
Key Committing AEADs

Shay Gueron

University of Haifa and AWS

Abstract. This note describes some methods for adding a key commit-
ment property to a generic (nonce-based) AEAD scheme. We analyze
the the privacy bounds and key commitment guarantee of the resulting
constructions, by expressing them in terms of the properties of the under-
lying AEAD scheme and the added key commitment primitive. We also
offer concrete constructions for a key committing version of AES-GCM.

Keywords. AEAD, Robust encryption, key commitment.

1 Introduction

Recent publications (e.g., [3], [4]) and new shaping designs (OPAQUE [6]) raised
the question and interest in the relation between the result ciphertext decryp-
tion and the key that was presentably used to encrypt “the” plaintext. Reality
turns out to be be sometimes counter intuitive. We focus here on symmetric key
authenticated encryption with associated data (AEAD).

A nonce-based AEAD scheme receives, at encryption, a nonce N , a public
header A and a message M , and uses a (secret) key (K) to produce the ci-
phertext C and the authentication tag T . Decryption for the input (N,A,C, T),
in the context of the key K, produces either a decrypted message M if it was
successfully authenticated, or an authentication failure indication ⊥. The design
goal of an AEAD is to provide privacy and authenticity for two communicating
parties who share a secret key K, loosely described as:

– Privacy: an adversary that sees C, T (and N,A) samples, computed over
its chosen N , A, M inputs, has negligible advantage in distinguishing them
from random strings with the matching lengths.

– Authenticity: if the tuple (N,A,C, T) is input to decryption, and C, T is not
the output of a previous encryption of a tuple (N,A,M), then the probability
that decryption does not return ⊥ is negligible.

However, binding a tuple (N , A, C, T) to a specific key is not a design goal of
an AEAD: such a tuple can have non-negligible (even large) probability to pass
authentication under two distinct keys K1, K2. In fact, with some AEADs it is
easy for an adversary that knows (or chooses) K1, K2 to compute such tuples.
One example is AES-GCM where the authentication tag is the one-time-pad
encryption of a non-cryptoraphic hash function.

Binding a tuple (N , A, C, T) to a key. Our goal is to tweak a given
AEAD by using an additional value (KC) that we call here a Key Committing
string, which serves as a visible (non-secret) key identifier. The resulting key
committing scheme would encrypt a tuple N , A, M to C, T , KC, and decryption
would take N , A, C, T , KC as input. The design needs to provide privacy and
authenticity guarantees similar to those of the original underlying AEAD scheme,
and also to prevent an adversary from finding distinct keys K1, K2 and a tuple
(N,A,C, T,KC) that passes authentication under both keys.

2 Preliminaries and notation

Let {0, 1}∗, {0, 1}s, {0, 1}≤s (s ≥ 0) be, respectively, the set of all binary strings
(including the empty string of length 0), the set of all binary strings of length s
(bits), and the set of binary strings of length at most s.

The length of a string S is denoted by |S|. By convention, strings of bits are
written in a way that the bit in the leftmost position is called the most significant
bit and the bit in the rightmost position is called the least significant bit. For
example, the most (least) significant bit of 10100100 is 1 (0). For S with |S| ≥ α
we denote the α least significant bits of S by S[α]. For example if S = 10100100
then |S| = 8 and S[3] = 100. The string that consists of s ≥ 0 repeated zero bits
is denoted by 0s (the degenerate case s = 0, is the empty string). For example
08 = 00000000. For brevity, we also use the hexadecimal notation for strings of
bits. For example, 10100100 is 0xA4 in hexadecimal notation.

The concatenation of the strings U and V is a string of |U |+|V | bits, denoted
by U ‖ V . By convention U ‖ V has the bits of U in the |U | leftmost positions
and the bits of V in the |V | rightmost positions. For example, if U = 1111 and
V = 0000, then U ‖ V = 11110000.

The symbol ⊥ indicates authentication failure. For a finite set W we denote
the uniform sampling from W and assigning the value to w by w ← $W .

