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Abstract. Post-Compromise Security, or PCS, refers to the ability of a given protocol to recover—
by means of normal protocol operations—from the exposure of local states of its (otherwise honest)
participants. While PCS in the two-party setting has attracted a lot of attention recently, the prob-
lem of achieving PCS in the group setting—called group ratcheting here—is much less understood.
On the one hand, one can achieve excellent security by simply executing, in parallel, a two-party
ratcheting protocol (e.g., Signal) for each pair of members in a group. However, this incurs O(n)
communication overhead for every message sent, where n is the group size. On the other hand,
several related protocols were recently developed in the context of the IETF Messaging Layer Se-
curity (MLS) effort that improve the communication overhead per message to O(logn). However,
this reduction of communication overhead involves a great restriction: group members are not al-
lowed to send and recover from exposures concurrently such that reaching PCS is delayed up to n
communication time slots (potentially even more).

In this work we formally study the trade-off between PCS, concurrency, and communication
overhead in the context of group ratcheting. Since our main result is a lower bound, we define
the cleanest and most restrictive setting where the tension already occurs: static groups equipped
with a synchronous (and authenticated) broadcast channel, where up to t arbitrary parties can
concurrently send messages in any given round. Already in this setting, we show in a symbolic
execution model that PCS requires Ω(t) communication overhead per message. Our symbolic model
permits as building blocks black-box use of (even “dual”) PRFs, (even key-updatable) PKE (which
in our symbolic definition is at least as strong as HIBE), and broadcast encryption, covering all
tools used in previous constructions, but prohibiting the use of exotic primitives.

To complement our result, we also prove an almost matching upper bound ofO(t·(1+log(n/t))),
which smoothly increases from O(logn) with no concurrency, to O(n) with unbounded concurrency,
matching the previously known protocols.
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1 Introduction

Post-Compromise Security. End-to-end (E2E) encrypted messaging systems including WhatsApp,
Signal, and Facebook Messenger have increased in popularity. In these systems, intermediaries including
the messaging service provider should not be able to read or modify messages. Moreover, as typical
sessions in such E2E systems can last for a very long time, state compromise of some of the participants
is becoming a real concern to the deployment of such systems. To address this security concern, modern
E2E systems fulfill a novel property called Post-Compromise Security [16], which refers to the ability of a
given protocol to recover—by means of normal protocol operations—from the exposure of local states of
its (otherwise honest) participants. For example, the famous two-party Signal [28] protocol achieves PCS
by having parties continuously run fresh sessions of Diffie-Hellman key agreement “in the background”.

Group Messaging. By now, the setting of PCS-secure two-party encrypted messaging systems is
relatively well understood [15,10,30,23,2,19,24]. In contrast, the setting of PCS-secure group messaging
is much less understood. On the one extreme, several systems, including Signal Messenger itself, achieve
PCS in groups by simply executing, in parallel, a two-party PCS-secure protocol (e.g., Signal) for each
pair of members in a group. In addition to achieving PCS, this simple technique is also extremely resilient
to asynchrony and concurrency: people can send messages concurrently, receive them out-of-order, or be
off-line for extended periods of time. However, it comes at a steep communication overhead O(n) for
every message sent, where n is the group size.

On the other hand, several related protocols [14,3,4,5] (some of them introduced under the term
continuous group key agreement (CGKA)1) were recently developed in the context of the IETF Message
Layer Security (MLS) initiative for group messaging [7]. One of the main goals of this initiative was to
achieve PCS with a significantly lower communication overhead. And, indeed, for static groups, these
protocols improve this overhead per message toO(logn). More precisely, these protocols separate protocol
1 By distinguishing between “CGKA” and “group ratcheting”, these works differentiate between the asymmetric
cryptographic parts of the protocols and the entire key establishment procedure, respectively [5]. In order to
avoid this strict distinction, we call it “group ratcheting” here.



messages into two categories: Payload messages, used to actually encrypt messages, have no overhead,
but also do not help in establishing PCS. In contrast, update messages carry no payload, but exclusively
establish PCS: intuitively, an update message from user A refreshes all cryptographic material held by A.
These update messages have size proportional to O(logn) in MLS-related protocols, which is a significant
saving for large groups, compared to the pairwise-Signal protocol.

Concurrency. Unfortunately, this reduction of communication overhead for MLS-related protocols
involves a great restriction: all update messages must be generated and processed one-by-one in the same
order by all the group members. We stress that this does not just mean that update messages can be pre-
pared concurrently, but processed in some fixed order. Instead, fresh update message cannot be prepared
until all previous update messages are processed. In particular, it is critical to somehow implement what
these protocols call a “delivery server”, whose task is to reject all-but-one of the concurrently prepared
update messages, and then to ensure that all group members process the “accepted updates” in the
same correct order. Implementing such a delivery server poses a significant burden not only in terms
of usability (which is clear), but also for security of these protocols, as it delays reaching PCS up to n
communication time slots (potentially more in asynchronous settings, such as messaging). Indeed, the
concurrency restriction of MLS is currently one of the biggest criticisms and hurdles towards its wide-
spread use and adoption (see [3] for extensive discussion of this). In contrast, pairwise Signal does not
have any such concurrency restriction, albeit with a much higher communication overhead. See Section 4
and Table 1 for more detailed comparison of various existing methods for group ratcheting.

Our Main Question. This brings us to the main question we study in this work:

What is the trade-off between PCS, concurrent sending and low communication complexity in encrypted
group messaging protocols?

For our lower bound, we define the cleanest and most restrictive setting where the tension already
occurs: static groups equipped with a synchronous (and authenticated) broadcast channel, where up to t
arbitrary users can concurrently send messages in any given round. In particular, t = 1 corresponds to the
restrictive MLS setting which, we term “no concurrency”, and t = n corresponds to unrestricted setting
achieved by pairwise Signal, which we term “full concurrency”. Also, without loss of generality, and fol-
lowing the convention already established in MLS-related protocols, we focus on the “key encapsulation”
mechanism of group messaging protocols. Namely, our model is the following:

We have a static group of n members whose goal is to continuously share a group key k. Group
members have private states st, and communicate in rounds over a public broadcast channel. Each
round refreshes the current group key k into the next group key k′ as follows: 1. At the beginning
of a round, an arbitrary subset of up to t group members is selected by the adversary to update the
current group key k. These groups members are called senders (of a given round). 2. During each round,
each sender—unaware of the identities of other senders—tosses fresh random coins, sends a ciphertext c
over the broadcast channel, and updates its private state st. 3. At the end of each round, all (up to t)
ciphertexts c are received by all n users, who use them to update their state st, and output a new group
key k′. 4. At the end of each round, the adversary can learn the current group key k′, and is also allowed
to expose an arbitrary number of group member states st.

For our lower bound, we will demand the following, rather weak, PCS guarantee. A key k after
round i (not directly revealed to the attacker) is secure if: (a) no user is exposed in round i′ ≥ i; (b) all
users sent at least one update ciphertext between their latest exposure and round i− 1; and (c) after all
exposed users sent once without being exposed again, at least one user additionally sent in round j ≤ i.
Condition (a) will only be used in our lower bound (to make it stronger), to ensure that our lower bound
is only due to the PCS, but not a complementary property called forward-secrecy, which states that past
round keys cannot be compromised upon current state exposure. However, our upper bound will achieve
forward-secrecy, dropping (a).

Condition (b) is the heart of PCS, demanding that security should be eventually restored once
every exposed user updated its state. Condition (c) permits a one-round delay before PCS takes place.
While not theoretically needed, avoiding this extra round seems to require some sort of multiparty non-
interactive key exchange for concurrent state updates, which currently requires exotic cryptographic
assumptions, such as multi-linear maps [12,13]. In contrast, the extra round allows to use traditional
public-key cryptography techniques, such as the exposed user sending fresh public-keys, and future
senders using these keys in the extra round to send fresh secret(s) to this user. While condition (c)
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strengthens our lower bound, our upper bound construction can be minimally adjusted to achieve PCS
for non-concurrent state updates even without this “extra round”.

For conciseness, we call any protocol in our model a group ratcheting scheme, taking inspiration from
the “double ratchet” paradigm used in design of the Signal protocol [28].

Our Upper Bound. We show nearly matching lower and upper bounds on the efficiency of t-concurrent,
PCS-secure group ratcheting schemes. With our upper bound we provide a group ratcheting scheme with
message overhead O(t · (1 + log(n/t))), which smoothly increases from O(logn) with no concurrency,
to O(n) with unbounded concurrency, matching the upper bounds of the previously known protocols.
Our upper bound is proven in the standard computational model. For the weak notion of PCS alone
sketched above (i.e., conditions (a)-(c)), we only need public-key encryption (PKE) and pseudo-random
functions (PRFs). Our construction carefully borrows elements from the complete subtree method of [27]
used in the context of broadcast encryption (BE), and the TreeKEM protocol of the MLS standard [7,3]
used in the context of non-concurrent group ratcheting. Similarly, one can view our construction as an
adapted combination of components from Tainted TreeKEM [4] and the most recent MLS draft (verion-
09) [8] with its propose-then-commit technique. By itself, none of these constructions is enough to do
what we want: BE scheme of [27] allows to send a fresh secret to all-but-t senders from the previous
round (this is needed for PCS), but needs centralized distribution of correlated secret keys to various
users, while the TreeKEM schemes no longer need a group manager, but do not withstand concurrency
of updates in a rather critical way. Finally, the propose-then-commit technique, when naively combined
with (Tainted) TreeKEM as in MLS [8], in the worst case induces an overhead linear in the group size,
and still does not completely achieve our desired concurrency and PCS guarantees. Nevertheless, we
show how to combine these structures together—in a very concrete and non-black-box way—to obtain
our scheme with overhead O(t · (1 + log(n/t))).

Moreover, we can easily achieve forward-security in addition to PCS (i.e., drop restriction (a) on
the attacker), by using the recent technique of [24,3], which basically replaces traditional PKE with so
called updatable PKE (uPKE). Informally, such PKE is stateful, and only works if all the senders are
synchronized with the recipient (which can be enforced in our model, even with concurrency). Intuitively,
each uPKE ciphertext updates the public and secret keys in a correlated way, so that future ciphertexts
(produced with new public key) can be decrypted with the new secret key, but old ciphertexts cannot
be decrypted with the new secret key. Hence, uPKE provides an efficient and practical mechanism for
forward-secrecy in such a synchronized setting, without the need of heavy, less efficient tools, such as
hierarchical identity based encryption (HIBE), directly used as a building block for strongly secure group
ratcheting [5], or used as an intermediary component to build stronger key-updatable PKE (kuPKE)2 for
secure two-party messaging [30,23].

Our Lower Bound. We prove a lower bound Ω(t) on the efficiency of any group ratcheting protocol
which only uses “realistic” tools, such as (possibly key-updatable2) PKE, (possibly so called “dual”)
PRFs, and general BE (see Section 2 for explaining these terms). We define our symbolic notion of key-
updatable PKE so that it even captures functionality and security guarantees at least as strong as one
expects from HIBE. To the best of our knowledge, these primitives include all known tools used in all
“practical” results on group ratcheting (including our upper bound). Thus, our result nearly matches our
upper bound, and shows that the O(n) overheard of pairwise Signal protocol is optimal for unbounded
concurrency, at least within our model.

To motivate our model for the lower bound, group ratcheting would be “easy” if we could use “exotic”
tools, such as multiparty non-interactive key agreement (mNIKE), multi-linear maps, or general-purpose
obfuscation. For example, using general mNIKE, one can easily achieve PCS and unbounded concurrency,
by having each member simply broadcast its new public key, without any knowledge of other senders: at
the end of each round, the union of latest keys of all the group members magically (and non-interactively)
updates the previous group key to a new, unrelated value. Of course, we currently don’t have any even
remotely practical mNIKE protocols, so it seems natural that we must define a model which only permits
the use of “realistic” tools, such as (ku)PKE, (dual) PRFs, BE, (HIBE,) etc.

2 While for our upper bound construction weaker and more efficient uPKE (based on DH groups) suffices as
in [24,3], to strengthen our lower bound we allow constructions to use stronger and less efficient key-updatable
PKE (thus far based on HIBE) as in [30,23,6].
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To formally address this challenge, we use a symbolic modeling framework inspired by the elegant
work of Micciancio and Panjwani [26], who used it to derive a lower bound for the efficiency of multi-
cast encryption. Symbolic models treat all elements as symbols whose algebraic structure is entirely
disregarded, and which can be used only as intended. E.g., a symbolic public key can be defined to
only encrypt messages, and the only way to decrypt the resulting ciphertext is to have another symbol
corresponding to the associated secret key. In particular, one cannot perform any other operations with
the symbolic public key, such as verifying a signature, using it for a Diffie-Hellman key exchange, etc.

We use such a symbolic model to precisely define the primitives we allow, including the grammar of
symbols and valid derivation rules between them (see Figure 1). We then formalize the intuition for our
lower bound in Section 5 (before doing a formal proof in Section 7). Our bound is actually very strong:
it is the best-case lower bound, which holds for any execution schedule of group ratcheting protocols
within our model, and which is proven against highly restricted adversaries for extremely little security
requirements. Specifically, we show that each sender for round i must send at least one fresh message over
the broadcast channel “specific” to every sender of the previous round i − 1.3 While intuitively simple,
the exact formalization of this result is non-trivial, in part due to the rather advanced nature of the
underlying primitives we allow. For example, we must show that no matter what shared infrastructure
was established before round (i − 1), and no matter what information a sender A sent in round i − 1,
there is no way for A to always recover at round i from potential exposure at round (i− 2), unless every
sender B in round i sends some message “only to A”.

Perspective. To put our symbolic result in perspective, early use of symbolic models in cryptography
date to the Dolev-Yao model [18], and were used to prove “upper bounds”, meaning security of protocols
which were too complex to analyze in the standard “computational model” (with reductions to well
established simpler primitives or assumptions). In contrast, Micciancio and Panjwani [26] observed that
symbolic models can also be used in a different way to prove impossibility results (i.e., lower bounds)
on the efficiency of building various primitives using a fixed set of (symbolic) building blocks. This is
interesting because we do not have many other compelling techniques to prove such lower bounds.

To the best of our knowledge, the only other technique we know is that of “black-box separations” [22].
While originally used for black-box impossibility results [22], Gennaro and Trevisan [20] adapted this
technique to proving efficiency limitations of black-box reductions, such as building psedorandom gen-
erators from one-way permutations. However, black-box separation lower bounds are not only complex
(which to some extent is true for symbolic lower bounds as well), but also become exponentially harder,
as the primitive in question becomes more complex to define, or more diverse building blocks are allowed.
In particular, to the best of our knowledge, the setting of group ratcheting using kuPKE, HIBE, dual
PRFs, and BE used in this paper, appears several orders of magnitude more complex than what can be
done with the state-of-the-art black-box lower bounds.

Thus, we hope that our paper renews the interests in symbolic lower bounds, and that our techniques
would prove useful to study other settings where such lower bounds could be proven.

2 Preliminaries

We shortly introduce our notation as well as the syntax of the most important cryptographic building
blocks. Security of these building blocks, due to being of different nature for the computational and
symbolic models, are formally introduced in Sections 6 and 7, respectively.

Notation We distinguish between deterministic and probabilistic assignments with symbols ← and ←$,
respectively; the latter denotes sampling of an element x from the uniform distribution over a set X
(x←$ X ) and invoking a probabilistic algorithm alg on input a with output x (x←$ alg(a)). In order to
make the used random coins r of an invocation explicit (and turning it into a deterministic invocation),
we write x← alg(a; r). We denote the cardinality of a set X or the length of a string s with symbols |X |
and |s|. Concatenations of two bit-strings s1, s2 is written as s1‖s2.

Adversaries A in our computational models are probabilistic algorithms invoked in a security exper-
iment denoted by the term Game. Therein they can call oracles, denoted by term Oracle.
3 Except for itself, if the sender was active in the prior round. This intuitively explains why our “best-case”
lower bound is actually (t− 1) and not t.
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In our symbolic model we describe grammar rules as follows. For three types of symbols X, Y , and Z,
X 7→ Y |Z denotes that symbols of type X can be parsed as symbols of type Y or type Z. A type that
cannot be parsed further is called terminal type. Using these grammar rules, we define derivation rules
that describe how symbols can be derived from sets of (other) symbols. For a symbol m and set of
symbols M , M ` m means that m can be derived from the symbols in set M by using the grammar
and derivation rules that we specify in our symbolic model.

(Dual) Pseudo-Random Function A pseudo-random function prf takes a symmetric key and some asso-
ciated data, and outputs another symmetric key such that for sets K,AD: prf(k, ad)→ k′ with k, k′ ∈ K
and ad ∈ AD. A dual pseudo-random function dprf takes two symmetric keys and outputs another
symmetric key such that for set K: dprf({k1, k2})→ k′ with k1, k2, k

′ ∈ K with the added property that
dprf(k1, k2) = dprf(k2, k1) = k′. For simplicity (in our proof), we only consider symmetric dual PRFs [9].

A secure PRF outputs a key that is secret4 if the input key is secret as well. A dual PRF additionally
achieves secrecy of the output key in case at most one of the two input keys is known by an attacker.

Key-Updatable Public Key Encryption Key-updatable public key encryption (kuPKE) is an extension of
public key encryption that allows for independent updates of public and secret key with respect to some
associated data. This primitive has been used in constructions of two-party ratcheting (e.g., [30,23,29,25]).
Furthermore, a work by Balli et al. [6] recently showed that it is actually necessary for building optimally
secure two-party ratcheting.

