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Abstract

With the advances of Internet-of-Things (IoT) applications in smart cities and the per-
vasiveness of network devices with limited resources, lightweight block ciphers have achieved
rapid development recently. Due to their relatively simple key schedule, nonlinear invari-
ant attacks have been successfully applied to several families of lightweight block ciphers.
This attack relies on the existence of a nonlinear invariant g : Fn

2 → F2 for the round
function Fk so that g(x) + g(Fk(x)) is constant for any input value x. Whereas invariants
of the entire S-box layer has been studied in terms of the corresponding cycle structure
[TLS16, WRP+20] (assuming the use of bijective S-boxes), a similar analysis for the linear
layer has not been performed yet. In this article, we provide a theoretical analysis for spec-
ifying the minimal length of cycles for commonly used linear permutations (implementing
linear layers) in lightweight block ciphers. Namely, using a suitable matrix representation,
we exactly specify the minimal cycle lengths for those (efficiently implemented) linear layers
that employ ShiftRows, Rotational-XOR and circular Boolean matrix operations which can
be found in many well-known families of block ciphers. These results are practically useful
for the purpose of finding nonlinear invariants of the entire encryption rounds since these
can be specified using the intersection of cycles corresponding to the linear and S-box layer.
We also apply our theoretical analysis practically and specify minimal cycle lengths of linear
layers for certain families of block ciphers including some NIST candidates.

Keywords: Cyclic shift, XOR, Cycle of linear layer, Permutation matrix, Nonlinear invari-
ant.

1 Introduction

Block ciphers are important cryptographic primitives whose security has been traditionally eval-
uated using some standard cryptanalytic techniques such as differential attacks [BS90], linear

∗Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, College of Math-
ematics and Computational Science, Guilin University of Electronic Technology, Guilin, China, e-mail:
d9801242@guet.edu.cn.
†Guilin University of Electronic Technology, Guilin, China, e-mail: walker wei@msn.com.
‡Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, College of Math-

ematics and Computational Science, Guilin University of Electronic Technology, Guilin, China, e-mail: guid-
ian520@126.com.
§University of Primorska, FAMNIT and IAM, Koper, Slovenia, e-mail: enes.pasalic6@gmail.com.
¶Technical University of Denmark, DTU Compute, Denmark, e-mail: saho@dtu.dk.

1



attacks [Mat93] , and their diverse variations. Certain requirements towards their efficient im-
plementation in resource constrained environments have however given rise to a specific family of
these primitives commonly known as lightweight block ciphers. Due to their reduced implemen-
tation cost, which induces greedy design rationales (commonly using a simplified key schedule),
lightweight ciphers easily become a target for other cryptanalytic tools such as invariant attacks.

Subspace invariant attacks were introduced in [LAAZ11] (see also [LMR15]) and it was
demonstrated that several lightweight block ciphers could be efficiently cryptanalyzed using this
novel cryptanalytic approach. This attack basically relies on the property of having inputs and
outputs that belong to the same affine subspace through (many) encryption rounds under the
so-called weak key assumption. Their extension, a nonlinear invariant attack, was proposed by
Todo et al. [TLS16] at ASIACRYPT 2016 which was successfully applied against the lightweight
encryption algorithms SCREAM [GLSV15], iSCREAM [GLSV14] and Midori64 [BBI+15]. The
main idea behind nonlinear invariant attacks is to identify a nonlinear Boolean function g :
Fn2 −→ F2 for which the evaluation of g(x) + g(Ek(x)) is constant for any x, where Ek(x) is the
encryption function of a considered n-bit block cipher performed using the secret key k. The
function g is then called a nonlinear invariant for Ek(x) and those keys k ∈ K for which g is a
nonlinear invariant are called weak keys.

To extend the application range and possibly find even larger classes of weak keys, Y. Wei
et al. [WYWP18] introduced the concept of generalized invariant: g(x+a1) + g(E(x) +a2) = c,
where c ∈ F2, which enables the effects of round constant to be eliminated by introducing two
n-bit vectors a1, a2. So far, only a few works have been conducted towards finding invariants of
the S-box layer. Traditionally, the S-box layer can be viewed as a parallel application of a certain
number of small S-boxes and invariants of the whole S-layer can be specified by concatenating
invariants of constituent S-boxes [BCLR17]. Initially, a method of specifying invariants of S-
boxes based on its cycle structure was mentioned in [TLS16]. More precisely, Todo et al. [TLS16]
showed that #g = 2(# cycles of F ) when F (representing a bijective S-box) has at least one cycle
of odd length; alternatively #g = 2(# cycles of F )+1 when F only has cycles of even length. Quite
recently, an extensive theoretical treatment related to generalized and closed loop invariants of
bijective S-boxes appeared in [WRP+20]. It is important to notice that only in certain cases (for
instance using quadratic invariant g and binary orthogonal matrix as a linear layer [WYWP18])
an invariant of the entire encryption round can be specified. Therefore, being at the same time
a main motivation of this article, there is a necessity to further analyze invariants of commonly
used linear layers.

Most notably, apart from the above mentioned property related to orthogonal matrices and
the general resistance of linear layers to invariant attacks discussed in [BCLR17], there is no
theoretical analysis of invariants of linear layers that can be found in the literature. In particular,
the properties of linear layers that employ cyclic shift and XOR operations as the most basic
computer instructions, have not been considered so far. These operations are exclusively used in
many well-known wireless sensor networks and video recognition systems. The same is true for
lightweight authenticated encryption algorithms and hash functions submitted to the Round 2
Candidates of NIST LWC Competition, including SKINNY-AEAD/SKINNY-HASH [BJK+16],
Ascon [DEMS19], Knot [ZDY+19], Pyjamask [GJK+19], ForkAE [ALP+19], mixFeed [CN19a],
PHOTON-Beetle [BCD+19], COMET [GJN19], etc.
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The main objective of this article is to provide a rigour theoretical analysis of nonlinear
invariants in terms of the minimal cycle length of those linear layers that employ most basic
operations (suitable for lightweight design rationales for increasing the speed and reduction of
the implementation cost). The notion of the minimal cycle length of a linear layer refers here
to the least common multiple of all the cycles corresponding to different elements that suitably
represent the entire linear layer. Our main contributions are given in the next section where
we additionally, for clarity, emphasize the main motivation of this work through a theoretical
result which provides the means of combining cycle structures of linear and nonlinear layer for
the purpose of specifying invariants of the whole encryption round.

1.1 Motivation and contributions

The structure of a round function R of an SPN block cipher EK : Fn2 → Fn2 is given as a
composition of an S-box layer S and a linear layer L, i.e. R(x) = (L ◦ S)(x) (for simplicity the
notation for round keys is omitted). There exist various design approaches which utilize this
structure, and in general, not all of them allow the application of the non-linear invariant attack
in the way as it was presented in [TLS16].

The so-called LS-design of a block cipher, which is based on the bitslice construction of
R, has been recently cryptanalyzed in [TLS16]. It has been shown that a quadratic invariant
of S is actually an invariant for R, if L is an orthogonal matrix. This is mainly due to the
fact that L is applied in a bitslice manner. On the other hand, the PRESENT-like round
function does not employ a bitslice design, and thus it does NOT allow the application of the
non-linear attack presented as in [TLS16] (nor its generalized version [WYWP18]). It turns out
that the application of nonlinear invariant attacks to PRESENT-like round functions is a quite
challenging task if one wants to find an invariant of a round function that holds with probability
equal to 1.