2.1 AEAD schemes

A nonce-based Authenticated Encryption with Associated Data (AEAD) is a
triple of algorithms, Π = (Gen,Enc,Dec) associated with the key K, nonce N ,
message M, header A, ciphertext C, and tag T spaces, all being finite subsets
of {0, 1}∗. With no loss of generality, we assume hereafter that N = {0, 1}ν for
some nonce length ν > 0, that K = {0, 1}κ for some key length κ > 0, and that
Gen is K ← ${0, 1}κ.

Encryption is a deterministic algorithm that takes input K,N,A,M ∈ K ×
N × A ×M and outputs ciphertext and tag C, T ∈ C × T . We assume here
that |C| = |M |1. We denote the encryption operation by Enc(K,N,A,M) and
the result by (C, T). Decryption is a deterministic algorithm that takes input
K,N,A,C, T ∈ K × N × A × C × T and outputs either a message M ∈ M (if

1There exist AEAD schemes where |C| > |M |, but we ignore such schemes here.

2

tag authentication passes) or a failure symbol ⊥ (if tag authentication fails).
We denote the decryption operation by Dec(K,N,A,C, T), where the output
is either M or ⊥. An AEAD scheme satisfies the following: if K,N,A,M ∈
K ×N ×A×M and Enc(K,N,A,M) = (C, T), then Dec(K,N,A,C, T) = M
(in particular, 6= ⊥).

A random nonce (randomized) AEAD scheme is defined analogously to a
nonce-based AEAD scheme above, with the following difference: Enc takes only
K,A,M as input, generates N ← $ N and outputs C, T N .

Payloads. The AEAD definition captures also the case where the header / mes-
sage is a “payload” divided (logically) to multiple chunks, and the nonce (input
or generated) may also be divided to multiple chunks that are processed inde-
pendently. The ciphertext and tag are divided to multiple chunks accordingly.
In such cases, it is assumed that Π is used in a context that defines, unam-
biguously, how inputs (N,A,M) (to Enc) and inputs (N,A,C, T) (to Dec) are
parsed. Constraints on the uniqueness of the nonce(s) can also be imposed.

Example 1 (Payload encryption with AES-GCM). Let Π be a “payload encryp-
tion” scheme using the standard AES-GCM. The payload, (N,A,M), input to
encryption, is parsed as: v header/plaintext chunks A = a1 ‖ a2 ‖ . . . ‖ av,
M = m1 ‖ m2 ‖ . . . ‖ mv, and v (sub-)nonces N = n1 ‖ n2 ‖ . . . ‖ nv
where |nj | = 96, j = 1, . . . , v, with the constraint that n1, n2, . . . , nv are dis-
tinct. It is assumed that the context and input/output format for Π defines
unambiguous slicing to chunks and nonces. The encryption process uses a key
K, computes (cj , tj) = AES-GCM(K,nj , aj ,mj), j = 1, . . . , v, and outputs C =
c1 ‖ c2 ‖ . . . ‖ cv, and T = t1 ‖ t2 ‖ . . . ‖ tv, in an agreed format. We point out
that the message format of AWS Encryption SDK [1] is (in some configurations)
also an example for encrypting a payload.

2.2 Advantage against a scheme

LetK = {0, 1}κ (key space) and IN ,OUT (input/output space) be finite subsets
of {0, 1}∗. Let Scheme : K × IN → OUT be a function/procedure and denote
its operation over input K ∈ K and U ∈ IN by Scheme(K,U) = Res. An
oracle OScheme for Scheme is an entity that chooses, uniformly at random, a
challenge bit b and a key K ∈ K, and answers queries from IN (“legitimate”
queries hereafter). For a query U ∈ IN , OScheme computes Scheme(K,U) = Res,
generates R$ ← ${0, 1}|Res|, and returns Res if b = 1 and R$ if b = 0.

An adversary C against Scheme is a Polynomial Time Probabilistic (PPT)
adaptive algorithm that has access to OScheme, and a budget for (say q) queries to
its oracle OScheme and some run time tC. C submits at most q legitimate and non-
redundant queries (e.g., no repeated queries), receives OScheme’s responses, and
outputs a bit b′. The distinguishing (Real-or-Random) advantage of C against
Scheme is

AdvScheme(C) =
∣∣Prob(b′ = 1| b = 1)− Prob(b′ = 1| b = 0)

∣∣ (1)

3

A randomized scheme draws a uniformly random value V (of a specified length),
involves V in the computation of Scheme(K,U) = Res, and returns Res and V .

