrong state
from his basis and therefore decodes the wrong bit. Considering that Alice’s and
Bob’s sequences of bits do not match exactly in such situation, they take an
additional step to test against eavesdropping. They decide to select a subset of
the remaining bits and compare them. If they don’t match, they know for sure
that Eve interfered. Of course, there is a compromise between the number of
bits they want to “sacrifice” to discover Eve with a high probability and the
length of the shared key, which decreases as they discard those bits that were
compared.

Table 2 shows an example. Sequences kA and kB belonging to Alice and Bob
respectively are “distilled” from the initial k. Eve’s bases are represented by e.

kA = 11000100, a = 11010011, b = 01011001, e = 10001001

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 5

Table 2: Example of BB84 protocol with eavesdropping

Initial bit sequence k 1 1 0 0 0 1 0 0

Alice encodes: ↖ ↖ → ↗ → ↑ ↗ ↗

Eve measures: ↖ ↑ → → ↗ ↑ → ↗

Bob measures: ↑ ↗ → ↗ ↗ ↑ → ↗

Bases comparison: 7 3 3 3 7 3 7 3

Alice’s bit sequence kA 1 0 0 1 0

Eve’s information: 1 0 1 0

Eve introduces error? N Y N N N N N N

Bob’s bit sequence kB 0 0 0 1 0

From Eve’s choices we notice that she guessed correctly four out of eight times,
thus gaining information about four bits from the initial bit sequence. She intro-
duces an error in the second bit, making Bob decode 0 instead of 1. The example
illustrates the idea of this attack, but it is rather impractical because the length
of k is short. In a real scenario, Alice and Bob would need to compare many bits
from kA and kB , which are about n/2 bits long on average. If they choose to
compare one bit from their respective strings, the probability of them being the
same is 0.75. For a selection of ñ bits, the probability of having all of them match
represents Eve’s chance of evading detection, which decreases exponentially with
ñ. Therefore, the probability of detection pd that Alice and Bob wish to have
above a confident threshold is given by

pd = 1− pe = 1−
(

3

4

)ñ

, ñ <
n

2
.

For example, ñ = 20 determines pe ≈ 32 × 10−4, making the probability of
finding the eavesdropper pd ≈ 0.997. The dependence of this probability on the
number of compared bits is depicted in Figure 1.

6 Mihai-Zicu Mina and Emil Simion

Fig. 1: Probability of detecting Eve increases with ñ

2.3 “IBM Quantum Challenge”

In May 2020, IBM celebrated the fourth anniversary of their Quantum Expe-
rience cloud platform by organizing an event called “IBM Quantum Challenge”
[8]. It lasted from May 4 to May 8, inviting users of the platform to solve four
exercises using the Qiskit framework [1]. Among the topics of the exercises was a
simulation of the BB84 protocol [9], whose co-designer Charles H. Bennett is an
IBM Fellow. The implementation considers n = 100 bits and the goal sought by
Alice and Bob is to obtain a shared key that is later used to encrypt a message
using a one-time pad scheme. There is no eavesdropping and the user is given
Bob’s role of performing the following operations:

– measure each qubit sent by Alice;
– compare bases with Alice and extract the 50-bit key;
– decrypt Alice’s 200-bit message by concatenating the key with itself;
– decode Alice’s binary message that “disguises” a message in Morse code:

0 character separator
1 .

00 letter separator
11 -

000 word separator

– discover the original message.

The source code for the completed exercise is given in Listing 1. Considering
its dependence on several dedicated modules, the webpage of the repository [10]
should be visited for instructions on how to get the program running properly.

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 7

Variables alice bases and bob bases are binary strings that represent param-
eters a and b we used thus far, respectively. Their bits match exactly 50 times,
thus determining the 50-bit shared key

k̃ = 10000010001110010011101001010000110000110011100000.

Alice then uses this key with a one-time pad to encrypt a 200-bit message p,
whose ciphertext can be found in the source code (variable m). Since the key
is much shorter than the plaintext, she pads the key with itself three more
times until it reaches 200 bits. Of course, the security of the scheme is weakened
because of this practice, but that is not the focus of the exercise.

m = p⊕ 4k̃

Bob undoes the operation to find the plaintext, which is further decoded into a
Morse code sequence, according to the previous mappings.

pM = .-..-..-....-.-.-.--.-.------..-..-.-..-.--.--.--....---.-..-.--.-..---

Based on a dictionary that maps the letters of the Latin alphabet, digits and
other characters to symbols of the Morse code, the intelligible message is found
to be a nice reward “key” to a dedicated webpage, as pictured in Figure 2.