On the other hand, there exist many lightweight block ciphers whose round functions have
low degree (even quadratic), but still it is not clear how the non-linear invariant attack can
be applied due to their structure. As low-degree of a round function seems to be a potential
weakness against this attack, the main problem that needs to be to resolved in this context is
an efficient specification of invariants of the encryption round.

A potential approach that one may consider is to find all cycles of S and L, and if they
contain a common cycle (say C), then it is a cycle of the mapping R = L ◦ S. As pointed out in
[TLS16], one then easily constructs a non-linear invariant of R (say a Boolean function g) such
that g is constant on the cycle C, and has complementary value outside of C (the cycle C is
a subset of Fn2 of cardinality less than 2n). This observation, based on the ideas in [TLS16], is
generalized with the following proposition.

Proposition 1 Let S,L : Fn2 → Fn2 be arbitrary bijective mappings. Suppose that S = {CS1 , . . . , CSt }
and L = {CL1 , . . . , CLr } be the sets of all cycles of S and L (t, r ≥ 1), where for instance
CSj = {Sk(x(j)) : k ∈ N}, for some x(j) ∈ Fn2 (j = 1, . . . , t). If S and L have common cycles,
that is S∩L = {D1, . . . , Dp} (for some p ≤ min{t, r}), then for a Boolean function g : Fn2 → F2

defined as

g(x) =

{
ci, x ∈ Di ∈ S ∩ L, i = 1, . . . , p,
d, x 6∈

⋃p
z=1Dz,

,
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for some fixed values ci, d ∈ F2, it holds that g(L(S(x))) = g(x) for all x ∈ Fn2 , i.e. g is an
invariant function of the mapping L ◦ S.

Proof. Note that every cycle CSj = {Sk(x(j)) : k ∈ N} (j = 1, . . . , t) also contains the vector

x(j). For instance, if we assume that S(x(j)) = Sλ(x(j)) ∈ CSj for some λ > 1, then by applying

S−1 to both sides one obtains x(j) = Sλ−1(x(j)) ∈ CSj , and thus x(j) ∈ CSj . On the other hand,

recall that cycles of a mapping are pairwise disjoint subsets of Fn2 , i.e. CSi ∩ CSj = ∅ for i 6= j

and
⋃t
j=1C

S
j = Fn2 (similarly for L). Thus, the statement follows from the previous facts.

Usually, the design of the S-box layer S : Fn2 → Fn2 at input x = (x1, . . . , xs) ∈ Fm2 × . . .×Fm2
(sm = n), is given as

S(x1, . . . , xs) = (S(x1), . . . , S(xs)),

where an S-box S : Fm2 → Fm2 is a bijective non-linear mapping (in many cases m ∈ {4, 6, 8}).
As the mapping S is defined on a low-dimensional domain, then it is easy to find its complete
cyclic structure. Consequently, the complete cyclic structure of S can be found.

However, the cycle structure of a linear layer L (for which there exist various design ap-
proaches) is an open problem that we are addressing in this work. More precisely, we analyze
several most common types of linear layers used in certain well-known block ciphers, and derive
efficient algorithms for finding the minimal cycle length (see Definition 3) of underlying linear
layers. The application of our results is clearly in the framework of Proposition 1 (which essen-
tially establishes the motivation for this work), which we leave for further investigation due to
its potential utilization in applying non-linear invariant attacks to PRESENT-like encryption
schemes.

The problem of computing the cycle structure of linear layers that use the cyclic shift and
XOR operations will be specifically considered with respect to the following three families of
basic operations. We consider ShiftRows, Rotational-XOR and Cir-Boolean matrix operations
which are denoted by SR(x), l−RX(x) and CBM(x) (see Table 1 for their precise definition),
respectively. The main contributions of this paper can be summarized as follows:

• We view the cyclic shift and XOR operation as a certain action of a suitably chosen
permutation matrix P , which allows us to derive the connections between the SR(x) and
l −RX(x) operation in terms of P .

• For the SR(x) operation we derive the exact length of a minimal cycle, which is then
applied and practically confirmed in the case of TANGRAM-128[ZJD+19].

• In the case of the l − RX(x) operation, we show that when l is odd then there exists
the minimum positive cycle for the l − RX(x) operation and an explicit formula for its
computation is derived. These results are then turned into an efficient algorithm for
obtaining the cycle of minimum length for the l −RX(x) operation, cf. Algorithm 2. On
the other hand, when l is even, l−RX(x) operation is never a permutation and therefore
unsuitable for implementing a linear layer.

• We show that CBM(x) and l − RX(x) operation are equivalent (can be identified using
suitable different forms) which is also illustrated in the case of Pyjamask-128[GJK+19], cf.
Proposition 2.
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• Using our algorithms and explicit formulas, we provide an extensive analysis of linear layers
of many well-known lightweight block ciphers in terms of finding a cycle of minimum length.

1.2 Organization

The rest of this paper is organized as follows. Some useful notations are introduced in Section
2 and certain properties of circulant permutation matrices are given. In Section 3, we analyze
the cycle structure of linear layers of ShiftRows, Rotational-XOR and Cir-Boolean matrix type,
respectively. A detailed and rigorous theoretical analysis is provided and efficient algorithms
for finding cycles of minimal length are given. In section 4, we apply our theoretical study and
algorithms to a large collection of lightweight block ciphers and identify their cycles of minimal
length. Some concluding remarks are given in Section 5.

2 Preliminaries

In this section we firstly establish more closely the motivation for this work (Section 1.1). Then,
in Section 2.1 we recall the notion of permutation matrices, as well as their representation in
terms of circulant Boolean matrices. We also point out a relation between two widely used
operations (in the design of blocker ciphers), namely ShiftRows and Rotational-XOR. These
operations, which will be considered in matrix representations, are respectively denoted by SR(x)
and l−RX(x) when evaluated at input vector x. In general, the notation used throughout the
paper is summarized in Table 1.

Table 1: Notations

Symbol Meaning
x n-bit binary row vector
O Zero vector or zero matrix from the context
E Identity matrix
M Circulant Boolean matrix
P Permutation matrix defined by (1)
|S| Cardinality of set S

[a, b] Least common multiple of a and b
(a, b) Greatest common divisor of a and b
a |b a divides b
a - b a does not divide b

x <<< i i-bit left cyclic shift operation on x
x >>> i i-bit right cyclic shift operation on x
SR(x) x← (x <<< i)

l −RX(x) x← Σ(x) = (x <<< i1)⊕ (x <<< i2)⊕ · · · ⊕ (x <<< il)
CBM(x) xT ←MxT

SRj(x) SR(x) operation used iteratively j times
l −RXj(x) l −RX(x) operation used iteratively j times
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2.1 Properties of permutation matrix

In order to analyze the problem of finding the minimal cycle length of a linear layer, it is
convenient to express the main parameters using matrix notation. We first recall the definitions
of a fixed point of a mapping and circulant Boolean matrix.