Multi-key setting. The notion of oracle and advantage can be generalized
to the following multi-key setting where OScheme samples q keys Kj ← $ K,
j = 1, . . . , q, and uses Kj for a query of the form (j, U) that C submits (j ≤ q)
as follows: computes Scheme(Kj , U) = Res, generates R$ ← ${0, 1}|Res|, and
returns Res if b = 1 and R$ if b = 0. As in the single-key scenario, C outputs a
bit b′, and the advantage is as in (1). The case q = 1 degenerates to the standard
single-key scenario. A special case is the “fresh-multi-key” setting where a new
key from the list K1, . . . ,Kq is used for every call/query, i.e., queries do not
specify explicitly the key to be used (the keys can be generated a priori or per
call — “online”). Note that responses to (at most) q queries that C may submit
involve at most q distinct keys because there could be colliding values among
K1, . . . ,Kq. The probability that the q keys are distinct is at least 1− q2/21+κ.

Remark 1 (Key guessing). Independently of oracle queries, C may compute (“of-
fline”) Scheme with TScheme chosen keys (and inputs). If a guessed key equals to
a key that OScheme actually used in the queries, then C wins. With at most q
different keys for OScheme, the key guessing probability is at most (TScheme ·q)/2κ.

3 Constructing a key committing AEAD

3.1 Construction

Let Π = (Gen,Enc,Dec) be a nonce-based AEAD scheme defined with the
spaces K = {0, 1}κ, A, N , M, C, T for some κ > 0. We construct the schemes
DeriveKeyΠ and CommitKeyΠ over Π.

The constructions are defined with the positive parameters κ0, ν1, c where,
with no loss of generality, κ0 ≥ max (κ, c), and the two distinct public strings
(labels) L1, L2 with equal lengths |L1| = |L2| = `L. Denote ` = `L + ν1. Let

F (K,L) : {0, 1}κ0 × {0, 1}≤(`L+ν1) → {0, 1}max (κ,c)

be a pseudorandom function keyed K ∈ {0, 1}κ0 . Both schemes use a key K ∈
{0, 1}κ0 , called “main key”, and their key generation procedure is K ← ${0, 1}κ0 .
The input to encryption is a legitimate payload (N,A,M) ∈ N × A × M (i.e.,
legitimate input to Π encryption), and possibly a nonce N1 ∈ {0, 1}ν1 .

DeriveKeyΠ is an AEAD that derives an encryption key KE from K and
possibly a nonce N1 ∈ {0, 1}ν1 , uses KE to encrypt the payload with Enc and
outputs the resulting C, T . CommitKeyΠ extends DeriveKeyΠ by deriving an
additional value KC ∈ {0, 1}c from K and possibly a nonce N1 ∈ {0, 1}ν1 . It
outputs C, T , KC, where KC, is hereafter called a Key Committing string, serves
as a non-confidential key identifier.

We use different ways to derive KE and KC from the main key (K), with or
without the nonce N1, as follows:

4

Fixed: KE = F[κ](K,L1); or nonce-based KE = F[κ](K,L1 ‖ N1);
Fixed: KC = F[c](K,L2); or nonce-based KC = F[c](K,L2 ‖ N1);

(we use F[c](K,L2) to denote
(
F (K,L2)

)
[c]

) and name the four corresponding

CommitKeyΠ (two for DeriveKeyΠ) flavors by:

Type I) fixed KE and fixed KC;
Type II) nonce-based KE and fixed KC;
Type III) fixed KE and nonce-based KC;
Type IV) nonce-based KE and nonce-based KC.

DeriveKeyΠ decryption is obvious. CommitKeyΠ decryption uses the input
KC to verify the main key K. The flows are illustrated in Figure 1 (top). The
different flavors of CommitKeyΠ are associated with different incremental com-
putational (computing F) and bandwidth overheads on top of CommitKeyΠ and
on top of Π. Figure 1 (bottom) describes these different overheads.

Remark 2 (Randomized versions). The randomized version of CommitKeyΠ
(DeriveKeyΠ) samples N1 ← ${0, 1}ν1 during Enc and includes N1 as part of
the encryption output. Nonce collision probability across q messages is at most
q2/21+ν1 .

