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Abstract. Post-quantum cryptography (PQC) is a trend that has a deserved NIST 

status, and which aims to be resistant to quantum computers attacks like Shor and 

Grover algorithms. In this paper, we propose a method for designing post-quantum 

provable IND-CPA/IND-CCA2 public key cryptosystems based on polynomials over a 

non-commutative   algebraic extension ring.   The  key  ideas of our proposal is that (a) 

for a given non-commutative ring of rank-3 tensors, we can define polynomials and 

take them as the underlying work structure (b) we replace all numeric field 

arithmetic with GF(28) field operations. By doing so, it is easy to implement R-

propped Diffie-Helman-like key exchange protocol and consequently ElGamal-like 

cryptosystems. Here R stands for Rijndael as we work over the AES field. This 

approach yields secure post-quantum protocols since the resulting multiplicative 

monoid is immune against quantum algorithms and resist classical linearization 

attacks like Tsaban’s Algebraic Span or Roman’kov. The protocols have been proved 

to be semantically secure. Finally, we present numerical examples of the proposed 

R-Propped protocols.  
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1 Introduction 
 

1.1 Background of Public-Key Cryptography and Post-Quantum Cryptography 

Since the first generation of public key cryptography (PKC) was introduced by Diffie 

and Hellman [_bookmark535], many  PKC  schemes  have  been  proposed  and  broken. 

Recently Post-Quantum Cryptography (PQC) attempts to develop cryptographic protocols 

that are simultaneously resistant to classical and quantum computing attacks using Shor’s 

polynomial time algorithm [16] or Grover’s algorithm [7 ] in order to find the unique input 

to a black-box function. Today NIST conducts a process to solicit, evaluate, and standardize 

one or more quantum-resistant public-key cryptographic algorithms [13].   

 

1.2 PKC Proposals Based on Combinatorial Group Theory 

The theoretical foundations for current generation of cryptosystems lie in the 

intractability of problems close to number theory [11] and therefore prone to quantum 

attacks. This was the main reason to develop PQC, It is noteworthy that besides a couple of 

described solutions [3], there remains overlooked solutions belonging to Non-

Commutative (NCC) and Non-Associative (NAC) algebraic cryptography [12]. The general 

structure of these solutions relies on protocols defining one-way trapdoor functions 

(OWTF) extracted from the combinatorial group theory [12].  



This category is known as canonical non-commutative protocols [12] which are 
conveniently combined with algebraic structures like groups, semigroups, monoids, 

quasigroups, magmas, groupoids, etc.  Cao et al [4 ] compiles much of these efforts.    

 
1.3 Motivation of the present work 

In this paper, we propose an algebraic patch to theoretical well supported 

combinatorial solutions. Specifically, we refer to algebraic propped versions of previously 

descripted Cao PKC polynomial protocols [4].  That work has the virtue of presenting 

proved semantic secure systems attaining IND-CCA2 level and at the same time laying solid 

ground evidence for the OWTF generalized symmetric decomposition problem (GSDP). It 

is advised that readers to get acquainted with Cao’s work, although this is not a necessary 

requirement. 

Essentially R-propping consists of replacing all numerical field operations (arithmetic 

sum and multiplication), a typical scalar proposal, by algebraic operations using the AES 

field, a vectorial proposal [6]. This scales up operations complexity foiling classical 
linearization attacks like AES [6] does and at same time quantum ones. This is a solid way 

to achieve the best of two worlds, both pointing to cryptographic security. As side benefits, 

we get rid of big number libraries and step away from the critical dependency of pseudo-
random generators. 

The R-propping solution is described as an Algebraic Extension Ring [8], a second paper 

worthwhile to read. Next to those, Myasnikov NCC treatise [12] contributes to exhaustive, 

worthwhile, and fundamental knowledge of this field. 

 

2 Preliminaries 

Definition 1. A public key encryption scheme Π = (KGen, Enc, Dec) consists of the 

following three polynomial-time (in k) algorithms: 

– The key generation algorithm – KGen: On input 1k (unary representation of k), the 

algorithm KGen produces a pair (pk, sk) of matching public and private keys. 

Algorithm KGen is probabilistic. 

