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Abstract. Bit commitment is a primitive task of many cryptographic
tasks. It has been proved that the unconditionally secure quantum bit
commitment is impossible from Mayers-Lo-Chau No-go theorem. A vari-
ant of quantum bit commitment requires cheat sensible for both parties.
Another results shows that these no-go theorem can be evaded using the
non-relativistic transmission or Minkowski causality. Our goal in this
paper is to revise unconditionally secure quantum bit commitment. We
firstly propose new quantum bit commitment using distributed settings
and quantum entanglement which is used to overcome Mayers-Lo-Chau
No-go Theorems. The present protocol is perfectly concealing, perfectly
binding, and cheating sensible in asymptotic model against entanglement-
based attack and splitting attack from quantum networks. It is then
extended to commit secret bits against eavesdroppers. We further pro-
pose two new applications. One is to commit qubit states. The other is
to commit unitary circuits. These new schemes are useful for commit-
ting several primitives including sampling models, random sources, and
Boolean functions in cryptographic protocols.

1 Introduction

Bit commitment as a basic cryptographic task has been applied in various
problems. A bit commitment protocol consists of two parties, the committer and
receiver. A committer, Alice, commits a bit  to the receiver who cannot recover
the value of x before unveiling it. In the unveiling stage, Alice sends some classical
or quantum information to Bob who can then unveil the committed bit. In ideal
settings, the goal of a commitment protocol is to guarantee that Bob recovers x
exactly which is initially committed by Alice (not changed after the commitment
stage), i.e., the perfectly binding. Moreover, Alice should also ensure that Bob
can learn no information about the committed bit before it being unveiled, i.e.,
the perfectly concealing.

Intuitively, a classical bit commitment protocol may be easily followed. The
committer can put the committed bit in the box which is locked using a unique
key. Any receiver can get no information because he/she cannot open the box
without key. In the unveiling stage, receiver can verify the committed bit by



opening the box with the received key. However, this protocol is only secure
when the box is unconditionally secure one-way system. Otherwise, Bob can
break the box with unlimited computation power. So far, it is believes that
there is no unconditionally secure bit commitment against the attackers with
unlimited computation powers.

Different from classical cryptography, quantum cryptography makes use of
quantum superposition states. One typical example is to construct key distribu-
tion protocol using four nonorthogonal states [7], or entanglement [20]. Quantum
key distribution provides the first nontrivial application of quantum superposi-
tion states for unconditionally secure cryptographic goal, which has not been
completed in classical cryptography. Hence, Brassard, et al. hope to invent a
similar quantum protocol for committing a secret bit [9]. Unfortunately, their
protocol is insecure from the no-go results of Mayers [40] and Lo and Chau
[36], which state that any concealing bit commitment protocol is argued to be
necessarily non-binding. These no-go theorems still hold when both players are
restricted by superselection rules.

Our goal is to revise the quantum bit commit by using distributed quantum
entanglement. As usual in quantum cryptography, we present the protocol in ide-
al assumptions of perfect state preparations, transmissions and measurements.
This poses no important problem here: all the protocols remain secure in the
presence of errors up to a negligible threshold. All the protocols are secure in
realistic implementations with negligible noises.

1.1  Owur contributions

Quantum bit commitment We propose an unconditionally secure quantum
bit commitments using two-way quantum channel or one-way quantum channel.
These protocols are perfectly binding and perfectly concealing and cheat sensible.

1. We propose a quantum bit commitment (QBC1).
We use Einstein-Podolsky-Rosen (EPR) states and Greenberger-Horne-Zeilinger
(GHZ) states to design quantum bit commitment. Informally, committer and
receiver use four tripartite entangled states to encode one bit. Two orthogo-
nal entangled states are used for committing each value of one bit.
We should carefully overcome Mayers-Lo-Chau No-go Theorems [40, 36] which
forbid unconditionally secure quantum bit commitment originated from B-
B84 scheme [7]. On one hand, committer should firstly conceal the committed
bits against leaking the committed bit to receiver, i.e., committer guarantees
the reduced density matrix of the systems owned by receiver is invariant for
z = 0 and z = 1. On the other hand, receiver should bind the committed
bit after completing the committing steps against cheating of committer in
the unveiling stage. This is more difficult from Mayers-Lo-Chau No-go The-
orems [40, 36]. We use a random distributed quantum entanglement before
the unveiling stage. The system owned by committer can be regarded as a
quantum key while the systems of receiver can be viewed as a quantum lock
for binding the committed bit. It is also implementable in one-way manner.



2. We propose a private quantum bit commitment (QBC2).

In practical applications, committer wants to commit privacy messages to a
special receiver without leaking any information to potential adversary. In
QBC2, committer and receiver can build secure quantum channel by test-
ing the violation of CHSH inequality [14], and then share a random key.
Here, two parties complete a quantum bit commitment assisted by quantum
teleportation [8] and one-time pad [50]. This protocol is finally extended
for one-way quantum channel from committer to receiver. They are differ-
ent from device-independent bit commitments [44, 3] with nonzero cheating
probability.

Quantum qubit commitment Assume that committer Alice wants to commit
one qubit to receiver. We propose two kinds of quantum qubit commitment
(QQC) based on QBC1 and QBC2 using quantum privacy channel [5]. These
protocols are perfectly binding and perfectly concealing and cheat sensible.

3. We propose a quantum qubit commitment (QQC1).
Based on QBC1, we design a protocol to commit a qubit state chosen from
specific set. In QQC1, committer hides a qubit by encoding with a secret key
which is then committed using QBC1. Its security depends on the security of
QBC1 and new encoding [5].QQC1 provides the first secure quantum qubit
commitment which disproves recent no-go theorem [41]. This protocol can
be easily extended to multi-qubit states or one-way quantum channel.

4. We propose a private quantum qubit commitment (QQC2).
Assume that committer wants to commit privacy qubits to a special receiver
even if there is potential adversary. Similar to QBC2, the CHSH test [14] is
used to build quantum channel, which is then used for distributing random
key [20] and transferring qubits [8]. QBC2 is cheating sensible [50]. It is
finally extended for one-way quantum channel from committer to receiver.

Quantum circuit commitment Assume that Alice commits one circuit to
receiver Bob. Generally, one cannot transfer a quantum circuit to another. We
use another method by committing its outputs defined by the circuit & and
specific inputs. We propose two kinds of schemes for based on QQC1 and QQC2.
These protocols are perfectly binding and perfectly concealing and cheat sensible.

5. We propose a quantum circuit commitment (QCC1).

In QCC1, committer uses a random pure state as input going into a uni-
tary circuit. Similar to QQC1, committer uses random encoding to conceal
the output states. Moreover, the secret key is committed using QBC1. The
security of QCCL is based on the privacy quantum channel [5], QQC1 and
statistical discrimination of two unitary operations [2]. QCC1 provides the
first secure quantum circuit commitment. This protocol can be easily ex-
tended for committing n-qubit unitary operations or Boolean functions even
for one-way quantum channel.



6. We propose a private quantum circuit commitment (QCC2).
Similar QQC2, we design cheating sensible commitment against potential ad-
versary. The main idea is similar to QQC2 except for an additional encoding
of quantum circuit. The security is based on the CHSH test [14], random key
[20], teleportation [8], and one-time pad. This protocol is cheating sensible
for both legal parties, and adversary.

1.2 Applications

Commit a sampling model. Sampling as a statistical method provides s-
tatistical inferences about specific problems. Random sampling as a special mod-
el has been widely used in lattice-based cryptography [39,24,35]. The present
schemes can be used to commit specific sampling model.

— The first is Gaussian sampling for signature [39, 24, 35]. committer may use
an efficient and parallel Gaussian sampler to generate sample series, which
are then committed by committer and receiver using an extension of QBC1,
or QBC2 which provides a private commitment against leaking information.
Here, receiver may use classical method to verify randomness and specific
distribution from the committed samples.