pL = reddit.com/r/may4quantum

Fig. 2: A snapshot of the webpage to which users are taken after finding the solution

2.4 Simulation with eavesdropping

The implementation of the protocol for the proposed exercise used a module
given by IBM specifically for the purpose of the event, providing already defined
functions for certain operations. We now present a distinct implementation that
was written from scratch, taking into account the intercept-resend attack we
discussed earlier. As mentioned in the source code found in Listing 2, we choose
the length of k by passing the value as argument to the script, which is stored
in variable n. For convenience and practical significance, this number should be

https://reddit.com/r/may4quantum

8 Mihai-Zicu Mina and Emil Simion

large enough. Several functions are defined, some representing subcircuits, while
others test the choices the parties made for their bases. One function actually
implements a simple quantum random number generator, which can be used
to substitute that functionality from the random module. Running the program
will output information about the bases that were chosen by Alice, Eve and
Bob, when their choices coincided (Y), the bits obtained after measurements
and whether some of them are correct by chance (R). The errors introduced
by Eve are also highlighted (!), while Alice and Bob choose a subset of their
presumably correct key bits to test for eavesdropping. In order to simulate their
agreement, the lists of bits are randomly sampled using the same seed. The size
of this selection can be specified and a conclusion message is displayed at the
end. If they discover that the compared bits don’t match, they abort and start
the protocol over again. This is very likely to happen, based on the previous
analysis. However, when they choose to compare few bits, Eve’s presence may
remain successfully hidden.

The output of an execution for n = 100 is given in Figure 4. We notice that
bases chosen by Bob and Eve agree with those picked by Alice for roughly half
the qubits. In 23 instances, Eve chose the wrong basis, while Bob’s choice agreed
with Alice’s, making him decode a random bit, as the qubit state was changed by
Eve’s measurement. Still, he randomly got the right bit 12 times out of those 23,
leaving 11 unmatched bits that confirm Eve’s presence. She can only hope that
the random subset of bits Alice and Bob decide to compare will not contain any
of those, otherwise her tampering will be revealed. As per the authors’ suggestion
in [2], the length of the subset is set to the integer part of a third of the length
of the bit sequences filtered by Alice and Bob following the public disclosure
of their bases. Since these sequences have 49 bits in this example, our parties
compare 16 randomly selected bits and find 5 disagreements, which is the signal
that makes them abort and restart the procedure.

Finally, we wish to validate the previous relation that determines the proba-
bility of detecting Eve based on the number of sacrificed bits. We keep the length
of the random selection at the same value

ñ =

⌊
|kA|

3

⌋
=

⌊
|kB |

3

⌋
≈
⌊n

6

⌋
and choose a smaller number of qubits, n = 40, which determines 1−pñ ≈ 0.822.
We use the script in Listing 3 to simulate the protocol s = 100 times for n = 40,
in order to find out how many times Eve has evaded detection. As the results
in Figure 5 indicate, eavesdropping goes unnoticed s - d = 18 times, such that
Alice and Bob have a chance of d/s = 0.82 to catch Eve, as expected. Cer-
tainly, given that the actions performed by parties yield random outcomes, this
probability varies between runs, but it remains close to the theoretical result.
We can go further and analyze how this probability increases indeed with the
number of bits that Alice and Bob compare. The plot we intend to observe is
actually an indirect relation between those two parameters, since the number of
bits selected to be compared is exactly or close to a third of the number of qubits
n we are using as argument to run the simulation. To acquire the necessary data,

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 9

we ran 100 simulations for each even value of n between 10 and 120. The graph
that resulted following this experiment is displayed in Figure 3 and we notice
that it resembles the smooth one from Figure 1.

Fig. 3: The statistical chance d/s of detecting Eve increases with n, which is roughly
six times the number of bits they end up comparing

3 Conclusion

Quantum key distribution has emerged as a promising direction within the
field of quantum information science and it has repeteadly broken new ground as
quantum technologies continue to advance at a remarkable pace. Here we have
focused on the BB84 protocol, the early result that revealed the fundamental
implications of quantum information on cryptography. Throughout this article,
we presented the operational aspects of the protocol when a type of eavesdrop-
ping happens or not, with some examples alongside the theoretical discussion,
and we provided two implementations of it using Qiskit, the quantum computing
framework from IBM. The first program represents a solved exercise that was
part of the “IBM Quantum Challenge” held in May 2020, while the second one
is a scalable simulation we developed to show how the intercept-resend attack
impacts Alice and Bob’s plan to establish a shared key. In order to demonstrate
how the BB84 protocol can be successfully used to reach a common secret, we
conducted experiments to determine the chances Alice and Bob have to detect
Eve and how her presence can be discovered with a very high degree of certainty
when enough bits from the soon-to-be key are spared.