– The encryption algorithm – Enc: Given a message m and a public key pk, 

Enc produces a ciphertext c = Π(m) of m. This algorithm may be probabilistic. 

– The decryption algorithm – Dec: Given a ciphertext c = Π(m) and the private key 

sk. Dec(sk, c) gives back the plaintext m. This algorithm is necessarily deterministic. 

In addition, for every pair (pk, sk) generated by KGen(1k), and for every α, 

algorithms Enc and Dec satisfy (Pr=probability) 

Pr[Dec(sk, Enc(pk, m)) = m] = 1 

Definition 2 (Semantic Security). A public key encryption scheme Π = (KGen, Enc, 

Dec) is said to be semantic secure if for all A ( probabilistic polynomial time algorithms),  

and for every α > 0 and sufficiently large k, 

Pr[A(pk, m0, m1, c)=m] < ½ + 1/kα       (1/kα  =  negligible function) 

where (m0, m1) is chosen by A, m ← {m0, m1}, c = Π(m) ← Enc(pk, m), (pk, sk) ← 

KGen(1k). 

 
Definition 3 (Security levels). Currently, there are several types of attacks models 

for public key encryption, namely the chosen-plaintext attack (CPA), non-adaptive 

chosen-ciphertext attacks (CCA1) and adaptive chosen-ciphertext attacks (CCA2). 

Security levels are usually defined by pairing each goal (OW: one-way, IND: 

indistinguishability, NM: non-malleability) with an attack model (CPA, CCA1 or CCA2); 

i.e., OW-CPA, OW-CCA1, OW-CCA2; IND-CPA, IND-CCA1 and IND-CCA2 [4]. 



 

 

 

 

Definition 4 (Cryptographic Assumptions - OWTF).  In a non-commutative group  
(or monoid) G, two elements x, y are conjugate, if y  = z−1 x z for some z e G. Here z  or z−1 is 
called a conjugator.  Over a non-commutative group G [10], we can define the following 
cryptographic problems [4] which are related to conjugacy, here ordered in increasing 
difficulty: 

– Conjugator Search Problem (CSP): Given (x, y) e G x G find z e G such that  

y  = z−1 x  z  

– Decomposition Problem (DP): Given (x, y) e G x G and S Œ G, find   (z1 , z2) e S such 

that y = z1  x  z2. 

– Symmetrical Decomposition Problem (SDP): Given (x, y) e G x G , (m,n) e ℤ x 

ℤ, find z e G such that  y  = zm x  zn 

– Generalized Symmetrical Decomposition Problem (GSDP): Given (x, y) e G 

x G, (m,n) e ℤ x ℤ and S Œ G, find z e S such that  y  = zm x  zn 

The same problem definitions could be applied to non-commutative rings (like AER) 

instead of non-commutative groups (monoids), in which case G (group) should be replaced 

by R (ring) and z by a positive integer coefficients polynomial z[x]. Then, two new 

definitions appear. Suppose (AER, +,  . ) is a NC ring, and define Pa = {f(a) : f(x) e Field 

Element Coefficient Polynomial (see 4.1.), for any a = random tensor  and Pa belonging 

to that ring, 

– Polynomial Symmetrical Decomposition Problem over Non-

commutative AER  (PSD): Given (a, x,  y) e AER3 , (m, n) e ℤ x ℤ, find z e Pa such 

that  y  = zm x  zn 

– Polynomial Diffie-Hellman Problem over a Non-commutative AER 

(PDH): Compute xz1z2= xz2z1 for given a, x, xz1 and xz2, where (a, x) e AER2 and (z1, 

z2 ) e Pa. 

For general non-commutative group (or monoid) G, all the above problems are difficult 

enough to be cryptographic assumptions, meaning that there does not exist a probabilistic 

polynomial time algorithm which can solve all instances of them with non-negligible 

accuracy with respect to the problem scale, i.e., the number of input bits of the problem). 

Definition 5 (Algebraic Extension Ring - AER). The Algebraic Extension Ring 
(AER) framework includes the following structures: 

���� :  a.k.a. GF[28], the AES field [6] 

Primitive polynomial: 1+x+x3+x4+x8 with <1+x> as the multiplicative subgroup 

(����
∗ ) generator:  

M[���� d] d-dimensional square matrix of field elements. (bytes). Therefore, a d-

dimensional square matrix is equivalent to a rank-3 Boolean tensor.  