Remark 3 (The CommitKeyΠ constructions). CommitKeyΠ can be viewed as
either an enhancement of Π (adding a derivation of KE and KC to Π) or an en-
hancement of CommitKeyΠ (adding (only) the derivation of KC to DeriveKeyΠ).

Remark 4 (Domain separation). The requirements L1 6= L2 and |L1| = |L2|
implies that the equal length values L1 ‖ N1 and L2 ‖ N1 are distinct for all
distinct values of N1. This guarantees domain separation for the invocations of
F (K, ·) in the derivation of KE and KC. Different ways to secure this domain
separation can be used analogously.

Using the different CommitKeyΠ flavors. Comparing to the direct use of Π,
DeriveKeyΠ is a method for extending the lifetime of a key, using one nonce-based
key derivation (see, e.g., [5] and [2]). CommitKeyΠ Type I (over Π) and type II
(over CommitKeyΠ) carry the lowest incremental overheads due to using a fixed
key identifier (KC) for the main key K. These are useful under the assumption
that associating groups of visible encrypted payloads (N , C, T , KC, N1) with the
same main key does not violate the privacy requirements of the communication
(and hence, a fixed key identifier is acceptable). For example, this is the case
when a main key is used for only one session between the communicating parties.
Deriving a nonce-dependent KC value, as in Types III and IV, prevents this
association, and comes at some incremental cost (see Figure 1). It is useful with
multiple main keys used across multiple payloads, when bundling encrypted
payloads under the same main key is undesired.

5

CommitKeyΠ Encryption
Input: (K,N1, N,A,M)
|K| = κ0, |N1| = ν1, N ∈ N , A ∈ A, M ∈M

1. KE = F[κ](K,L1) (fixed) or KE = F[κ](K,L1 ‖ N1) (nonce-based)
2. KC = F[c](K,L2) (fixed) or KC = F[c](K,L2 ‖ N1) (nonce-based)
3. C, T = Enc(KE, N,A,M)
4. Output: C, T,KC

CommitKeyΠ Decryption Input: (K,N1, N,A,C, T,KC)
|K| = κ0, |N1| = ν1, N ∈ N , A ∈ A, C ∈ C, T ∈ T , |KC| = c

1. r1 = 0, r2 = 0
2. KE

′ = F[κ](K,L1) (fixed) or KE
′ = F[κ](K,L1 ‖ N1) (nonce-based)

3. KC
′ = F[c](K,L2) (fixed) or KC

′ = F[c](K,L2 ‖ N1) (nonce-based)
4. If KC

′ = KC then r1 = 1
5. If Dec(KE

′, N,A,C, T) = M (i.e., 6= ⊥) then r2 = 1
6. If r1 · r2 = 0 then output ⊥; else output M

CommitKeyΠ KE/KC Calls to F Communication Communication
Type derivation to encrypt overhead over overhead over

(decrypt) q messages DeriveKeyΠ Π

I Fixed/Fixed 1 + 1 c c

II Nonce/Fixed q + 1 c c+ ν1
III Fixed/Nonce 1 + q c+ ν1 c+ ν2
IV Nonce/Nonce 2q c+ ν1 c+ ν1

Fig. 1: Top: CommitKeyΠ (and DeriveKeyΠ) encryption and decyption.
DeriveKeyΠ encryption is obtained (from CommitKeyΠ encryption) by skipping
Step 2, and omitting KC from the output. DeriveKeyΠ decryption is obtained
(from CommitKeyΠ decryption) by ignoring r2 (setting r2 = 1), KC, and skip-
ping Steps 3 and 4. Four flavors of CommitKeyΠ are defined: Type I (fixed KE,
fixed KC), Type II (nonce-based KE fixed KC), Type III (fixed KE, nonce-based
KC), Type IV (nonce-based KE and nonce-based KC). For a randomized version,
N1 (and possibly N) is generated uniformly at random from {01}ν1 (instead of
being part of the input) during CommitKeyΠ (DeriveKeyΠ) encryption. In such
that case, the generated value is added to the encryption output.
Bottom: The overheads involved with the different flavors of CommitKeyΠ,
when encrypting (decrypting) q payloads with the main key K.