— The second is quantum Boson sampling model [1] B for solving permanent
problem of matrix as #P-complete problem [49], which may be used for
analogue speech scramblers [6] or anonymous (¢, w)-threshold scheme [46].
Alice can commit sampling machine to receiver Bob using QBC1 or QBC2.
The verification is completed by polynomial-time approximation algorithm
[30].

— The third is for recommender systems applied in Internet and E-commerce.
From a sampling model [47] we can generate samples from a rank-k approx-
imation of recommendation systems in polynomial time. Combining with
homomorphic encryption [22], the new model provides an efficient private
recommendation systems or private computations using QBC1 or QBC2.

Commit a random source. Random sources are elementary primitives for
cryptographic schemes. QQC1 and QQC2 are useful for committing a specific
random source.

— One example is uniform distribution over a discrete set {ay,- - ,an}, which

can be encoded into a superposition state |¢) = <= >"7", [i). Alice can com-

mit |¢) using an extension of QQC1 or QQC2. Different from sampling
model, this scheme sends a random source to receiver.

— Another example is Gaussian source S for lattice-based cryptography [39,
24,35]. All the samples may be limited to the finite interval [0, 70g] with a
positive tail-cut factor 7 for practical scenarios. committer can use coherent
entanglement [51] to complete committing continuous Gaussian source with

extensions of QQC1 or QQC2.



Commit functionality. Cryptographic functionality includes most of prim-
itives such as encryption, authentication, signature, delegation computation and
privacy computation [22]. QCC1 and QCC2 are useful for committing a crypto-
graphic functionality.

— This first is oracle function. Suppose that Alice hopes to commit an or-
acle function O to Bob. This is generally difficult for any oracles. Two
parties may focus on special oracles which should be distinguished statis-
tically using polynomial resources. One method is to commit its graphic set
G = {(z,0(x))} using QBC1 for discrete inputs € {0,1}", or QQC1
for continuous inputs. Another method is to represent an oracle O(x)) by a
Boolean function F [13]. This may be committed by using QCC1 or QCC2.

— Second is quantum solver which is a quantum circuit or quantum model
for solving special problem. An interesting quantum solver may be built on
Shor’s algorithm [45] or Grover’s algorithm [26]. These quantum solvers can
be represented by proper unitary transformations & € SU(2"). committer
may use an extension of QCC1 or QCC2 for committing unitary operations.
Interesting, this can be regarded as a different case of delegation computation
using homomorphic encryption [22]. These schemes are different from zero-
knowledge proof [12] which leaks no information for any receiver.

1.3 Related works

Several recent papers discussed similar issues. In view of the no-go results,
there are various constructions under reasonable constraints. Kent [31] shows
that relativistic signalling constraints may facilitate secure bit commitment.
In cheatsensitive bit commitment protocols [4,29], both players may have the
chance to cheat, however, their fraud may be detected by the adversary [27].
Building on Kent’s original proposal [32], the tradeoff between the bindingness
and concealment has recently been investigated [10]. Other researchers change to
build bit commitment protocols with practical relativistic security [37], partial
security with cheating probabilities [32, 15, 16], computational security [18], clas-
sical security without communication [11, 17], asymptotical security [27], device-
independent security [44]. Meanwhile, the Mayers-Lo-Chau no-go theorem is not
general enough to exclude all conceivable quantum bit commitment protocols.

Although our schemes are generally presented as committing one bit, there is
no technique limit to generalize into commit bit string. The second improvement
of quantum resources should be interesting. Another is interesting applications
of quantum bit commit, quantum qubit commit or quantum circuit commit.
We summarize the mentioned variants of quantum commitment in Table 1. We
view our work as an initial step and hope further fundamental investigations of
noisy scenarios or imperfect scenarios or cryptographic applications inspired by
quantum commitment.

There are lots of open problems. First, is there a secure quantum bit com-
mitment without distributed storage before the unveiling stage? Second, are



Table 1. The security result of present quantum bit commitments using entanglement.
PS denotes perfectly security including perfectly concealing and binding. PP denotes
perfectly privacy against eavesdropper. RS denotes relativistic security. SS denotes
statistical security. CS denotes computational security. PPS means that at least one
party has a non-negligible cheating probability.

PP RS SS CS PPS

(18] - - - -

(4,29, 32] L,

(31,29, 33,37 -y -

[44, 15,16, 3] N

QBC1,QQC1L, QCCl|/ - - - -
QBC2, QQC2, QCC2| -

unconditionally secure quantum one-way functions necessary for the construc-
tion of quantum bit commitment when there is no distributed storage of en-
tanglement? Recent results show that there are quantum bit commitment with
unconditionally concealing and computationally binding from any quantum one-
way permutation [18]. Third, can we construct quantum bit commitment with
other reasonable scenarios?

2 Preliminary

2.1 Quantum ingredients

Denote a d-dimensional Hilbert space by Hy. A quantum pure state |¢) is
vector in Hy with unit norm. The density matrix of |@), i.e., py = |¢) (S|, is a pos-
itive semi-definitive matrix. An ensemble of pure states {|¢;)}™, is represented
by the positive semi-definitive matrix of p = Y./, pips,;, where p; denotes the
probability of |¢;). In what follows, we denote Hilbert space of the system A by
H 4 if its dimension is not considered.

Denote {]0),]1)} as the computational basis of Hy. Another one is rectilinear
basis of {|+),|—)} with |£) = %OO} + |1)). For multiple qubits, there are
entangled states that can not be decomposed into the product of single qubit
states. One example is EPR state [21] in Hilbert space Hy ® Hz defined as

1
V2

Another entanglement is tripartite GHZ state [23] in Hilbert space Hy @ Hy @ Ho
which is defined as

|[EPR) = —=(10,0) +[1,1)) (1)

1
V2
A projection measurement of quantum state in Hilbert space H,, is described
by a set of n projection operators {M; }7_,, where M;s satisfy > | M; = 1 with
the identity operator 1.

|GHZ) Apc = (10,0,0) + 11,1, 1)) aBc (2)



For qubit space Hlp, Pauli operators o, oy, 0, and Hadamard transformation
H have matrix representatives as follows

e () () ()5 ()

For two-qubit gates, the controlled not (CNOT) gate is given by CNOT=diag(1, o,,).

2.2 CHSH inequality

Quantum entanglement may result in interesting statistics that cannot be
described with classical physics. Here, we use CHSH inequality [14] given by

(AoBo) + (AgB1) + (A1Bg) — (A1B) <2 (4)

for two parties sharing a hidden variable in classical scenarios, where A, and B,
are measurements with outputs in the set {41} which are conditional on inputs
z,y € {0,1}, (A, B,) (named as correlators) denotes the average outcomes given
by (A:By) = >, -1 abP(a,blz,y), P(a,blz,y) denotes the joint probability
distribution for two outputs a,b € {1,—1} conditional on two inputs z,y €
{0,1}, which may depend on some hidden variable [14]. In quantum scenarios,
for each round of experiment Alice and Bob share an EPR state |EPR). Alice
performs local measurement using observable A, € {0, 0, } while Bob performs
local measurement using observable B, € {%(O’z + 0,)} on their shared qubit.

The expect of quantum observable A, and B, is given by (A;B,) = tr{A, ®
B,|EPR)(EPR||. Hence, two parties can get

(AgBg) + (AgB1) + (A1Bg) — (A1By) = 2v/2 (5)

which violates the inenquality (4). This means that the quantum correlations
derived from local measurements on EPR state is incompatible with any classical
correlations from shared randomness [14].

2.3 Quantum teleportation

EPR state as an interesting resource is useful for transmitting an unknown
qubit faithfully [8]. The protocol is assisted with local operations and classi-
cal communication (LOCC). Assume that Alice and Bob share one EPR pair
|EPR)ap prior to transmission, where Alice has qubit A and Bob has qubit
B. Alice wants to transmit an unknown qubit A in the state |x) to Bob. Alice
firstly performs a joint measurement on Ag and A and broadcasts outcomes. Bob
then performs a unitary operation on B (depending on measurement outcomes)
to recover |x)p. The success probability is unit. Any adversary can only eaves-
drop measurement outcomes, which have no information related to qubit Aj.
This provides an unconditionally secure transmission of quantum states assisted
by classical communication and secure quantum channel.