A kuPKE scheme UE is a tuple of algorithms UE = (gen,up, enc,dec) where up takes some associated
data together with either a public key or a secret key and produces a new public key or secret key
respectively such that for sets SK,PK, C,M,AD: gen(sk) → pk, up(sk, ad) → sk ′, up(pk, ad) → pk ′,
enc(pk,m) →$ c, and dec(sk, c) → m with sk, sk ′ ∈ SK, pk, pk ′ ∈ PK, ad ∈ AD, m ∈ M, and c ∈ C.
A kuPKE scheme UE is correct if for synchronously updated public key and secret key, the latter can
decrypt ciphertexts produced with the former: Pr[∀n ∈ N dec(skn, enc(pkn,m)) = m : sk0 ←$ SK, pk0 =
gen(sk0),∀i ∈ [n] adi ←$ AD, pki+1 = up(pki, adi), ski+1 = up(ski, adi),m←$ M] = 1.

A secure kuPKE scheme intuitively guarantees that a message, encrypted to public key pk ′ that was
derived from another public key pk via sequential updates under associated-data from vector ad ∈ AD∗,
cannot be decrypted by a (computationally bounded, or symbolic) adversary even with access to any
secret keys, derived via updates from pk’s secret key sk under an associated-data vector ad ′ ∈ AD∗ such
that ad ′ is not a prefix of ad. Note that this intuitive security notion matches security of HIBE when
associated data is being parsed as identity strings.

Broadcast Encryption A broadcast encryption (BE) scheme BE is a tuple of four algorithms BE =
(gen, reg, enc,dec) where reg takes a (main) secret key and an integer and produces an accordingly reg-
istered secret key, enc takes, in addition to public key and message, a set of integers to indicate which
registered secret keys must be unable to decrypt the message such that for setsMSK,SK,MPK, C,M:
gen(msk) → mpk, reg(msk, u) →$ sk, enc(mpk,RM ,m) →$ c, and dec(sk, c) → m with msk ∈ MSK,
mpk ∈ MPK, u ∈ N, sk ∈ SK, RM ⊂ N, m ∈ M, and c ∈ C. A broadcast encryption scheme BE is
correct if all registered secret keys that were not excluded when encrypting with the public key can de-
crypt the corresponding encrypted message: Pr[dec(sk, enc(mpk,RM ,m)) = m : msk ←$ MSK,mpk =
gen(msk), u←$ N, sk ←$ reg(msk, u),RM ⊂ N \ {u}] = 1.

A secure BE scheme intuitively guarantees that a message, encrypted to a (main) public key mpk with
a set of removed users RM , cannot be decrypted by a (computationally bounded, or symbolic) adversary
even with access to any secret keys, registered under mpk’s main secret key msk for numbers u ∈ RM .

3 Security of Concurrent Group Ratcheting

In this work we consider an abstraction of group ratcheting under significant relaxations and restrictions
with respect to the real-world. The purpose of this approach is to disregard irrelevant aspects in order
to highlight the immediate effects of concurrent state updates in group ratcheting.
4 Where secrecy means indistinguishable from a random key in the computational model and underivable from
public symbols in the symbolic execution model.
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In the following, we define syntax and (restricted) security of ratcheting in static groups against
computationally bounded adversaries. We assume in our model that all group members have access to a
round-based reliable and authenticated broadcast. Additionally, since our focus are concurrent operations
in an initialized group, we consider an abstract initialization algorithm for deriving initial user states.5

Syntax A static group ratcheting protocol is a tuple of three algorithms GR = (init, snd, rcv) such that
for sets ST GR, CGR,KGR,R:

– init(n; r) → (st1, . . . , stn) with n ∈ N, r ∈ R, and st1, . . . , stn ∈ ST GR; creates an initial local state
for every participating group member.

– snd(st; r)→ (st′, c) with st, st′ ∈ ST GR, r ∈ R, and c ∈ CGR; takes the current state of an instance (in
addition to freshly sampled random coins) and outputs the updated state and update information
within a ciphertext that is to be sent via the broadcast.

– rcv(st, c)→ (st′, k) with st, st′ ∈ ST GR, c ⊂ CGR, and k ∈ KGR; takes the current state of an instance
and a set of update ciphertexts (e.g., all broadcast ciphertexts since this instance’s last receiving),
and outputs the updated state and the current (joint) group key.

Security Security experiments KINDb
GR, formally defined in Section 6, in which adversary A attacks

scheme GR proceed as follows:

1. A determines the number of group members n. Afterwards the challenger invokes the init algorithm
to generate initial secret states for all members. Then the security experiment continues in rounds.
In every round i
– adversary A chooses set U i

S of senders. For each sender u ∈ U i
S algorithm snd is invoked. All

resulting ciphertexts are both given to A and received by all group members via invocations of
algorithm rcv.

– adversary A chooses set U i
X of exposed users. The local state of each user u ∈ U i

X after receiving
in round i is given to A.

2. During the entire security experiment, A can challenge group keys established in any round i∗.
A either obtains a random key (if b = 0) or the actual group key from round i∗ (if b = 1) in response.

3. When terminating, A returns a guess b′ such that it wins if b = b′ and for all challenged group keys
it holds that:
(a) no user was exposed after a challenged group key was computed,
(b) every user sent at least once after being exposed and before a challenged group key was computed,

and
(c) after all exposed users sent once without being exposed again, at least one user additionally sent

before a challenged group key was computed.

Group keys for which conditions 3a-3c hold are marked secure.
We restrict the adversary with condition (3a) only because the resulting weaker security definition

already suffices to prove our lower bound of communication complexity. For our full model in which we
prove the construction of our upper bound secure (see Section 6 Figure 6), we strengthen adversaries
by lifting restriction (3a). This reflects that our upper bound construction achieves immediate forward-
secrecy while our lower bound already holds without requiring any form of forward-secrecy.

Condition (3b) models that a user who was exposed must generate fresh secrets and send the respective
public values to the group before it can receive confidential information for establishing new secure group
keys. After all exposed users recovered by sending subsequently, their sent contribution must be used
effectively to establish a new secret group key. Therefore, condition (3c) additionally requires one further
response from a user as a reaction to all newly contributed public values.

For removing condition (3c) either 1. the last users who recovered did so concurrently at most as
a pair of two (such that their new public contributions can be merged into a shared group key non-
interactively with NIKE mechanisms), or 2. multiparty NIKE schemes exist (for resolving cases of more
concurrently recovering users). In order to simplify our security definition by not introducing an according
5 We note that we only consider a single independently established group session. For protocols in which partic-
ipants use the same secrets simultaneously across multiple (thereby dependent) sessions, we refer the reader
to a work by Cremers et al. [17]. Both the problems and the solutions for these two considerations appear to
be entirely distinct.
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case distinction tracing occurrences of case 1, we generally restrict the adversary with condition (3c). We
note that for proving our lower bound, restricting the adversary by this condition strengthens our result.

Intuitively, a group ratcheting scheme is secure if no adversary A exists that wins the above defined
security experiment with probability non-negligibly higher than 1/2.

Restrictions of the Model With the following abstractions, simplifications, and restrictions, we support
clarity and comprehensibility of our results and strengthen the statement of our lower bound. We consider:
1. A round-based communication setting, 2. Static groups, 3. All group members receive in every round,
4. Only passive adversaries 5. Adversaries can expose users only after receiving, and 6. Adversaries cannot
attack used randomness. As we do not aim to develop a functional and secure group messenger but to
theoretically analyze the foundations of concurrent group ratcheting, we believe this is justified.

4 Deficiencies of Existing Protocols

The problem of constructing group ratcheting could be solved trivially if efficient multiparty non-
interactive key exchange schemes existed. Especially for the concurrent recovery from state exposures in
group ratcheting, the lack of this tool appears to be crucial: Due to not being able to combine indepen-
dently proposed fresh public key material, existing efficient group ratcheting constructions cannot process
concurrent operations as we will explain in this section. In Table 1 we summarize the characteristics of
previous group ratcheting schemes in comparison to our construction and the lower bound.

PCS Concurrency Overhead
Sender Key Mechanism [31] #  1
Parallel Pairwise Signal [31,15,2]   n
Asynchronous Ratcheting Trees [14]  # log(n)
Causal TreeKEM [32] G# H# log(n)
TreeKEM Familiy [3,4]  # log(n)
MLS Draft-09 [8] G# H# n
Optimally Secure Tainted TreeKEM [5] G# H# log(n)
Our Construction   t · (1 + log(n/t))
Our Lower Bound   t− 1

Table 1: Properties of group ratcheting constructions and our lower bound. t = |U i−1
S | is the number of members

who sent concurrently in the previous round. For the overhead we consider a worst-case scenario in a constant
size group. Constructions denoted with ‘G#’/‘H#’ provide PCS under no concurrency and can handle concurrent
state updates without reaching PCS with them.

Sender Key Mechanism WhatsApp uses the so called sender key mechanism for implementing group
chats [31]. This mechanism distributes a symmetric sender key for each member in a group. When
sending a group message, the sender protects the payload with its own sender key, transmits the resulting
(single) ciphertext, and hashes the used sender key to obtain its next sender key. The receivers decrypt
the ciphertext with the sender’s sender key and also update the sender’s sender key by hashing it.

While the deterministic derivation of sender keys induces no communication overhead after the initial
distribution of sender keys, it implies the reveal of all future sender keys as soon as a member state is
exposed (breaking post-compromise security). However, as each group member’s key material is processed
and used independently, concurrently initiated group operations can be processed naturally.

Parallel Execution of Pairwise Signal The group ratcheting mechanism implemented in the Signal mes-
senger bases on parallel executions of the two-party Double Ratchet Algorithm [28,15,2] between each
pair of members in a group [31]. Due to splitting the group of size n into its n2 independent pairwise
components, this construction can naturally handle concurrency. At the same time, this approach induces
a communication overhead of O(n) ciphertexts per sent group payload.

Since the Double Ratchet Algorithm reaches post-compromise security (PCS) for each pair of mem-
bers, also its parallel execution achieves this goal for the group against passive adversaries or if the
member set remains static. Rösler et al. [31] describe an active attack against PCS in dynamic groups
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that exploits the implemented decentralized membership management. Furthermore, the delayed recov-
ery from state exposures in the Double Ratchet Algorithm due to a strictly alternating update schedule
between protocol participants (cf. analysis and fix in [2]) lets recoveries from state exposures in the group
become effective only after every group member sent once at worst. With stronger two-party ratcheting
protocols (e.g., [30,29,23,2,24]) this problem can be solved.

Asynchronous Ratcheting Tree While the two above described approaches compute and use multiple
symmetric keys in parallel for protecting communication in groups, the following constructions do so by
deriving a single shared group key at each step of the group’s lifetime. Therefore they arrange asymmetric
key material on nodes in a tree structure in which each leaf represents a group member and the common
root represents the shared group secret. Every group member stores the asymmetric secrets on the path
from its leaf to the common root in its local state. For updating the local state, in order to recover from
an adversarial exposure, all constructions let the updating member generate new asymmetric secrets for
each node on their path to the root.

In the Asynchronous Ratcheting Trees (ART) design [14], these asymmetric secrets are exponents in
a Diffie–Hellman (DH) group. State updates of a member’s path is conducted as follows: the updating
member freshly samples a new secret exponent for its own leaf and then deterministically derives every
ancestor node’s secret exponent as the shared DH key from its two children’s public DH shares. All
resulting new public DH shares on the path are sent to the group, inducing a communication overhead
of O(log(n)) per update operation. Other members perform the same derivations for updated nodes on
their own paths to the root to obtain the new exponents. Since all secrets in the updating member’s
local state are renewed based on fresh random coins, this mechanism achieves PCS.

The reason for ART not being able to process concurrent update operations is that simultaneous
updates of nodes in the tree with independently computed DH exponents cannot be merged into a joint
tree structure while reaching PCS. For t concurrent updates, a t-party NIKE would be needed to combine
the resulting t new proposed DH shares into a shared secret exponent for the ancestor node at which all
updating members’ paths to the root join together. (As mentioned before, if multiparty NIKE existed,
group ratcheting can be solved trivially without complex tree structures.)

Causal TreeKEM As in the ART design [14], Causal TreeKEM [32] uses exponents in a DH group as
asymmetric secrets on nodes in the tree. Also the update procedure is conceptually the same. However,
in case of concurrently proposed path updates, the conflicting new exponents on a node are combined via
exponent-addition and the conflicting public DH shares on a node are combined via multiplying these
group elements.

Although this merge-mechanism resolves conflicts caused by concurrency, the combination of updated
path secrets is not post-compromise secure: the old exponents of two nodes (from which their updating
users A and B aimed to recover), whose common parent was updated via a combination of concurrent
path updates, suffice to derive their parent’s resulting new exponent. (The new exponent is the old
exponent mixed with random values from A and B that they encrypt to the other’s old node key.)

TreeKEM Family In the family of TreeKEM constructions [3,4], the asymmetric key material of nodes in
the tree are key encapsulation mechanism (KEM) key pairs or, in forward-secure TreeKEM, updatable
KEM key pairs. For updating its local state, a group member samples a fresh secret from which it
deterministically derives seeds for each node on its path to the root, such that all ancestor seeds can
be derived from their descendant seeds (but not vice versa). The updating member generates the new
key pair for each updated node from its seed deterministically, and encapsulates the node’s seed to the
public key of the child which is not on the member’s path to the root. This mechanism achieves PCS
and induces a communication overhead of O(log(n)) per update.

The idea of recovery from exposures is undermined in case of concurrency, since updating members
send their new seeds for a node on their path to public keys of siblings, simultaneously being updated
and replaced by new key material of members who concurrently update: the potentially exposed secrets
from which one updating member aims to recover can then be used to obtain the new secrets with which
the other updating user aims to recover (as in the case of Causal TreeKEM). Consequently, concurrent
updates in TreeKEM are essentially ineffective with respect to PCS.

Forward-secure TreeKEM [3] uses an updatable KEM for enhancing forward-security guarantees of
the above described mechanism. Tainted TreeKEM [4] enhances PCS guarantees with respect to dynamic
membership changes in groups. Neither of these changes affect the trade-offs discussed here.
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MLS Draft-09 Based on TreeKEM, the most recent draft of MLS [8] distinguishes between two state
update variants: (a) In an update proposal a member refreshes only its own leaf key pair, removes all
other nodes on the path from this leaf to the root, and makes the root parent of all nodes that thereby
became parentless. (b) In a commit a member combines previous update proposals and refreshes all key
pairs on the path from its own leaf to the root (matching the normal TreeKEM update as described in
the last paragraph).

In principle, both update variants achieve PCS for respective the sender. However, for simultaneously
sent commits, all but one are rejected (e.g., by a central server) meaning that PCS under concurrency
is not achieved for rejected updating commits. Furthermore, while update proposals can be processed
concurrently, they eventually let the tree’s depth degrade to 1, inducing a worst-case overhead of O(n)
for later commits.6

Optimally Secure Tainted TreeKEM Recently and concurrent to our work, an optimally secure variant of
group ratcheting, based on a combination of Tainted TreeKEM and MLS draft-09, was proposed by Alwen
et al. [5]. In addition to authentication guarantees (which is independent of our focus), their protocol
achieves strong security guarantees for group partitions due to concurrency: instead of assuming that a
(consensus) mechanism rejects conflicting commits as in MLS, they anticipate that different sub-groups
of group members may process different of these commits such that the overall perspective on the group
diverges. Their protocol guarantees that, after diverging, exposing states of one sub-group’s members
does not affect the security of another sub-groups’ secrets. Intuitively, this is achieved by using HIBE key
pairs on the tree’s nodes that are regularly updated via secret-key-delegation based on identity strings
that reflect the current perspective on the group. (For details, we refer the interested reader to [5].)

While these changes increase security with respect to some form of forward-secrecy under group
partitions, they do not entirely solve the issue of conflicting commits as in MLS: committed state updates
still only have an effect in a sub-group that processes the commit such that only one user at a time can
update secrets on the path from its leave to the root whereas other user’s path updates remain ineffective.

Our construction from Section 6 bypasses the issue of concurrently generated, incompatible path
proposals by postponing the update of affected nodes in the tree by one communication round. However,
“immediate” PCS can still be reached for non-concurrent updates by composing our construction with
one of the above described ones without loss in efficiency. We note that some of the above construc-
tions provide strong security guarantees with respect to active adversaries, dynamic groups, entirely
asynchronous communication, or weak randomness, which is out (and partially independent) of our
consideration’s scope.

5 Intuition for Lower Bound

Our lower bound proof intuitively says that every group ratcheting scheme with better communication
complexity than this bound is either insecure, or not correct, or cannot be built from the building blocks
we consider. In the following, we first list these considered building blocks and argue why the selection
of those is indeed justified (and not too restrictive). We then abstractly explain the symbolic security
definition of group ratcheting, and finally sketch the steps of our proof that is formally given in Section 7.

5.1 Symbolic Building Blocks

The selection of primitives which a group ratcheting construction may use to reach minimal communica-
tion complexity in our symbolic model is inspired by the work of Micciancio and Panjwani [26]. For their
lower bound of communication complexity in multi-cast encryption—which can also be understood as
group key exchange—, Micciancio and Panjwani allow constructions to use pseudo-random generators,
secret sharing, and symmetric encryption. We instead consider 1. (dual) pseudo-random functions, 2. key-
updatable public key encryption (with functionality and symbolic security guarantees at least as strong
as those of hierarchical identity based encryption), and 3. broadcast encryption and thereby significantly
6 Consider, for example, a scenario in which the same majority of members always sends update proposals and a
fixed disjoint set of few members always commits. In this case, the overhead of commits for these few members
converges to O(n).
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extend the power of available building blocks. As secret sharing appears to be rather irrelevant in our
setting—as well as it is irrelevant in their setting—, we neglect it to achieve better clarity in model and
proof.