Definition 1 Let F : Fn2 → Fn2 be a linear mapping. If there exists a vector x0 ∈ Fn2 such that
F(x0) = x0 holds, then x0 is called a fixed point of F .

Definition 2 A Boolean matrix M (of size n× n) is said to be circulant if it is given as

M =


a0 a1 a2 · · · an−1
an−1 a0 a1 · · · an−2

...
...

...
. . .

...
a2 a3 a4 · · · a1
a1 a2 a3 · · · a0

 ,

where the entries ai ∈ Fn2 , 0 ≤ i ≤ n− 1. The matrix M is shortly denoted by

M = cir(
[
a0 a1 a2 · · · an−1

]
).

When a1 = 1 and aj = 0 for j 6= 1, one obtains a special circulant Boolean matrix given by

P =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 . (1)

Moreover, the i-th power of the matrix P (denoted by P i) is given as

i
↓

P i =



0 0 · · · 0 1 0 · · · 0 0
0 0 · · · 0 0 1 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 1
1 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · 0 0


← n− i

It turns out that the structure of P can be easily related to the cyclic shift and XOR oper-
ations used in linear layers of block ciphers. This connection is based on the following facts:

1) If P is of size n × n, then the set G = {P 0 = E,P 1, P 2, · · · , Pn−1} forms a cyclic group
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(with respect to matrix multiplication evaluated modulo 2). The order of the cyclic group G is
n and thus Pn = E (cf. [WS08]).

2) An arbitrary n × n circulant Boolean matrix M can be written as a linear combination
of P 0, P 1, · · · , Pn−1 with weights c0, c1, . . . , cn−1 [Sch74] , i.e. we have that

M = c0P
0 ⊕ c1P 1 ⊕ · · · ⊕ cn−2Pn−2 ⊕ cn−1Pn−1, (2)

where ci ∈ F2, 0 ≤ i ≤ n − 1, and vice versa. In other words, the space of circulant Boolean
matrices is spanned by the set {P 0, P 1, · · · , Pn−2, Pn−1}, where the linear combinations are
taken over F2. Clearly, by omitting coefficients ci which are equal to 0, one can write M in the
simplified form as

M = P i1 ⊕ P i2 ⊕ · · · ⊕ P il , 0 ≤ i1 < i2 < · · · < il < n.

3) Let x = (x1, . . . , xn) be a binary vector. The cyclic shift of its coordinates to the left for i
positions is denoted by x≪ i, i.e. we have the operation

SR(x) : x← (xi+1, . . . , xn, x1, . . . , xi) = (x≪ i).

This operation can also be expressed in terms of the matrices P i as

SR(x) : xT ← P ixT ,

where xT is the transpose of x, which is viewed as a row matrix.

4) For a binary vector x of length n, the combination of cyclic shifts and XOR operations
forms the operation

l −RX(x) : x← Σ(x) = (x≪ i1)⊕ (x≪ i2)⊕ · · · ⊕ (x≪ il),

where 0 ≤ i1 < i2 < · · · < n. Similarly as in the case of the cyclic shift SR(x), we have that
l −RX(x) can be expressed in terms of the matrices P i1 ⊕ P i2 ⊕ · · · ⊕ P il as

l −RX(x) : xT ← (P i1 ⊕ P i2 ⊕ · · · ⊕ P il)xT .

3 The linear layer based on cyclic shift and XOR operations

In this section, we analyze the cyclic structure of linear layers, in terms of identifying the minimal
cycle length specified as follows.

Definition 3 LetM : Fn2 → Fn2 be an arbitrary bijective mapping. The minimal positive integer
µ ≥ 1 for which Mµ(x) = x holds for all x ∈ Fn2 , will be called the minimal cycle length of the
mapping M. In other words, the integer µ refers to the least common multiple of all possible
cycle lengths of all different elements x ∈ Fn2 with respect to M.

In this context, we consider those linear layers that employ ShiftRows and Rotational-XOR
operations (Sections 3.1 and 3.2), as well as those implementing circulant Boolean matrices
(Section 3.3). In addition, we provide efficient algorithms for finding cycles of minimal length
of these linear layers.
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3.1 The ShiftRows type based on SR(x) operation

In this section we analyze the ShiftRows-type linear layers which are widely used in the design
of lightweight block ciphers. For instance, in the second round of the competition for lightweight
block ciphers initiated by NIST, the schemes Knot [ZDY+19] and ORANGE [CN19b] utilize the
left cyclic shift operation, whereas Romulus [IKMP19], ForkAE v.1 [ALP+19] and SKINNY-
AEAD/SKINNY-HASH [BJK+19] use the right cyclic shift operation.

Commonly, the operations performed in an encryption round act on the state matrix, where
the data being processed is suitably arranged in a matrix form. We assume that the linear
layer acts as a transformation applied to each row separately. In this context, by a ShiftRows-
type operation we will refer to a linear transformation performing (different) rotational shift
operations on each row of the state matrix.

We firstly focus on the problem of finding cycles of minimal length for linear layers which
utilize a single shift operation. This result then easily extends to linear layers that employ
different shift operations for each row of the state matrix by finding the least common multiple
of these minimal cycles. Notice that shifting i bits to the left cyclically is equivalent to shifting
(n− i) bits to the right, and therefore without loss of generality, we will only consider left cyclic
shifts. We start with the following technical result.

Theorem 1 Let x ∈ Fn2 . If x is shifted cyclically i bits to the left, that is SR(x) : x← (x≪ i),
then the minimal cycle length of the SR operation (in terms of Definition 3) is given by

µ =
n

(i, n)
=

n

gcd(i, n)
. (3)

Proof. Recall that the operation SR(x) can be described in terms of the permutation P i as

SR(x) : xT ← P ixT .

In order to find the cycle of the SR(x), we need to compute the minimum positive integer µ
such that SRµ(x) = x, which is equivalent to(

P i
)µ
xT = xT , ∀x ∈ Fn2 .

Here, we have that
(
P i
)µ

= E, and thus Pn = E implies that n | iµ. As it is easy to verify
n

(i,n) |
iµ

(i,n) , the greatest common divisor of n
(i,n) and i

(i,n) is equal to 1, and consequently n
(i,n) | µ.

Hence, let µ = k · n
(i,n) , for k ∈ N. Since we have that

(
P i
)µ

=
(
P i
) kn

(i,n) = (Pn)
ki

(i,n) =

(E)
ki

(i,n) = E, and
(
P i
)µ

=
(
P i
) n

(i,n) = E for k = 1, we conclude that the minimum cycle length
of the SR(x) operation is µ = n

(i,n) , which corresponds to the case when k = 1.

Remark 1 If different cyclic shifts are applied to each row of the state matrix, then the minimal
cycle length of L is the least common multiple of minimal cycle length which correspond to each
row (determined by Theorem 1).
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To illustrate a concrete application of the above remark, we consider the problem of finding the
minimal cycle of the linear layer of TANGRAM-128 [ZJD+19]. The 128-bit state of this cipher is
represented as a matrix of size 4× 32. The linear layer of TANGRAM-128 applies four different
cyclic left shift operations to each row, as shown in Figure 1 below.