10 Mihai-Zicu Mina and Emil Simion

A Qiskit implementations

A.1 “IBM Quantum Challenge”

Listing 1: QKD exercise from “IBM Quantum Challenge”

1 %matplotlib inline
2

3 # Importing standard Qiskit libraries
4 import random
5 from qiskit import execute, Aer, IBMQ
6 from qiskit.tools.jupyter import *
7 from qiskit.visualization import *
8 from may4_challenge.ex3 import alice_prepare_qubit, check_bits, check_key, check_decrypted,

show_message↪→
9

10 # Configuring account
11 provider = IBMQ.load_account()
12 backend = provider.get_backend('ibmq_qasm_simulator') # with this simulator it wouldn't

work \↪→
13

14 # Initial setup
15 random.seed(84) # do not change this seed, otherwise you will get a different key
16

17 # This is your 'random' bit string that determines your bases
18 numqubits = 100
19 bob_bases = str('{0:0100b}'.format(random.getrandbits(numqubits)))
20

21 def bb84():
22 print('Bob\'s bases:', bob_bases)
23

24 # Now Alice will send her bits one by one...
25 all_qubit_circuits = []
26 for qubit_index in range(numqubits):
27

28 # This is Alice creating the qubit
29 thisqubit_circuit = alice_prepare_qubit(qubit_index)
30

31 # This is Bob finishing the protocol below
32 bob_measure_qubit(bob_bases, qubit_index, thisqubit_circuit)
33

34 # We collect all these circuits and put them in an array
35 all_qubit_circuits.append(thisqubit_circuit)
36

37 # Now execute all the circuits for each qubit
38 results = execute(all_qubit_circuits, backend=backend, shots=1).result()
39

40 # And combine the results
41 bits = ''
42 for qubit_index in range(numqubits):
43 bits += [measurement for measurement in results.get_counts(qubit_index)][0]
44

45 return bits
46

47 # Here is your task
48 def bob_measure_qubit(bob_bases, qubit_index, qubit_circuit):
49 if int(bob_bases[qubit_index]) == 1:
50 qubit_circuit.h(0)
51 qubit_circuit.measure(0,0)
52

53 bits = bb84()
54 print('Bob\'s bits: ', bits)
55 check_bits(bits)
56

57 #=== KEY EXTRACTION ===#
58

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 11

59 alice_bases = '10000000000100011111110011011001010001111101001101'\
60 '11111000110000011000001001100011100111010010000110' # Alice's bases bits
61

62 key = ''
63

64 for i in range(numqubits):
65 if alice_bases[i] == bob_bases[i]:
66 key += bits[i]
67

68 check_key(key)
69

70 #=== MESSAGE DECRYPTION ===#
71

72 m = '00110110101000111010000011000100000010000110001011'\
73 '10110111100111111110001111100011100101011010111010'\
74 '11101000111010100101111111001010000110100110110110'\
75 '11101111010111000101111111001010101001100101111011' # encrypted message
76

77 key = 4*key
78 decrypted = ''
79

80 for i in range(len(m)):
81 s = int(m[i]) + int(key[i])
82 decrypted += str(s % 2)
83

84 check_decrypted(decrypted)
85

86 #=== MESSAGE DECODING ===#
87

88 symbols = []
89 i = 0
90 while i < len(decrypted)-1:
91 if decrypted[i] + decrypted[i+1] == "11":
92 symbols.append("11")
93 i = i+2
94 elif decrypted[i] + decrypted[i+1] == "00":
95 symbols.append("00")
96 i = i+2
97 else:
98 symbols.append(decrypted[i])
99 i = i+1

100

101 d = {'1':'.', '11':'-', '0':'', '00':2*' ', '000':3*' '}
102 morse_message = [d[i] for i in symbols]
103 morse_message = ''.join(morse_message).split(" ")
104