6

3.2 Simple instantiation examples

We provide an example of simple instantiation for F , for the case where κ0 =
κ = 256. Assume that ν1 ≤ 256. Set c = 256. Define

F (K,L) = SHA256(K ‖ L)

For concreteness, define some (fixed) label L0 of length 48 bits (6 bytes). A
possible example is L0 = 0x436f6d6d6974 (=Commit in hexadecimal notation).
Set:
For Type I: L1 = L0 ‖ 0x01 ‖ 0x01, L2 = L0 ‖ 0x01 ‖ 0x02
For Type II: L1 = L0 ‖ 0x02 ‖ 0x01, L2 = L0 ‖ 0x02 ‖ 0x02
For Type III: L1 = L0 ‖ 0x03 ‖ 0x01, L2 = L0 ‖ 0x03 ‖ 0x02
For Type IV: L1 = L0 ‖ 0x04 ‖ 0x01, L2 = L0 ‖ 0x04 ‖ 0x02

Note that the CommitKeyΠ flavors are encoded in the labels L1, L2. With
this choice, |K ‖ L1 ‖ N1| = |K ‖ L2 ‖ N1| ≤ 576 so deriving KE and KC require
(for each computation) at most two calls to the SHA256 compression function.
For Type I, computing KE and KC invokes the SHA256 compression function
only once. For Type II, computing KC involves calling the SHA256 compression
function only once (and twice for computing KE).

A Type I key committing AES-GCM Let Π be the standard AES-GCM
scheme with parameters κ = 256, ν = 96 (and block size n = 128). Select param-
eter values κ0 = 256 (= κ), c = 256, ` = `L = 48 (there is no N1 nonce, so effec-
tively ν1 = 0) and consider a Type I scheme. Define F (K,L) = SHA256(K ‖ L)
and call it with L1 = L0 ‖ 0x01 ‖ 0x01 and L2 = L0 ‖ 0x01 ‖ 0x02 where L0 =
0x41455347434d (=AESGCM in hexadecimal notation). The resulting CommitKeyΠ
(Type I) is a “Robust Key AES-GCM” denoted here, for brevity, by RK-AES-
GCM. At setup, RK-AES-GCM encryption requires AES key expansion for the
encryption key KE, and also one computation of AES(KE, 0

128) for the GHASH
key. This setup overhead is the same as the setup for AES-GCM.

4 Analysis of CommitKeyΠ

Our analysis of CommitKeyΠ consists of two parts: a) upper bounding the pri-
vacy and authenticity guarantees of CommitKeyΠ, compared to the underlying
scheme Π (or to DeriveKeyΠ); b) analysis for the key commitment property that
CommitKeyΠ offers.

Upper bounds for the ciphertext indistinguishability of CommitKeyΠ. The-
orem 1 is stated for CommitKeyΠ Type IV, where we assume, for convenience,
that κ = c. The statements for Types I, II, III are analogous.

We start with a few definitions. The oracle for Π encryption is denoted
by OΠ . A privacy adversary A against (the privacy of) Π submits encryption
queries of the form (N,A,M) to OΠ , and its advantage is denoted AdvprivΠ (A).

7

In the fresh-multi-key scenario, the oracle is denoted by Omk−Π and the ad-
vantage is denoted by Advprivmk−Π(A). The oracle for F is denoted by OF . An
adversary B against the PRF security of F submits queries of length `L + ν1 to
OF and its advantage is denoted by AdvPRFF (B). The oracle for CommitKeyΠ
encryption is denoted by OCommitKeyΠ . An adversary A against (the privacy of)
CommitKeyΠ submits queries of the form (N1, N,A,M) and receives either C,
T , KC or R$ ← ${0, 1}|M |+τ+c, depending on OCommitKeyΠ ’s challenge bit. Its ad-

vantage is denoted AdvprivCommitKeyΠ(A). The scheme CommitKeyΠ ′ is a “fresh key”
analogue to CommitKeyΠ. Its oracle is denoted by OCommitKeyΠ′ , and it selects
uniformly random KE and KC values for every encryption query. A privacy ad-
versary A submits encryption queries of the form (N1, N,A,M) to OCommitKeyΠ′ ,

and its advantage is denoted by AdvprivCommitKeyΠ′(A). Note that from the indis-
tinguishability viewpoint, CommitKeyΠ ′ is essentially equivalent to Π in the
fresh-multi-key setting (the uniformly random KC value appended to C and T
has no impact on the distinguishing advantage).