Bulding Blocks in Related Work To support the justification of our selection, we note that all previous
constructions of group ratcheting base on less powerful building blocks than we consider here: The
ART construction [14] relies on a combination of dual PRF and Diffie-Hellman (DH) group. The actual
properties used from the DH group can also be achieved by using generic public key encryption (PKE)—as
demonstrated by its following successors. TreeKEM as proposed in the MLS initiative [3,8] relies on a PRG
and a PKE scheme. TreeKEM with extended forward-secrecy [3] relies on a PRG and an updatable PKE
scheme. The syntax of the latter in combination with the respective computational security guarantees
can be considered weaker than our according symbolic variant of kuPKE. Tainted TreeKEM [4] relies on
a PKE scheme in the random oracle model. Optimally secure Tainted TreeKEM [5] relies on an HIBE
scheme in the random oracle model. As noted before, functionality and security guarantees of HIBE are
captured in our symbolic notion of kuPKE. The property of the random oracle that allows for mixing
multiple input values of which at least one is confidential to derive a confidential random output can be
achieved similarly by using (a cascade of) dual PRF invocations.7

Only the post-compromise insecure merge-mechanism of DH shares from Causal TreeKEM [32] is
not captured in our symbolic model. However, turning this mechanism post-compromise secure results
in multi-party NIKE, which we intentionally exclude.

Grammar The grammar definition of the considered building blocks bases on five types of symbols:
messages M , secret keys SK , symmetric keys K, public keys PK , and random coins R (which is a
terminal type). These types and their relation are specified in the lower right corner of Figure 1. For
simplicity (and in order to strengthen our lower bound result), we consider algorithms gen and enc
interoperable for kuPKE and BE.8

Derivation of protected values:
a) m ∈M =⇒ M ` m
b) M ` k =⇒ ∀ad M ` prf(k, ad)
c) M ` k1, k2 =⇒ M ` dprf({k1, k2})
d) M ` enc(pk,RM ,m), sk :

Fit(pk,RM , sk) =⇒ M ` m
Derivation of public values:
g) M ` sk =⇒ M ` gen(sk)
h) M ` pk =⇒ ∀ad M ` up(pk, ad)
i) M ` pk,m =⇒ ∀RM M ` enc(pk,RM ,m)

Derivation of secret keys:
e) M ` sk =⇒ ∀ad M ` up(sk, ad)
f) M ` sk =⇒ ∀u M ` reg(sk, u)

Grammar rules:
1. M 7→ SK |PK |enc(PK ,S(N),M)
2. SK 7→ K|up(SK ,M)|reg(SK ,N)
3. K 7→ R|prf(K,M)|dprf({K,K})
4. PK 7→ gen(SK)|up(PK ,M)

Fig. 1: Grammar and derivation rules of building blocks in the symbolic model.

Derivation Rules Symbolic security for the building blocks is defined via derivation rules that describe
the conditions under which symbols can be derived from sets of (other) symbols. These rules are defined
in Figure 1 clustered into those with which protected values can be obtained, with which secret keys can
be updated or registered, and with which public values can be obtained.

Rules b) and c) describe the security of (dual) PRFs, rules d), e), and g) to i) describe the security and
functionality of kuPKE (and HIBE), and rules d), f), g), and i) describe the security and functionality
of BE.

Rule d), describing the conditions under which a ciphertext can be decrypted, uses predicate Fit that
validates the compatibility of public key and secret key (and set of removed registered users). Intuitively,
7 If the constructions in [4,5] would rely on stronger (security) guarantees of the random oracle model, their
practicability might be questionable.

8 As a simplification we use N to denote the user input symbol of BE, S(·) to denote an unordered compilation
of multiple such symbols, and {·, ·} to denote an unordered compilation of two key symbols. For kuPKE
encryptions the second parameter in our symbolic model can be ignored.
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a secret key sk is compatible with a public key pk if all updates for obtaining sk correspond to updates
for obtaining pk in the same order and under the same associated data with respect to an initial key
pair, or if the former was registered under the main secret key of the latter (see Section 7.1).

5.2 Symbolic Group Ratcheting

The syntax of group ratcheting was introduced in Section 3. In the following we map this syntax to
the grammar definition above, and shortly give an intuition for the correctness and security of group
ratcheting in the symbolic model.

Inputs and outputs of group ratcheting algorithms init, snd, and rcv are random coins R, local user
states ST GR, ciphertexts CGR, and group keys KGR. In our grammar these random coins are sets of type R
symbols, local states and ciphertexts are sets of type M symbols, and group keys are symbols of type K.

According to this grammar, we require from symbolic constructions of group ratcheting for being
correct that 1. all outputs of a group ratcheting algorithm invocation can be derived from its inputs via
the derivation rules defined above and 2. in each round the group keys, computed by all users, are equal.
The first condition is necessary to allow for symbolic adversaries. We note that this condition furthermore
implies “inverse derivation guarantees”, meaning that symbols can only be obtained via our derivation
rules. For example, for inputs IN and outputs OUT of an algorithm invocation, output k′ ∈ OUT with
prf(k, ad) = k′ is either also element of set IN (i.e., k′ ∈ IN), or k′ is encrypted in a ciphertext contained
in set IN, or IN ` k holds. We make these inverse derivation guarantees explicit in Appendix B.

Security To transfer the computational security experiment from Section 3 to the execution of symbolic
attackers against group ratcheting, only few small changes are necessary: 1. a symbolic adversary A
follows the above defined derivation rules for an unbounded time, 2. the target of A is not to distinguish
securely marked real group keys from random ones but to derive such securely marked keys from the
ciphertexts, sent in each round, and the states, exposed at the end of each round, with these derivation
rules.

A group ratcheting scheme is secure in the symbolic model if an unbounded adversary cannot derive
any of the securely marked group keys from the combination of all rounds’ ciphertexts and exposed states
via the above defined rules. The fully formal variant of this definition is in Figure 11.

5.3 Lower Bound

Using this symbolic framework, we formulate a sketched variant of Theorem 2 that expresses the lower
bound of communication complexity for secure (and correct) group ratcheting constructions:

Let GR be a secure and correct group ratcheting scheme. For every round i in a symbolic exe-
cution of GR with senders U i

S and exposed users U i
X, the number of sent symbols is |C[i]| ≥

|U i
S| · (|U i−1

S | − 1).
For our proof, we consider a symbolic adversary that proceeds as follows:

1. In round i− 2 a set of members U i−2
X ⊆ [n] with |U i−2

X | > 1 is exposed.
2. In subsequent round i− 1 these exposed users send (i.e., U i−1

S := U i−2
X ).

3. In round i a non-empty set of members ∅ 6= U i
S ⊆ [n] sends.

Assuming no user was exposed in any round before or after i−2, our symbolic security definition requires
the group key in round i to be secure (i.e., not derivable from exposed states and sent ciphertexts up
to round i). In order to show that each sender in round i must send at least |U i−1

S | − 1 ciphertexts to
establish this secure group key, we analyze the effects of exposures in round i− 2, sending in round i− 1,
and sending in round i in the following paragraphs.

At the end of round i−2 any symbol derivable by users in set U i−2
X is also derivable by the adversary.

After generating new secret random coins at the beginning of round i− 1, users in set U i−1
S can derive

symbols, that the adversary cannot derive, from these new random coins and public symbols from their
(exposed) state. We call such derivable symbols of types SK , K, and R that the adversary cannot
derive useful secrets. Symbols of these types that are derivable by the adversary are called useless secrets
(resulting in two complementary sets). Before sending in round i − 1, new useful secrets of a user u∗ ∈
U i−1

S are only derivable for u∗ itself but not for any other user u ∈ [n] \ {u∗}. This is because the origin
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of these new useful secrets are the new secret random coins generated at the beginning of round i − 1
and no communication took place after their generation yet. Hence, at sending in round i − 1 users in
set U i−1

S share no compatible useful secrets with other users. Secrets are called compatible if they are
equal or if they are registered via rule f) under the same (main) secret key.

We formulate three observations: I) For deriving a public key pk from a set of type R symbols it
is necessary according to grammar rule 4. and derivation rules g) and h) (with their inverse derivation
guarantees) that its secret key sk (or one of its update-ancestors’ secret key sk) is derivable from this set
as well. II) For deriving a ciphertext c, encrypted to a public key pk, from a set of type R symbols it is
necessary according to grammar rule 1. and derivation rule i) (with its inverse derivation guarantees) that
this public key pk is derivable from it as well. III) Unifying all random coins generated by all users up to
(including) round i− 1 except those generated by user u∗ ∈ U i−1

S in round i− 1 forms a set of type R
symbols from which all useful secrets at the beginning of round i−1 can be derived except those that are
new to user u∗ at that point. Combining these observations shows that at the beginning of round i− 1
no user u 6= u∗ can derive public keys to useful secrets of user u∗ ∈ U i−1

S . This further implies that
user u cannot derive ciphertexts encrypted to such public keys. As a result, the set of symbols sent by
one user u ∈ U i−1

S in round i− 1 contains no ciphertexts directed to useful secrets derivable by another
user u∗ ∈ U i−1

S \ {u} that would transport useful secrets between such users.
We further observe: According to the inverse derivation guarantees of rule c), both inputs to a dual

PRF invocation must be derivable for deriving its output. As this requires a shared useful secret on input
for deriving a shared useful secret as output, also a dual PRF establishes no shared (compatible) useful
secrets in round i − 1. All remaining derivation rules either output no secrets, or are unidimensional,
meaning that they only immediately derive one (useful) secret from another. As a result, also after
receiving in round i− 1 users in set U i−1

S share no compatible useful secrets.
Sampling random coins before sending in round i again produces no shared compatible useful secrets

between users that shared none before. Hence, also before receiving in round i, users in set U i−1
S share

no compatible useful secrets. We remark that our symbolic correctness and security definition requires
for the given adversary that the shared group key derived in round i (after receiving) is a useful secret.

For quantifying the number of ciphertexts sent in round i, we define two key graphs Gbefore
i and Gafter

i

that represent useful secrets as nodes and derivations among them as edges. Secret y being derivable
from secret x is represented by a directed edge from x to y. Although inspired by the proof technique of
Micciancio and Panjwani [26], the use of key (derivation) graphs in our proof is entirely new.

Graph Gbefore
i includes a node for each useful secret that exists after receiving in round i and an edge

for each derivation among them except for derivations possible only due to ciphertexts sent in round i.
Graph Gafter

i contains Gbefore
i and additionally includes edges for derivations possible due to ciphertexts

sent in round i. Thus, the number of additional edges in Gafter
i equals the number of sent ciphertexts

in round i. Mapping our derivation rules to edges is highly non-trivial (e.g., each sent ciphertext must
appear at most once). All details are in Definition 3 and Figure 12 of the proof in Section 7.

The fact that users in set U i−1
S share no compatible useful secrets before receiving in round i finds

expression in graph Gbefore
i as follows: Every such user u ∈ U i−1

S is represented by nodes in a set Viu that
stand for its useful secret random coins from rounds i−1 and i (the latter only if u also sent in round i).
For every pair of users u1, u2 ∈ U i−1

S with u1 6= u2 there exists no node in graph Gbefore
i that is reachable

via a path from a node in set Viu1
and a path from a node in set Viu2

simultaneously (including trivial
paths). In contrast, every set Viu with u ∈ U i−1

S must contain a node from which a path in graph Gafter
i

reaches node v∗ that represents the group key in round i.
In graph Gbefore

i node v∗ was reachable via a path from nodes Viu of at most one user u ∈ U i−1
S .

Otherwise v∗ would have been a compatible useful secret for two users in set U i−1
S before receiving in

round i. Consequently, at least one edge per user u∗ ∈ U i−1
S \ {u} must be included in Gafter

i in addition
to those contained in Gbefore

i . Hence, Gafter
i contains at least |U i−1

S |−1 more edges than Gbefore
i , implying

that at least |U i−1
S | − 1 ciphertexts were sent in round i.

We now observe that invocations of algorithm snd in every round are independent of sets U j
X for

all j, and invocations of algorithm snd in round i are independent of set U i
S. As a consequence, every

sender u ∈ U i
S must send |U i−1

S | − 1 ciphertexts, anticipating the worst case that it is the only sender
in that round. Therefore, |U i

S| · (|U i−1
S | − 1) ciphertexts are sent in (every) round i.

Interpretation This lower bound, formally proved in Section 7, describes the best case of communication
complexity both within our model but partially also with respect to the real-world: it holds against very
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weak adversaries for significantly reduced functionality requirements of group ratcheting without any
form of required forward-secrecy. Lower bounds, induced by forward-secrecy for group key exchange [26],
may furthermore apply to practical group ratcheting and therefore increase necessary communication
complexity thereof.9 We note that our result even applies to any two rounds between which no user sent.

Bypassing our lower bound is possible for constructions that exploit the algebraic structure of ele-
ments (which is forbidden in symbolic models), base on building blocks that we do not allow here (e.g.,
multiparty NIKE), or provide weaker security guarantees (e.g., recover from state exposures only with
an additional delay in rounds).

For clarity we note that the key graph concept used here is independent of the tree structure of keys
within our upper bound construction in Section 6.

6 Upper Bound of Communication Complexity

In order to overcome the deficiencies of existing protocols, we postpone the refresh of parts of the key
material in the group by one operation. The resulting construction closely (up to a factor of ≈ log(n/t))
meets our communication complexity lower bound. Here we describe this construction, formally define
computational security of the used building blocks, recapitulate the required computational security of
group ratcheting, and prove the communication complexity and security of our construction. For compu-
tational security of group ratcheting, games KINDb

GR from Section 3 are slightly adapted to additionally
require immediate forward-secrecy. We note that the use of (a weak form of) kuPKE instead of standard
PKE in our construction is only due to required forward-secrecy. Furthermore, the weak kuPKE used
can be efficiently built from standard assumptions (see e.g., a construction from DDH in [24]).

6.1 Construction

Our construction uses ideas from the complete subtree method of broadcast encryption [27] and resembles
concepts from TreeKEM [3,4]. More specifically, the construction bases on a static complete (directed)
binary tree structure τ with n leaves (i.e., one leaf per group member), on top of which at every node,
there is an evolving kuPKE key pair. The secret key at each of the n leaves is known only by the unique
user that occupies that leaf. For the remaining nodes we maintain the invariant that the only secret keys
in a user’s state at a given time are those that are at nodes along the direct path of its corresponding
leaf to the root of the tree.

We refer to the children of a node v in a tree as v.c0 (left child) and v.c1 (right child), and its parent
as v.p. Furthermore we let i, j, i > j be two rounds in which the set of sending group members is non-
empty and there is no intermediate round l, i > l > j, with non-empty sending set. For simplicity in the
description we define j := i− 1.

Sending. To recover from state exposures, our construction lets senders in round i− 1 refresh only their
own individual leaf key pair. Senders in round i then refresh all remaining secret keys stored in the local
states of round i − 1 senders (i.e., for nodes on their direct paths to the root) on their behalf. This is
illustrated in Figure 2. Note that (as explained below in paragraph Receiving) all group members collect
the senders of round i−1 into a set U i−1 in the rcv algorithm of round i−1. Our construction, formally
defined in Figure 3, accordingly lets all senders in a round perform five tasks:

1) To refresh their own individual secret key: Generate a fresh secret key for their corresponding leaf
and send the respective public key to the group (lines 11-12, 32).

2) To refresh and rebuild direct paths of last round’s senders: Sample a new seed for the leaf of each
sender of the last round and encrypt it to the respective sender’s (refreshed) leaf public key (lines 15-
18). Then derive a seed for each non-leaf node on the direct paths from these leaves to the root using
the new seeds at the leaves (line 19). Each seed will be used to deterministically generate a fresh key
pair for its node.

9 We observe that if a group-ratcheting-pendant of the amortized log(n) lower bound for forward-secure group
key exchange by Micciancio and Panjwani [26] applies as a factor on our lower bound, then our construction
from Section 6 has optimal communication complexity.
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3) To share refreshed secrets with members who did not send in the last round: Encrypt the new seed of
each refreshed non-leaf node to the public key of its child from which it was not derived (lines 21-24,
27-30). Update the used public keys via kuPKE algorithm up (lines 25, 31).

4) To inform the group of changed public keys: Send all changed public keys to the group, including
those for which seeds were renewed, and those that were updated via kuPKE (lines 19, 25, 31, 32).

5) Sample and encrypt a group key k for the round to all other users in the group (lines 13, 17, 23, 32).

Before round i− 1:

1 2 3 4 5 6 7 8

After round i− 1:

1 2 3 4 5 6 7 8

After round i:

1 2 3 4 5 6 7 8

Key pair considered insecure
Key pair considered secure
New leaf key pair
Seed for new key pair(s)

Derived from
Encrypted to
Updated/replaced
in round i

Fig. 2: Example tree for two rounds i−1 and i with n = 8, U i−1 = {1, 4, 8}, and U i 6= ∅. In round i−1, senders
generate new key pairs for their leaves. In round i, senders generate seeds for all nodes considered insecure from
round i− 1 and replace leaf key pairs for round i− 1 senders, as shown in the bottom-right corner.

In step 2), one seed is individually encrypted to each user in set U i−1 via public key encryption, which
will allow them to reconstruct their direct path in the tree. The purpose of this individual encryption is
to let the recent senders forget their old (potentially exposed) secrets and use their fresh secret (which
they generated during their last sending) to obtain new, secure secrets on their direct path.

We now describe how all remaining group members are able to rebuild the tree in their view. The
reader is invited to follow the explanation and focus their attention on the tree in the lower right corner of
Figure 2. In this tree, directed edges represent the derivation of a seed at a node from one of its children
(dotted) or encryption of a seed at a node to one of its children (dashed). We consider the Steiner Tree
ST (U i−1) induced by the set of leaves of users in U i−1. ST (U i−1) is the minimal subtree of the full
tree that connects all of the leaves of U i−1 and the root; in the lower right corner tree of Figure 2,
ST (U i−1) is the subtree of blue filled circles and edges between them. For each degree-one node v of
ST (U i−1) (i.e., nodes with only one child in the Steiner Tree), its seed is encrypted to the public key of
its child which is not in ST (U i−1). This seed can be used to derive some (possibly all) of the secret keys
for the nodes on the direct path of v, including v itself (lines 20-25). We denote the set of such degree
one nodes of the Streiner Tree as ST (U i−1)1 and the child of a node v in ST (U i−1)1 that is not in the
Steiner Tree as v.c/∈ST(U i−1).10 For each degree-two node v of ST (U i−1) (i.e., nodes with two children
in the Steiner Tree), its seed is encrypted to the public key of its right child (lines 26-31). We denote the
set of such degree-two nodes of the Steiner Tree as ST (U i−1)2. All of these encrypted seeds are derived
from the fresh leaf seeds of users in set U i−1 via prf computations, as explained below in paragraph
Construction Subroutines.