105 MORSE_CODE_DICT = { 'a':'.-', 'b':'-...',
106 'c':'-.-.', 'd':'-..', 'e':'.',
107 'f':'..-.', 'g':'--.', 'h':'....',
108 'i':'..', 'j':'.---', 'k':'-.-',
109 'l':'.-..', 'm':'--', 'n':'-.',
110 'o':'---', 'p':'.--.', 'q':'--.-',
111 'r':'.-.', 's':'...', 't':'-',
112 'u':'..-', 'v':'...-', 'w':'.--',
113 'x':'-..-', 'y':'-.--', 'z':'--..',
114 '1':'.----', '2':'..---', '3':'...--',
115 '4':'....-', '5':'.....', '6':'-....',
116 '7':'--...', '8':'---..', '9':'----.',
117 '0':'-----', ', ':'--..--', '.':'.-.-.-',
118 '?':'..--..', '/':'-..-.', '-':'-....-',
119 '(':'-.--.', ')':'-.--.-'}
120

121 keys = list(MORSE_CODE_DICT.keys())
122 values = list(MORSE_CODE_DICT.values())
123 solution = []
124

125 for c in morse_message:
126 if c in values:

12 Mihai-Zicu Mina and Emil Simion

127 index = values.index(c)
128 solution.append(keys[index])
129

130 solution = ''.join(solution)
131

132 show_message(solution)

A.2 Simulation of intercept-resend attack

Listing 2: BB84 protocol with eavesdropping

1 #!/usr/bin/python
2

3 #===
4 # BB84 PROTOCOL WITH EAVESDROPPING
5 # USAGE: ./bb84_eavesdropping.py <num_qubits>
6 #===
7 from sys import argv, exit
8 from qiskit import *
9 from random import randrange, seed, sample

10

11 # local simulation
12 backend = Aer.get_backend('qasm_simulator')
13

14 #===
15 #=== FUNCTION DEFINITIONS #===================
16

17 # n-bit binary representation of integer
18 def bst(n,s):
19 return str(bin(s)[2:].rjust(n,'0'))
20

21 # generate n-bit string from measurement on n qubits
22 def qrng(n):
23 qc = QuantumCircuit(n,n)
24 for i in range(n):
25 qc.h(i)
26 qc.measure(list(range(n)),list(range(n)))
27 result = execute(qc,backend,shots=1).result()
28 bits = list(result.get_counts().keys())[0]
29 bits = ''.join(list(reversed(bits)))
30 return bits
31

32 # qubit encodings in specified bases
33 def encode_qubits(n,k,a):
34 qc = QuantumCircuit(n,n)
35 for i in range(n):
36 if a[i] == '0':
37 if k[i] == '1':
38 qc.x(i)
39 else:
40 if k[i] == '0':
41 qc.h(i)
42 else:
43 qc.x(i)
44 qc.h(i)
45 qc.barrier()
46 return qc
47

48 # capture qubits, measure and send to Bob
49 def intercept_resend(qc,e):
50 backend = Aer.get_backend('qasm_simulator')
51 l = len(e)
52

53 for i in range(l):

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 13

54 if e[i] == '1':
55 qc.h(i)
56

57 qc.measure(list(range(l)),list(range(l)))
58 result = execute(qc,backend,shots=1).result()
59 bits = list(result.get_counts().keys())[0]
60 bits = ''.join(list(reversed(bits)))
61

62 qc.reset(list(range(l)))
63

64 for i in range(l):
65 if e[i] == '0':
66 if bits[i] == '1':
67 qc.x(i)
68 else:
69 if bits[i] == '0':
70 qc.h(i)
71 else:
72 qc.x(i)
73 qc.h(i)
74

75 qc.barrier()
76 return [qc,bits]
77

78 # qubit measurements in specified bases
79 def bob_measurement(qc,b):
80 backend = Aer.get_backend('qasm_simulator')
81 l = len(b)
82

83

84 for i in range(l):
85 if b[i] == '1':
86 qc.h(i)
87

88 qc.measure(list(range(l)),list(range(l)))
89 result = execute(qc,backend,shots=1).result()
90 bits = list(result.get_counts().keys())[0]
91

92 bits = ''.join(list(reversed(bits)))
93

94

95 qc.barrier()
96 return [qc,bits]
97

98

99 # check where bases matched
100 def check_bases(b1,b2):
101 check = ''
102 matches = 0
103 for i in range(len(b1)):
104 if b1[i] == b2[i]:
105 check += "Y"
106 matches += 1
107 else:
108 check += "-"
109 return [check,matches]
110

111 # check where measurement bits matched
112 def check_bits(b1,b2,bck):
113 check = ''
114 for i in range(len(b1)):
115 if b1[i] == b2[i] and bck[i] == 'Y':
116 check += 'Y'
117 elif b1[i] == b2[i] and bck[i] != 'Y':
118 check += 'R'
119 elif b1[i] != b2[i] and bck[i] == 'Y':
120 check += '!'
121 elif b1[i] != b2[i] and bck[i] != 'Y':