Theorem 1 (CommitKeyΠ Privacy). Let A be a privacy adversary against
CommitKeyΠ Type IV. Let q, `A, `M , `payload be non-negative parameters, and
assume, for convenience, that κ = c. Assume that A submits at most q encryp-
tion queries of the form (N1, N,A,M), without repeating N1 values, such that
|A| ≤ `A, |M | ≤ `M , and the total encrypted payload, across all queries, is at
most `payload. Then, there exist: a) an adversary B against the PRF security of
F that makes at most 2q queries of length `L+ν1 to its oracle; b) a privacy adver-
sary A′ against Π in the fresh-multi-key setting, that makes at most q queries of
the form (N,A,M) with |A| ≤ `A and |M | ≤ `M , and overall encrypted payload
of at most `payload, such that

AdvprivCommitKeyΠ(A) ≤ AdvPRFF (B) +Advprivmk−Π(A′) (2)

If A runs in tA steps, then B runs in O(tA)+∆1 steps and A′ runs in O(tA)+∆2

steps where: a) ∆1 is the number of steps required to simulate A’ (at most q)
queries with a given/known key; b) ∆2 is the number of steps required generate
(at most) q random values of length c.

Proof. We first build an adversary B against the PRF security of F , running
against OF . B runs A. For every query (N1, N,A,M) that A issues, B queries
OF with the values L1 ‖ N1 and L2 ‖ N1 to obtain the response X ∈ {0, 1}κ and
Y ∈ {0, 1}c. Subsequently, B computes Enc(X,N,A,M) = (C, T) and returns
C, T, Y to A. When A outputs a bit b′, B outputs b′ and stops. Denote the
sequence of queries issued by A until it outputs b′ by SEQ, and let P$ be the
probability that A outputs b′ = 1 if SEQ is replied with uniformly random
responses (of the expected lengths). We have, by the definition

AdvPRFF (B) =
∣∣Prob(b′ = 1| b = 1)− Prob(b′ = 1| b = 0)

∣∣ (3)

Note that if b = 1, the responses returned to A simulate (real) responses to SEQ
from OCommitKeyΠ for CommitKeyΠ. If b = 0, these responses simulate (real)
responses to SEQ from OCommitKeyΠ′ (in the fresh-multi-key setting). Therefore,

8

∣∣Prob(b′ = 1| b = 1)− Prob(b′ = 1| b = 0)
∣∣ =∣∣Prob(b′ = 1| b = 1)− P$ −

(
Prob(b′ = 1| b = 0)− P$

) ∣∣ ≥
AdvprivCommitKeyΠ(A)−AdvprivCommitKeyΠ′(A) (4)

and so, we have

AdvprivCommitKeyΠ(A) ≤ AdvPRFF (B) +AdvprivCommitKeyΠ′(A) (5)

We now build an adversary A′ against Omk−Π (i.e., Π in the fresh-multi-key
setting). A′ runs A. For every query (N1, N,A,M) that A issues, A′ queries
Omk−Π with (N,A,M) and obtains the response C, T . It then generates a fresh
value Y ← ${0, 1}c and returns C, T, Y to A. When A outputs a bit b′, A′

outputs b′ and stops. Since Y is a uniformly random value, we have

AdvprivCommitKeyΠ′(A) = Advprivmk−Π(A′)

The number of steps that B and A′ run, and the lengths of the queries, are clear
from the above description. ut

The Key commitment property of CommitKeyΠ. The CommitKeyΠ con-
struction is designed to address the following scenario:

A polynomial time Adversary A′′ against the key identification string KC

chooses distinct main keys K1, K2, and a tuple (N1, N,A,C, T,KC). It wins
if (N1, N,A,C, T,KC) passes the CommitKeyΠ authentication under K1 and
also under K2, as main keys.