The AER platform has two substructures: 

(M[���� , d], ⨁, O)   Abelian group using field sum as operation and null matrix 

(tensor) as the identity element. 

 (M[����
∗ , d], ⨀, I)   Non-commutative monoid using field product as operation and 

identity matrix (tensor) as the identity element.  

From here on, when referring to field elements (bytes) we call they simply as 

elements and when we refer to any d-dimensional matrix of the AER we will use with 

the term d-dim tensor. 
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Tensors combine between them using field operations to construct powers (and power 
sets) or otherwise polynomials using elements as coefficients, which relates to the 

respective variable (tensor) power with a scalar (field) product. Forcefully (pigeon hole 

principle) all tensor power sets are periodic.  It is normal to search for the multiplicative 

order, the lowest exponent which yields the Identity tensor, hence defining periodicity. 

Likewise we define the tensor determinant function det( ) and we say a tensor is singular 

when det(T)=0. Singular tensors do not have multiplicative order but have periodicity and 

at a certain power they repeat the base tensor. This allows to define a spurious identity 

tensor defining the period and the respective spurious inverse tensor (the previous power). 

 

3 Algebraic Extension Ring (AER) properties 

 
3.1 Empirical considerations 

Among tensors, some are cyclic multiplicative subgroup generators, the rest have 
periodic power sets that do not include the identity tensor. This second case corresponds 

to singular tensors. As said, singular tensors define non-identity spurious identities and 

spurious inverses, but have the same period distribution as the non-singular ones. Periods 

and determinants seem to be independent. Although no full algebraic description has been 

obtained, statistical sampling has been collected using uniformly random elements.  

It is a fact that over cyclic groups, any element generates a cyclic subgroup whose 

cardinal is a divisor of the group cardinal (Lagrange’s theorem). This does not hold as such 

for the multiplicative tensor monoid. 

To calculate the tensor period we used Floyd [9] or the Floyd-Brent [2] algorithms, 
otherwise we recur to direct multiplication of each tensor with a list of previously sampled 

periods to verify if an identity or spurious identity is obtained. Fast power results are 

programmed using the square and multiply procedure, and precomputed multiplication 
table of elements is strongly advised. Resuming results, randomly tensors have uniform 

determinant distributions (Fig. 1.). Otherwise we show the period’s distribution of random 

3-dim tensors (Table 1.) and the cardinals of AER sets of different dimensions (Table 2.).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Determinant distribution of a collection of 50.000 random 3-dimensional tensors. 

There are 5 samples of 10.000 tensors each, and every point in this graph represent the relative 

frequency of determinant value into each of the five samples (red line is the global mean observed 

value =39.0630, close to the theoretical value = 39.0625). Observe the uniform behavior of values, 

including the singular tensor case.  



 

 

Period Absolute Frequency % Frequency 

102 73 0.1460 % 

170 332 0.6640 % 

255 7897 15.7949 % 

510 178 0.3560 % 

65535 24953 49.9090 % 

16777215 16564 33.1300 % 

Sum 49997  100 % 

Table 1. Period distribution of a sample of 50.000 random 3-dimensional tensors. The three 

missing periods belong to outsider values of this registered set. Some periods are trivially related to 

divisors of 224. A deeper study is needed to explain the algebraic nature of these results. 

 

 

Dimension AER set cardinal 

2 

3 
4 

5 

6 
7 
8 

4.294967296 × 10�

4.722366482869645 × 10��

3.402823669209384 × 10��

1.60693804425899 × 10��

4.973232364097866 × 10��

1.008691358627698 × 10���

1.340780792994259 × 10���

 

 Table 2. AER set cardinal for diverse tensor dimensions. No conclusive relation was found 

between these values and the periods. 