( a0,31 · · · a0,1 a0,0 )
≪0−→ ( a0,31 · · · a0,1 a0,0 )

( a1,31 · · · a1,1 a1,0 )
≪1−→ ( a1,30 · · · a1,0 a1,31 )

( a2,31 · · · a2,1 a2,0 )
≪8−→ ( a2,23 · · · a2,25 a2,24 )

( a3,31 · · · a3,1 a3,0 )
≪11−→ ( a3,20 · · · a3,22 a3,21 )

Figure 1. The linear layer of TANGRAM-128.

Applying Theorem 1, we can easily deduce the minimal cycle lengths for each row of the state
matrix. Using (3), we have that the minimal cycle length for the last three rows are 32, 4 and
32, respectively. Apparently, the least common multiple of these lengths, being 32, determines
the minimal cycle length for SR operation employed in TANGRAM-128.

3.2 The Rotational-XOR type based on l −RX(x) operation

In this section, we analyze the Rotational-XOR type linear layers, that is the case when a linear
layer employs the combination of cyclic shifts and XOR operations (i.e., l −RX(x) operation).
These linear layers (among different useful properties) provide a great flexibility in the round
function implementations [Guo17]. For instance, the linear layer of SM4 [SM412] scheme (GM/T
0002-2012) employs the Rotational-XOR operations. A similar structure can also be found in the
algorithms Ascon [DEMS19] (entering the second round of lightweight block ciphers competition
of NIST), FBC [FZZ+19](the second round of lightweight block ciphers competition of China),
DBlock [WZY15] and RoadRunneR [BS15].

Recall that the operation l −RX(x) is given by

l −RX(x) : x← Σ(x) = (x≪ i1)⊕ (x≪ i2)⊕ · · · ⊕ (x≪ il).

In terms of the matrix representation, l − RX(x) can be written as l − RX(x) = QxT , where
the matrix Q is given by Q = P i1 ⊕ P i2 ⊕ · · · ⊕ P il .

In order to find a minimum positive integer µ ≥ 1 such that l − RXµ(x) = x holds for all
x ∈ Fn2 , or equivalently

QµxT = (P i1 ⊕ P i2 ⊕ · · · ⊕ P il)µxT = xT ⇔ Qµ = (P i1 ⊕ P i2 ⊕ · · · ⊕ P il)µ = E,

we need to consider the equality Qµ = E. As Q is a sum of matrices P ij , the following lemma
helps us to compute efficiently Qµ in terms of powers of P ij .

Remark 2 Notice that Lemma 1 only considers the case n = 2m which is however the most
common case in practice. The analysis of a general case when n is an arbitrary positive integer
is more complicated and does not provide a useful simplification compared to the case n = 2m.
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Lemma 1 Let P be an n× n binary permutation matrix. If n is of the form n = 2m, then

(P i1 ⊕ P i2 ⊕ · · · ⊕ P il)n = (P i1)n ⊕ (P i2)n ⊕ · · · ⊕ (P il)n, 0 ≤ i1 < i2 < · · · < n.

Proof. Since 2m = n, one has to prove that

(P i1 ⊕ P i2 ⊕ · · · ⊕ P il)2m = (P i1)2
m ⊕ (P i2)2

m ⊕ · · · ⊕ (P il)2
m
.

We notice that all the cross terms in the expansion of (P i1 ⊕ P i2 ⊕ · · · ⊕ P il)2m have coefficients
which are even positive numbers and the reduction modulo 2 gives the claim.

In what follows, we utilize Lemma 1 in order to analyze the operation l−RX(x) with respect
to the parity of l.

3.2.1 The operation l −RX(x) with l being odd

In practice, when l is odd, most of the block ciphers with a linear layer of the Rotational-XOR
type apply the 3 − RX(x) operation on rows of the state matrix. Therefore, we first consider
this specific case and then give a generalization for arbitrary odd l. The following result provides
an explicit formula to compute the length of minimal cycle for the 3−RX(x) operation.

Theorem 2 Let x be a binary vector of length n. Suppose that the left cyclic shift is performed
three times on x followed by the XOR operation on these shifts, i.e. let us consider the operation

3−RX(x) : x← Σ(x) = (x≪ i1)⊕ (x≪ i2)⊕ (x≪ i3), 0 ≤ i1 < i2 < i3 < n.

If n is of the form n = 2k, then:

i) It holds that 3−RXn(x) = x, for any x ∈ Fn2 .

ii) There exists a minimum cycle length µ of 3− RX(x) such that µ ≤ n and µ|n. Moreover,
µ is given by

µ = min{
[ n

(i3 − i1, n)
,

n

(i2, n)

]
,
[ n

(i3 − i2, n)
,

n

(i1, n)

]
,
[ n

(i2 − i1, n)
,

n

(i3, n)

]
}. (4)

Proof. i) Since n = 2k, Lemma 1 implies that

Qn = (P i1 ⊕ P i2 ⊕ P i3)n = Pn·i1 ⊕ Pn·i2 ⊕ Pn·i3 .

Recall that for P it holds that Pn = E, and thus

Qn = (Pn)i1 ⊕ (Pn)i2 ⊕ (Pn)i3 = Ei1 ⊕ Ei2 ⊕ Ei3 = E.

We notice that n is not necessarily the minimal cycle length of Q.
ii) Denoting by µ the minimal cycle length of Q, we first prove that µ|n by contradiction.

Assume that µ - n, so that there is a positive integer t such that n = tµ + m, where m < µ.
Since Qn = Qtµ+m = QtµQm = E and Qµ = E, we conclude that Qm = E. However, m < µ
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contradicts the fact that µ is the minimal cycle length of Q. Therefore, µ|n and consequently
1 ≤ µ ≤ n.

To show (4), we observe that the equality Qµ = Pµ·i1 ⊕ Pµ·i2 ⊕ Pµ·i3 = E implies that at
least two matrices among Pµ·i1 , Pµ·i2 , Pµ·i3 have to be equal, and the third one has to be equal
to E. This is due to the fact that the identity matrix has values 1 placed on the main diagonal
and that Qµ is a sum of odd number of matrices. Without loss of generality, we consider the
case Pµ·i1 ⊕ Pµ·i3 = O and Pµ·i2 = E. Then, the equality Pµ·i1 ⊕ Pµ·i3 = O means that
µ · i1 ≡ µ · i3 (mod n), and thus we have n |µ(i3 − i1) . It is obvious that

n

(i3 − i1, n)
| µ(i3 − i1)
(i3 − i1, n)

.

From the fact that ( n
(i3−i1,n) ,

(i3−i1)
(i3−i1,n)) = 1, we conclude that n

(i3−i1,n) |µ. Hence the minimal

value of µ is equal to n
(i3−i1,n) . On the other hand, Pµ·i2 = E implies that n |µi2 , and by The-

orem 1 the minimal value of µ is n
(i2,n)

. As we require that Pµ·i1 ⊕ Pµ·i3 = O and Pµ·i2 = E

hold simultaneously, the minimum positive cycle µ is consequently given by µ = [ n
(i3−i1,n) ,

n
(i2,n)

].

Similarly, assuming Pµ·i2 ⊕ Pµ·i3 = O and Pµ·i1 = E gives µ = [ n
(i3−i2,n) ,

n
(i1,n)

], whereas in

the case Pµ·i1 ⊕ Pµ·i2 = O and Pµ·i3 = E we have µ = [ n
(i2−i1,n) ,

n
(i3,n)

].