Alongside the seeds, some randomly sampled associated data ad is also encrypted in the ciphertexts of
the above paragraph (lines 21, 27). Public keys used for the encryption are afterwards updated with this
associated data ad (lines 25, 31). Upon receipt, this associated data is used correspondingly to update
the secret keys as well. Due to this mechanism, immediate forward-secrecy is achieved since secret keys
stored in users’ local states are updated as soon as they are used for decryption.

We refer to the union of nodes that are in the Steiner Tree with nodes that are children of degree-one
nodes in the Steiner Tree as CST = {v : v ∈ ST (U i−1) ∨ v = w.c6∈ST(U i−1)∀w ∈ ST (U i−1)1}. For step
4) above, senders must publish the new public keys corresponding to all nodes of CST (U i−1) (lines 19,
25, 31, 32).
10 We overload the set theoretic symbol /∈ here for brevity.
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Proc init(n)
00 i← 1,U 0 ← ∅
01 m← CBT(n)
02 SK init ←$ SKm
03 PKτ ← genPKTree(SK init)
04 ksav ←$ K
05 For u from 1 to n:
06 SKu ← getSKPath(SK init, u)
07 sk0 ← ⊥; sk1 ← ⊥
08 stu ← (u, i,PKτ ,SKu,U 0, sk0, sk1, ksav)
09 Return (st1, . . . , stn)

Proc snd(st)
10 (u, i,PKτ ,SKu,U i−1, sk0, sk1, ksav)← st
11 sk′ ←$ SK
12 pk′ ← gen(sk′)
13 k ←$ K ∩M
14 DK [·]← ⊥
15 For each v ∈ U i−1:
16 DK [v]←$ K ∩M
17 ct ←$ enc(PKτ [v],DK [v]||k)
18 CT [v]← ct
19 (DKST(U i−1),PKST(U i−1))←

genSTree(DK ,U i−1)
20 For each v ∈ ST(U i−1)1:
21 ad ←$ AD ∩M
22 pk ← PKτ [v.c6∈ST(U i−1)]
23 ct ←$ enc(pk,DKST(U i−1)[v]||ad||k)
24 CT [v]← ct
25 PKST(U i−1)[v.c6∈ST(U i−1)]← up(pk, ad)
26 For each v ∈ ST(U i−1)2:
27 ad ←$ AD ∩M
28 pk ← PKST(U i−1)[v.c1]
29 ct ←$ enc(pk, DKST(U i−1)[v]||ad)
30 CT [v]← ct
31 PKST(U i−1)[v.c1]← up(pk, ad)
32 bc ← (u, pk′,CT ,PKST(U i−1))
33 st ← (u, i,PKτ ,SKu,U i−1, sk0, sk′, ksav)
34 Return (st, bc)

Proc rcv(st,BC)
35 (u, i,PKτ ,SKu,U i−1, sk0, sk1, ksav)← st
36 If BC = ∅:
37 U i ← U i−1
38 skip to line 56
39 U i ← ∅
40 Let bc∗ ∈ BC be first in some definite

order
41 (v, pk′,CT ,PKST(U i−1))← bc∗
42 If u ∈ U i−1:
43 kder||k ← dec(sk0,CT [u])
44 v∗ ← u
45 Else:
46 v∗ ← getSNode(u,ST(U i−1))
47 sk ← SKu[v∗.c6∈ST(U i−1)]
48 kder||ad||k ← dec(sk,CT [v∗])
49 SKu[v∗.c 6∈ST(U i−1)]← up(sk, ad)
50 (SK ′u,PK ′τ )←

Rebuild(st,PKST(U i−1),CT , kder, v
∗)

51 For all bc ∈ BC :
52 (v, pk′,CT ,PKST(U i−1))← bc
53 U i ← U i ∪ {v}
54 PK ′τ [v]← pk′
55 ksav ← k
56 kout ← prf(ksav, out)
57 ksav ← prf(ksav, sav)
58 sk0 ← sk1

59 i′ ← i+ 1
60 st ← (u, i′,PK ′τ ,SK ′u,U i, sk0, sk1, ksav)
61 Return (st, kout)

Fig. 3: Construction of concurrent group ratcheting in the computational model. CBT(n) calculates the number
of nodes in a complete binary tree with n leaves. getSNode(u,ST(U i−1)) finds the first node v on the direct path
of u that is in ST(U i−1).

Receiving. For rounds in which no member sent, the recipients forward-securely derive symmetric keys
(one output group key, and one saved key) from last round’s secrets (lines 56-57). In addition, they
assign U i ← U i−1 (line 37), so that senders of subsequent rounds can refresh the secrets of the senders
of round i− 1.

In case members sent in a round, a receiver determines the first message bc∗ among all sent in this
round, via some definite order (e.g., lexicographic). The receiver then retrieves from this message the
ciphertext set CT for decrypting the symmetric secret k and the first seed needed to rebuild the tree:
If the receiver sent in the last active round (in which anyone sent), it uses its individual (fresh) secret
key (lines 43-44). Otherwise, it uses the secret key of the first node on its direct path that is the child
of some node in ST (U i−1) (lines 45-48). The decrypted seed, as well as the rest of CT , and the public
keys of the Steiner Tree within bc∗ are then used to rebuild the secret path for the receiver, as well as
the public key tree, as described below in paragraph Construction Subroutines (line 50). The resulting
symmetric secret is then used to derive the output group key and a new saved key (as described above
for rounds without ciphertexts).

16



Additionally, secret keys used to decrypt ciphertexts (including those as described in the Construction
Subroutines paragraph below), are updated with the associated data that was also decrypted from the
respective ciphertexts (lines 48, 49, 80, 81). Finally, all senders of the round are collected into U i and
their new public keys are saved (lines 51-54) in order to later achieve post-compromise security.

Construction Subroutines. In the common state initialization algorithm init, a complete binary tree of n
leaves with a public key at each node is initialized using a list of corresponding secret keys SK init with
procedure PK τ ← genPKTree(SK init) (line 03). Also, the secret keys along the direct path to the root
of leaf u for each user are retrieved for that user, using SKu ← getSKPath(SK init, u).

Figure 4 details the subroutines for genSTree and Rebuild (lines 19 and 50). Subroutine genSTree
is used in the snd algorithm to compute the seeds and public keys at each node of the Steiner tree
ST (U i−1) using the seeds DK [v] sampled for the leaves v ∈ U i−1 (lines 15-18). For each v ∈ U i−1, the
receiver uses DK [v] to compute the node’s secret key, public key, and (possibly) the seed to be used for
its parent (lines 66-69), continuing up the tree until there has already been a seed generated for some
node w on the path.

Rebuild is used in the rcv algorithm, by each user u to rebuild its “secret key path” as well as the
“public key tree” using the public keys of the Steiner Tree PKST(U i−1), the set of ciphertexts CT , and
the seed kder obtained from CT corresponding to a node v∗ in the tree. First, for every v ∈ CST (U i−1),
the receiver sets its public key to that which is in the dictionary PKST(U i−1) (lines 73-74). Then, starting
from node v∗ using kder, the receiver derives the secret key for v∗ and a new seed for its parent if the
node is the left child of its parent. Otherwise the receiver uses the secret key just derived to decrypt the
seed to be used at its parent (lines 76-82). The receiver continues up the tree until the root is reached.

Proc genSTree(DK ,U i−1)
62 DKST(U i−1)[·]←⊥; PKST(U i−1)[·]←⊥
63 For each v ∈ U i−1 from left to right:
64 kder ← DK [v]
65 While DKST(U i−1)[v] = ⊥ and v 6= r:
66 DKST(U i−1)[v]← kder
67 k′der||skv ← prf(kder, der)
68 PKST(U i−1)[v]← gen(skv)
69 v ← v.p, kder ← k′der
70 Return (DKST(U i−1),PKST(U i−1))

Proc Rebuild(st,PKST(U i−1),CT , kder, v
∗)

71 (u, i,PKτ ,SKu,U i−1, sk0, sk1, ksav)← st
72 PK ′τ ← PKτ ; SK ′u ← SKu

73 For each v ∈ CST(U i−1):
74 PKτ [v]′ ← PKST(U i−1)[v]
75 v ← v∗

76 While v 6= r:
77 k′der||skv ← prf(kder, der)
78 SK ′u[v]← skv
79 If deg(v.p) = 2 and v = v.p.c1:
80 k′der||ad ← dec(skv,CT [v.p])
81 SK ′u[v]← up(skv, ad)
82 v ← v.p, kder ← k′der
83 Return (PK ′τ ,SK ′u)

Fig. 4: Subroutines for construction upper bound. deg(v) refers to the degree of a node v in a tree, i.e. number
of children.

Efficiency. We here provide a short and simple proof of our communication complexity upper bound.11

Lemma 1. For every round i ∈ [q], the communication costs in an execution (n,U 0
X,U

1
S,U

1
X, . . . ,U

1
S,

U q
X) are

|C[i]| = O
(
|U i

S| · |U
i−1
S | ·

(
1 + log

(
n

|U i−1
S |

)))
.

We note that |C[i]| denotes the number of sent items (i.e., ciphertexts and public keys) per round.
Their individual length depends on the respectively deployed kuPKE scheme. (In a setting that defines
a security parameter, the factor with which the communication costs are multiplied is (asymptotically)
constant in this security parameter.)
11 One might observe that using ideas from the Layered Subset Difference BE method [21] could lower the

communication complexity of our construction, however we failed to do so due to potential security issues.
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Proof. We track communication of each user u ∈ U i
S that sends in round i. From this, the result

follows easily. In round i, user u sends one ciphertext and one public key for each v ∈ ST (U i−1
S ) (plus

an additional public key for at most one child cv of each v). It is shown in [27] that |ST (U i−1
S )1| =

O
(
|U i−1

S | · log
(

n
|U i−1

S |

))
. Moreover, it follows from the analysis in [27] that |ST (U i−1

S )2| + |U i−1
S | =

O
(
|U i−1

S |
)
. Since ST (U i−1

S ) = ST (U i−1
S )1 ∪ ST (U i−1

S )2 ∪ U i−1
S ,12 we have accounted for each node

v ∈ ST (U i−1
S ).

Therefore, each user u ∈ U i
S communicates O

(
|U i−1

S | ·
(

1 + log
(

n
|U i−1

S |

)))
information. ut

6.2 Security of Building Blocks

Below we shorty introduce computational security definitions of building blocks used in our construction.

Pseudo-Random Function Syntax of pseudo-random functions PR = prf are defined in Section 2. For
security we require a multi-instance variant of indistinguishability of a scheme PR from a random function
which we denote by game PRFINDb

PR. The advantage of an adversary A in winning game PRFINDb
PR is

defined as Advkind
PR (A) := Pr[PRFIND0

PR(A)→ 1]− Pr[PRFIND1
PR(A)→ 1].

Key-Updatable Public Key Encryption Syntax and correctness of key-updatable public key encryption
schemes UE are defined in Section 2. For security we define in Figure 5 a weak variant of multi-instance
KINDb

UE security of schemes UE. In contrast to strong key-updatable PKE notions (e.g., as in [6]), the ad-
versary in our definition cannot diverge the public and secret key of a key pair (by instructing updates on
different associated data; see lines 103-104). Additionally, “forward-secrecy” of updates (i.e., confidential-
ity of ciphertexts generated before an update with respect to secret key exposures after the update) is only
required to be effective on associated data that the adversary does not know (see lines 98-98,109,114,88).
Due to these relaxations, UE schemes secure according to KINDb

UE can be instantiated efficiently from
standard assumptions (see e.g., a construction from DDH in [24]). The advantage of an adversary A in
winning game KINDb

PE is defined as Advkind
PE (A) := Pr[KIND0

PE(A)→ 1]− Pr[KIND1
PE(A)→ 1].

Game KINDb
UE(A)

84 n← 1
85 PSK [·]← ⊥
86 CH [·]← ∅; EX [·]← ∅
87 b′ ←$ A
88 If ∃i : CH [i] ∩ EX [i] 6= ∅ :
89 Stop with 0
90 Stop with b′

Oracle Gen
91 sk ←$ SK
92 pk ← gen(sk)
93 PSK [n]← (pk, sk)
94 un ← 1; safen = 0
95 n← n+ 1
96 Return pk

Oracle Up(i, ad)
97 Require PSK [i] 6= ⊥
98 If ad = ε:
99 safei ← ui

100 ad ←$ AD
101 Require ad ∈ AD
102 (pk, sk)← PSK [i]
103 pk ← up(pk, ad)
104 sk ← up(sk, ad)
105 PSK [i]← (pk, sk)
106 ui ← ui + 1
107 Return pk

Oracle Expose(i)
108 Require PSK [i] 6= ⊥
109 EX [i]← EX [i]∪

{u ∈ N|u > safei}
110 Return PSK [i]

Oracle Challenge(i,m0,m1)
111 Require PSK [i] 6= ⊥
112 (pk, sk)← PSK [i]
113 c←$ enc(pk,mb)
114 CH [i]← CH [i] ∪ {ui}
115 Return c

Fig. 5: Security definition of multi-instance key-updatable public key encryption in the computational model.

6.3 Security Proof

Before stating the security theorem for our construction, we remark that for our construction we require
immediate forward-secrecy, as expressed in the security game from Figure 6. In this game, the adversary
12 We overload U i−1

S to also refer to the set of leaves corresponding to the users u′ ∈ U i−1
S .
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is invoked in two phases: first it determines the group size (without being able to query any oracles), and
then it can play against the established group by querying oracles Round for letting a subset of members
send and all members receive, Expose for exposing a subset of members after a round terminated,
and Challenge to obtain a round’s real group key or a random key element. Furthermore it can query
oracle Reveal to obtain a round’s real group key. For a detailed explanation of the game mechanisms, we
refer the reader to Section 3. Accordingly, we formally define the advantage of adversaries in the group
ratcheting security game as follows:

Definition 1 (Adversary Advantage). For the security experiment KINDb
GR from Figure 6 we define

the advantage of adversaries A in breaking the security of a group ratcheting scheme GR as Advkind
GR (A) :=

|Pr[KIND0
GR(A)→ 1]− Pr[KIND1

GR(A)→ 1]|.

Intuitively, a construction is secure if no adversary can break it with non-negligible advantage.

Game KINDb
GR(A)

116 phase ← 1; i← 1
117 K[·]← ⊥; XU ← ∅
118 SEC ← ∅; CH ← ∅
119 (ς, n)←$ A
120 (st1, . . . , stn)←$ init(n)
121 phase ← 2
122 b′ ←$ A(ς)
123 If CH ⊆ SEC :
124 Stop with b′
125 Stop with 0

Oracle Reveal(i∗)
126 Require K[i∗] 6= ⊥
127 k ← K[i∗]; K[i∗]← ⊥
128 Return k

Oracle Round(U )
129 Require phase > 1
130 Require U ⊆ [n]
131 For all u ∈ U :
132 (stu, cu)←$ snd(stu)
133 C ←

⋃
u∈U cu

134 For all u ∈ [n]:
135 (stu, ku)← rcv(stu,C)
136 If XU = ∅ ∧ (U 6= ∅

∨i− 1 ∈ SEC):
137 SEC ← {i}
138 XU ← XU \U
139 K[i]← k1
140 i← i+ 1
141 Return C

Oracle Expose(U )
142 Require phase > 1
143 Require U ⊆ [n]
144 XU ← XU ∪U
145 ST ←

⋃
u∈U{stu}

146 //SEC ← SEC \ [i− 1]
147 Return ST

Oracle Challenge(i∗)
148 Require K[i∗] 6= ⊥
149 CH ← CH ∪ {i∗}
150 k0 ←$ K
151 k1 ← K[i∗]
152 K[i∗]← ⊥
153 Return kb

Fig. 6: Security experiment of concurrent group ratcheting in the computational model. Note that the overall
game mechanism corresponds to the one in the symbolic setting (see Figure 11) except that we require key
indistinguishability here. Line 146 is removed for our construction’s security to require immediate forward-secrecy.

Theorem 1. The construction from Figure 3 is a secure group ratcheting scheme GR. More specifically,
for every adversary A against scheme GR from Figure 3 in game KINDb

GR from Figure 6, there exists an
adversary BUE against scheme UE in game KINDb

UE, according to Figure 5 and an adversary BPR against
scheme PR in game PRFINDb

PR such that Advkind
GR (A) ≤ (qRound + 1) · ((dlog(n)e+ 1) ·Advprfind

PR (BPR) +
dlog(n)e · Advkind

UE (BUE)), where n is the number of group members and qRound is the number of queries
the adversary A makes to oracle Round.

Proof. We consider the evolution of the tree τ throughout the execution of the adversary in game KINDb
GR.

For any node v ∈ τ , we consider the depth of v, dv to be the number of edges along the path from the
root of τ , r, to v. We also consider the nodes at a depth j of τ to be the set of nodes in τ that have
depth j, i.e. {v ∈ τ |dv = j}. We denote d as the depth of τ , which is the largest depth of any node v ∈ τ ,
i.e. d = maxv∈τ dv. For nodes v, w, we write v ∈ p(w) if v is along the direct path of w. For simplicity,
throughout the proof, we will refer to the leaf which a user u ∈ [n] occupies as u, too.13 Also, for a node
v, we let `v be the set of leaves u ∈ τ that are in the subtree rooted at v, i.e. `v := {u ∈ [n]|v ∈ p(u)}.