 

4 R-Propped Public Key Cryptosystems using  the Algebraic Extension Ring 

(AER) 

 
4.1 Field Element Coefficient Polynomials 

Given x, an arbitrary tensor belonging to AER, we define f[x] as an Field Element 

Coefficient Polynomial (Pa) of any m-degree, where coefficients of the powers of x are field 

elements related to scalar field products of respective tensors: 

���� = !� + !� � + !���  + !� ��  + … +!#�#  =  ∑ !%�%#
%&�                  (1) 

 

Each polynomial will be defined by a vector of m+1 elements. It verifies that any 

product of two polynomials f[x] and g[y] do not commute unless the tensor variable is 

the same for both: 

����. '�(� ≠ '�(�. ����      ;      ����. '��� = '���. ����                        (2) 
 

The same verifies when arbitrary powers of evaluated polynomials are involved:  

 

����+ .  '�(�, ≠  '�(�, . ����+     ;     ����+ .  '���, =   '���,. ����+                  (3) 
 

This feature allows the implementation of GSDP as OWTF in PKC.  

 

 

 



 

4.2 R-Propped Diffie-Hellman-Like Key Agreement Protocol  

 

Both sides agree on a specific AER.  

a) One entity (Alice) sends two random tensors (a, b) together with two 
elements (bytes) (m, n) to another entity (Bob) launching the protocol. 

b) Alice chooses a random Field Element Coefficient Polynomial f(x) such that 
f(a) ∫ 0 and takes f(a) . 

c) Bob chooses a random Field Element Coefficient Polynomial h(x) such that 

h(a) ∫ 0 and takes h(a) as his private key. 

d) Alice computes rA = f(a)m · b · f(a)n and sends (*) rA to Bob. 

e) Bob computes rB = h(a)m · b · h(a)n and sends (*) rB to Alice. 

f) Alice computes KA = f(a)m · rB · f(a)n as the shared session key. 

g) Bob computes KB = h(a)m · rA · h(a)n as the shared session key. 

(*) In practice, the token must be disguised by certain canonical form before 

it is transmitted via a public channel. Please search at [12] or at Section 3.3 

of [4]  for the disguising issue.  

Steps a), b) and d) can be finished simultaneously and require only one pass 

communication from Alice to Bob.  After that, the steps c) and e) can be finished in one pass 

communication from Bob to Alice. Finally, Alice and Bob can execute the steps f) and g) 

respectively. 

The above key agreement protocol can resist passive adversary under PDH assumption 

over the (AER, . ) monoid. Obviously, similar to the standard Diffie-Hellman protocol [5], 

this version cannot resist the man-in-the-middle (MITM) attack. This could be solved if an 

authentication step is added. 

 

4.3 R-Propped ElGamal-Like Encryption Scheme [Basic version, IND-CPA compliant] 

– Initial setup:  define a version of (AER, +, . ) as the working platform and 

GSDP intractable on the monoid (AER, . ). Select two positive integers (m, 

n) and let H: AER-> M a cryptographic secure hash function (random 

oracle) which maps tensors to the message space M. The public 

parameters of the system are in the 5-tuple < AER, m, n, M, H >. 

– Kgen: Each user chooses two random tensors (p,q) from AER and a random Field 

Element Coefficient Polynomial f(x) such that f(p) ∫ 0 and then define f(p) as his 

private key and computes y = f(p)m. q . f(p)n . At least he publishes the tensors (p, 

q, y) as his public key.  

– Enc: Given a message M belonging to M, and receiver’s (p, q, y) key, the 

sender chooses a random Field Element Coefficient Polynomial h(x) such 

that h(p) ∫ 0 and then using h(p) as salt, computes: 

 

c = h(p)m · q · h(p)n    ,   d = H(h(p)m · y · h(p)n) ⊕ M                             [4] 

 and output the ciphertext (c, d) ∈ AER x M. 

– Dec: Once received the ciphertext (c, d), the receiver uses his private key 
f(p) to recover the plaintext:  

M = H(f(p)m · c · f(p)n) ⊕ d                                                       [5]                                              

 

This version is IND-CPA secure, as Theorem 3. from Cao [4] has proved. 

 



 

4.4 R-Propped ElGamal-Like Encryption Scheme [Enhanced version, IND-CCA2 compliant] 

– Initial setup:  here the public parameters set < AER, m, n, M, H > is 

extended to < AER, m, n, M, k0, H1, H2 > were k  is the standard length of a 

message i.e. M={0,1}k, and k0 the length of the random salt not determined 

by a binary search method (suggested to be 128), the hash functions H1: 

{0,1}k+k0 -> z[x] (integer coefficient polynomial) and H2: AER (tensor) -> 

{0,1}k+k0. 