By summarizing these three cases, the minimal cycle length of Q is given by (4), which
completes the proof.

The following example illustrates the calculation of the minimal cycle length of the linear
layer of Ascon [DEMS19] specified in Figure 2.

xi ←
∑

i (xi), 0 ≤ i ≤ 4.

x0 ←
∑

0 (x0) = x0 ⊕ (x0 >>> 19)⊕ (x0 >>> 28)
x1 ←

∑
1 (x1) = x1 ⊕ (x1 >>> 61)⊕ (x1 >>> 39)

x2 ←
∑

2 (x2) = x2 ⊕ (x2 >>> 1)⊕ (x2 >>> 6)
x3 ←

∑
3 (x3) = x3 ⊕ (x3 >>> 10)⊕ (x3 >>> 17)

x4 ←
∑

4 (x4) = x4 ⊕ (x4 >>> 7)⊕ (x4 >>> 41)

Figure 2 Ascons linear layer with 64-bit functions
∑

i (xi).

Example 1 The state of Ascon cipher consists of five state rows, where each row is of the size
64 bits. The linear layer is defined by applying 3−RX(x) operation to each row, see Figure 2. To
obtain the minimal cycle length of this linear layer, we need to compute the cycle of 3−RX(x)
operation for each row separately. Finally, the least common multiple of the obtained minimal
cycle lengths (corresponding to each row of the state) is the minimal cycle length of the linear
layer.

Let us consider the first row of the state, which is given by

x0 ← Σ0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28).

11



Since Theorem 2 assumes the left cyclic shift, the previous operation can be transformed to

x0 ← Σ(x0) = x0 ⊕ (x0 ≪ 45)⊕ (x0 ≪ 36).

Following the notation of Theorem 2, we have i1 = 0, i2 = 36, i3 = 45. By (4), we get that the
minimal cycle length of this operation is 64. Similarly, the minimal cycle lengths with respect
to the last four rows are 32, 64, 64 and 32, respectively. The least common multiple of these
lengths is 64, which is the minimal cycle length of the linear layer of Ascon.

The above example indicates that the linear layer of Ascon possess a sufficient robustness
in terms of its minimal cycle length which equals to n in this case. Nevertheless, the following
hypothetical example demonstrates that a proper choice of the shift values i1, i2, i3 is crucial in
this context.

Example 2 Let the 3−RX(x) operation be performed on a 16-bit vector x as

x← Σ(x) = (x≪ 1)⊕ (x≪ 4)⊕ (x≪ 7).

By Theorem 2, we know that a minimal cycle length µ divides 16 (and also µ < 16). In fact, by
(4) we have that

µ = min{
[ 16

(7− 1, 16)
,

16

(4, 16)

]
,
[ 16

(7− 4, 16)
,

16

(1, 16)

]
,
[ 16

(4− 1, 16)
,

16

(7, 16)

]
}

= min{[8, 4], [16, 16], [16, 16]} = min{8, 16, 16} = 8.

We notice that the proofs of Theorem 2-(i) and the first part of Theorem 2-(ii) do not depend
on the fixed value l = 3, which gives us the following corollary.

Corollary 1 Let x be a binary vector of length n, and let the operation l − RX(x), for odd l,
be given as

l −RX(x) : x← Σ(x) = (x≪ i1)⊕ (x≪ i2)⊕ . . .⊕ (x≪ il), 0 ≤ i1 < i2 < · · · il < n.

If n is of the form n = 2k, then for the minimal cycle length µ of l−RX(x) it holds that µ ≤ n
and µ |n .

Remark 3 In the case when l > 5, the formula for the minimal cycle length of l − RX(x)
becomes more complicated since there are many different cases to be considered when finding the
minimum of different terms. In general, we note that µ |n and µ ≤ n imply that µ has to be a
power of 2, in the case when n = 2k.

In the context of Remark 3, we further elaborate the computation of a minimal cycle length µ
in the case when n = 2k. Hence, when the l−RX(x) operation is performed on an n-bit vector
x (n = 2k), then the only candidate values of µ are 2k, 2k−1, . . . , 21. An efficient approach to
find µ among these values is to substitute 2k−1, 2k−2, . . . , 21 into the equation

(P i1)µ ⊕ (P i2)µ ⊕ · · · ⊕ (P il)µ = E. (5)
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Algorithm 1: Finding a minimal cycle length of l − RX(x) (l is odd) operating on
x ∈ Fn2 .

Input: i1, i2, . . . , il, n, k (2k = n).
Output: A minimal cycle length µ of l −RX(x).

1 Let µ = 2k−1.
2 For j = 1, 2, · · · , l: let mj = µij (mod n) and vj = (µ/2)ij (mod n).
3 If Pm1 ⊕ Pm2 ⊕ · · · ⊕ Pml = E and P v1 ⊕ P v2 ⊕ · · · ⊕ P vl 6= E, Output µ and terminate.
4 Let µ = µ/2. Go to Step 2.

Recall that we are looking for a minimal value of µ ∈ {2k−1, 2k−2, . . . , 21} for which (5) holds.
For this purpose, one can use Algorithm 1 to compute the minimal cycle length of l−RX(x)

(l odd) to a single row of the state matrix. When Algorithm 1 is applied to each row separately,
then the least common multiple of obtained minimal cycle lengths (of all rows) is a minimal
cycle length of the whole linear layer. By observing the relation (5), we notice the following facts:

1) The exponents i1µ, i2µ, · · · , ilµ should be evaluated modulo n, due to the fact that Pn = E.

2) In relation (5), one actually does not need to verify the minimality of µ = 2i for all
i = 1, 2, . . . , k− 1. Namely, if there exists an integer t0 ∈ {1, 2, . . . , k− 1} such that (P i1)2

t0+1 ⊕
· · · ⊕ (P il)2

t0+1
= E and (P i1)2

t0 ⊕ · · · ⊕ (P il)2
t0 6= E, then 2t0+1 is the minimum cycle length

of l −RX(x).

3) When checking the validity of (5), one does not need to compute the matrices (P ij )µ. Instead,
one can simply utilize the XOR operation and the fact that for any powers ijµ and ikµ, we have
that (P ij )µ ⊕ (P ik)µ = O holds if and only if ijµ ≡ ikµ (mod n).

With respect to the previous facts, we also give Algorithm 2 as an efficient improvement of
Algorithm 1.

Remark 4 The case l being even is given in the Appendix. Due to the fact that l − RX(x) is
not a permutation for even l makes its use inappropriate in the implementation of linear layers
which are supposedly bijective mappings. It can be also shown that in this case there are no
cycles of minimal length.

3.3 The Cir-Boolean matrix type based on CBM(x) operation

In addition to the ShiftRows and Rotational-XOR operations, many block ciphers employ circu-
lant Boolean matrices (shortly CBM) for implementing linear layers. This type of linear layers
will be called Cir-Boolean matrix type. Compared to random matrices, the linear layer based
on a circulant matrix is more likely to be optimal [DKR97]. We start with the following result,
which regards linear layers based on the CBM operation.
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Algorithm 2: An efficient algorithm for finding a minimal cycle length of l − RX(x)
(l is odd) operating on x ∈ Fn2 .