Claim. If adversary A′′ produces a winning tuple (N1, N,A,C, T,KC) for keys
K1 6= K2, then A′′ has found a collision (on KC), i.e.,

F[c](K1, L2 ‖ N1) = F[c](K2, L2 ‖ N1) (6)

Remark 5. It may be possible (or even easy) to find a tuple (N1, N,A,C, T,KC)
and two main keys K1 6= K2, such that (N,A,C, T) passes Π authentication
under the KE values that are derived from K1 and from K2. This ability depends
on the properties of the underlying AEAD Π. The introduction of KC (as in
CommitKeyΠ) adds the requirement (6) for the full tuple (N1, N,A,C, T,KC).

Remark 6. We may relax the requirement on A′′ and allow a choice of different
N1 values. Here, A′′ can choose distinct main keys K1, K2, and two tuples
(N1, N,A,C, T,KC), (N ′1, N,A,C, T,KC). A′′ wins if (N1, N,A,C, T,KC) passes
the CommitKeyΠ authentication under K1 as the main key, and
(N ′1, N,A,C, T,KC) passes the CommitKeyΠ authentication under K2 as the
main key. If that case, to win, A′′ needs to find a collision

F[c](K1, L2 ‖ N1) = F[c](K2, L2 ‖ N ′1) (7)

9

Collision resistance requirements from F . To meet the CommitKeyΠ de-
sign goal, the pseudorandom function F (·, ·) should be chosen in a way that an
adversary with an assumed (reasonable) compute time has a negligible proba-
bility to produce a collision of type (6), even with its (adversarial) chosen keys.
In particular, c should be sufficiently large so that brute force attempts un-
til a collision occurs is practically unfeasible. Note that the choice F (K,L) =
SHA256(K ‖ L) (shown in Section 3.2) is based on a collision resistant hash
function. It satisfies the requirement, under the standard assumption on SHA256.
Note also that SHA256 prevents even a collision of the type (7), under the same
assumption.

5 Discussion

We give an example for using the bounds of Theorem 1 for a scenario of interest.
Consider the case where κ0 = κ = c = 256 and Π is the standard AES-GCM
(with a 96-bit nonce). Suppose that a main key K is used q ≤ 232 times, with
different nonces N11 , . . . N1q and derived values KE11 . . . KE1q and KC11 . . . KC1q .
We assume that all the derived values are distinct. Every nonce from N11 , . . .
N1q (and the respective derived key is used for encrypting a payload with the
following characteristics. Payload j consists of q̄j chunks of data. Every chunk is
encrypted with AES-GCM under the key KEj , using a different AES-GCM nonce
(N). The total number of blocks encrypted with KEj is σj . For CommitKeyΠ,
we make the assumption that AES behaves like an ideal cipher in the multi key
scenario, and ignore the PRP advantage of distinguishing AES from a random
permutation on {0, 1}128. With probability at most (2q)2/2κ+1, we may assume
that the q values of KE and the q values of KC are distinct. With T0 key guessing
attempts (for either K or a derive KE), correct guessing succeeds with probability
(T0q)/2

κ. Therefore, we can upper bound the advantage of a privacy adversary
against CommitKeyΠ by

maxAdvPRFF +
4q2

2κ+1
+ T0

q

2κ
+

q∑
j=1

(σj + q̄j + 1)2

2129
(8)

where maxAdvPRFF is the maximum distinguishing advantage for F , with 2q
queries.

We set the limits q ≤ 232, q̄j = 230 and σj = 230, j = 1, . . . , q, and assume
T0 ≤ 296. This implies (σj + q̄j + 1) < 232, and consequently, the dominant
term in (8) is at most 232 × 2−65 = 2−33. With a judicious choice for a PRF
F (e.g., F (K,L) = SHA256(K ‖ L) as in Section 3.2), we can assume that the
PRF distinguishing advantage with 2q queries (for F) is or order O(4q2/2257).
The amount of data that can be encrypted using CommitKeyΠ and a main key
K, is up to 260 blocks (i.e., 264 bytes), and the indistinguishability bound is at
most O(2−32).