We consider the hybrid experiments

H0
0,c, H

1
d,p, H

1
d,c, H

1
d−1,p, H

1
d−1,c, . . . ,H

1
0,p, H

1
0,c, H

2
d,p, H

2
d,c, . . . ,H

2
0,p, H

2
0,c, . . . ,H

qRound
0,p , HqRound

0,c , HqRound .

where H0
0,c is the original game KINDb

GR, hybrids of the form Hi
l,x, where l ∈ {0, 1, . . . , d}, x ∈ {c, p}, i ∈

[qRound] are defined in Figure 7, and HqRound is defined in paragraph Final Security Argument. Note
13 Where we order the leaves in the usual manner, from left to right.
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Hybrid Hi
l,x, l ∈ [d], x ∈ {c, p}, i ∈ [qRound]:

1. Initialization: Execute init(n). If x = p∧ l = d, define H := Hi−1
0,c if i > 1, H := H0, otherwise. If x = p∧ l 6= d, define

H := Hi
l+1,c. Otherwise, H := Hi

l,p. Set COR[·]← False.
2. Protocol Execution: Process all oracle calls prior to round i as in H. If i > 0 ∧ U i

S = ∅, proceed exactly as in H.
Otherwise, set F [·]← False,DK ′[·]← ⊥,AD[·]← ⊥, k∗ ← ⊥ and:
(a) For any queries to Reveal() or Challenge(), process them as in H.
(b) (Secret Generation): If l = d∧x = p∧ i = 1, set mu = du, F [u]← True for all u ∈ [n], U i−1 = [n] and continue

to step (ii). Otherwise, for all users u ∈ U i
S besides the user u∗ whose message bc = bc∗ is the first ciphertext

bc∗ ∈ BC for round i, we proceed as in H. For the user u∗, we compute:
i. For each u ∈ U i−1, let mu be the number of iterations the while loop on line 65 executes before reaching a

node v such that dv ≤ l, or ∃u ∈ `v such that COR[u] = True.
ii. (PRF to uniform): For round i, consider a modified version of the genSTree algorithm which, for each

u ∈ U i−1, computes:
– For the first mu iterations of the while loop on line 65 for node u, compute the path secrets as follows:

$→ (k1
der||sk0

u), $→ . . . , $→ (kmu
der ||skmu−1

u ),

and for the corresponding first mu nodes on the direct path of u, which we denote as uo, for o ∈ [mu],
set F [uo]← True.

– For the rest of the iterations, compute the path secrets as in H (i.e, with real prf computations).
(c) (Faking ciphertexts): For every i′ ≥ i: We only deviate from H in the parts of bc∗ (if it exists) that are encrypted.

For each u ∈ U i−1:
– If i′ = i and ¬(l = d ∧ x = p), replace the encryption on line 17 with CT[v] ← enc(pk, 0) and set DK ′[v] ←

DKST(Ui−1)[v], k∗ ← k.
– For the first mu, or mu − 1, if x = p, nodes uo on the direct path of u (not including u itself):

• If uo = v.c6∈ST(U
i′−1) for some v ∈ ST(U i′−1)1 and F [uo] = True, replace the encryption on line 23

with CT[v]← enc(pk, 0) and set DK ′[v]← DKST(Ui−1)[v], AD[v]← ad, k∗ ← k.
• If uo = v.c1 for some v ∈ ST(U i′−1)2 and F [uo] = True, replace the encryption on line 29 with

CT[v]← enc(pk, 0) and set DK ′[v]← DKST(Ui−1)[v], AD[v]← ad.
• Otherwise, for i′ 6= i, if uo = v for some v ∈ ST(U i′−1), set F [w]← False.

– For i′ 6= i, if u ∈ U i′
S , set F [u]← False.

Compute all other ciphertexts as in H.
(d) (Receiving): We only deviate from H in processing the parts of the message bc∗ (if it exists) that are encrypted

for rounds i′ ≥ i:
– For every user u ∈ [n], let k ← k∗ if k∗ 6= ⊥. Otherwise obtain k from bc∗ as in H.
– For each user u ∈ U i′−1

S :
• In the iterations of the loop on line 76, for each node v being processed, on line 77 set k′der||skv ←

prf(DK ′[v], der) if DK ′[v] 6= ⊥; otherwise obtain those secret keys as in H.
• When updating the secret key of any right children v.c1 of degree two nodes w ∈ ST(U i′−1

S )2 on the
direct path of u, set ad ← AD[w] before line 81 if AD[w] 6= ⊥; otherwise obtain the associated data as
in H.

– For each user u ∈ [n] \U i′−1
S , let v∗ ← getSNode(u,ST(U i−1)),

• In the iterations of the loop on line 76, for each node v being processed, on line 77 set k′der||skv ←
prf(DK ′[v], der) if DK ′[v] 6= ⊥; otherwise obtain those secret keys as in H.

• When updating the secret key of the child of v∗ on the direct path of u and of any right children v.c1
of degree two nodes w ∈ ST(U i−1

S )2 on the direct path of u, set ad ← AD[w] before lines 49 and 81,
respectively, if AD[w] 6= ⊥; otherwise obtain the associated data as in H.

– If (@u ∈ [n] : COR[u] = True) ∧ i = i′ 6= 1 ∧ l = d ∧ x = p, replace the prf computations on lines 56-57 with
kout ←$ K, ksav ←$ K, respectively.

– For every u ∈ U i′
S , set COR[u]← False.

– Reset DK ′[·]← ⊥,AD[·]← ⊥, k∗ ← ⊥.
(e) (Exposures): Process exposures for users in set U i

X as in H. For each u ∈ U i
X, we set COR[u] ← True. Addi-

tionally, for each u ∈ U i′
X, for all i′ ≥ i, set F [v]← False, for v ∈ p(u).

3. (Output): Process the output phase as in H.

Fig. 7: Definition of hybrid experiments in the security proof of our upper bound construction.

first that the notation $→ (x, y) in Figure 7 denotes the fact that (x, y) is uniformly random. Also, we
refer to the time in which a hybrid processes the i-th call to Round() as round i (and implicitly, the
init() phase as round 0). To recall, we refer to the set of users that the adversary A chooses to call the
Round() oracle on in round i as U i

S and the set of users that A chooses to call the Expose() oracle on
following round i as U i

X (so if A exposes any users before the first round of senders, this set is denoted
as U 0

X). Now observe that for ¬(l = d ∧ x = p), for all i ∈ [qRound] the difference in the hybrid Hi
l,x of

Figure 7 from its previous hybrid comes from either faking one more prf computation in sequences of prf
computations, or the encryptions under the kuPKE scheme secure with respect to the KINDb

UE game in
Figure 5 for one more level of derived secret keys in τ .
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In the following, we will denote by nbl the number of nodes at depth l of τ∗. Note that nbl ≤ 2l.

Lemma 2. For all i ∈ {0, 1, . . . , qRound}, l ∈ {0, 1, . . . d}, for every adversary A against Hi
l,p or H0

0,c
(resp. Hi

l,c for i > 0) in game KINDb
GR according to Figure 6, there exists an adversary BUE against

scheme UE in game KINDb
UE, according to Figure 5 (resp. an adversary BPR against scheme PR in game

PRFINDb
PR) such that

1. AdvHi
l,p

(A) ≤ AdvHi
l,c

(A) + Advkind
UE (BUE).

2. AdvHi
l,c

(A) ≤ AdvH1
d,p

(A) + Advkind
UE (BUE), if l = 0 ∧ i = 0.

3. AdvHi
l,c

(A) ≤ AdvHi
l−1,p

(A) + Advprfind
PR (BPR), if l > 0.

4. AdvHi
l,c

(A) ≤ AdvHi+1
d,p

(A) + Advprfind
PR (BPR), if l = 0 ∧ i > 0.

Proof. The proof proceeds by contradiction. Let i be the minimum value in [qRound] and, for this i, l
be the maximum value in [d] for which any of the above relations does not hold and in the sequence of
hybrids H0

0,c, H
1
d,p, . . . ,H

qRound
0,p , HqRound

0,c , at least two adjacent hybrids are distinguishable. For all m > l,
with i′ = i and all m ≥ 0 for i′ < i, we assume all of the relations hold.

We first note that if for some i ∈ [qRound], U i
S = ∅, relations (1.) and (3.) are trivially true, since

Hi
l,p and Hi

l,c, Hi
l,c and Hi

l−1,p, respectively, are exactly the same. Moreover, if when processing some
round i ∈ [qRound], ∃u ∈ [n] : COR[u] = True, then relation (4.) is trivially true, since Hi

l,c and H
i+1
d,p are

exactly the same. We now consider three cases:
Case a) For the first case, assuming relation (2.) does not hold or (1.) does not hold for the indices

i, l, we make a reduction to the security of the kuPKE encryption scheme. We refer to the (node, key)
pairs for which we generate instances in the KINDb

UE game as Vgame. If relation (2.) does not hold,
we consider the key pairs generated at all nodes v ∈ τ , i.e. Vgame ← {(v, skv)|v ∈ τ}. Otherwise, if
l ∈ {d, d − 1}, let the number of leaves u, u ∈ [n], such that du = l be nleaf , and consider the key pair
generated by such u on lines 11-12 in round i − 1. We will refer to such leaves as us, s ∈ [nleaf ] and set
Vgame ← {(us, skus)|s ∈ [nleaf ]}. If l 6∈ {d, d − 1}, nleaf = 0. Also, consider the key pairs at vl+1,s′ , for
s′ ∈ [nbl+1] (if any) generated in round i and set Vgame ← Vgame ∪ {(vl+1,s′ , skvl+1,s′ |s′ ∈ [nbl+1]}.

We define the adversary Bcl for the kuPKE game in Figure 8. Note that the parentheses around k
in item (2c) represent the differences between the encryptions on lines 23 and 29, in which in one k is
present, and in the other it is not.

The view of A w.r.t. the hybrids corresponding to relation (1.) or (2.) only differs for the rounds i′
corresponding to the z-th encryption to (v, skv) for each (v, skv) ∈ Vgame, z ∈ [qv]. If relation (2.) does not
hold, in H0

0,c, we do not fake anything, while in H1
d,p, we fake encryptions to kuPKE public keys at all

nodes v ∈ τ . Otherwise, in Hi
l,p, we only fake encryptions to du −mu − 1 kuPKE public keys generated

in round i or i − 1 along the direct paths of each u ∈ ST (U i−1), while in Hi
l,c, we fake encryptions to

du − mu, for each such u, kuPKE public keys generated in these rounds. Clearly, when the challenge
ciphertexts encrypt the messagesm0, Bcl simulates Hi

l,p (resp. H0
0,c), and when they encrypt the messages

m1, Bcl simulates Hi
l,c (resp. H1

d,p).
Now we argue that the above simulation is correct. For each (v, skv) ∈ Vgame, the initial secret key skv

is sampled uniformly at random, and if relation (2.) holds but relation (1.) does not, when the initial key
pair is generated for some vl+1,s, @u ∈ `(vl+1,s) such that COR[u] = True. Moreover, after the generation,
the adversary A only (possibly) corrupts the state of any user u such that u ∈ `(v) corresponding to
any (v, skv) ∈ Vgame, after the first qv encryptions, and in step (d) of Figure 8, we then set SK [v] to the
appropriate sk from the kuPKE game. Thus, setting the public key pkv of v such that (v, skv) ∈ Vgame
without knowing the corresponding secret key until the first corruption is not an issue. In addition,
despite the fact that Bcl sends encryptions to the nodes v such that (v, skv) ∈ Vgame that contain 0, the
correct seed and group key is hardcoded to the private states of the users u such that u ∈ `(v) when they
process the rcv() algorithm. Furthermore, the secret keys at these nodes are updated within the kuPKE
game by the oracle calls to Up().

Moreover, even though the adversary may expose users u such that u ∈ `(v) for (v, skv) ∈ Vgame
after the first qv encryptions, the security properties of kuPKE ensure that since the initial keys were
uniformly random and never exposed and Bcl calls the up(s, ε) oracle after each round i′ corresponding
to the z-th encryption, z ∈ [qv], all relevant challenge ciphertexts sent to v prior to (and including) i′
are considered safe. Additionally, before revealing the state of user u to A, Bcl calls the sk ← Expose(s)
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Algorithm Bcl :

1. For v such that (v, skv) ∈ Vgame, receive public key pkv from the challenger of the kuPKE game for
instance v (overloading notation, to refer to the integer ordering of v ∈ τ).

2. Execute Hi
l,p (or H0

0,c) with the following differences:
(a) For v such that (v, skv) ∈ Vgame, in the init(), or rcv() algorithm of round i− 1 or i, set the public

key of the node v to pkv, and the corresponding secret key to ⊥.
(b) For v such that (v, skv) ∈ Vgame, let qv be the number of rounds in which v is encrypted to until

the first round i∗ ≥ i such that ∃u ∈ `(v) such that u ∈ U i∗
X or the first round i∗∗ > i such that

v ∈ ST(U i∗∗
S ), respectively, and thus the secret key of node v is corrupted or replaced.

(c) For v such that (v, skv) ∈ Vgame, for every z ∈ [qv], let i′ be the round of the z-th encryption and
(for the first sender of the round of i′):
– If v was generated by a user in round i − 1 to refresh their state (i.e. line 11), set m0 ←

DK [us]||k, corresponding to line 15 in round i, m1 ← 0 and call ct ← Challenge(v,m0,m1)
– Otherwise: set m0 ← DKST(U i′

S )[vl+1,s]||ad||(k), m1 ← 0, call ct ← Challenge(v,m0,m1),
and replace the update of pks on line 25 or 31, with that which is received from an oracle call
Up(s, ε).

– On lines 43, 48 or 80, set kder||k, kder||ad||k, or k′der||ad, respectively according to whichever is
being used by a given user u who executes one of these lines when processing an encryption
to v, to that which was encrypted by the first sender of round i′.

– Additionally, do not perform any updates on lines 49 or 81.
(d) For v such that (v, skv) ∈ Vgame, if there is a round i∗ such that ∃u ∈ `(v) such that u ∈ U i∗

X , first
call sk ← Expose(v), and set SKu[v]← sk.

3. Output the bit output by A.

Fig. 8: Reduction algorithm Bcl .

oracle, so the view of the adversary is perfectly simulated from that point on. Hence, if AdvHi
l,p

(A) >
AdvHi

l,c
(A) + Advkind

UE (BUE), Bcl breaks the security of the multi-instance kuPKE scheme, reaching a
contradiction.

Case b) For the second case, we make a reduction to the PR scheme. Let vl+1,s, s ∈ [nbl+1] be the
nodes at depth l + 1 of τ . We define Bpl in Figure 9.

Algorithm Bpl :

1. Simulate Hi
l,c with the only difference that in round i at depth l + 1, use der, which is normally input

to the prf on lines 67 and 77, as a query to the PR oracle to derive k′der||skvl+1,s .
2. For the rest of the execution, simulate Hc

l+1 and output the bit output by A.

Fig. 9: Reduction algorithm Bpl .

The difference between Hi
l,c and Hi

l−1,p is that the latter fakes one more level of prf computations for
round i at depth l+1. In particular, in Hi

l,c at round i, we fake du−mu prf computations along the direct
paths of leaves u ∈ ST (U i

S), while in Hi
l−1,p, we fake du −mu + 1 prf computations, i.e. we substitute

nbl more prf values with uniformly random and independent values. Clearly, when the challenge of the
PR game is the output of the real keyed-prf computations, Bpl simulates Hi

l,c, and when it is the output
of an uniformly random function, Bpl simulates Hi

l−1,p.
Now we argue that the above simulation is correct. We observe that the only way for an adversary to

distinguish between the two hybrids is by distinguishing a uniformly random k′der||sk
vl+1,s from one that

is output by the prf using a uniformly random seed. Since before round i, {u ∈ `(vl+1,s)|COR(u) =
True} = ∅ and A can only corrupt a user u ∈ `(vl+1,s) after round i, no key of τ is leaked to
the adversary that would allow them to derive k′der||sk

vl+1,s via a real prf computation. Hence, if
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AdvHi
l,c

(A) > AdvHi
l−1,p

(A) + Advprfind
PR (BPR), Bpl breaks the security of the multi-instance PR game,

reaching a contradiction.

Case c) The third case just involves a standard reduction from the security of PR as above to replace
the output of lines 56 and 57 with output from a uniformly random function in round i. We omit it for
brevity. The same argument for why the simulation of the reduction is correct from case b) can be used
for this case, since before round i, @u ∈ [n] : COR[u] = True, and A can only corrupt a user u after round
i, so no key of τ nor any saved key ksav is ever leaked to A that would allow them to derive kout, ksav
via the real prf computation. Additionally, any call by A to the Reveal() oracle simply returns kout, and
still no key is ever leaked to A that would allow them to derive kout via the real prf computation. Hence,
if AdvHi

l,c
(A) > AdvHi+1

d,p
(A) + Advprfind

PR (BPR), Bpl breaks the security of the multi-instance PR game,
reaching a contradiction. ut

Final Security Argument. In the final hybrid above HqRound , we just replace the output of lines 56 and 57
with output from a uniformly random function in round qRound. The reduction between HqRound

0,c and
HqRound is identical to that of case c) above.

In this final hybrid, for all i∗ ∈ CH∩SEC , i.e. rounds i∗ for which XU = ∅∧(U i∗

S 6= ∅∨i∗−1 ∈ SEC)
and the output secret is challenged, it is the case that kout is uniform and independent of all information
published in the network, so AdvHqRound (A) = 0. This is the case because whenever a secret key to
be derived is not on a direct path of a corrupted user, HqRound generates it uniformly at random, all
encryptions to such keys are replaced with 0, and all output keys for rounds in which there are no
corrupted users are generated uniformly at random.

Total security loss. Since we proceed for i ∈ [qRound], l ∈ [d], we have that the total security loss resulting
from all of the above hybrids is at most

(qRound + 1) · ((d+ 1) ·Advprfind
PR (BPR) + d ·Advkind

UE (BUE))

≤ (qRound + 1) · ((dlog(n)e+ 1) ·Advprfind
PR (BPR) + dlog(n)e ·Advkind

UE (BUE)).

Correctness. It is not hard to see that the protocol correctness holds. The adversary is not allowed
to modify messages transmitted over the network and by the correctness of encryption and identical
deterministic use of prf, all of the users in each round maintain consistent views of the key pairs in τ
and output keys kder.