14 Mihai-Zicu Mina and Emil Simion

122 check += '-'
123 return check
124

125

126 #===
127 #=== INITIAL PARAMETER #======================
128

129 if len(argv) != 2:
130 print("USAGE: " + argv[0] + " <num_qubits>")
131 exit(1)
132 else:
133 n = argv[1]
134 try:
135 # size of quantum and classical registers
136 n = int(n)
137

138 if n < 5:
139 print("[!] Number of qubits should be at least 5.")
140 exit(1)
141

142 except ValueError:
143 print("[!] Argument must be an integer.")
144 exit(1)
145

146 print("\nAlice prepares " + str(n) + " qubits.\n")
147

148 N = 2**n
149

150 #===
151 #=== BIT SEQUENCE AND BASES #=================
152 #seed(81)
153 #alice_bits = bst(n,randrange(N))
154 alice_bits = qrng(n)
155

156 #seed(147)
157 #a = bst(n,randrange(N))
158 a = qrng(n)
159

160 #seed(875)
161 #e = bst(n,randrange(N))
162 e = qrng(n)
163

164 #seed(316)
165 #b = bst(n,randrange(N))
166 b = qrng(n)
167

168 #===
169

170 bb84 = QuantumCircuit(n,n)
171 bb84 += encode_qubits(n,alice_bits,a)
172

173 bb84, eve_bits = intercept_resend(bb84,e)
174 ae_bases, ae_matches = check_bases(a,e)
175 ae_bits = check_bits(alice_bits,eve_bits,ae_bases)
176

177 bb84, bob_bits = bob_measurement(bb84,b)
178 eb_bases, eb_matches = check_bases(e,b)
179 eb_bits = check_bits(eve_bits,bob_bits,eb_bases)
180

181 ab_bases, ab_matches = check_bases(a,b)
182 ab_bits = check_bits(alice_bits,bob_bits,ab_bases)
183

184 altered_qubits = 0
185 err_num = 0
186 err_str = ''
187 key = ''
188 ka = ''
189 ke = ''

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 15

190 kb = ''
191

192 for i in range(n):
193 if ae_bases[i] != 'Y' and ab_bases[i] == 'Y':
194 altered_qubits += 1
195 if ab_bases[i] == 'Y':
196 ka += alice_bits[i]
197 kb += bob_bits[i]
198 if ae_bases[i] == 'Y':
199 ke += eve_bits[i]
200 if ab_bits[i] == '!':
201 err_num += 1
202

203 err_str = ''.join(['!' if ka[i] != kb[i] else ' ' for i in range(len(ka))])
204

205 print("Alice's bases: " + a)
206 print("Eve's bases: " + e)
207 print("A-E bases: " + ae_bases)
208 print("")
209 print("Eve guessed correctly " + str(ae_matches) + " times.")
210 print("")
211 print("Alice's bits: " + alice_bits)
212 print("Eve's bits: " + eve_bits)
213 print("A-E bits: " + ae_bits)
214 print("")
215

216 print("Eve's bases: " + e)
217 print("Bob's bases: " + b)
218 print("E-B bases: " + eb_bases)
219 print("")
220 print("Eve and Bob chose the same basis " + str(eb_matches) + " times.")
221 print("")
222 print("Eve's bits: " + eve_bits)
223 print("Bob's bits: " + bob_bits)
224 print("E-B bits: " + eb_bits)
225 print("")
226

227 print((len("Alice's bases: ") + n)*'=')
228 print("")
229

230 print("A-B bases: " + ab_bases)
231 print("Alice's bits: " + alice_bits)
232 print("Bob's bits: " + bob_bits)
233 print("A-B bits: " + ab_bits)
234 print("")
235 print("Bob guessed correctly " + str(ab_matches) + " times.")
236 print("Eve altered " + str(altered_qubits) + " qubits (she chose wrong and Bob chose

right).")↪→
237 print("Eve got lucky " + str(altered_qubits - err_num) + " times (Bob measured the right

state by chance).")↪→
238

239 print("")
240 print("Alice's remaining bits: " + ka)
241 print("Error positions: " + err_str)
242 print("Bob's remaining bits: " + kb)
243 print("Number of errors: " + str(err_num))
244 print("")
245 print("Eve's information: " + ke)
246 print("")
247