Theorem 1 (Quantum no-communication theorem) [25]. It is impos-
sible for ome observer, by making a measurement of a subsystem of the total
state, to communicate information to another observer during measurement of
an entangled quantum state.

The quantum no-communication theorem [25] implies that one can not trans-
fer information faster than the speed of light through the quantum measurement
process even if two parties share an entanglement.

3 Quantum bit commitment

In this section, we propose two quantum bit commit (QBC) protocols using
EPR state [21], GHZ state [23] and noiseless quantum channels.

Definition 1. A QBC is perfectly binding if committer cannot change the re-
duced density matriz of particles owned by receiver after committing, i.e.,

pCom:m _ pUnv:m (6)

where p©°™® (or pUn™i® ) denotes the reduced density matriz of particles own by
receiver in the committing stage (or the unveiling stage).

Definition 2. A QBC is perfectly concealing if receiver cannot learn any useful
information before the unveiling stage, i.e.,

pt=p"! (7)

where p* denotes the reduced density matriz of particles owned by receiver for
committing the bit © € {0,1} and ® denote plus with modular 2.

In ideal scenarios, QBC should be perfectly binding and perfectly concealing.
Another weaker variant of QBC is cheat sensible [4, 29].

Definition 3. A QBC is cheat sensible if any cheating strategy of each party
can be detected by the other with a non negligible probability, i.e.,

(i) Committer cannot change the committed bit x into &' after the commitment
stage without being detected by receiver, i.e.,

Pr[Succeommiter (T — ') |commiitcommiter(7)] < nelg(e) (8)

where nelg(e) is a negligible constant depending on some parameter €.
(ii) Receiver cannot learn any useful information of x before it being unveiled
without being detected by committer, i.e.,

Pr[Succreceiver(I(z;2") > nelg(e))|commiitcommiter (7)] < nelg(e) (9)

where I(x;x") denotes Shannon mutual information of variables x and z’
(obtained by receiver) [42].

The assumptions of our protocols are as follows.

Al. Alice and Bob have unlimited quantum ability including quantum computer.



A2. Alice is honest for committing = € {0,1} in the committing stage while she
may be not in the unveiling stage.

A3. Bob may learn the information of the committed bit = before unveiling.

A4. Both the classical and quantum channels are noiseless.

A1l implies that both parties have abilities to perform quantum operations
such as preparing, storing or measuring states. From A2, Alice is not allowed
to commit a wrong bit x’ which is finally unveiled as the right bit z. The fake
commitment is useless because Bob finally convinced the right bit. We do not
consider this cheating. From A3, Alice hides z perfectly. Otherwise, Bob may
recover it before the unveiling stage. A4 is used to show that all the evaluations
are performed without noise.

3.1 Quantum bit commitment with two-way quantum channel

We present a new scheme using distributed particles to realize concealing
and binding tasks. The detail is shown in QBC1. Different from recent GHZ
paradox-based protocol [44], all the measurements are performed by receiver.
Another difference is from the preparations of quantum entanglement by receiver.
From these differences, we can use qubit as quantum locking key. This allows an
unconditionally secure quantum bit commitment.

QBC1

Commitment

1. Bob prepares an EPR state |EPR)ap, and sends the qubit A to Alice.

2. After receiving A Alice performs the following operations.
2.1 Alice performs CNOT A and an auxiliary qubit Ao in the state [0)4,.
2.2 Alice randomly chooses one bit r € {0, 1} according to uniform distribution,

and performs qubit operation H*o, on A.

2.3 Alice sends A to Bob.
Unveiling

3. In the unveiling stage, two parties perform the following operations.
3.1 Alice sends the qubit Ag and bits {z,r} to Bob.

3.2 Bob performs o, H* on A. He performs measurement on Ag, A and B under

the basis {0 — —=(10,0,0) + 1, 1, 1)|1) = (10, 1,0} + [1,0,1)),
1 — |Po){(Po| — |P1)(P1]}. The commitment is right if and only if he obtains
{|®0), |®1)} with unit probability.

Correctness-Take = 0 as an example. The total state of Ag, A and B is
changed from |0)4,|EPR)ap into |$g) if r = 0, or |Pq) if r = 1. |Pp) and |P1)
are orthogonal states. Hence, Bob can convince x = 0 from the measurement
from step 3.2 in the unveiling stage. Similar result holds for x = 1.



3.2 Security analysis

Similar to the analysis of Mayer-Lo-Chau no-go theorem [40, 36], the security
of QBC1 includes two parts. One is perfectly concealing. The other is perfectly
binding. Similar to quantum key distribution [7], it is generally impossible for
constructing a perfectly secure bit commitment. Here, we consider asymptotically
perfect security [7], which means that QBC1 can be arbitrarily close to perfectly
concealing and perfectly binding when n is large enough.

Theorem 2. QBC1 is perfectly concealing if committer is honest.

Proof. Assume that Alice honestly implements all operations in the commit-
ting stage. From step 2.2, the correspondence between the committed bit x and
total system |®, ,) of Alice and Bob is given by

C: x=0 {|Poo)aoan = Do), |Po1)acaB = |P1)}
z =1 {|P10)a,4B, |P11)4,AB} (10)

where |[G19) = —5(10,+,0) +[1,-,1)), [®11) = 5(0,—,0) +[1,+,1)), and C
denotes committing in step 2. The density matrices of A and B is given by
PAB = i]l for £ = 0 or x = 1. Bob cannot distinguish A and B before unveiling.
Similar result holds for other inputs in Appendix A.

QBC1 will be implemented in parallel with n EPR states. Bob can get the
same committed bit with unit probability. Hence, Alice can realize asymptoti-
cally perfectly concealing when n is large enough. [J

Theorem 3. QBC1 is perfectly binding if receiver is honest.

Proof. The binding is actually essential drawback in previous schemes [9]. In
Mayer-Lo-Chau No-go theorem [40, 36], the main drawback is from final system
after committing. In QBC1, there are four final states given in Eq.(10). From
Schmidt decomposition the local basis of B in Eq.(10) cannot be changed by
Alice after committing. In what follows, we complete the proof with two methods.

Proof based on Theorem 1 [25]. The proof is completed by contradiction.
Take |Pyo) as an example. Suppose that Alice wants to unveil z = 1 but com-
mitting 2 = 0. Assume that Alice can successfully change [®y) into |P1p) in the
unveiling stage. There is a unitary operation Uga/a, on Ap and axillary system
A’ in the state |0) satisfying:

(Uara, ® 1ag)|0) ar|Poo) agaB = |¥) a|P10) Ao AB (11)

where |¢)) 4/ is any normalized state.

From Eq.(11), we construct a communication protocol. Alice and Bob share
n copies of |®yo)a,a5, where Alice has Ay and Bob owns A and B in each
copy. Alice performs nothing for transmitting the bit y = 0 while she performs
the local operation Uys 4, on the system A’ in the state |0) and Ay if y = 1.
Bob performs measurement on A and B with projection operators {P;;, =
|20, 1) {0, %1], 90,71 = 0,1}. He gets a probability distribution

1
Pr(igi1 = 00) = Pr(ioiy = 11) = (12)

10



for |®go), or the other probability distribution as
1
Pr(ioi1 = 00) = Pr(i0i1 = 01) = Pr(i0i1 = 10) = Pr(ioil = 11) = 1 (13)

for |®10). This means that Bob can recover one bit y by distinguishing the output
distribution. Note that the present communication protocol do not require any
communication between Alice and Bob. This contradicts to Theorem 1 [25].
Hence, there is no local operation Uy 4, for Alice satisfying Eq.(11).

Similarly, Alice cannot use any local operations to change the state in {|@go), |Po1) }
into any one in {|®19), |P11) }, and conversely. Another proof is based on stabilizer
of GHZ state given in Appendix B.