Input: i1, i2, . . . , il, n, k (2k = n).
Output: A minimal cycle length µ of l −RX(x).

1 Let µ = 2k−1.
2 Let pj = ijµ (mod n), j = 1, 2, . . . , l.
3 For i = 1, 2, . . . , l: Si = {pj |pi = pj , j = 1, 2, . . . , l}.
4 Let i = 1.
5 While (i ≤ l and Si 6= Sj(i 6= 1, j = 1, 2, . . . , i− 1))
6 begin
7 If (pi = 0 and |Si| ≡ 1 (mod 2)) or (pi 6= 0 and |Si| ≡ 0 (mod 2)), then i = i+ 1.
8 Else Output 2µ, terminate.
9 end

10 Let µ = µ/2. Go to Step 2.

Proposition 2 Let x be a binary vector of length n, and let the operation CBM(x) be defined

CBM(x) : xT ←MxT ,

where M is a circulant Boolean matrix. The CBM(x) operation is equivalent to the l−RX(x)
operation, for some value l.

Proof. Since an arbitrary circulant Boolean matrix can be written as

M = P i ⊕ P i2 ⊕ · · · ⊕ P it , (0 ≤ i1 < i2 < · · · < it < n) ,

we have that CBM(x) can be written (in a matrix form) as CBM(x) : xT ←MxT , i.e.

CBM(x) : xT ←
(
P i1 ⊕ P i2 ⊕ · · · ⊕ P it

)
xT ,

or, CBM(x) : xT ← P i1xT ⊕ P i2xT ⊕ · · · ⊕ P itxT .

Furthermore, as x≪ ij is equivalent to P ijxT (j ∈ {1, . . . , t}), we have that

CBM(x) : x← Σ(x) = (x≪ i1)⊕ (x≪ i2)⊕ · · · ⊕ (x≪ it),

which means that CBM(x) is equivalent to l−RX(x). Clearly, the value l depends on integers
i1, . . . , it in the representation of the matrix M .

To illustrate Proposition 2, in the following example we analyze the linear layer of the cipher
Pyjamask [GJK+19], which is of the Cir-Boolean matrix type.

Example 3 The linear layer of Pyjamask-128 cipher is given as

M0 = cir([1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])
M1 = cir([0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1])
M2 = cir([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1])
M3 = cir([0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1])
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Due to Proposition 2, a minimal cycle length of this liner layer is computed as for the operation
l − RX(x) (utilizing Lemma 1 and Corollary 1). We only analyze the matrix M3, since for
M0,M1,M2 the procedure is similar. By observing the positions of 1′s in the first row of M3,
we deduce that M3 can be written as

M3 = P 1 ⊕ P 2 ⊕ P 5 ⊕ P 12 ⊕ P 15 ⊕ P 17 ⊕ P 19 ⊕ P 22 ⊕ P 24 ⊕ P 28 ⊕ P 31,

and thus the mapping xT ←M3x
T represents the operation 11−RX(x), i.e. 11−RX(x) : xT ←

M3x
T . By Corollary 1, we have that (M3)

32 = E, where 32 is not necessarily the minimal cycle
length. In order to find the minimal cycle length of M3, one has to consider divisors µ of 32
which are powers of 2 (n = 128 is a power of 2), and check whether (M3)

µ = E holds. We find
that (M3)

8 6= E whereas for µ = 16 it holds

(M3)
16 = (P 1 ⊕ P 2 ⊕ P 5 ⊕ P 12 ⊕ P 15 ⊕ P 17 ⊕ P 19 ⊕ P 22 ⊕ P 24 ⊕ P 28 ⊕ P 31)16

= P 1×16 ⊕ P 2×16 ⊕ P 5×16 ⊕ · · · ⊕ P 24×16 ⊕ P 28×16 ⊕ P 31×16

= P 16 ⊕ P 0 ⊕ P 16 ⊕ P 0 ⊕ P 16 ⊕ P 16 ⊕ P 16 ⊕ P 0 ⊕ P 0 ⊕ P 0 ⊕ P 16

= P 16 ⊕ E ⊕ P 16 ⊕ E ⊕ P 16 ⊕ P 16 ⊕ P 16 ⊕ E ⊕ E ⊕ E ⊕ P 16 = E.

Therefore, the minimum cycle length of M3 is actually 16, since Fact 2) given in Section 3.2.1
implies that no other divisors of 32 need to be considered. One applies the same procedure to
matrices M0,M1,M2 (see Table 6 in Section 4.3 for more details). As 32 is the least common
multiple of these cycle lengths corresponding to M0,M1,M2, the minimal cycle length of the
linear layer of Pyjamask-128 is [32, 32, 32, 16] = 32.

Due to the equivalence between Rotational-XOR and the Cir-Boolean operation for linear layers,
the minimal cycle length of a linear layer employing the Cir-Boolean matrix operation can always
be efficiently computed using Algorithm 2.

4 Experiments

In this section, we compute minimal cycle lengths of various well-known lightweight block ci-
phers whose linear layers employ ShiftRows, Rotational-XOR and Cir-Boolean matrix operation,
respectively. Especially, for the Rotational-XOR type linear layers based on l−RX(x) (l is odd)
operation, we utilize Algorithm 2 for finding minimal cycle lengths. In Section 4.4, we also
analyze several linear layers which are defined as the so-called bit permutations.

4.1 Encryption algorithms with the ShiftRows type linear layers

The computation of minimal cycle lengths for certain block ciphers that use the ShiftRows-type
linear layers (based on Theorem 1) is given in Table 2. We use “RS-C” to denote the minimal
cycle length of the individual rows of the SR(x) operation, while “Cycle” denotes a minimal
cycle length of the SR(x) operation of the entire linear layer.

Although the minimal cycle lengths corresponding to different rows of ciphers in Table 2
are not equal, the minimal cycle length of entire linear layers for Knot, TANGRAM, Raindrop,
ORANGE and PHOTON-Beetle algorithms are actually equal to the row length of the state
matrix.
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Table 2: Minimal cycle lengths of the SR(x) operation for Knot, TANGRAM, Raindrop, ORANGE,
PHOTON-Beetle.