248 selection_size = int(ab_matches/3)
249

250 seed(63)
251 selection_alice = [list(pair) for pair in sample(list(enumerate(ka)),selection_size)]
252 indices_alice = [pair[0] for pair in selection_alice]
253 substring_alice = ''.join([pair[1] for pair in selection_alice])
254

255 seed(63)

16 Mihai-Zicu Mina and Emil Simion

256 selection_bob = [list(pair) for pair in sample(list(enumerate(kb)),selection_size)]
257 indices_bob = [pair[0] for pair in selection_bob]
258 substring_bob = ''.join([pair[1] for pair in selection_bob])
259

260 print("Alice and Bob compare " + str(selection_size) + " of the " + str(ab_matches) + "
bits.")↪→

261 print("Alice's substring: " + substring_alice)
262 print("Bob's substring: " + substring_bob)
263

264 err_found = 0
265

266 for i in range(len(substring_alice)):
267 if substring_alice[i] != substring_bob[i]:
268 err_found += 1
269

270 if err_found > 0:
271 conclusion = "They find " + str(err_found) + " error(s) and realize that Eve

interfered. "↪→
272 conclusion += "They abort and start over.\n"
273 else:
274 conclusion = "Their selections match and Eve is not detected."
275 ka = list(ka)
276 kb = list(kb)
277 for pos in list(reversed(sorted(indices_alice))):
278 ka.pop(pos)
279 kb.pop(pos)
280 ka = ''.join(ka)
281 kb = ''.join(kb)
282 conclusion += "\nTheir " + str(ab_matches-len(substring_alice)) + "-bit shared key is "

+ ka + ".\n"↪→
283

284 print(conclusion)

Listing 3: Multiple executions of the protocol to find the probability of catching Eve

1 #!/bin/bash
2

3 #==
4 # BB84 PROTOCOL WITH EAVESDROPPING - determine chance of catching Eve
5 # USAGE: ./bb84_detections.sh <num_qubits> <num_executions>
6 #==
7

8 [$# -ne 2] && { echo "[!] USAGE: $0 <num_qubits> <num_executions>"; exit 1; }
9

10 [$1 -ge 5] 2> /dev/null && n=$1 || { echo "[!] Number of qubits should be at least 5";
exit 1; }↪→

11 [$2 -ge 1] 2> /dev/null && s=$2 || { echo "[!] Number of executions should be at least
1"; exit 1; }↪→

12

13 echo -e "\nRunning $s simulation(s) with $n qubits to find out the number of undetected
interferences..."↪→

14

15 d=$(for i in $(seq 1 $s); do ./bb84_eavesdropping.py $n; done | grep 'abort' | wc -l)
16 p=$(echo "$d/$s" | bc -l)
17

18 printf "Eve managed to get away with her tampering in $[$s-$d] instance(s), leaving Alice
and Bob with a %.2f chance of catching her.\n\n" "$p"↪→