Conclusion. From the above final security argument, we obtain

Advkind
GR (A) = AdvH0

0,c
(A) ≤ (qRound + 1) · ((dlog(n)e+ 1) ·Advprfind

PR (BPR) + dlog(n)e ·Advkind
UE (BUE)).

ut

6.4 Discussion

We shortly reflect on our construction, compare it to previous works, discuss its limitations with respect
to the security model, and propose possible efficiency improvements.

The main purpose of our protocol is to give an upper bound that confirms our lower bound, but not
to provide optimal security and maximal functionality under concurrency. Nevertheless, our construction
provides the same security as parallel pairwise Signal executions, i.e. FS and PCS one round with non-
empty sender set after all exposed users updated their states. In addition, it provides full concurrency
for user updates unlike those in [14,32,8,3,4,5].

We were made aware that our protocol can alternatively be viewed as an adapted (non-trivial and
more complex) combination of 1. the propose-then-commit approach from the latest MLS draft [8] and
2. Tainted TreeKEM’s [4] path update for tainted nodes (that allows users to update other users’ paths
on their behalf). Indeed, in our protocol, before the senders in U i perform the snd algorithm, they
implicitly taint all nodes on paths of senders in U i−1, who we view as just having proposed updates for
their leaves in round i − 1. (Tainting means that these nodes are requested to be updated by the next
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active sender(s).) In contrast to the tainting-mechanism in Tainted TreeKEM, in our protocol the nodes
on paths of U i−1 are immediately untainted after round i.

When using a variant of our construction for dynamic groups, removed members in such groups
may maliciously store secrets that they saw during their membership for breaking confidentiality of
group secrets after their membership. Effectively solving this problem—discussed as “double-join”—
could be achieved by using ideas from protocols constructed for dynamic groups, such as MLS and
Tainted TreeKEM. Without these ideas, it would be required that siblings of all removed users that are
still in the group issue state updates before any removed user would be unable to derive the output
secrets. Yet, as we discuss below, dynamic member changes appear to happen rather seldom in many
practical applications such that this restriction might be insignificant.

Our security model is somewhat weak: we require an honest (but curious) mechanism that clocks
rounds, we do not allow the adversary access to random coins used by senders in a round that are not
saved to their state, and we do not allow the adversary to alter broadcast messages. Clock synchro-
nization could, however, be rather coarse (resulting in long round periods) as our protocol’s speedup in
reaching PCS, compared to non-concurrent alternatives that require members to update their states one
after another, is already significant. Furthermore, we note that all members processing all ciphertexts
in a round (as defined in our model) is not mandatory but allows for immediate forward-secrecy due
to kuPKE key pair updates. Processing all previous ciphertexts before sending is usually also unprob-
lematic as sending anyways requires a user to come online, such that all cryptographic operations can
be executed at that moment. Especially for reaching authentication and handling out-of-order receipts,
tools that are independent of our core state update mechanism can be added (maybe even generically)
to our construction. The problem of weak random coins is indeed an open problem for concurrent group
ratcheting that we leave for future research.

As stated earlier, it is not ultimately clear whether our lower bound or upper bound is loose (or
even both of them). One technique to improve our upper bound would be to utilize more sophisticated
broadcast encryption methods than the Complete Subtree method [27], such as the Layered Subset
Difference method [21] or techniques from the recently proposed optimal broadcast encryption scheme [1],
while still preserving security. Additionally, if one allows a slight relaxation in the model by allowing for
delayed PCS, i.e. PCS in some ∆ > 1 rounds, then better communication complexity could be achieved.
This is because if users update their state in a given round i by publishing a fresh public key, other
users could send secrets to these users to help them recover in all rounds i′ ∈ {i + 1, i + 2, . . . , i + ∆},
spreading out the communication costs across these rounds and allowing for some adaptivity between
senders therein.

6.5 Insights for Practice

We shortly summarize concepts from our construction that could enhance, and insights from our lower
bound that could influence real-world protocols (like the MLS initiative’s design).

Almost-immediate PCS As mentioned many times before, immediate PCS under t-concurrency appears
to require t-party NIKE (which is currently inaccessible). Postponing the update of shared secrets to a
reaction in the next protocol execution step, as implemented in our construction, bypasses this problem.
The major advantages of this bypass are a significant speedup for PCS, compared to sequential state
updates, and a maintained balanced tree structure, compared to tree modifications, resulting in a reduced
tree depth, or group partitions. An open question remains to analyze our scheme’s resilience against weak
randomness.

Static Groups are Practical Some deficiencies of our protocol are only relevant in dynamic settings. In
contrast, constant groups can benefit from this construction significantly as it maintains communication
complexity in all cases nearly optimally. We emphasize that many groups in real-world applications
indeed seldom or never change the set of members (e.g., family groups, friendship group, smaller working
groups, etc).

To resolve issues with respect to membership changes, the mechanism proposed in Tainted TreeKEM [4]
could be applied on path updates in our protocol. Thereby, the “double-join”-problem could be prevented.
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Better Solutions In the light of our lower bound, finding better solutions for reaching PCS under con-
currency seems very complicated, if not unlikely. The set of permitted building blocks in our symbolic
model is very powerful, the functionality required by constructions in this setting is very restricted, and
the adversarial power in the lower bound security definition is very limited. Hence, it seems necessary to
utilize “more exotic” primitives or relax the required PCS guarantees for obtaining better constructions.

7 Lower Bound of Communication Complexity

After giving an intuition of the lower bound in Section 5, we here provide all details of the symbolic model
and the lower bound proof in it. We therefore shortly revisit the considered build blocks’ definitions and
make the restrictions of their choice more transparent. Subsequently, we introduce the formal definition
of correctness and security for group ratcheting in the symbolic model. We then formulate the theorem
for our lower bound and finally prove it in our symbolic model.

7.1 Used Building Blocks

The lower bound proof bases on the formulation of derivation rules that express the power of utilizable
building blocks. According to these rules it is shown that every secure and correct group ratcheting con-
struction, using these building blocks, cannot perform better in terms of communication complexity than
specified in the lower bound. As a consequence, the selection of considered building blocks plays a crucial
role for the strength of the statement behind the lower bound. We allow potential constructions to use
(dual) pseudo-random functions, public key encryption, key-updatable public key encryption (capturing
guarantees of hierarchical identity based encryption), and broadcast encryption.

As mentioned in Section 5, our overall proof approach as well as the selection of allowed building
blocks is inspired by the work of Micciancio and Panjwani [26]. As their setting is similar to ours,
extending the power of selected building blocks in comparison to their selection partially justifies our
approach. Another indication that the considered building blocks do not (overly) restrict group ratcheting
constructions is that neither of the known previous constructions [14,8,3,4,5] bases on stronger primitives
than we consider here (symbolically).

We additionally explain why considering these primitives in our proof is reasonable. We permit the
use of dual pseudo-random functions as they allow (group ratcheting) constructions to combine multiple
input secrets such that only one of them needs to be secure in order to derive a secure output secret.
Thereby potentially secure fresh secrets can be mixed with potentially secure old secrets to derive secure
new secrets. For explaining the consideration of kuPKE, we refer to a recent result by Balli et al. [6] that
proves equivalence of key-updatable KEMs (which are related to kuPKE in terms of syntax and security)
and optimally secure two-party ratcheting. For constructions of (sub-optimal) group-ratcheting the use
of kuPKE should consequently be allowed. With our strengthened notion of kuPKE that also captures
HIBE we are in line with the recently and concurrently proposed optimally secure group ratcheting
construction [5] that makes use of HIBE. Finally, since our upper bound construction makes use of
broadcast encryption concepts, we also allow the use of this primitive for constructions in our symbolic
model.

In the following we comprehensibly reintroduce the grammar and derivation rules for all considered
building blocks, already provided at once in Section 3, one after another.

We first describe the underlying basic rules within our symbolic model that are independent of the
building block primitives that we consider. For all following definitions, those defined here always apply.

Grammar Of the four basic types of symbols messages can be secret keys, secret keys can be symmetric
keys, and symmetric keys can be random coins (the latter being a terminal type). More formally:

1. M 7→ SK
2. SK 7→ K
3. K 7→ R

Derivation Rules Our derivation rules can be read as follows: For a set of symbols M , M ` m means
that m can be derived from the elements in set M , which is stated by the following rule:

a) m ∈M =⇒ M ` m
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Pseudo-Random Functions From the syntax definition of pseudo-random functions, keys in set K are of
type K and associated data inputs in set AD are of type M . Accordingly, grammar rule 3. is modified to
model that symmetric keys can be random coins or the outputs of the (dual) pseudo-random function14:

3. K 7→ R|prf(K,M)|dprf({K,K})

For (symbolic) security, we define that the output key of a (dual) PRF can be derived from a set if
the respective secret inputs can be derived from it as well:

b) M ` k =⇒ ∀ad M ` prf(k, ad)
c) M ` k1, k2 =⇒ M ` dprf({k1, k2})

Public Key Encryption Before introducing the more complex primitives kuPKE and BE, we begin
with normal public key encryption. A public key encryption scheme PE is a tuple of algorithms PE =
(gen, enc,dec) such that:

– gen(sk)→ pk where sk is of type SK and for public keys pk type PK is introduced
– enc(pk,m)→$ c where m and c are of type M
– dec(sk, c)→ m

In order to include PKE into the symbolic grammar, we provisionally change the first and add a
fourth rule to model that 1.’ messages can be secret keys, public keys, and ciphertexts (obtained from
encryptions of messages), and 4. public keys are outputs of the public key generation of secret keys:

1.’ M 7→ SK |PK |enc(PK ,M)
4. PK 7→ gen(SK )

We furthermore provisionally add derivation rule d’) to model that, if a secret key and a ciphertext,
encrypted to its public key, can be derived from the set of symbols, then also the message, encrypted in
this ciphertext, can be derived from it.

d’) M ` enc(pk,m), sk : pk = gen(sk) =⇒ M ` m

This rule will be incrementally generalized due to the consideration of the following primitives.

Key-Updatable Public Key Encryption In the syntax of kuPKE only update algorithm up is added
compared to normal PKE. Accordingly, we change the second and fourth grammar rules to model that
updated public keys and secret keys can be parsed as public and secret keys respectively:

2. SK 7→ K|up(SK ,M)
4. PK 7→ gen(SK )|up(PK ,M)

For simplicity, our symbolic grammar and derivation rules treat all algorithms of public key encryption,
key-updatable public key encryption, and broadcast encryption with analog syntax uniformly (e.g., public
keys of key-updatable public key encryption can be used to broadcast encrypt), which strengthens our
results.

To model the decryptability of ciphertexts and the update of secret keys, we adapt rule d’) to more
general rule d”) (and simplify its notation with helper function Fit in the next paragraph) and add
another rule. A message, encrypted to the public key pks of a secret key sks in ciphertext c can be
derived from the set of symbols M if both c and some secret key skr can be derived from M and sks can
be derived from skr (e.g., via secret key updates). Furthermore, an updated secret key can be derived
from the set of symbols if the respective input secret key can be derived from it:

d”) ∃sk0, (ad0, . . . , ads−1) ∧M ` enc(pks,m), skr : pk0 = gen(sk0), s ≥ r ≥ 0,∀i ∈ [s − 1] pki+1 =
up(pki, adi),∀i ∈ [r − 1] ski+1 = up(ski, adi) =⇒ M ` m

e) M ` sk =⇒ ∀ad M ` up(sk, ad)

We emphasize that the update with respect to associated data resembles HIBE secret key delegation with
respect to identity strings. For HIBE encryption, instead of having the identity vector as a parameter,
the matching public key can be derived via according updates.
14 In order to reduce complexity, we neither explicitly introduce a function that maps two keys to a set of these

two keys, nor a special type that depicts the set of two keys.
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Broadcast Encryption In addition to the algorithms of PKE and kuPKE, broadcast encryption defines a
registration algorithm reg with which secret keys can be registered from a (main) secret key. Furthermore,
the encryption algorithm is extended by an input parameter that determines the set of excluded users
whose registered secret keys should not be able to decrypt the encrypted payload.

In order to easily and comprehensibly adapt the grammar rules, we finalize provisional rule 1.’ by
adding a set parameter to the encryption—an empty set symbol S(N) = ∅ specifically models PKE and
kuPKE ciphertexts, and a non-empty set of integer symbols ∅ 6= S(N) models ciphertexts broadcast to
the complementary subset of potential recipients. Additionally, rule 2. now includes the registration of
secret keys from (main) secret keys:

1. M 7→ SK |PK |enc(PK ,S(N),M)
2. SK 7→ K|up(SK ,M)|reg(SK ,N)

In order to simplify notation, we do not introduce another abstract type for describing user identities
as input to the encryption or registration algorithm. Instead, we use N to denote user identities here,
dissociating it from its mathematical (non-symbolic) structure.

For modeling decryption of broadcast ciphertexts, we present provisional rule d”’) only to simplify
all decryption rules under subsumed rule d): If a ciphertext and a secret key can be derived from a set of
symbols, and the ciphertext was encrypted to a public key that is compatible with this derived secret key
(which is validated by function Fit), then the encrypted message can be derived from the set of symbols
as well. In addition to that, for every (main) secret key derivable from the set of symbols, also all secret
keys that can be registered with it are derivable:

d”’) ∃u /∈ RM ∧M ` enc(mpk,RM ,m), sk : mpk = gen(msk), sk = reg(msk, u) =⇒ M ` m
d) M ` enc(pk,RM ,m), sk : Fit(pk,RM , sk) =⇒ M ` m
f) M ` sk =⇒ ∀u M ` reg(sk, u)

Since we use this predicate multiple times within our proof, we formulate the compatibility of a secret
key and a public key with the following predicate and thereby simplify rules d”) and d”’) to rule d):

Fit(pks,RM , skr) =
(
∃sk ′0, (ad0, . . . , ads−1), u /∈ RM : pk0 = gen(sk ′0), s ≥ r ≥ 0,
∀i ∈ [s− 1] pki+1 = up(pki, adi),∀i ∈ [r − 1] sk ′i+1 = up(sk ′i, adi),
(skr = sk ′r ∨ (skr = reg(sk ′r, u) ∧ s = r))

)
This predicate defines a public key pks with a set of integers RM compatible with a secret key skr, if
public key and secret key originate from some initial secret key sk ′0 such that either skr was derived from
updates under a prefix of the associated data vector under which pks was derived, or both were updated
under the same associated data vector and skr was subsequently registered under an integer that is not
in set RM .

Derivation of Public Values In addition to the deriving rules that describe how to recover secret values,
we add three additional rules that describe how public values can be derived:

g) M ` sk =⇒ M ` gen(sk)
h) M ` pk =⇒ ∀ad M ` up(pk, ad)
i) M ` pk,m =⇒ ∀RM M ` enc(pk,RM ,m)

Overall Definitions We define the set of symbols that can be derived (and recovered) from a set M
using ` according to our derivation rules as Der(M ).

7.2 Group Ratcheting

Syntax and its mapping to the symbolic model of group ratcheting are already defined in Sections 3
and 5.2, respectively. We remind the reader that inputs and outputs of group ratcheting algorithms init,
snd, and rcv are random coins in the form of sets of type R symbols, local user states and ciphertexts in
the form of sets of type M symbols, and group keys in the form of type K symbols.

The context of each element in the local state and in ciphertexts (e.g., sender of ciphertexts, etc.) is
assumed to be implicitly known by the processing algorithms (and thus outside our model).
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Correctness We define correctness via Figure 10, for which we require that Pr[CORRGR(n,U 1
S, . . . ,U

q
S)→

1] = 0 for all n, q ∈ N2 and all U i
S ⊆ [n] for every i ∈ [q]. Intuitively, this means that after every round i

in which all users in set U i
S are active, the computed keys of all group members in set [n] are equal.

Additionally, we only consider constructions that allow for symbolic adversaries: that is, all outputs
of an algorithm invocation must be derivable via Der according to rules a)-i) from its inputs.15

By requiring that the outputs OUT of group ratcheting constructions’ algorithms are derivable via Der
from their inputs IN, also “inverse derivation guarantees” are implied: for each symbol x ∈ OUT it holds
that x ∈ IN, or x is encrypted in a ciphertext that can be obtained from IN, or that the symbols from
which x is directly derivable are derivable from IN as well (e.g., for x = prf(k, ad) it holds that IN ` k).
For clarity we make these inverse derivation guarantees explicit in Appendix B.

Game CORRGR(n,U 1
S, . . . ,U q

S)
154 r ←$ R; symb ← 1
155 (st1, . . . , stn)← init(n; r)
156 If ∃u ∈ [n] : stu * Der({n} ∪ r):
157 Stop with 1
158 For i from 1 to q:
159 Call Round(U i

S)
160 Stop with 0

Proc Round(U )
161 Require U ⊆ [n]
162 For all u ∈ U :
163 ru ←$ R
164 der ← Der(stu ∪ ru)
165 (stu, cu)← snd(stu; ru)
166 If stu ∪ cu * der : symb ← 0
167 c ←

⋃
u∈U cu

168 For all u ∈ [n]:
169 der ← Der(stu ∪ c)
170 (stu, ku)← rcv(stu, c)
171 If stu ∪ {ku} * der : symb ← 0
172 If ∃u ∈ [n] : ku 6= k1∨symb = 0
173 Stop with 1
174 Return

Fig. 10: Correctness definition of concurrent group ratcheting. Gray marked lines force the construction to allow
for symbolic attackers. Note that we treat random coins, instances’ states, and ciphertexts as sets (and not single
elements) of types R and M respectively.

Security In Figure 11 we show the execution of a symbolic adversary, representing the symbolic security
definition. It lets an attacker choose the active instances (i.e., those that send in a round) and the set of
exposed instances per round. Depending on these choices, a computed group key in round i is marked
insecure if previously exposed group members did not yet contribute new information (by sending)
until round i, or after they contributed but until and including round i no user integrated these new
contributions into the computation of a new common secure group key (by responding) in order to recover
from their exposures, or a user was exposed after round i.