We have proved the binding security using two different methods. Actually,
this is insufficient. The main reason is that there are three qubits owned by two
parties. Alice may transmit a different qubit A’ (not the qubit A) in the step 1,
and keeps the qubits A and Ay. And then, Alice use local operations to get a
joint state |®;,i,) 4,45 in Eq.(10) in the unveiling stage. This splitting attack is
analysed in Appendix C.

Theorem 4. QBC1 is cheating sensible.

Proof. Firstly, Bob can detect Alice’s cheating in the unveiling stage if Alice
wants to change the committed bit. Alice should ensure the binding for Bob
before the committed bit being unveiled. Any local operations performed by
Alice will then disturb the global states in the unveiling stage. On the other
hand, any local unitary operations do not change the reduced density matrices
of particle owned by Bob. Hence, Alice has to perform the local measurement
to forge the committed bit or change the committed bit after step 2. However,
the failure probability will result in a nonzero detecting probability. Otherwise,
Alice has committed the wrong bit in the commitment stage (see Appendix D).

Another cheating is from Bob who may prepare a fake state in step 1 or
performs local measurement after step 2 to recover the committed bit. To detect
this cheating, Alice may require Bob to send two qubits A and B to her. And
then, She implements step 3.2 because she knows {x,r}. The proof is similar to
Appendix D. Another method is to test GHZ paradox [23,44]. Hence, QBC 1 is
cheating sensible. This completes the proof. [J

3.3 Quantum bit commitment using one-way quantum channel

If Alice prepares a GHZ state @) in step 1, QBC1 do not require quantum
channel from Bob to Alice. This provides an implementation with one-way quan-
tum channel. The proof of perfectly concealing is similar to Theorem 2. However,
perfectly concealing is different from Theorem 2 because all the quantum states
are prepared by Alice, see Appendix E. Although all quantum states are pre-
pared by committer, receiver can detect the cheating operations of committer.
The main technique is from distributed scenarios in step 2.

Now, consider the detection to Bob’s cheating for recovering the committed
bit by performing local measurement after step 2. Since the present protocol

11



uses one-way quantum channel from Alice to Bob, Bob cannot send the qubits
A and B to Alice for detecting. One possible solution is to test GHZ paradox
(23, 44], where all the final states |$g1)s are locally equivalent to GHZ state [23].
It means that QBC1 is cheating sensible from Definition 3 in one-way manner.

4 Private quantum bit commitment

In Sec.3, we propose two ideal quantum bit commitments. The committed
bit is transmitted in an open channel. This leaves chance for an eavesdropper
[3]. We here present a private quantum bit commitment. The main idea is as
follows. Two parties build secure quantum channel based on CHSH inequality
[14]. These channels are used to teleport qubits securely [8] and distribute key
[20]. Finally, Alice can send the committed bit by using one-time pad [50].

4.1 Two-way quantum channel

Assume that Alice commits bit string z; - - - 24 to Bob secretly. We present
private qubit commitment as QBC2.

QBC2

1. Building secure quantum channels
1.1 Bob prepares 2n EPR states ®7",|EPR) a,5,, and sends A;’s to Alice.
1.2 Bob randomly chooses a qubit subset {B;,, -, B;,, } with i, ~ y/n. He
performs measurement with observable By chosen from {%(02 + 04)} with
uniform distribution. He broadcasts bit string i1 -« - im,.
1.3 Alice performs measurements on A;,,--- ,A;,, using observable A; chosen
from {0, 0.} with uniform probability. If their outcomes satisfy

(AoBo) + (AoB1) + (A1Bo) — (A1B1) < 2v/2 — negl(e) (14)

they stop the commitment. Otherwise, they continues the protocol.
2. (Commitment)
2.1 Encode z; as step 2.1 in QBC1 using |[EPR) 4,5, and an axillary qubit C;.
2.2 Alice teleports A; to Bob [8].
3. (Unveiling)

3.1 Alice and Bob share a random bit string ki - - - ks by using quantum key
distribution [20].

3.2 Alice teleports C; to Bob [8].

3.3 Alice generates a signature y; - - - y¢ [50]. She gets cyphertext ¢y - - ciye with
ci =x; Dk for ¢ <L and ¢; = y;—¢ ® k; for j > £. Finally, she sends
c1 -+ ci4e to Bob.

3.4 Bob recovers x1 - - - xey1 - - - Yy using the shared keys. He detects adversary by

verifying signature yi - - - y¢ [50]. If there is no adversary, Bob can convince z;

using step 2.2 of QBC1,i=1,--- /.

12



The correctness of QBC2 is easily followed from QBC1, quantum teleporta-
tion, and one-time pad.

The security analysis of QBC2 is based on QBC1, CHSH test [14] and quan-
tum teleportation [8].

Theorem 5. QBC2 is perfectly concealing, perfectly binding, and cheating sen-
sible.

Proof. The proofs of perfectly concealing, perfectly binding and cheating sensi-
ble of committer and receiver are similar to the proofs of QBC1 in Sec.3. In what
follows, we only need to prove that QBC2 is cheating sensible against attackers
from outside if committer and receiver are honest.

There are three facts. First, step 1 is used to distribute EPR states from Bob
to Alice. Denote quantum observable of committer and receiver as A;—g = o,
Az = 0z, By—o = %(0’2 +0;), and By = %(az — 0y). Suppose that an
EPR state is changed into

#) 0,5, = (100} [0) + [61)|1) (15)

by an eavesdropper, where {|¢g) = cosf|0) + e*®sind|1),|p1) = cosf|1) —
e~ sin6|0)} are orthogonal, and 6, ¢ € [0, 7]. From Eq.(15), it implies that

(AoBg) + (AgB1) 4 (A1Bg) — (A1B;) = 2v/2(cos 62 — cos ¢? sin 6?)
<2V2-¢ (16)

when ¢ > nelg(e) (if & > nelg(+/€)). Hence, two honest parties can detect attacker
by testing the CHSH inequality (4) using violation threshold of 2v/2 — negl(e).
Similar proof holds if attacker changes EPR state into tripartite mixed state.

Secondly, in step 2.2 Alice teleports A; to Bob [8]. If the quantum channel is
secure from step 1, Bob can recover a faithful state with unit probability. The
transmission is unconditionally secure because Alice only sends measurement
outcomes in open channel, which has no information related to the transmitted
qubit. Similar results hold for Cjs in step 3.2. This means that Bob can get B;s
and C}s securely.

Third, after step 2, assume that Alice and Bob have shared lots of EPR s-
tates. Two parties can share a random bit string using shared EPR states [20].
This scheme can be further constructed in a device-independent manner [19].
The shared key is then be used to transmit the committed bit string xy ---xy
using universally hash function [50] and one-time pad in step 3.3. These two cryp-
tosystems are unconditionally secure. Moreover, the random bit string ry ---rp
are independent of x;s. Bob can get all committed bits z;s securely. This com-
pletes the proof. [

QBC2 can be implemented with one-way quantum channel from Alice to Bob
if Alice can distribute bits honestly.
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5 Quantum qubit commitment

In this section, our goal is to commit one qubit under the assumptions Al-
A4. Assume that committer Alice commits quantum state chosen from a specific
set to receiver Bob.

Definition 4. The state set S is polynomially distinguishable if for any two
states |@), |1) € S, they satisfy

d(lv), 1) = [(¥lo)* <1—c (17)

where ¢ is some constant satisfying ¢ > nelg(e).

Definition 4 is reasonable because it is interesting to transmit polynomi-
ally copies of quantum states in cryptographic applications. Especially, one
can distinguish all the states in S using polynomially copies from the equali-
ty of d([¢) @), |¢)Epob(n)) — poly(n, d([45), |6))) using state tomography [28],
where n denotes the dimension of states in S. One example is orthogonal state
set S = {|i)}. Another example is given by

S = {cos61]|0) +sinbq|1), -, cosb,|0) + sinb,|1)} (18)

where 0;s satisfy |0; — 6;| > ¢ and 0; € [0, 5.

Similar to Definitions 1-3, we can define perfectly concealing, perfectly binding
and cheating sensible for qubit commitment. Different from quantum bit com-
mitment, S can be any subset of Hilbert space. In this case, it should be very
careful because committer may hide any negligible error into final states.