Algorithm Operation RS-C Cycle Algorithm Operation RS-C Cycle

Knot
-256 [ZDY+19]

x0 ← x0 ≪ 0 1

64

x0 ← x0 ≪ 0 1

16
x1 ← x1 ≪ 1 64 Raindrop x1 ← x1 ≪ 6 8
x2 ← x2 ≪ 8 8 -128 [WLL+19] x2 ← x2 ≪ 7 16
x3 ← x3 ≪ 25 64 x3 ← x3 ≪ 12 4
x0 ← x0 ≪ 0 1

96

x0 ← x0 ≪ 0 1

32
Knot x1 ← x1 ≪ 1 96 Raindrop x1 ← x1 ≪ 12 16

-384 [ZDY+19] x2 ← x2 ≪ 8 12 -256 [WLL+19] x2 ← x2 ≪ 14 32
x3 ← x3 ≪ 55 96 x3 ← x3 ≪ 24 8
x0 ← x0 ≪ 0 1

128
ORANGE [CN19b]

PHOTON-
Beetle [BCD+19]

x0 ← x0 ≪ 0 1

8

Knot x1 ← x1 ≪ 1 128 x1 ← x1 ≪ 1 8
-512 [ZDY+19] x2 ← x2 ≪ 16 8 x2 ← x2 ≪ 2 4

x3 ← x3 ≪ 25 128 x3 ← x3 ≪ 3 8
x0 ← x0 ≪ 0 1/1

32/64

x4 ← x4 ≪ 4 2
TANGRAM x1 ← x1 ≪ 1 32/64 x5 ← x5 ≪ 5 8

-128/256 [ZJD+19] x2 ← x2 ≪ 8 4/8 x6 ← x6 ≪ 6 4
x3 ← x3 ≪ 11/41 32/64 x7 ← x7 ≪ 7 8

Remark 5 The correctness of our theoretical analysis has been confirmed by choosing 100 ran-
dom vectors and then iterating the liner layers for the ciphers listed in Table 2 for each of these
vectors to obtain minimal cycle lengths.

Similarly, in Table 3, we consider the minimal cycle length for the SR(x) operation in linear
layers of SKINNY-, AES- and sLiSCP-light-like algorithms.

Table 3: Minimal cycle lengths of the SR(x) operation for SKINNY-, AES-, and sLiSCP-light-like
ciphers.

Algorithm Operation RS-C Cycle
ForkAE[ALP+19] (s0, s1, s2, s3)→ (s0, s1, s2, s3) 1

4
Based on SKINNY-AEAD/ (s4, s5, s6, s7)→ (s7, s4, s5, s6) 4

SKINNY[BJK+16] SKINNY-HASH[BJK+19] (s8, s9, s10, s11)→ (s10, s11, s8, s9) 2
Romulus[IKMP19] (s12, s13, s14, s15)→ (s13, s14, s15, s12) 4
mixFeed[CN19a] (s0, s1, s2, s3)→ (s0, s1, s2, s3) 1

4
Based on COMET[GJN19] (s4, s5, s6, s7)→ (s5, s6, s7, s4) 4

AES[DR20] ESTATE[CDJ+19] (s8, s9, s10, s11)→ (s10, s11, s8, s9) 2
SAEAES[NMS+19] (s12, s13, s14, s15)→ (s15, s12, s13, s14) 4

Based on Spoc[AGH+19a]
(s0, s1, s2, s3)→ (s3, s2, s1, s0) 4 4

sLiSCP-light[ARH+18] Spix[AGH+19b]

4.2 Encryption algorithms with the Rotational-XOR type linear layers

In Table 4, we use Algorithm 2 to compute minimal cycle lengths of linear layers that employ
the l − RX(x) operation, where l is odd. Table 4 indicates that in most of cases the minimal
cycle length actually equals to the length of the input vector.
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Table 4: Minimal cycle lengths of the l −RX(x) (l is odd) operation for some block ciphers.
Algorithm Domain Operation RS-C Cycle

Ascon[DEMS19]
ISAP[DEM+19]

(ISAP-A-128a/128)

x0 ← x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28) 64
x1 ← x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39) 32

xi ∈ F64
2 x2 ← x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6) 64 64

x3 ← x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17) 64
x4 ← x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41) 32

DBlock[WZY15] x ∈ F32
2

x← x⊕ (x≪ 8)⊕ (x≪ 10)
16 16⊕(x≪ 18)⊕ (x≪ 26)

RoadRunneR[BS15] x ∈ F8
2 x← x⊕ (x≪ 1)⊕ (x≪ 2) 8 8

FBC[FZZ+19]
x ∈ F32

2 x← x⊕ (x≪ 3)⊕ (x≪ 10) 32 32
x ∈ F64

2 x← x⊕ (x≪ 17)⊕ (x≪ 58) 64 64

Remark 6 For DBlock cipher the situation is different since the minimal cycle length is actually
half of the input size. This, in general, may be viewed as a disadvantage since shorter cycles
impose less conditions on the subset of weak keys which potentially increases its cardinality .
Nevertheless, DBlock uses a quite complicated key scheme and reasonable number of rounds
which probably efficiently counteract this potential weakness.

On the other hand, when l is even, we recall that the operation l−RX(x) does not possess a
cycle of minimal length and is never a permutation. For several (hypothetical) such linear layers
(shown in Table 5), one can devise a method similar to Algorithm 2 for finding minimal number
of iterations (denoted by Min-Iter) needed to obtain the zero vector O at the output. More
details, regarding the existence of minimal number of iterations for reaching the zero vector O,
are given in the appendix. These results have been practically confirmed by implementing the
linear layers described in Table 5.

Table 5: The minimal number of iterations of the l −RX(x) (l is even) operation.

Domain Operation Min-Iter

x ∈ F 64
2

x← (x≪ 9)⊕ (x≪ 21)⊕ (x≪ 41)⊕ (x≪ 57) 32
x← x⊕ (x≪ 17)⊕ (x≪ 19)⊕ (x≪ 23) 64

x← (x≪ 16)⊕ (x≪ 24)⊕ (x≪ 32)⊕ (x≪ 40) 4
x← (x≪ 11)⊕ (x≪ 23)⊕ (x≪ 43)⊕ (x≪ 47) 16

x ∈ F 32
2

x← (x≪ 11)⊕ (x≪ 31)⊕ (x≪ 43)⊕ (x≪ 47) 2
x← x⊕ (x≪ 17)⊕ (x≪ 22)⊕ (x≪ 31) 16

x← (x≪ 2)⊕ (x≪ 5)⊕ (x≪ 13)⊕ (x≪ 34) 4
x← x⊕ (x≪ 4)⊕ (x≪ 9)⊕ (x≪ 17) 8

4.3 Encryption algorithms using linear layers of the Cir-Boolean matrix type

As an extension of Example 3, we further specify minimal cycle lengths for Pyjamask-96/128
[GJK+19] and Midori [TLS16] in Table 6. It should be noted that Pyjamask employs a linear
layer based on circulant matrix, for which it was shown to be equivalent to the l − RX(x)
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operation (for some odd integer l). For this cipher, the state length of 96 bits uses the linear
layer with the matrices M0,M1,M2 whereas the length 128 corresponds to the case when all four
matrices M0, . . . ,M3 are used to define the linear layer, see also Example 3. In both cases, the
input vectors are of the length 32. In difference to this algorithm, when analyzing the i-th row
of Midori [TLS16] denoted by Si, the state is represented as a matrix whose entries correspond
to 4-bit nibbles. Unlike Pyjamask which operates on the bit level, the shift operations of Si are
performed on the state cells.

Table 6: Minimal cycle lengths of the CBM(x) operation for Pyjamask-96/128 and Midori64.