Line 201 accordingly declares a key secure 1. if in the current round no instances were exposed (i.e.,
all exposed instances sent once after their exposure) and 2.a. if either the key in the previous round was
already secure or 2.b. if any instance was active in the current round (i.e., after all exposed instances sent
at least one instance reacted by sending as well). This reflects that the group recovers from exposures
if the exposed instances were active at least once after their exposure (see line 203) and if afterwards
anyone was active in the group to integrate the new contribution of the exposed instance for computing
a secure group key.16

Furthermore, line 210 declares all past keys insecure after an exposure such that no forward-secrecy
is required. As mentioned before, we only introduce this restriction to show that our lower bound solely
bases on required post-compromise security under concurrent sending in group ratcheting.

15 Note that this condition excludes constructions that encode data, necessary for the derivation, inside the
algorithm specification.

16 We note that this is not optimally secure in case only one instance is exposed: Then this single exposed
instance could simultaneously contribute new information and compute a new secure common group key. For
the purpose of proving a lower bound on communication complexity, this relaxation strengthens our statement.
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Game SYMGR(n,U 0
X,

U 1
S,U 1

X, . . . ,U q
S,U

q
X)

175 XU ← ∅; SEC ← ∅
176 XST ← ∅; C ← ∅
177 XST [·]← ∅; C[·]← ∅
178 K[·]← ⊥; R[·, ·]← ∅
179 STS[·, ·]← ∅; STR[·, ·]← ∅
180 r ←$ R; R[0, ·]← r
181 (st1, . . . , stn)← init(n; r)
182 For all u ∈ [n]:
183 STR[0, u]← stu
184 Call Expose(U 0

X)
185 For i from 1 to q:
186 Call Round(U i

S)
187 Call Expose(U i

X)
188 C ←

⋃
j∈[q] C[i]

189 If ∃i′ ∈ SEC :
K[i′] ∈ Der(C ∪XST):

190 Stop with 1
191 Stop with 0

Proc Round(U )
192 Require U ⊆ [n]
193 For all u ∈ U :
194 ru ←$ R; R[i, u]← ru
195 (stu, cu)← snd(stu; ru)
196 STS[i, u]← stu
197 C[i]←

⋃
u∈U cu

198 For all u ∈ [n]:
199 (stu, ku)← rcv(stu, C[i])
200 STR[i, u]← stu
201 If XU = ∅ ∧ (U 6= ∅

∨i− 1 ∈ SEC):
202 SEC ← {i}
203 XU ← XU \U
204 K[i]← k1
205 Return

Proc Expose(U )
206 Require U ⊆ [n]
207 XU ← XU ∪U
208 XST [i]←

⋃
u∈U stu

209 XST ← XST ∪XST [i]
210 SEC ← SEC \ [i− 1]
211 Return

Fig. 11: Security definition of concurrent group ratcheting in our symbolic model. Everything marked gray is
only depicted for simplifying the proof terminology but is irrelevant for the security definition.

A group ratcheting scheme is considered insecure if any securely marked key can be derived from
all sent ciphertexts in combination with all exposed states via function Der in the symbolic setting (see
line 189).

All random coins, generated during the game, are of terminal type R, and are generated independently
such that neither can be derived from the others: ∀r ∈

⋃
i∈[q],u∈[n]R[i, u] r /∈ Der(

⋃
i∈[q],u∈[n]R[i, u]\{r}).

Definition 2 (Symbolic Security and Correctness). A group ratcheting scheme GR is symbolically
secure and correct if for all n, q ∈ N and all U i

S ⊆ [n] for every i ∈ [q]+ it holds that Pr[CORRGR(n,U 1
S,

. . . ,U q
S) → 1] = 0 according to Figure 10, and if for all n, q ∈ N and all U i

S ⊆ [n],U j
X ⊆ [n] for every

i ∈ [q]+, j ∈ [q] it holds that Pr[SYMGR(n,U 0
X,U

1
S,U

1
X, . . . ,U

q
S,U

q
X)→ 1] = 0 according to Figure 11.

Communication Costs The communication costs are measured as follows: Communication costs in round i
are |C[i]|, communication costs until round i are

∑
j∈[i] |C[j]|, and amortized communication costs per

round until round i are
∑
j∈[i] |C[j]|/i.

Relation to Previous Lower Bound The setting that we are modeling is conceptually very similar to the
one considered by Micciancio and Panjwani [26] for their lower bound analysis of group key exchange.
One could therefore hope for similar lower bounds of communication complexity (i.e., log(n) ciphertexts
per operation) for group ratcheting. The crucial difference is, however, that their lower bound bases on
forward-secrecy requirements of group key exchange whereas we require no form of forward-secrecy in
our model and prove the lower bound based on post-compromise security requirements. Communication
complexity under combined forward-secrecy and post-compromise security requirements may therefore
increase both bounds accordingly. We leave the analysis of this to future work.

7.3 Lower Bound

Within the above defined framework we formulate the lower bound of communication complexity.

Theorem 2 (Lower Bound). Let GR be a group ratcheting scheme, secure and correct according to Def-
inition 2. For every round i ∈ [q] the communication costs in an execution (n,U 0

X,U
1
S,U

1
X, . . . ,U

q
S,U

q
X),

according to Figure 11, are |C[i]| ≥ |U i
S| · (|U i−1

S | − 1).

The proof of Theorem 2 proceeds in four steps:
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1. We use exposures in round i− 2 to show that exposed senders in round i− 1 have no common useful
secrets until the end of round i− 1.

2. We then show that, in order to compute a common useful secret in the group (i.e., a secure group
key) in round i, a single sender in round i must send as many ciphertexts as the number of exposed
users in round i− 2 that sent in round i− 1.

3. In the next step we show that all senders in round i must do the same and thereby send equally
many ciphertexts.

4. We finally show that the behavior of senders in rounds i − 1 and i is independent of exposures in
round i− 2. This concludes the proof.

Terminology Before we formally prove Theorem 2, we introduce and define terms to simplify the
notation in our lower bound proof:

– Communication up to round i: COi ← Der(
⋃
j∈[i] C[j])

– Secrets are elements that are of types SK , K, or R. Via function Sec(IN ) → OUT a set of ele-
ments IN of arbitrary type is reduced to the set OUT of those elements that are of the aforemen-
tioned types (i.e., OUT ⊆ IN such that all elements x ∈ OUT are of type SK , K, or R).

– Useless secrets represent all the knowledge on secrets that an attacker can gain up to a certain point
during the protocol execution from sent ciphertexts and exposed user states. Useful secrets represent
secrets that can be derived from ciphertexts sent and random coins generated up to a certain point
during the protocol execution that are not useless. Below we specify three types of useless and useful
secrets with respect to time slots during the protocol execution within rounds (before and after
sending, and after exposures in a round).

– Useless secrets before sending in round i: USS[i]← Sec(Der(
⋃
j∈[i−1] XST [j] ∪COi−1)).

– Useless secrets after sending in round i: USR[i]← Sec(Der(
⋃
j∈[i−1] XST [j] ∪COi)).

– Useless secrets after exposure in round i USX[i] = USS[i+ 1].
– Useful secrets before sending in round i: USS[i]← Sec(Der(

⋃
j∈[i],u∈[n]R[j, u] ∪COi−1)) \USS[i].

– Useful secrets after sending in round i: USR[i]← Sec(Der(
⋃
j∈[i],u∈[n]R[j, u] ∪COi)) \USR[i].

– Useful secrets after exposure in round i: USX[i]← USR[i] \USX[i].
– Compatible secrets are secrets of which one can be derived from the other, or secrets that are registered

from the same main secret key. We therefore define the compatible intersection operator ×∩ as follows:
A ×∩ B := {x | x ∈ A∩B ∨∃msk, u, v : (x = reg(msk, u), y = reg(msk, v), x ∈ A∧ y ∈ B ∨x ∈ B ∧ y ∈
A)}

7.4 Proof of Lower Bound

For the proof we successively analyze the symbolic derivations ahead of and responsible for obtaining a
group key in round i, inducing the lower bound of communication complexity. We begin with derivable
symbols at the beginning of round i− 1.

Round i−1 At the beginning of round i−1 (before sending) it holds by definition that each user’s random
coins in round i− 1 (all all secrets derivable from them) cannot be derived from any other random coins
up to that round (including respectively compatible secrets):

∀u∗ ∈ [n] Der(
⋃

j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}

R[i− 1, u]) ×∩ Der(R[i− 1, u∗]) = ∅

We now formulate Lemma 3 that generically expresses which secrets can and, more importantly, cannot
be derived by exposed users. Intuitively it says that, after being exposed and sampling new secret
random coins, a user u∗ cannot derive useful secrets that are compatible with any other user’s useful
secrets. More precisely, taking the exposed symbols in a local state of user u∗ (represented by subset X∗)
that were derived from independent random coins (represented by set X with X∗ ⊆ Der(X)) and
unifying them with u∗’s newly generated secret random coins (represented by set Y ) will not derive
useful secrets that are compatible with useful secrets derived from these independent random coins (i.e.,
(Der(X∗ ∪ Y ) ∩US) ×∩ (Der(X) ∩US) = ∅).
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Lemma 3. Let sets X,X∗, Y,US exist with Der(X) ×∩ Der(Y ) = ∅, X∗ ⊆ Der(X), Der(X∗) ∩US = ∅,
Der({x1, x2})∩US 6= ∅ implies {x1, x2}∩US 6= ∅, and all elements in sets X,Y are of terminal type R.
Then it holds in our symbolic model that (Der(X) ∩US) ×∩ (Der(X∗ ∪ Y ) ∩US) = ∅.

We prove Lemma 3 in Appendix A.
According to Lemma 3 the following is implied (where Y are the random coins of user u∗ in round i−1,

X is the set of remaining random coins up to that round, and X∗ is the set of useless secrets at the
beginning of round i− 1):

∀u∗ ∈ [n] Der

 ⋃
j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}

R[i− 1, u]

 ×∩ Der(R[i− 1, u∗]) = ∅

=⇒ ∀u∗ ∈ [n] Der

 ⋃
j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}

R[i− 1, u]

 ∩USS[i− 1]

×∩ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1] = ∅

As public keys pk are not of a terminal type, for all pk ∈ Der(
⋃
j∈[i−2],u∈[n]R[j, u]∪

⋃
u∈[n]\{u∗}R[i−1, u])

there must exist a sk in the same set such that pk ∈ Der(sk) according to derivation rules g) and h) with
their inverse derivation guarantees and grammar rule 4. Since, furthermore, there exist no compatible
useful secrets between the random coins of u∗ in round i − 1 (together with useless secrets) and the
remaining random coins up to round i − 1 (as shown above), no pk is derivable from these remaining
random coins such that the respective sk is useful and derivable by u∗ at the beginning of round i − 1
(with its current random coins and useless secrets). Otherwise sk would be a shared useful secret:

∀u∗ ∈ [n] @pk ∈ Der

 ⋃
j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}

R[i− 1, u]

 :

Fit(pk,RM , sk), sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]

In order to derive a ciphertext from a set of terminal symbols, the public key to which this ciphertext is
encrypted must be derivable from that set, too (according to rule i) and its inverse derivation guarantee).
Hence, neither a ciphertext encrypted to a useful secret key of user u∗ (derivable from its random coins
in round i− 1 and useless secrets) can be derived by the remaining users (from their random coins up to
round i − 1). This finally induces that no useful secrets can be transmitted from these remaining users
to user u∗ by encrypting them in round i− 1:

∀u∗ ∈ [n] @pk ∈ Der(
⋃

j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}

R[i− 1, u]) :

Fit(pk,RM , sk), sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]

=⇒ ∀u∗ ∈ [n] @c ∈ Der(
⋃

j∈[i−2],u∈[n]

R[j, u] ∪
⋃

u∈[n]\{u∗}

R[i− 1, u]) :

c = enc(pk,RM ,m),Fit(pk,RM , sk), sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]
=⇒ ∀u∗ ∈ [n] @c ∈ C[i− 1] \ cu∗ : (stu∗ , cu∗)← snd(STR[i− 2, u∗];R[i− 1, u∗]),

c = enc(pk,RM ,m),Fit(pk,RM , sk), sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]
=⇒ ∀u∗ ∈ [n] @k : c = enc(pk,RM , k), c ∈ C[i− 1] \ cu∗ ,

(stu∗ , cu∗)← snd(STR[i− 2, u∗];R[i− 1, u∗]),Fit(pk,RM , sk),
sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1]

Now, since (1) users cannot derive compatible useful secrets from their random coins in round i − 1
together with useless secrets, and (2) the ciphertexts in this round are themselves a subset of useless
secrets and (3) contain no encrypted useful secrets, these users can neither derive compatible useful
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secrets after receiving the ciphertexts in round i − 1 (if they only use their current random coins plus
useless secrets for derivation; see Equation 4):

∀u1, u2 ∈ [n], u1 6= u2 Der(R[i− 1, u1] ∪USS[i− 1])
×∩ Der(R[i− 1, u2] ∪USS[i− 1]) ∩USS[i− 1] = ∅ (1)

∧ Sec(Der(C[i− 1] ∪USS[i− 1])) ⊆ USR[i− 1] (2)
∧ @k : c = enc(pk,RM , k), c ∈ C[i− 1] \ cu∗ , u∗ ∈ {u1, u2},

(stu∗ , cu∗)← snd(STR[i− 2, u∗];R[i− 1, u∗]),Fit(pk,RM , sk),
sk ∈ Der(R[i− 1, u∗] ∪USS[i− 1]) ∩USS[i− 1] (3)

=⇒ ∀u1, u2 ∈ [n], u1 6= u2 Der(R[i− 1, u1] ∪USR[i− 1])
×∩ Der(R[i− 1, u2] ∪USR[i− 1]) ∩USR[i− 1] = ∅ (4)

It must be noted that in order to derive a (common) useful secret via a dual PRF invocation, the
two inputs must be known to each user and one input must be a useful secret. Since no compatible
useful secrets exist under the aforementioned conditions, and a transmission via ciphertexts makes the
transmitted value useless (since ciphertext themselves are useless and under the above conditions contain
no useful secrets), neither of the inputs of a dual PRF can be both a useful secret and derivable from
both users’ current random coins and useless secrets.

We thereby conclude that at the end of round i − 1 all users, exposed in round i − 2, share no
compatible useful secrets, independent of who sent in round i− 1: ∀u1, u2 ∈ U i−2

X , u1 6= u2 Der(STR[i−
2, u1] ∪R[i− 1, u1] ∪ C[i− 1]) ×∩ Der(STR[i− 2, u2] ∪R[i− 1, u2] ∪ C[i− 1]) ∩USR[i− 1] = ∅.

Beginning of Round i The state of a user at the end of round i−1 is a subset of what can be derived from
the union of its state from the previous round, random coins generated in round i − 1, and ciphertexts
received in this round. Consequently, at the end of round i − 1 the states of two users, exposed in
round i − 2, neither contain compatible useful secrets. The random coins, generated at the beginning
of round i, are independent for all users and consequently neither contribute information for deriving
compatible secrets:

∀u1, u2 ∈ U i−2
X , u1 6= u2 Der(STR[i− 2, u1] ∪R[i− 1, u1] ∪ C[i− 1])

×∩ Der(STR[i− 2, u2] ∪R[i− 1, u2] ∪ C[i− 1]) ∩USR[i− 1] = ∅
=⇒ ∀u1, u2 ∈ U i−2

X , u1 6= u2 Der(STR[i− 1, u1] ∪R[i, u1])
×∩ Der(STR[i− 1, u2] ∪R[i, u2]) ∩USS[i] = ∅

Graph Interpretation We now represent useful secrets and their derivation in a graph such that each
useful secret is a node and the derivation of one useful secret from another is a directed edge between
them. By distinguishing between derivation via (dual) PRF invocations, secret key updates, and secret
key registrations on the one hand and derivation via decryption on the other hand, we obtain the number
of ciphertexts during sending in round i (i.e., the communication complexity). Before formally defining
this graph, we give an intuition for its components:

– Key graph in round i is a directed graph in which all useful secrets are represented as nodes. These
nodes are connected by either given edges or communication edges, both modeling the ability to
derive one secret, represented by the destination node, from (an)other secret(s), represented by the
source node.

– Given edges model the derivation of secrets via (dual) PRF invocations (k2 = prf(k1, ad) or k2 =
dprf({k1a, k1b})), secret key updates (sk2 = up(sk1, ad)), or secret key registration (sk2 = reg(sk1, u))
such that the respective output secret (k2 or sk2) is represented by the destination node and the
input secret(s) (k1, one of {k1a, k1b}, or sk1) is/are represented by the source node. Neither (dual)
PRF invocations nor secret key updates require communication over the broadcast for the derivation
of a secret (hence “given” edges).
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The derivation via dual PRF is represented by an edge that has as source node only one of the two
(useful) input secrets.17

– Communication edges model the derivation of secrets due to the ability of decrypting them from
the broadcast communication. That means for a ciphertext c = e0(enc(pk1,RM , e1(k2))) with
Fit∗(pk1, sk1) the useful secret key sk1 can be used to derive useful secret k2. The encrypted se-
cret k2 is thereby represented by the destination node, the decryption (secret) key sk1 is represented
by the source node, and the respective ciphertext c from the communication up to round i (contain-
ing the encrypted secret) is represented by the edge itself. In order to ensure that each ciphertext is
represented in the graph at most once (such that the graph can be used to measure communication
complexity), only the inner most useful encryption (i.e., decryptable under a useful secret and en-
crypting a useful secret) within potential nested sequences of encryptions (e0 and e1) is considered
as a communication edge.18
In order to simplify the representation of broadcast encryption ciphertexts in a consistent manner,
decryption with useful registered secret keys is mapped onto decryption with their (useful) main
secret keys. Therefore, predicate Fit∗ ignores registered secret keys in the declaration of compatibility
between public and secret keys.19

In Figure 12 we illustrate how given edges (left) and communication edges (right) in the key graph relate
to the derivation of useful secrets. For communication edges one can see that a ciphertext, containing an
encrypted useful registered secret key, is represented (and substituted) by a ciphertext that encrypts this
secret key’s main secret key instead. Together with the following predicate Fit∗, this consistently maps
all derivations on (communication) edges in the tree without changing the number of edges or disrupting
the derivation of useful secrets.

b) k2 = prf(k1, ad)

k1 k2
ad

e) sk2 = up(sk1, ad)

sk1 sk2
ad

f) sk2 = reg(sk1, u)

sk1 sk2
u

c) k2 = dprf({k1a, k1b})
either or

k1a k1b

k2

k1b k1a

k1b k1b

k2

k1b k1a

d) c = e0(enc(pk1,RM , e1(k∗))),Fit∗(pk1, sk1)
@sk∗, u : k∗ = reg(sk∗, u) k∗ = reg(k2, u)

sk1

k∗

c

sk1

k2 k∗

c c

u

Edge in graph representing derivation:
Edge in graph representing substituted derivation:

Edge not in graph (derivation not represented as edge):

Fig. 12: Mapping between derivation of useful secrets and their realization in the key graph as given edges (left)
and communication edges (right).