5.1 Two-way quantum channel

In this section, we propose a quantum protocol for committing a qubit from
polynomially distinguishable set. Especially, take S in Eq.(18) for example. Sim-
ilar scheme may be extended for multi-qubit states. The main idea is to use
quantum privacy channel [5].

Theorem 6. QQC1 is perfectly concealing, perfectly binding, and cheating sen-
sible.

Proof. We firstly consider perfectly concealing for Alice. It is easy to get the
following equality [5]:

1
5 ouléialoilol = 51 (19)
a=0

for any state |¢;)a € S. This provides perfectly concealing of qubit similar to
Definition 2. From the analysis of QBC1, Bob cannot recover any information
of the bit a before unveiling. From Eq.(19) the density matrix of A is invariant
for |¢;)a € S. QQCL1 is perfectly concealing for committing qubit A.

Now, we prove perfectly binding for Bob. From the analysis of QBC1, Alice
cannot change the committed bit ¢ in the unveiling stage. In what follows, we

14



QQcC1

Commitment
1. Bob prepares EPR state |EPR)a,B,, and sends qubit Ag to committer Alice.
2. After receiving Ao Alice performs the following operations.

2.1 Alice chooses the committed particle A in the state |¢;) € S, and chooses a
random bit a € {0,1} with uniform distribution. She performs o, on A,
where o9 = 1 and o1 = oy.

2.2 Alice implements step 2 in QBC1 for encoding a using one axillary qubit Af
and a random bit r € {0,1}.

2.3 Alice sends A, Ap to Bob.

Unveiling

3. In the unveiling stage, two parties perform the following operations.

3.1 Alice sends qubit Af and classical messages {a,r} to Bob.

3.2 (Convincing private key) Bob implement step 3 in QBC1 to convince a.

3.3 (Convincing qubit) Bob performs o, on A to recover |¢;). Bob can verify |¢;)
using state tomography [28] with a negligible error if there are multiple
copies being transmitted in one-shot manner. Otherwise, it is wrong.

prove that Alice cannot change the committed state in the unveiling stage. For
simplicity, suppose that Alice wants to change the committed state |¢1)4 into
|¢2) 4 in the unveiling stage. Generally, assume that Alice prepares an entangled
state with an axillary particle A’ in the state |0) as follows

[B)ara =Y V/Dildi)alt) ar (20)
i=1

where {p1,p2} is a probability distribution, and {|11)a/,|t¥2) 4’} are orthogonal
states. After a random Pauli matrix being performed on A, from Eq.(20) the
reduced density matrix of A is given by

1

pa = tra 318 oulle)at@l(1 0 o)) = o (21)

Alice can ensure perfectly concealing if she performs qubit operation chosen
from {1,0,} with uniform distribution. In the unveiling stage, Alice performs
local measurement on A’ under the basis {|1)a/, [t2) - }. If Alice gets |1)1) a,
the qubit A owned in Bob collapses into the committed state |¢1)4. Otherwise,
A will collapse into a worry state |¢2)4 with probability po, i.e., Prl|¢s)a] =
pa. Moreover, Alice cannot change the encoding key a into ¢’ = 1 & a from
Theorem 3. So, Alice has to send the encoding key a in step 3 in QQC1. Bob can
detect qubit A under the basis {|¢1),|¢i)}, where |¢i) denotes the orthogonal
state of [¢1)a = sinf;]0) — cosf;|1). Bob gets measurement outcome |¢7)a
with probability Pr[|¢7)a] = sin(6; — 62)2. The total probability that Bob gets
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measurement outcome |¢7-) 4 is given by

Priotat]|¢1)a] = p2sin(fy — 62)% # 0 (22)

from po # 0. Hence, from Definition 1, QQC1 is perfectly binding.

The cheating sensible of receiver in QQC1 is similar to QBC1. For committer,
a specific cheating strategy may be implemented for changing the committed
state in S. The proof is similar to perfectly binding. From Eq.(22), it follows
that Pryoai[|¢i)a] < nelg(e) for successfully cheating by Alice. We get that
pa < nelg(e), i.e., Alice can cheat successfully with only a negligible probability.
From Definition 3, QQC1 is cheating sensible. [J

5.2 Private quantum qubit commitment

In this subsection, we build private quantum qubit commitment against
eavesdroppers. The main idea is to use CHSH inequality [14], quantum tele-
portation [8] and one-time pad.

QQcC2

1. Building secure quantum channels
Alice and Bob implement step 1 in QBC1.
2. (Commitment)
Alice and Bob implement step 2 in QQCL1.
3. (Unveiling)
3.1 Alice and Bob implement step 3 in QBCI.
3.2 Alice and Bob implement step 3 in QQC1.

QQC2 uses two-way quantum channels. The correctness is easily followed
from QBC1 and QQC1. Different from QQC1 and QQC2, two parties use the
CHSH test [14] to detect attacker in a device-independent manner [19]. Other-
wise, they stop the protocol. And then, the EPR states may be used for dis-
tributing keys securely [20] with small fractions of pre-shared bits for classical
authentications [50]. In commitment stage, the classical encoding information of
committer will be encrypted by using one-time pad. The qubits will be teleport-
ed [8] without leakage of any information. Similar analysis holds for QQC2 in a
one-way manner.

Theorem 7. QQC2 is perfectly concealing, perfectly binding, and cheating sen-
sible.

6 Quantum circuit commitment

In this section, our goal is to commit one circuit under the assumptions Al-
A4. Assume that committer Alice commits a circuit 4 chosen from a finite circuit
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set U to receiver Bob. For a classical scenarios, i may be any Boolean function
Fe:{0,1}™ — {0,1}™. If F is injective, it may be completed by committing the
graph of F.. Otherwise, we can complete it as follows. Firstly, Alice encrypts the
specific circuit using a shared key to get a bit string 1 - - - x5, which is further
committed. In quantum scenarios, Alice may commit a unitary transformation
with matrix representation U € SU(2"), where SU(2") denotes the unitary
group on the Hilbert space H".

Suppose that there is a device in which one of two unitaries U; or U, is applied
with uniform probability, when a state p goes into the device. The optimal
discrimination between the final states U pblf and Us pZ/IQJr is useful for determining
U;. From the convexity of mixed state, the minimum-error discrimination of U;
and Us depends on pure states as inputs, which is given by [2]:

1 1
Poucell, U] = o + 7 max [Uh gl — Us pl] |+

2 4
L.
1 5 mind(h|9).Ueld) (23)

where ||-||; denotes the trace norm of hermitian operators, i.e., ||A||; = trv At A.
Definition 5. The circuit set of U C SU(2) is polynomially distinguishable if
for any two circuits Uy, Us € U and one state |¢) € Ha, they satisfy

d(th|6), Us|9)) = |(dlUfthe|d)* < 1 — ¢ (24)

where ¢ is some constant satisfying ¢ > nelg(e).
From Egs.(23) and (24), the minimum-error discrimination of all unitary
operations in U is given by
1 ¢

1 .
(1- 3 qud(u1|¢>7uzl¢>)) >-+5 (25)

Psucc [U] 2 2

= min
Uy ,Us €U

Any two unitary operations in U can then be discriminated [28] using polynomial-

ly copies of input states from d((Uy|p))BPNY(™) | (Usy|p)) 2PV = poly(n, d(Uy |¢), Us|0))),

where n denotes rank of ;. One example is orthogonal state set for orthogonal

transformation O(n). Another example is given by

cos 0 sin eV 1%
U=<U; = J J 26
{ ( —e V"Wising;  cosb; ) } (26)

where 0;s satisfy |0; — 0;] > ¢ with ¢ > nelg(¢) and 0; € [0, 5], and ¥; € [0,7]. U
in Eq.(26) satisfies the inequality (25).
Proposition 1. For U defined in Fq.(26), we have
1 ¢

psucc[U] > § + 5 (27)

Similar to Definitions 1-3 for quantum bit commitment, we can define perfect-
ly binding, perfectly concealing and cheat sensible for committing a circuit in U.
The goal of circuit commitment is to ensure that Alice has committed a specific
circuit.
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6.1 Two-way quantum channel

In this section, we propose a quantum protocol for committing a unitary
circuit defined in Eq.(26). This is reasonable when the quantum gate is obtained
from one device with different evolution times. It may be extended for multi-
qubit circuits. The main idea is similar to quantum qubit commitment using
quantum privacy channel [5] and quantum bit commitment in Sec.3.