– Kgen: Identical to the Basic version.  

– Enc: Given a message M belonging to M, and the receiver’s (p, q, y) key, the 

sender chooses a random salt r ∈ {0.1}k0 and extracts an Field Element 

Coefficient Polynomial h(x) = H1( M || r) such that h(p) ∫ 0 and then using 

h(p) as salt, computes: 

c = h(p)m · q · h(p)n    ,   d = H2(h(p)m · y · h(p)n) ⊕ (M || r)                    [6] 

 and outputs the ciphertext (c, d) ∈ AER x {0,1}k+k0. 

– Dec: Once received the ciphertext (c, d), the receiver uses his private key 

f(p) to recover the plaintext:  

M’ = H2(f(p)m · c · f(p)n) ⊕ d                                                       [7]                                              

Finally extracts g(x) = H1(M’) an Field Element Coefficient Polynomial and 

checks whether c=g(p)m . q. g(p)n holds. If so, outputs the beginning k bits of 

M’; otherwise output empty string which means that the ciphertext is not 

valid. 

 

This version is IND-CCA2 secure, as Theorem 5. from Cao [4] has proved. 

 

5 Concrete examples of PQC R-propped PKC 

 

5.1 R-Propped Anshel-Anshel-Goldberg (AAG) based KEP (key 

exchange protocol) 

AAG is an algebraic based protocol [12] which has solid reasons to be secure in his 

classical version and belongs to the PQC category. In the Appendix of our paper [8] we 
present a R-Propped version of the generalized Diffie-Hellman protocol using 2-dim 

tensors whose OWTF is AAG based. 

5.2 R-Propped Diffie-Hellman KEP Example 1. (4.5 Concrete 

examples) [4]. 

• We present the necessary derived function set using Mathematica 11.3 
code. 

 
<<FiniteFields`; 

ir = {1,1,0,1,1,0,0,0,1}; 

F = GF[2,ir]; 

ByteToFieldElement[byte_Integer]:=F[Reverse[IntegerDigits[byte,2,
8]]]; 
FieldElementToByte[element_]:=FromDigits[Reverse[element[[1]]],2]

; 
S[byte1_Integer, 

byte2_Integer]:=BitXor[byte1,byte2];SetAttributes[S, 

Listable]; 

 
 



M[byte1_Integer,byte2_Integer]:= 
Module[{el1=ByteToFieldElement[byte1],el2=ByteToFieldElement[

byte2]},If[byte1 byte2 == 0, 0, FieldElementToByte[el1 el2]]]; 
SetAttributes[M, Listable]; 
MM[x_,y_]:=Inner[M,x,y,List]; 
TSum[k_,l_]:=S[k,l]; 
TProd[k_,l_]:=Flatten[{t=MM[k,l],Do[t[[i,j]]=Fold[S,0,t[[i,j]]],{i,1,d
im},{j,1,dim}]};t,0] 
TPower[k_,exp_]:=(t=k;Do[{t=TProd[t,k]},{exp-1}];If[exp==0,t=one];t );  

TPowerSet[k_,exp_]:=For[i=1,i<exp+1,i++,If[i==1,TPSet[i]=k,TP
Set[i]=TProd[TPSet[i-1],k]]];TPSet[0]:=IdentityMatrix[dim]; 
S3[byte1_Integer,byte2_Integer,byte3_Integer]:=BitXor[byte1,byte2,byte
3];SetAttributes[S3, Listable]; 
FieldPolyEval[dim_,degree_,coef_,tensor_]:= 

Module[{k},TPowerSet[tensor,degree];Table[TPSet[k],{k,0,degree}]; 

newTPSet=Table[MapThread[M,{TPSet[k],ConstantArray[coef[[k+1]],{di
m,dim}]},2],{k,0,degree}];result=MapThread[BitXor,newTP Set,2]]  

 

• Program of the R-Propped version. 

 
Print["......................................................
....................."] 