The compatibility predicate that neglects registered secret keys is simply defined as follows:

Fit∗(pks, skr) =
(
∃sk0, (ad0, . . . , ads−1) : pk0 = gen(sk0), 0 ≥ s ≥ r,
(∀i ∈ [s− 1] pki+1 = up(pki, adi),∀i ∈ [r − 1] sk ′i+1 = up(ski, adi)

)
Based on this, we define the key graph:

Definition 3 (Key Graph). The key graph up to round i is a graph Gkg
i = (Vi, Egiv

i ∪ Ecom
i ), where

Vi = USR[i], the set of given edges Egiv
i contains an edge from one useful secret to another useful

secret if the latter can be derived from the former via a (dual) PRF invocation (i.e., k2 = prf(k1, ad) or
17 Since both input secrets must be known by a user to derive the output secret, it is sufficient to pick one of

the two input secrets for representation. As the key graph only includes useful secrets, the represented input
secret must be useful.

18 Note that our graph includes a representation of all ciphertexts up to round i and not only those that are sent
during round i.

19 We note that this only changes the destination node of edges in the graph. The number of (sent) ciphertexts
and the derivation of useful secrets is still modeled consistently.
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k2 = dprf({k1a, k1b})), via a secret key update (i.e., sk2 = up(sk1, ad)), or via a secret key registration
(i.e., sk2 = reg(sk1, u)):

Egiv
i ={(k1, k2) ∈ V2

i | ∃ad : k2 = prf(k1, ad)}
∪ {(k1a, k2) ∈ V2

i | k2 = dprf({k1a, k1b}), k1b ∈ Vi ∪USR[i], (k1b, k2) /∈ Egiv
i }

∪ {(sk1, sk2) ∈ V2
i | ∃ad : sk2 = up(sk1, ad) ∨ ∃u : sk2 = reg(sk1, u)},

and the set of communication edges Ecom
i contains an edge from one useful secret to another if the latter

is, within nested sequences e0 and e1 of encryptions, encrypted under the public key of the former (i.e.,
c = e0(enc(pk1,RM , (e1(k2))) with Fit∗(pk1, sk1)), unless there exists another encryption to a useful
secret within the inner sequence (i.e., there exist enc(pk∗,RM ∗, ·) with Fit∗(pk∗, sk∗) and sk∗ ∈ Vi
within e1):

Ecom
i = {(sk1, k2) ∈ V2

i | c ∈ COi, c = e0(enc(pk1,RM , e1(k∗))),Fit∗(pk1, sk1), eb = e1
b ◦ · · · ◦ e

lb
b ,

b ∈ {0, 1}, lb ∈ N0, exb = enc(pkx,RMx, ·), x ∈ [lb],@y ∈ [l1] : ey1 = enc(pky,RM y, ·),
Fit∗(pky, sky), sky ∈ Vi, (k2 = k∗ ∧ @sk∗, u : k∗ = reg(sk∗, u) ∨ ∃u : k∗ = reg(k2, u))}.

We now let the sets of exposed users in round i−2 and senders in round i−1 equal (i.e., U i−2
X = U i−1

S )
such that |U i−1

S | > 1 and |U i
S| > 0. Furthermore we let no user being exposed in any other round (i.e.,

U j
X = ∅ for all j 6= i − 2). (At the end of the proof we show that no conditions for the sets of exposed

users must be enforced in order for the lower bound to hold. We note that the remaining two conditions
on the sender set cardinality only exclude the case in which the lower bound collapses to 0.)

As a consequence of these (preliminary) conditions there exists a (cycle-free) path Pi[u] for every
user u ∈ U i−1

S from a node that represents either R[i − 1, u] or R[i, u] (the latter only if also u ∈ U i
S)

to the common group key K[i] in Gkg
i . This holds because under the above described conditions K[i] is

declared secure (as all exposed users sent once and obtained a response). Consequently K[i] must be a
useful secret for all secure constructions, derivable for exposed users only through their random coins
from the past two rounds (being the only origin of their useful secrets).

From these paths Pi[u] = (Vpath
i [u], Epath

i [u]) we build a (poly)tree T path
i = (

⋃
u∈U i−1

S
Vpath
i [u],⋃

u∈U i−1
S
Epath
i [u]) that models the derivation of the group key (represented as the common leaf) from each

exposed user’s random coins (represented as individual “roots” respectively). Without loss of generality,
we assume that this (poly)tree is free of cycles.

We now remove all edges ecom
i that represent ciphertexts sent in round i from this graph: Gpath−com

i =
(
⋃
u∈U i−1

S
Vpath
i [u],

⋃
u∈U i−1

S
Epath
i [u]\(Ecom

i \Ecom
i−1 )). In this resulting graph Gpath−com

i , each exposed user’s
path is truncated (from the common group key leaf towards each individual root random coins) such that
only those useful secrets lay with representatives on their path that were derivable before receiving in
round i. In addition to these truncated and thereby disjunct paths, graph Gpath−com

i may contain nodes
representing useful secrets (and potentially edges between them that model their derivability) that were
generated by other users (who did not send in round i− 1) and are derivable by the exposed users only
though the ciphertexts sent in round i.

From graph Gpath−com
i we extract all weakly connected sub-graphs (i.e., each exposed user’s truncated,

disjunct path and all remaining weakly connected sub-graphs) and represent each of them as a node in
set Vnode

i . Nodes in set Vnode
i that represent an exposed user’s truncated, disjunct path are called user-

nodes. These truncated paths, represented by user-nodes, are indeed not connected by a common node
since such a common node would otherwise represent a compatible useful secret at the beginning of
round i. Consequently, the size of the set of user-nodes Vusen

i is |Vusen
i | = |U i−1

S | with Vusen
i ⊆ Vnode

i . We
furthermore call the node in set Vnode

i that represents the sub-graph in which the representation of group
key K[i] is contained key-node v∗i . Since the key-node can also be a user-node, the number of user-nodes
that are not the key-node is |Vusen

i \ {v∗i }| ≥ |U
i−1
S | − 1.

We map the source nodes and destination nodes of communication edges added in round i (i.e., sources
and destinations of edges in set (Ecom

i \ Ecom
i−1 )) to their representatives in the set of nodes Vnode

i and
unify the resulting edges in set Enode

i . The resulting (poly)tree T node
i = (Vnode

i , Enode
i ) precisely models

derivations enabled by ciphertexts sent in round i. That means, each edge in tree T node
i represents a

ciphertext sent in round i.
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For every node v ∈ Vnode
i we define its parents as pa(v), its ancestors (including itself) as an(v), and the

number of all communication edges to it as ce(v). Formally this means that an(v) :=
⋃
v′∈pa(v) an(v′)∪{v}

and ce(v) := |pa(v)|+
∑
v′∈pa(v) ce(v′).

We first consider the case in which the set of sending users in round i only contains one user U i
S =

{u∗}. We then observe that T node
i is a tree with common leaf v∗i such that there exist paths to v∗i from

all nodes in Vnode
i . Consequently it holds that an(v∗i ) = Vnode

i implying that ce(v∗i ) ≥ |Vnode
i | − 1. Since

Vusen
i is a subset of Vnode

i with |Vusen
i | = |U i−1

S |, the number of ciphertexts user u∗ must send in round i
for a secure and correct group ratcheting protocol according to Definition 2 is at least |U i−1

S | − 1.
Now observe that u∗’s invocation of snd in round i is independent of all sets U j

X, j ∈ [q] and set U i
S.

Firstly, this implies that user u∗ sends as many ciphertexts independent of sets U j
X for all j ∈ [q].

Secondly, when considering any set of sending users in round i U i
S ⊆ [n], a correct and secure construction

according to Definition 2 must let every user u ∈ U i
S independently send as many ciphertexts in round i

(as neither of them knows whether also other users send in that round and therefore all of them must
anticipate the worst case in which they are the only sender in round i). As a result, the communication
complexity in every round i is at least |C[i]| ≥ |U i

S| · (|U i−1
S | − 1) which proves the lower bound from

Theorem 2. ut

Extensions For simplicity and clarity, we only consider here a limited selection of allowed building
blocks. The proof, however, shows that the core issue underlying the lower bound is the inability to mix
public cryptographic values into a shared secret non-interactively. Consequently, the list of considered
building blocks can be extended manifold without affecting our lower bound.

Even an x-party NIKE for a constant x (e.g., DHKE for x = 2) appears to not solve the problem
of variable concurrency (entirely): If t > x members concurrently send, subsets of set [t] of size x can
compute shared secrets each, but the remaining users cannot derive a corresponding public value for it.
Hence, both the remaining senders in the same round and senders in the next round may not be able to
utilize this shared secret. We leave the analysis of this as an open question for future work.
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A Proof of Lemma 3

In order to prove Lemma 3 we (contrarily) assume that two compatible secrets {k1, k2} = {k1} ×∩ {k2}
(potentially with k1 = k2) exist with k1 ∈ Der(X) ∩US and k2 ∈ Der(X∗ ∪ Y ) ∩US.

For such a tuple (k1, k2), there must exist at least one secret k0 ∈ Der(X)∩US such that {k1, k2} ⊆
Der({k0}) because either k1 can be derived from k2 (or vice versa and thereby wlog. k0 = k1 = k2) or
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k1 = reg(k0, u) and k2 = reg(k0, v) for some u, v (and thereby k1 /∈ X because all elements in X are of
type R but k1 is not, such that {k1, k0} ⊂ Der(X) which implies that k2 ∈ Der(X)). Consequently, it
holds that {k1, k2} ⊂ Der(X) ∩US.

For secret k2 ∈ Der(X∗ ∪ Y ) ∩ Der(X) ∩ US it must hold that k2 /∈ Der(X∗) ∪ Der(Y ) (since
k2 ∈ US =⇒ k2 /∈ Der(X∗) and k2 ∈ Der(X) =⇒ k2 /∈ Der(Y )). Therefore, in order to fulfill
k2 ∈ Der(X∗ ∪ Y ), there must exist some k∗ ∈ Der({x∗, y}) with k∗ /∈ Der({x∗}) ∪ Der({y}) (and
k2 ∈ Der({k∗})) for some tuple (x∗, y) such that x∗ ∈ Der(X∗), y ∈ Der(Y ), x∗ /∈ Der(Y ), y /∈ Der(X∗)
(since Der(X) ×∩ Der(Y ) = ∅ =⇒ Der(X∗) ∩ Der(Y ) = ∅ and k2 /∈ Der(X∗) ∪ Der(Y )). Additionally
it must hold that k∗ ∈ Der(X) ∩US (since k2 ∈ Der({k∗}) ∩ Der(X) ∩US, all elements in X are of
terminal type R, and according to our symbolic model for two secrets a, b and set c of terminal type
elements it holds that a ∈ Der({b})∩Der(c) =⇒ b ∈ Der(c)). It is important to note that x∗ /∈ US (as
x∗ ∈ Der(X∗) =⇒ x∗ /∈ US) and y /∈ Der(X) (as y ∈ Der(Y ) =⇒ y /∈ Der(X)) must hold.

We summarize: if Lemma 3 does not hold, there must exist a tuple (x∗, y) such that x∗ ∈ Der(X∗),
x∗ /∈ Der(Y ) ∪US, y ∈ Der(Y ), y /∈ Der(X∗) ∪Der(X) from which some secret k∗ can be derived such
that k∗ ∈ Der({x∗, y}) ∩ Der(X) ∩US, k∗ /∈ Der({x∗}) ∪ Der({y}). The only two derivation rules that
combine two elements x∗, y from two sets to a secret k∗ are rules c) and d) (note that no rule exist that
combines more than two elements and rule i) outputs no secrets).

Rule c) If with respect to rule c) it holds that k∗ = dprf({x∗, y}), then in order to fulfill k∗ ∈
Der(X) (with y /∈ Der(X), meaning that k∗ cannot be derived via rule c) from only X) it holds that
k∗ ∈ X or for some {x̃1

1, x̃
1
2} ⊆ Der(X \ {k∗}) it holds that k∗ ∈ Derdec({x̃1

1, x̃
1
2}), where Derdec is a

derivation under only rule d). In order to substantiate this statement we highlight that only with rule d)
secrets can be derived that are also derivable with another rule in our symbolic model (note that by
definition of this case, k∗ is derivable via rule c) already). If k∗ is, according to rule d), derivable via
x̃1

1 = enc(pk,RM , k∗),Fit(pk,RM , x̃1
2), then x̃1

1 (i.e., the ciphertext) must have been derived via rule i)
from set Der(X) \ {x̃1

1} since it is not of a terminal type. This requires again that k∗ ∈ Derdec({x̃2
1, x̃

2
2})

for some {x̃2
1, x̃

2
2} ⊆ Der(X \ {k∗}) \ {x̃1

1}, or k∗ ∈ X (as the encrypted value k∗ must be known in order
to apply rule i). Clearly, when all ciphertexts of the form x̃j1 = enc(pk,RM , k∗) with Fit(pk,RM , x̃j2)
are eliminated from set Der(X \{k∗}), then there exists no {x̃l+1

1 , x̃l+1
2 } ⊆ Der(X)\

⋃
j∈[l]{x̃

j
1} such that

k∗ ∈ Derdec({x̃l+1
1 , x̃l+1

2 }). Nevertheless, in order to derive any such tuple (x̃j1, x̃
j
2)—which is necessary

as these ciphertexts are not of a terminal type—k∗ ∈ X must hold. However, k∗ ∈ X cannot hold as all
elements in X are of a terminal type, but k∗ can, by the definition of this case, be derived from {x∗, y}.
As a result, k∗ is not derivable via rule c).

Rule d) If with respect to rule d) it holds that x∗ = enc(pk,RM , k∗),Fit(pk,RM , y) (the proof for
the inverse use of variables y = enc(pk,RM , k∗),Fit(pk,RM , x∗) is analog), then since pk and x∗ are not
of terminal types and X∗ ⊆ Der(X) (implying that Der(X∗) ⊆ Der(X)) it must hold that x∗ ∈ Der(X).
As x∗ must be derivable from set Der(X) via rule i), it must accordingly hold that pk ∈ Der(X). This
in turn requires either according to rule h) that for the preceding pk−1 with pk = up(pk−1, ad) it holds
that pk−1 ∈ Der(X), or according to rule g) that for the respective sk with pk = gen(sk) it holds that sk ∈
Der(X). If the latter is not the case, then for each preceding pk−j with pk−j = up(pk−j−1, ad−j) it holds
that pk−j−1 ∈ Der(X), or for the respective sk−j with pk−j = gen(sk−j) it holds that sk−j ∈ Der(X).
As a result, for some sk−l with Fit(pk,RM , sk−l) and pk ∈ Der(sk−l) it holds that sk−l ∈ Der(X). Now
due to Fit(pk,RM , sk−l) with pk ∈ Der(sk−l) and Fit(pk,RM , y) it holds that either sk−l ∈ Der(y)
or y ∈ Der(sk−l) which contradicts Der(X) ∩ Der(Y ) = ∅ (because sk−l ∈ Der(X), y ∈ Der(Y )), such
that k∗ is neither derivable via rule d). ut

B Inverse Derivation Guarantees

As part of the enforcement of symbolic algorithm executions, we implicitly require that symbols can only
be derived if their origin can be derived as well, or if they are directly included in the set of symbols.
For each of our derivation rules that “produces” new symbols, we accordingly define an “inverse” that
requires for a derived output that its inputs are derivable, or the output is plain element of the considered
set, or that the output is encrypted in a plain element of that set. The latter two alternatives are captured
in a separate rule indicated with ‘`d’.
a) M ` m : m /∈ {prf(k, ad),dprf({k1, k2}),up(sk, ad), reg(sk, u), gen(sk),up(pk, ad), enc(pk,RM ,m′)}

=⇒ M `d m
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b) M ` prf(k, ad) =⇒ M ` k ∨M `d prf(k, ad)
c) M ` dprf({k1, k2}) =⇒ M ` k1, k2 ∨M `d dprf({k1, k2})
e) M ` up(sk, ad) =⇒ M ` sk ∨M `d up(sk, ad)
f) M ` reg(sk, u) =⇒ M ` sk ∨M `d reg(sk, u)
g) M ` gen(sk) =⇒ M ` sk ∨M ` gen(sk ′) : ∀RM Fit(gen(sk),RM , sk ′) ∨M `d gen(sk)
h) M ` up(pk, ad) =⇒ M ` pk ∨M ` sk : ∀RM Fit(pk,RM , sk) ∨M `d up(pk, ad)
i) M ` enc(pk,RM ,m) =⇒ M ` pk,m ∨M `d enc(pk,RM ,m)

M `d m =⇒ m ∈M ∨ (enc(pk,RM ,m) ∈M ∧M ` sk : Fit(pk,RM , sk))
∨ (M `d enc(pk,RM ,m) ∧M ` sk : Fit(pk,RM , sk))
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