From Definition 5, Alice takes orthogonal states {|0),|1)} as inputs and gets

|65) = Us(|0)) = cos 6;]0) + sin 6;e¥~1%41),
[61) = U;(|1)) = sin6;]0) — eV~ cos 6;[1) (28)

for U; € U. |¢;) and |¢j‘> are orthogonal. Alice only needs to commit |¢;) and
|¢j‘> simultaneously for verifying the circuit ;.

QcCcC1

Commitment
1. Bob prepares EPR states ®77|EPR) 4,5, with |[EPR) 4,5, = %(|0, 0)+11,1)) or
%(|O, +) + |1, —)) with equal probability, and sends qubits A1, - , Aa, to Alice.
2. After receiving A;’s Alice performs the following operations.
2.1 Alice performs CNOT gate on the qubit A; and one axillary qubit A} in the
state [0), i =1,--- ,n.
2.2 Alice chooses a circuit U; € U and input qubits Ai,--- , An.
2.3 Alice implements step 2.1 in QQCl on A;,i=1,--- ,n.
2.4 Alice implements step 2 in QBC1 for committing a; using one axillary qubit
A}, random bit r; € {0,1} and |[EPR)a, ;B i =1,--- ,n.
2.5 Alice sends the qubits A1, -+, A2, to Bob, and keeps other qubits.
Unveiling
3. In the unveiling stage, two parties perform the following operations.
3.1 Alice sends all qubits A; and A7, and bit stings a1 - - - an, 71 -+ 7 to Bob.
3.2 Bob implements step 3 in QBC1 to convince a; using r; and A}, A,+;, and
Bn+i with ¢ = 1, , .
3.3 Bob convinces circuit U; using Aj, A;, B;s, as shown in Fig.1.

The correctness of QCC1 is from the following facts. First is the correctness
of the private key aj ---a, from QBC1. Second is from the output state after
step 2. In fact, take |[EPR)4,p, = %(|0,0) +|1,1)) as an example. The total
state will be changed into

B3)aai, = (1001,
i A5 D4 ﬂ J i

0,0) a5, + 165) 4,11, 1) a1,) (29)

And then, Alice uses a random encoding in step 2.3 to get a joint state (o, ®
1a:B,)|Pj) A, 4B, Finally, Alice uses QBC1 to commit the private key a;. Third
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Fig. 1. (Color online) Convincing circuit in QCC1. Here, My = {|0),|1)} or {|+)}
depends on input states, and M3 = {|#;),|¢; )} or the preparation basis) depending
on the measurement outcome of B;.

one is as shown in Fig.1. Bob firstly disentangles the qubit A, using CNOT gate
on the qubits A; and A}, to get

1
V2

where |¢;) and |¢;) are defined in Eq.(28). And then, he measures the qubit B;
under the preparation basis My = {|0),|1)} (or {|+),]|+)}). If the committed
circuit is U;, Bob gets |¢;) and \gbj-) with equal probability from Eq.(30). Bob
can verify circuit U; by deterministically discriminating |¢;) and |¢)j-> using
projection measurement. Similar result holds for other inputs.

Theorem 8. QCC1 is perfectly concealing , perfectly binding and cheating sen-
sible.

Proof. The perfectly concealing is similar to QQCL. Specially, from Eq.(29)
we get

[EPR) 4,5, = —= (165,

1)B,) (30)

1
1
pas = tra(5 > (00, @14 @1p,)

a; =0

®;)(®5](0] © @14, ® 13,))

= Ly oLy, (31)
for a given input |EPR) A, B, = %(\07 0)+|1,1)) and any circuit ¢/; € U. Similar
result holds for the other input state. This implies perfectly concealing a circuit
in U similar to Definition 2 [5].

Now, we prove perfectly binding. From Theorem 3, Alice cannot change the
committed bit string a;’s in the unveiling stage. It means that a;’s are perfectly
binding. Moreover, similar to proof of Theorem 3, Alice shares one triparticle
entanglement with Bob before the unveiling stage. She cannot use entanglement-
based cheating [40,36] to change her committed state in the unveiling stage.
Hence, QCC1 is perfectly binding.

Similar to proof of Theorem 4, it is easy to prove that QCC1 is cheating
sensible for receiver when committer implements step 3. Another way is to test
GHZ paradox [23,44] by two parties. It may be more difficult for committer,
who may cheat for committing the bit string a;---a, or qubits Ay, -, A,.
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Note that aj ---a, are committed using QBC1, which is cheating sensible for
committer from Theorem 4. Moreover, similar to Appendix B, the joint state of
|@j>A7:A;B,; will be changed into

paap, = (1—¢€)|Pj)a,a,B,(Pj| + €pnoise (32)

when committer implements any entanglement-based cheating, where p;,ise de-
notes the noisy state derived from Alice’s cheating and satisfies tr(pnoisc| ;) (@;]) =
0, and € depends polynomially on cheating probability p,, i.e., & = poly(p.). From
step 3, Bob can verify |®;) with probability 1 — e. The failure probability de-
pends polynomially on the cheating probability, i.e., Pr[Reject|®;)] = poly(p.).
It implies that Pr[Reject|®;)] > nelg(e) if p. > nelg(e). Hence, Alice cannot cheat
successfully with a non negligible probability while Bob cannot detect it with
a negligible probability. So, QCC1 is cheating sensible for committer similar to
Definition 3. J

QCC1 can also be implemented with the one-way quantum channel from Bob
to Alice.

6.2 Private quantum circuit commitment

In this subsection, we build private quantum circuit commitment against
information leakage to eavesdroppers.

QCC2

1. Alice and Bob implement step 1 in QBC1 for building secure quantum channels.
(Commitment) Alice and Bob implement step 2 in QCC1.
3. (Unveiling)

3.1 Alice and Bob implement step 3 in QBC1.

3.2 Alice and Bob implement step 3 in QCC1.

o

The correctness is followed from QBC1 and QCC1. Two parties use the CHSH
test [14] in step 1 to detect potential attackers in a device-independent man-
ner [19]. Otherwise, they stop the protocol. And then, similar to QBC* the
entanglement-based quantum key distribution [20] will be used for distributing
random key. In commitment stage, the classical encoding information of com-
mitter will be encrypted by using one-time pad [50]. Quantum teleportation [8]
will be used to transfer the qubits without leaking any information. The security
analysis of QCC2 is similar to Theorem 5.

Theorem 9. QCC2 is perfectly concealing, perfectly binding and cheating sen-
sible.
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7 Discussion

Bit commitment is an interesting problem once thought unsolvable [40, 36].
Our goal here is to propose several quantum bit commitment schemes QBC1
to guarantee strong levels of security for both committer and receiver without
eavesdroppers. Comparing with the non-relativistic security [32, 33], the present
schemes provide unconditional security with distributed entanglement. In addi-
tion, the entanglement allows to construct bit commitment QBC2 in a device-
independent manner against any potential eavesdroppers. These schemes are
useful committing quantum states or quantum circuits in a specific discrete set.
Our schemes highlight interesting cryptographic application of quantum entan-
glement: no (non-relativistic) classical or non-entanglement protocol can guar-
antee such security.

Interestingly, for the two-way quantum channel, QBC1 provides a possibility
to overcome the entanglement-based cheating of committer. This is impossible
for previous quantum bit commitment with single states [40, 36, 33], which can-
not prevent committer from committing quantum superposition of bits. She can
simply input a superposition |0) + |1) into a quantum computer programmed to
implement two relevant quantum measurement interactions for inputs |0) and |1).
Unfortunately, the superposition cheating strategy is useful for one-way quan-
tum channel, where any local measurements by commiter will result in random
entangled states.