Algorithm
CBM(x)
Operation

Equivalent l −RX(x) Operation RS-C

Midori64[TLS16]
ST
i ←MST

i ,
i = 0, 1, 2, 3

Si ← (Si ≪ 1)⊕ (Si ≪ 2)⊕ (Si ≪ 3) 4

Pyjamask
-96/128[GJK+19]

xT0 ←M0x
T
0

x0 ← x0 ⊕ (x0 ≪ 1)⊕ (x0 ≪ 3)⊕ (x0 ≪ 8)
32⊕(x0 ≪ 13)⊕ (x0 ≪ 18)⊕ (x0 ≪ 19)⊕ (x0 ≪ 24)

⊕(x0 ≪ 25)⊕ (x0 ≪ 26)⊕ (x0 ≪ 30)

xT1 ←M1x
T
1

x1 ← (x1 ≪ 1)⊕ (x1 ≪ 6)⊕ (x1 ≪ 13)⊕ (x1 ≪ 14)
32⊕(x1 ≪ 15)⊕ (x1 ≪ 17)⊕ (x1 ≪ 23)⊕ (x1 ≪ 25)

⊕(x1 ≪ 26)⊕ (x1 ≪ 30)⊕ (x1 ≪ 31)

xT2 ←M2x
T
2

x2 ← (x2 ≪ 8)⊕ (x2 ≪ 10)⊕ (x2 ≪ 13)⊕ (x2 ≪ 14)
32⊕(x2 ≪ 15)⊕ (x2 ≪ 16)⊕ (x2 ≪ 19)⊕ (x2 ≪ 22)

⊕(x2 ≪ 24)⊕ (x2 ≪ 28)⊕ (x2 ≪ 31)

xT3 ←M3x
T
3

x3 ← (x3 ≪ 1)⊕ (x3 ≪ 2)⊕ (x3 ≪ 5)⊕ (x3 ≪ 12)
16⊕(x3 ≪ 15)⊕ (x3 ≪ 17)⊕ (x3 ≪ 19)⊕ (x3 ≪ 22)

⊕(x3 ≪ 24)⊕ (x3 ≪ 28)⊕ (x3 ≪ 31)

4.4 Algorithms with bit permutations

Apart from linear layers analyzed in this work, there exist various block ciphers which employ bit-
permutations as linear layers, which act on the whole state at once (where the state is considered
as a vector, eg. PRESENT block cipher [BKL+07]). By running simulations specifically designed
for ciphers listed in Table 7, we have successfully determined the corresponding minimal cycle
lengths.

In fact, the cycle lengths of individual bits are not exactly the same after performing per-
mutation operations. For example, in GIFT-128, the cycle lengths of different bit positions take
values in the set {1, 2, 5, 10, 31}. Therefore, the cycle length of the linear layer of GIFT-128 is
310, corresponding to the least common multiple of the individual bit cycle lengths. The same
is true for other algorithms.

5 Conclusions

In this article, we have studied the problem of finding a minimal cycle length of linear layers
based on cyclic shifts and XOR operations. These operations are quite typical whenever the
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Table 7: Minimal cycle lengths of linear layers defined as bit-permutation.
Algorithm Operation Cycle

GIFT-64[BPP+17]
P (i) = 16((3bi mod 16/4c+ i mod 4)) mod 4

+4bi/16c+ (i mod 4), i = 0, . . . , 63.
4

GIFT-128[BPP+17]
HYENA[CDJN19]

GIFT-COFB[BCI+19]

P (i) = 32((3bi mod 16/4c+ i mod 4)) mod 4
+4bi/16c+ (i mod 4), i = 0, . . . , 127.

310

PRINT-48[KLPR10]
PRINT-96[KLPR10]

Pb(j) =

{
3j mod b− 1 for 0 ≤ j ≤ b− 2,

b− 1 for j = b− 1, b = 48/96.
23/36

Elephant-Spongent-160[BCDM19] P160(j) =

{
40j mod 159 for 0 ≤ j ≤ 158,

159 for j = 159.
26

Elephant-Spongent-176[BCDM19] P175(j) =

{
44j mod 175 for 0 ≤ j ≤ 174,

175 for j = 175.
30

PRESENT[BKL+07] P64(j) =

{
16j mod 63 for 0 ≤ j ≤ 62,

63 for j = 63.
3

state of a block cipher has a matrix representation and additionally assuming that the linear
layer acts on each row of the state matrix. The main motivation for this theoretical analysis
comes from Proposition 1 which allows for an efficient specification of invariants of a whole en-
cryption round and therefore it may potentially give rise to various distinguishing attacks. It is
an interesting research topic to find invariants of the entire encryption rounds of suitable block
ciphers (through Proposition 1) by specifying a set of cycles which lie in the intersection of the
linear and S-box layer.
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Appendix

A The operation l −RX(x) with l being even

Here, we derive some basic properties of the operation l −RX(x) when l is even.

Theorem 3 Let x be a binary vector of length n. Suppose the operation l −RX(x) is given as

l −RX(x) : x← Σ(x) = (x≪ i1)⊕ (x≪ i2)⊕ · · · ⊕ (x≪ il), (6)

where 0 ≤ i1 < i2 < · · · < il < n. If n is of the form n = 2k, then:

i) The operation l −RXµ(x) is not a permutation.

ii) For µ ≥ n, it holds that l −RXµ(x) = O, for any x ∈ Fn2 .

iii) For µ ≥ 1, l−RXµ(x) 6= x holds, whenever we have that x 6= O. That is, these is no cycle
of minimal length in this case.

Proof.
i) The operation l − RX(x) is not a (linear) permutation since taking x = e = (1, 1, . . . , 1)

or x = O = (0, 0, . . . , 0) we have l −RX(e) = l −RX(O), for any even l.
ii) Clearly, l−RX(O) = O, which is also a fixed point. Recall that l−RX(x) is equivalently

defined as l −RX(x) : xT ← QxT , where the matrix Q is given by

Q = P i1 ⊕ P i2 ⊕ · · · ⊕ P il .

Assuming that µ = n = 2k, by Lemma 1 we have that

Qn = (P i1 ⊕ P i2 ⊕ · · · ⊕ P il)n = Pn·i1 ⊕ Pn·i2 ⊕ · · · ⊕ Pn·il .

Since Pn = E, we have that Qn = Ei1 ⊕ Ei2 ⊕ · · · ⊕ Eil = O holds when l is even. Conse-
quently, we have QnxT = OxT = O, that is l − RXn(x) = O for any x ∈ Fn2 . Then, obviously
QµxT = QtO = O for µ > n.

iii) Since for any x ∈ Fn2 , it holds that l − RXµ(x) = O when µ ≥ n, we know if the min-
imum cycle length µ exists for l−RX(x) operation, then µ must be less than n. Let us assume
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that µ < n. We distinguish the following cases:

1) If µ |n , then there exists a positive integer k such that n = kµ. Since µ denotes the minimal
cycle length, i.e. Qµ = E, we have that Qn = (Qµ)k = E, which contradicts the fact that
l −RXn(x) = O for any x ∈ Fn2 .

2) If µ - n, then there exist integers k and m such that n = kµ + m, where m < µ. In
this case we have that

Qn = O ⇔ Qkµ+m = O ⇔ (Qµ)kQm = O ⇔ (E)kQm = O ⇔ Qm = O.

Since m < µ, this shows that Qµ = Qµ−mQm = Qµ−mO = O, which contradicts the fact that
Qµ = E.

By summarizing the cases 1) and 2), we deduce that µ < n can not be the minimal cycle
length for the l − RX(x) operation. Therefore, for even l, the operation l − RX(x) does not
possess a minimal cycle length µ with µ ≥ 1.
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