Print["ALICE prepares..."] 

dim=2;Print["dim=",dim] 
degree=5;Print["degree=",degree] 

A={{2,5},{7,4}};Print["tensor A=",MatForm[A]]  
B={{1,9},{3,2}};Print["tensor B=",MatForm[B]]  

m=3;Print["m=",m] 
n=5;Print["n=",n] 

coefA={6,5,4,3,0,0};Print["coefficient list of f(x)=",coefA] 

TPowerSet[A,degree];Print["tensor A power 
set=",Table[MatrixForm[TPSet[k]],{k,0,degree}]] 
fA=FieldPolyEval[dim,degree,coefA,A];Print["f(A)=",fA] 

rA=TProd[TPower[fA,m],B];rA=TProd[rA,TPower[fA,n]]; 

Print["rA=",rA] 
Print["ALICE sends m, n, A, B, rA to BOB"] 

Print["......................................................

....................."] 
Print["BOB prepares..."] 

coefB={1,5,0,0,0,1};Print["coefficient list of h(x)=",coefB] 

TPowerSet[A,degree];Print["tensor A power 

set=",Table[MatrixForm[TPSet[k]],{k,0,degree}]] 
hA=FieldPolyEval[dim,degree,coefB,A];Print["h(A)=",hA] 

rB=TProd[TPower[hA,m],B];rB=TProd[rB,TPower[hA,n]]; 
Print["BOB sends rB to ALICE"] 

Print["......................................................
....................."] 

KA=TProd[TPower[fA,m],rB];KA=TProd[KA,TPower[fA,n]]; 

Print["ALICE session key=",MatrixForm[KA]] 
KB=TProd[TPower[hA,m],rA];KB=TProd[KB,TPower[hA,n]]; 
Print["  BOB session key=",MatrixForm[KB]] 

Print["......................................................

....................."] 
 

 

6 Cryptographic security of R-propped protocols 

This analysis refers to protocols where random integer coefficient Polynomial are used 

as private keys, like the one presented in the previous section. If the security of the protocol 

relies over the intractability of GSDP, PSD and DHP problems, a residual way to break them 

is a brute-force attack against the coefficient vector of the private key. Using R-Propping we 



design private keys for which this approach is unfeasible. 

The dimension of tensors does not affect security since there are public.  There are 
256#.� Field Element Coefficient Polynomial of degree m and coefficients in ℤ��� , here 

defined as elements of the AER. In Table 3. we present classical and quantum security levels 

as functions of the private keys polynomial degrees: 

 

m-degree 
 of R-Propped private 

key Polynomial 

Classical 
Security 

(bits) 

[Grover] 

Quantum 

Security 

(bits) 

NIST security level for 

PQC proposals [14] 

7 64 32 Insecure 

15 128 64 Category 1 

23 192 96 Category 3 

31 256 128 Category 5 

Table 3. Expected security of increasing Polynomial degree used as private keys subject to classical 

and quantum attacks. For the 3rd-round NIST PQC selection, Category 5 parameters must be supplied.  

The main motivation for the development of R-propped PKC was the appearance of 

classical linearization attacks against NCC. The idea was simple, adapt field operation 

instead of numeric arithmetic, the added non-linearity resists attacks like Tsaban [1] and 

Roman’kov [15] ones. Also, AES has followed the same principle. Therefore, quantum 

attacks like Shor’s result ineffective and Grover attack could be foiled by increasing the 

dimension of the platform. (Table 3.). Also, adapting Cao’s proposals, we have achieved 

semantic security for our work. This was a critical requirement for our PQC candidates and 

help to gain confidence onto them. For real-world applications, we suggest referring to 

Table 3. security goals. 

7 Conclusions 

We present a reasonable way to increase security into public-key cryptography 

belonging to PQC class, replacing simple arithmetic by algebraic field operations. For that 

purpose, we apply AES GF (28) field, which provides the required framework (AER - non-

commutative ring over rank 3 tensors). If conveniently applied, we achieve NIST PQC 

category 5 security and IND-CCA2 semantic security. An additional advantage is the 

unnecessary use of big numbers libraries and heavily relying protocols over the 

pseudorandom generators. 

Other works of the author covering this subject can be found at [17]. 
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