The present commit schemes allow for small errors in all quantum operations
and quantum measurements. The key is that all the errors have negligible effect
on the final measurement probability. This means that as far as the errors are
small the verification of committed bit (qubits, or circuit) in the last step is also
asymptotically perfect. It is sufficient for Bob to test whether Alice’s declared
outcomes are statistically consistent with the measurement outcome correspond-
ing to the committed bit (qubits, circuit) or not. Another practical extensions
are bit string, multi-qubit states, or multi-qubit circuits. Our goal in this paper is
to propose unconditionally secure quantum commitment regardless of resources
and ability for each party. Similar to quantum key distribution [7,20], this kind
of secret bit commitment may be self interesting in cryptographic applications.
We hope these improvements will stimulate further interest in the theoretical
and practical implementation of cryptographic quantum protocols.
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Appendix A: Proof based on stabilizers of GHZ state

Take |Pgo) as an example. After the committing operations, |Pgg) can be
equivalently regarded as a tripartite entanglement. Alice owns the qubit Ay,
Bobl has the qubit A and Bob2 has the qubit B, where the receiver Bob is
divided into Bobl and Bob2. Assume that there is a local unitary U satisfying
Eq.(11) (similar proof holds for |$17)). Since the qubits Ay and B are symmetric
in |¢10>A0AB, it follows that

(Laga @ U )| ) ar|®10) agan = |0)ar|Po0) 4,45 (33)
From Egs.(11) and (33) we get that
(Uara, @ 1a ® Uy'p)10)ar[®00) = 10) ar[®o0) a0 4 (34)

where UX,IB denotes the inverse of U and is performed on the joint system of
A’ and B. The matrix of Ugra, ® 14 ® U;}B is a stabilizer of |0) 4+|Poo) Ao AB;
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i.e., |0) a/|Poo) A, 4B is invariant under the unitary operation Ugr4, @ 14 ® UZ}B.
However, it is known that all stabilizers of |Pgo) 4,45 [48] are
Sl(|¢00>) =0, Q0 & Og,
SQ(|¢00>)E{(TZ®O'Z®]].,O'z®]].®(fz,]].®gz®0'z} (35)
Hence, from Eqs.(34) and (35) we get that U = R® o, or U = CNOT, where
R denotes any unitary rotation on the system A’. This contradicts to Eq.(11).

Hence, Alice cannot change the committed bit in the unveiling stage, i.e., cheat-
ing for Bob. QBC1 achieves the perfectly binding.

Appendix B: Cheating inputs by semihonest Bob

Assume that Alice is honest, i.e., she implements all procedures in the com-
mitting stage. Here, we assume that Bob is semihonest in the sense that Bob
may prepare a general state (not an EPR state in Step 1)

W) ap = VAdo)alto) s + V1= Nen)altn) s (36)

where {|¢o)a,|d1)a} and {|¢o)B, Y1)} are both orthogonal states, and A €
[0,1]). For the following discussions, suppose that |¢;) = ;0]|0) + a;1]/1) and
[¥:) = Biol0) + Bi1]1), where a;, 8;; are normalized constants satisfying a2, +
a? =%+ B4 =1for i =0,1. It is easy to prove that the density matrix of A
and B is given by

pas = 1@ (|¢o)(tho| + [1h1)(P1]) (37)

for 2 = 0, where |¢);) are defined by |1h) = v Aago|to) + VI — Aaolty) and

[U1) = vV Aao1|vo) + VI — Aai1|th1) (up to a normalization constant). Similarly,
for x =1, we get

pas = 1 ® (|vho) (to| + [¢1) (1) (38)

This means that the density matrix of A and B owned by Bob is invariant for
any A and |¢;), |¢;) from the equality of pap = ps 5. Hence, the present commit
protocol is perfectly concealing.

Appendix C: Splitting cheating by Alice

Assume that there is a splitting cheating strategy for Alice, i.e., a local uni-
tary operation Usa,4,. on the joint system of A, Ay and A, such that

(Uasoa, @ 1ap)[0) 4 |6" ") ar0a'B = |Pigiy) AgarBIY™") Aa, (39)

where A, is an axillary system in the state |0) initially, and [¢™") 44,45 de-
notes the initial states prepared by Alice and Bob in step 2. Consider Schmidt
decomposition of |¢™") 44,45 as

67" anoa B = D/ Nigis W51 ) Ay €55 ) v (40)

i0t1
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where \;,;, are Schmidt coefficients, {Wfﬂ’;}AAD}}Ol“:OO and {|<P?0’:1>A'B}1101¢1:00
are both orthogonal states for each pair of z and r.
Note that the local operation Uga,4, cannot change the local basis of the

particles A’ and B after step 2. From Eq.(40), it means that

{‘QD;’E‘;;>A’B} € {{|Oa O>7 |13 1>}a {|07 ]->a |17 0>}a {|+a 0>7 |77 1>}7 {|+7 ]->a |770>}(]41)
This implies that Alice has committed z = 0 if {|¢]"] Yag} € {{|0,0),]1,1)},

101

{|Ov 1), [1, O>}}7 orx = 1if {|<P;E(;:1>A’B} € {{‘+70>’ |-, 1>}7 {|+7 1),]=,0)}} in
step 2. Alice has not changed the committed bit in the unveiling stage.

Another case is as follows. A’ is unentangled with A in step 2. In the unveil-
ing stage, Alice wants to generate a tripartite entanglement defined in Eq.(10).
Assume that A’ and B are in the state |¢*") 4'p, and Ag and A are in the state
[™") 44. Suppose that Alice can successfully cheat. There is an axillary system
A, in the state |0) and local unitary transformation UZ)TAAC on Ag, A and A,
such that

(Ul an, @ Larp)9™") 4541004, [6"") arp = |Pigiy) aparB|0™ ) an,  (42)

where [)™7) 44, is an arbitrary normalized state. Since all states in Eq.(10)
are equivalent to GHZ state under local operations H¥ on the qubit A. From
Eq.(42), we get that

(Unlaa, @ Hi @ 1B)|9"") 4,4(0) 4,107 ) 4B = |P) agarB|™ ) aa,  (43)

where |P) 4,45 = %O0,0, 0) + |1,1,1)). This contracts to recent result [43, 34,
38], which states tripartite GHZ state cannot be locally generated by preforming
local operations on any multisource quantum network consisting of bipartite
entangled states. Hence, the splitting cheating dose not hold for Alice in QBCI.

Appendix D: Cheating sensible

From Eqs.(10)) assume that there are local operations U, , on the systems
A’ Ag and A; performed by Alice such that

(Uo,r ® 14)|20,:)[0) 4, = ar|0h0) 47 |P10) 4045]0) 4,

+v/1 — a2 — e|pp1) ar|P11) 4,48|0) 4,

+el@") ar|@o) a0 aB|1) A, (44)
for x =0 and r € {0,1}, and

(U1 @ Lag)|21,:)]0) 4, = byl 7o) a7 [Poo) a0 4510) 4,

+/1 =02 — [0}, ar|Po1) 4y a510) 4,

+el@") ar|P1) a,4B1) 4, (45)

where A; is an axillary system, 2 denotes the failure probability for changing the
input states |{2,,) into desired superposition of |Pzp) and |Pz1) and T =16 z.
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{lpbo)ars |b1)ar } and {|@lo) a7, |@11) ar} are both orthogonal states of A’ for each
. ") ar|Po)agan and |@7)a|P1)a,ap are failure states that can be deleted
by the projection measurement and post-selection, i.e., Alice is failure if she
gets outcome |0) after she measures the axillary system A; under the basis
{]0),]1)}. Otherwise, she is success. Similar to the ideal case in Sec.3.2, these
local operations should be performed after step 1 and before step 2.1.