Design rationale and alternatives. We require CommitKeyΠ to use κ0 ≥ κ
in order to keep a key hierarchy: the derived encryption keys (KE) are not longer

10

than the main key. Similarly, we require κ0 ≥ KC and set KC to be sufficiently
long in order to make brute force collision and pre-image search unfeasible. The
power-of-two choice κ0 = κ = c = 256 seems adequate and convenient. However,
it is also reasonable to settle with c = 192 or 160 to reduce the overhead of
CommitKeyΠ encryption. We point out that defining F (K,L) = H(K ‖ L) with
any NIST standard cryptographic hash function H, with a sufficiently long digest,
is an acceptable choice (the example in Section 3.2 uses SHA256). This makes it
is easy to choose a main key (K) of a desired length, and also, under standard
assumptions on the hash function, to truncate the digests to c or κ bits, as
needed. Note that it is implicitly assumed here that for this usage, H is invoked
with equal-length arguments. It is also possible to choose other designs where
F (K,L) = HMAC(K,L) or F (K,L) = HKDF(K,L). Due to their construction that
is based on a collision resistant hash function, these options also satisfy the
collision resistance requirement mentioned in Section 4 (even with chosen keys).
In such cases, the requirement for equal-length arguments can be relaxed. We
point out that CommitKeyΠ does not require that the checks for T and for KC

(see Steps 4, 5, 6 in Figure 1) are executed in constant time or in a particular
order. An implementation can choose to return ⊥ as soon as one comparison
does not match.

Finally, we point out a theoretical difference between the CommitKeyΠ con-
structions of Type I and of Type IV. For Type I, the collision analogous to (6)
for Type IV, is F[c](K1, L2) = F[c](K2, L2) (i.e., no N1 nonce is involved). This
means that for Type I, a selection of a pair K1 K2 already determines the ex-
istence of (or lack of) a collision. By contrast, for an adversary A′′ for Type IV
CommitKeyΠ, can choose a pair K1 K2, and then still have the freedom to select
a value N1 that yields a collision of the form (6).

Acknowledgments. This research was supported by: NSF-BSF Grant 2018640;
The Israel Science Foundation (grant No. 3380/19); The BIU Center for Research
in Applied Cryptography and Cyber Security, and the Center for Cyber Law and
Policy at the University of Haifa, both in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office.

References

1. AWS: AWS Encryption SDK. https://docs.aws.amazon.com/encryption-sdk/
latest/developer-guide/message-format.html (2020)

2. Campagna, M., Gueron, S.: Key management systems at the cloud scale. Cryptogr.
3(3), 23 (2019). https://doi.org/10.3390/cryptography3030023, https://doi.org/
10.3390/cryptography3030023

3. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From
invisible salamanders to encryptment. Cryptology ePrint Archive, Report 2019/016
(2019), https://eprint.iacr.org/2019/016

4. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenti-
cated encryption. Cryptology ePrint Archive, Report 2017/664 (2017), https:

//eprint.iacr.org/2017/664

11

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://doi.org/10.3390/cryptography3030023
https://doi.org/10.3390/cryptography3030023
https://doi.org/10.3390/cryptography3030023
https://eprint.iacr.org/2019/016
https://eprint.iacr.org/2017/664
https://eprint.iacr.org/2017/664

5. Gueron, S., Lindell, Y.: Better bounds for block cipher modes of op-
eration via nonce-based key derivation. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Secu-
rity. p. 1019–1036. CCS ’17, Association for Computing Machinery,
New York, NY, USA (2017). https://doi.org/10.1145/3133956.3133992,
https://doi.org/10.1145/3133956.3133992

6. Krawczyk, H.: The OPAQUE Asymmetric PAKE Protocol; draft-krawczyk-
cfrg-opaque-03. https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-
03#section-3.1.1 (2020)

12

https://doi.org/10.1145/3133956.3133992
https://doi.org/10.1145/3133956.3133992
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-03#section-3.1.1
https://tools.ietf.org/html/draft-krawczyk-cfrg-opaque-03#section-3.1.1

	Key Committing AEADs
	Introduction
	Preliminaries and notation
	AEAD schemes
	Advantage against a scheme

	Constructing a key committing AEAD
	Construction
	Simple instantiation examples
	A Type I key committing AES-GCM

	Analysis of CommitKey
	Discussion