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 17

Fig. 4: An output example for n = 100

Fig. 5: Finding the probability of detecting Eve after 100 runs for n = 40

18 Mihai-Zicu Mina and Emil Simion

References

1. Abraham, H., AduOffei, Akhalwaya, I.Y., Aleksandrowicz, G., Alexander, T.,
Alexandrowics, G., Arbel, E., Asfaw, A., Azaustre, C., AzizNgoueya, Barkout-
sos, P., Barron, G., Bello, L., Ben-Haim, Y., Bevenius, D., Bishop, L.S., Bolos,
S., Bosch, S., Bravyi, S., Bucher, D., Burov, A., Cabrera, F., Calpin, P., Capel-
luto, L., Carballo, J., Carrascal, G., Chen, A., Chen, C.F., Chen, R., Chow, J.M.,
Claus, C., Clauss, C., Cross, A.J., Cross, A.W., Cross, S., Cruz-Benito, J., Culver,
C., Córcoles-Gonzales, A.D., Dague, S., Dandachi, T.E., Dartiailh, M., DavideFrr,
Davila, A.R., Dekusar, A., Ding, D., Doi, J., Drechsler, E., Drew, Dumitrescu, E.,
Dumon, K., Duran, I., EL-Safty, K., Eastman, E., Eendebak, P., Egger, D., Everitt,
M., Fernández, P.M., Ferrera, A.H., Frisch, A., Fuhrer, A., GEORGE, M., Gacon,
J., Gadi, Gago, B.G., Gambella, C., Gambetta, J.M., Gammanpila, A., Garcia, L.,
Garion, S., Gilliam, A., Gomez-Mosquera, J., de la Puente González, S., Gorzin-
ski, J., Gould, I., Greenberg, D., Grinko, D., Guan, W., Gunnels, J.A., Haglund,
M., Haide, I., Hamamura, I., Havlicek, V., Hellmers, J., Herok, L., Hillmich, S.,
Horii, H., Howington, C., Hu, S., Hu, W., Imai, H., Imamichi, T., Ishizaki, K.,
Iten, R., Itoko, T., JamesSeaward, Javadi, A., Javadi-Abhari, A., Jessica, Johns,
K., Kachmann, T., Kanazawa, N., Kang-Bae, Karazeev, A., Kassebaum, P., King,
S., Knabberjoe, Kovyrshin, A., Krishnakumar, R., Krishnan, V., Krsulich, K., Kus,
G., LaRose, R., Lambert, R., Latone, J., Lawrence, S., Liu, D., Liu, P., Maeng,
Y., Malyshev, A., Marecek, J., Marques, M., Mathews, D., Matsuo, A., McClure,
D.T., McGarry, C., McKay, D., McPherson, D., Meesala, S., Mevissen, M., Mezza-
capo, A., Midha, R., Minev, Z., Mitchell, A., Moll, N., Mooring, M.D., Morales, R.,
Moran, N., MrF, Murali, P., Müggenburg, J., Nadlinger, D., Nakanishi, K., Nan-
nicini, G., Nation, P., Navarro, E., Naveh, Y., Neagle, S.W., Neuweiler, P., Niroula,
P., Norlen, H., O’Riordan, L.J., Ogunbayo, O., Ollitrault, P., Oud, S., Padilha,
D., Paik, H., Perriello, S., Phan, A., Piro, F., Pistoia, M., Pozas-iKerstjens, A.,
Prutyanov, V., Puzzuoli, D., Pérez, J., Quintiii, Raymond, R., Redondo, R.M.C.,
Reuter, M., Rice, J., Rodŕıguez, D.M., RohithKarur, Rossmannek, M., Ryu, M.,
SAPV, T., SamFerracin, Sandberg, M., Sargsyan, H., Sathaye, N., Schmitt, B.,
Schnabel, C., Schoenfeld, Z., Scholten, T.L., Schoute, E., Schwarm, J., Sertage,
I.F., Setia, K., Shammah, N., Shi, Y., Silva, A., Simonetto, A., Singstock, N.,
Siraichi, Y., Sitdikov, I., Sivarajah, S., Sletfjerding, M.B., Smolin, J.A., Soeken,
M., Sokolov, I.O., SooluThomas, Steenken, D., Stypulkoski, M., Suen, J., Sun,
S., Sung, K.J., Takahashi, H., Tavernelli, I., Taylor, C., Taylour, P., Thomas, S.,
Tillet, M., Tod, M., de la Torre, E., Trabing, K., Treinish, M., TrishaPe, Turner,
W., Vaknin, Y., Valcarce, C.R., Varchon, F., Vazquez, A.C., Vogt-Lee, D., Vuillot,
C., Weaver, J., Wieczorek, R., Wildstrom, J.A., Wille, R., Winston, E., Woehr,
J.J., Woerner, S., Woo, R., Wood, C.J., Wood, R., Wood, S., Wood, S., Woot-
ton, J., Yeralin, D., Young, R., Yu, J., Zachow, C., Zdanski, L., Zoufal, C., Zo-
ufalc, a matsuo, adekusar drl, azulehner, bcamorrison, brandhsn, chlorophyll zz,
dan1pal, dime10, drholmie, elfrocampeador, faisaldebouni, fanizzamarco, gadial,
gruu, jliu45, kanejess, klinvill, kurarrr, lerongil, ma5x, merav aharoni, michelle4654,
ordmoj, sethmerkel, strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, will-
hbang, yang.luh, yelojakit, yotamvakninibm: Qiskit: An open-source framework for
quantum computing (2019). https://doi.org/10.5281/zenodo.2562110

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing. pp. 175–179 (12 1984)

https://doi.org/10.5281/zenodo.2562110

A Scalable Simulation of the BB84 Protocol Involving Eavesdropping 19

3. Bennett, C.H., Brassard, G.: Experimental quantum cryptography: The dawn of
a new era for quantum cryptography: The experimental prototype is working].
SIGACT News 20(4), 78—-80 (11 1989). https://doi.org/10.1145/74074.74087,
https://doi.org/10.1145/74074.74087

4. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perre-
noud, M., Gras, G., Bussières, F., Li, M.J., Nolan, D., Martin, A., Zbinden,
H.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev.
Lett. 121, 190502 (Nov 2018). https://doi.org/10.1103/PhysRevLett.121.190502,
https://link.aps.org/doi/10.1103/PhysRevLett.121.190502