In what follows, we prove that there does not exist completely positive oper-
ator transformation U, . satisfying Eqs.(44) and (45). Since U, ,s are performed
on A’, Ap and Ay, the density matrix of A and B are invariant. So, from Eqs.(44)
and (10) we get that

P55 = Traraga, [(Uor ® 1as)|20,) (20,4 (U, ® 1ap)]
= a;(/00)(00] + [11)(11]) + (1 — af — *)(|01){01] + [10){10])
+€2Tra, [|Po) 4pa5(Pol] (46)

Similarly, from Eqgs.(45) and (10) we get that
P45 = Traganl(Usy ® 1ap)|21,) (21, /(U] ® 1ap))]

= 02 (|4, 0) (+, 0] + | =, 1){—, 1]) + (1 = 57)(|=, 0){—, 0 + |+, 1) {+,1])
+e2Tra, [|91) 4,45 (1] (47)

From Eqs.(46) and (47), we get

jaf — by| < € (48)
1 1
ar:ﬁ+0(€),br:ﬁ+0(€) (49)

for any r, where € is negligible positive constant.
Now, from Eqgs.(10) and (44) and (49), we get that

(Uor @ 145)[20,:)]0) 4, = |Ao0) arapa, |+ 0 an + | Ao01) araga, |— 1) an
+|A10>A’A0A1 |77 O>AB + ‘A11>A'A0A1 ‘+7 1>AB(5O)

where we have used the decomposition of |®1)a,48 = Yo0|Pb0) 40|+, 0)aB +

Y011901) A0l = 1) 4B +7101870) A0 |+ 1) aB+711[P11) 40— 0) aB, and [A;4,) 47404,
are defined by

|Ao0) ar oA, = arl®50)A[00) 454, + €v00%") a7 [P50) 45]1) 4,

|Ao1) ar 041 = arl®p0) ar[10) 494, + €v01]9") a7 [@01) 4011) 44

[A10) ara,4, = (ar + O(€))|61) 4:100) 4,4, + €710]9") 41 [B10) A, 1) 4,

[A11)arap4, = (ar + O(€))|901) A [10) 4o 4, + €v11]90") 4/ [B11) 40[1) 4, (51)
Note that {|+,0), |+, 1)} are orthogonal. For any two different states |4;;,)
and |A;,;,), from Eq.(48) it is easy to prove that

|<Ai0i1 |Aj0j1>|2 = 0(62) (52)
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for a negligible € > 0. It means that the state in Eq.(50) can be regarded as a
Schmidt decomposition of a,|¢5o) a7 |P10) 40480y 4, +1/1 — a2 — €2|0h1) a7 |P11) 4,4 B]0) 4,
with a small perturbation €|p”)a/|Po)a,48|1)4,. Specially, from Egs.(50)-(52)

we get the Schmidt decomposition as

(Uo.r @ 1aB)|20.4)[0) 4, = (ar + O(€))| Aco) ar a4, (14, 0) + O(€)|x00)) a
+(ar +O0()[Aon) araoa, (| 1) + O()xor) an
+(ar + O(€))|A10) ar404, (|, 0) + O(€)|x10)) AB
+(ar + 0(€)|A11) araa, (|4, 1) + O(€) [x11)) a53)

where |A; i, )ara,4, is a normalized pure state that is closed to |A, ), ie.,
[(Aigir | Aigir )12 = O(2), and {|Xii, ) 1Y, —oo are general normalized states.

Note that the density matrix of the qubits A and B is invariant (before the
quantum measurement) under the local operation Uo,r on the systems A’, Ag
and A;. From Eq.(56), we get that |p;(0,r)| = % + O(e) for all is and

|¢?’T>AB € {W(aoo+, 0) 4+ O(€)|x00)),
M(Oflﬂ—’ 1) 4+ O(e)|xo01)),
1
m(ald—, 0) + O(e)Ix10)),
1

m(aml—h 1) +0()|x1))} (54)

which can be regarded as committing x = 1 with a small fraction of noise, where
v, S are normalization constants.

Similarly, from Eqgs.(10) and (45), we get |p;(1,r)| = % + O(e) for all ¢ and

6, ) aB € {M(ﬁwoo) + O(€)[X00))s

1 N
W(ﬁuﬂw + O(€)[Xo01));
1
Bio + O(e?)

1
851+ O(e?)

(B1010) + O(e)[X10))s

(Bo1|01) + O(e)[x11))} (55)

which can be regarded as committing z = 0 with a small noise, where 3;,;,s are
normalization constants. Hence, from Egs.(10) and (54)-(55), Alice have firstly
prepared wrong states, i.e., Alice has not implemented the committing step. This
contradicts to the assumption of Alice A2.
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Appendix E: Perfectly concealing with one-way channel

In this section, assume QBC1 is implemented by using one-way quantum
channel from Alice to Bob. The only cheating for Alice will be completed in the
unveiling stage. Assume that Alice uses an axillary system A’. From the Schmidt
decomposition, the total system of A’, Ay, A and B in step 1 is given by

3
|2ar)arngan = Y Vpil@, W7 44|67 an (56)
=0

Here, {|¢]"")ara,,% = 0,---,3} and {|¢;")ap,i = 0,---,3} are orthogonal s-
tates, {pi(z,r),i =0,---,3} is a probability distribution for each pair of (z,r).

To conceal x, Alice should ensure that the density matrix of A and B is
maximally mixed for different = before step 2.1, i.e.,

|
PAB = Pip = 7lan (57)

Now, Alice wants to cheat Bob in the unveiling stage. From Eq.(10), assume
that there are local operations U, on A’ and Aj such that

(Uo ® 14B)|20,) = arl¢po) a7 |P10) a0aB + /1 — a2|pp1) ar|P11) agas  (58)
for x =0 and r = 0,1, and
(Ur @ 1ap)|f1,r) = brl@lo) ar|Poo) agan + V1 = b2[@11) ar|Po1) agan  (59)

where {|¢hg) a7, |051) 4} and {|@To)ar, [¢T1)ar} are orthogonal states for each r.

In what follows, it is sufficient to consider pure states after the local opera-
tions. The density matrix A and B is invariant under local operation U, on A’
and Ag. From Egs.(58) and (10), we get that

,02730 = b12'(|+70><+70| + |_7 1><_7 1|) + (1 - bg)(l_’ 0><_7 0| + |+a 1><+7 1|)(60)
Similarly, from Eqgs.(59) and (10) we get that
plip = az(]00)(00[ + [11)(11]) + (1 — a7)(|01)(01] + [10)(10]) (61)

From Egs.(57), (60) and (61), we get

(62)

2 _ 32
a; =0y

T

_ 1
2
for any r. Moreover, from Egs.(10), (58) and (62), we get that
(Uo ® 1a5)|201) = 51050} 40100414, 0) a5 + T lh0) ao Lyl 1)
0 AB 0,7‘_\/59000140 A|lT,YU)AB ﬁwovo A= L)AB

1 1
ol ) A [0 ar|—, 0) ap + —=|ol ) an [1) ar |4, 1) 4 463
\/§|9001>A0‘ )ar|=,0)ap \/5|9001>Ao| )ar|+,1) AK63)
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for a, = b, = % Similar results hold for other cases of a,,b,. The state in

Eq.(63) is the Schmidt decomposition of specific bipartite state because {|¢{g)4,10) 4,
|9060>A0‘1>A/7 |‘P61>A0|0>A’7 ‘@61>A0|1>A’} and {|=£,0),[+,1)} are both orthogo-

nal states. The density matrix of A and B are invariant (before the quantum
measurement) under local operation Uy on A" and Ag. From Eqs.(56) and (63),

we get that |p;(0,r)| = % for all ¢’s and

{|¢?7T>AB72. = Oa to 73} = {|+70>’ |_50>7 H‘a 1>a |_7 1>} (64)

which can be regarded as the commitment of x = 1.
Similarly, we can prove that |p;(1,7)| = % for all s

{|¢1LT>AB;7: =0, ’3} = {|070>7 ‘Oa 1>7 ‘170>7 |1) 1>} (65)

which can be regarded as the commitment of x = 0. Hence, from Eqgs.(10), (64)
and (65), Alice commits a wrong bit in the commitment stage, i.e., Alice has
not implemented the committing operation honestly. This contradicts to the
assumption A2 of Alice. This completes the proof.
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