5. Chen, J.P., Zhang, C., Liu, Y., Jiang, C., Zhang, W., Hu, X.L., Guan, J.Y.,
Yu, Z.W., Xu, H., Lin, J., Li, M.J., Chen, H., Li, H., You, L., Wang, Z.,
Wang, X.B., Zhang, Q., Pan, J.W.: Sending-or-not-sending with independent
lasers: Secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett.
124, 070501 (Feb 2020). https://doi.org/10.1103/PhysRevLett.124.070501, https:
//link.aps.org/doi/10.1103/PhysRevLett.124.070501

6. Dieks, D.: Communication by epr devices. Physics Letters A 92(6), 271 –
272 (1982). https://doi.org/https://doi.org/10.1016/0375-9601(82)90084-6, http:
//www.sciencedirect.com/science/article/pii/0375960182900846

7. Hughes, R.J., Alde, D.M., Dyer, P., Luther, G.G., Morgan, G.L., Schauer,
M.: Quantum cryptography. Contemporary Physics 36(3), 149–163 (1995).
https://doi.org/10.1080/00107519508222149, https://doi.org/10.1080/
00107519508222149

8. https://www.ibm.com/blogs/research/2020/04/ibm-quantum-challenge/
9. https://github.com/qiskit-community/may4 challenge exercises/blob/master/

ex03/Challenge3 BB84.ipynb
10. https://github.com/qiskit-community/may4 challenge exercises
11. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen,

Q., Cao, Y., Li, Z.P., et al.: Satellite-to-ground quantum key distribution. Nature
549(7670), 43–47 (2017)

12. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for
quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (07 2005).
https://doi.org/10.1103/PhysRevA.72.012332, https://link.aps.org/doi/10.1103/
PhysRevA.72.012332

13. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quan-
tum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (07 2000).
https://doi.org/10.1103/PhysRevLett.85.441, https://link.aps.org/doi/10.1103/
PhysRevLett.85.441

14. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature
299(5886), 802–803 (1982)

15. Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J.,
Mao, Y., Huang, M.Q., Zhang, W.J., Chen, H., Li, M.J., Nolan, D., Zhou, F.,
Jiang, X., Wang, Z., Zhang, Q., Wang, X.B., Pan, J.W.: Measurement-device-
independent quantum key distribution over a 404 km optical fiber. Phys. Rev.
Lett. 117, 190501 (Nov 2016). https://doi.org/10.1103/PhysRevLett.117.190501,
https://link.aps.org/doi/10.1103/PhysRevLett.117.190501

https://doi.org/10.1145/74074.74087
https://doi.org/10.1145/74074.74087
https://doi.org/10.1103/PhysRevLett.121.190502
https://link.aps.org/doi/10.1103/PhysRevLett.121.190502
https://doi.org/10.1103/PhysRevLett.124.070501
https://link.aps.org/doi/10.1103/PhysRevLett.124.070501
https://link.aps.org/doi/10.1103/PhysRevLett.124.070501
https://doi.org/https://doi.org/10.1016/0375-9601(82)90084-6
http://www.sciencedirect.com/science/article/pii/0375960182900846
http://www.sciencedirect.com/science/article/pii/0375960182900846
https://doi.org/10.1080/00107519508222149
https://doi.org/10.1080/00107519508222149
https://doi.org/10.1080/00107519508222149
https://www.ibm.com/blogs/research/2020/04/ibm-quantum-challenge/
https://github.com/qiskit-community/may4_challenge_exercises/blob/master/ex03/Challenge3_BB84.ipynb
https://github.com/qiskit-community/may4_challenge_exercises/blob/master/ex03/Challenge3_BB84.ipynb
https://github.com/qiskit-community/may4_challenge_exercises
https://doi.org/10.1103/PhysRevA.72.012332
https://link.aps.org/doi/10.1103/PhysRevA.72.012332
https://link.aps.org/doi/10.1103/PhysRevA.72.012332
https://doi.org/10.1103/PhysRevLett.85.441
https://link.aps.org/doi/10.1103/PhysRevLett.85.441
https://link.aps.org/doi/10.1103/PhysRevLett.85.441
https://doi.org/10.1103/PhysRevLett.117.190501
https://link.aps.org/doi/10.1103/PhysRevLett.117.190501

	A Scalable Simulation of the BB84 Protocol Involving Eavesdropping

