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Abstract

Biometric databases collect people’s information and allow users to perform proximity searches (finding all records
within a bounded distance of the query point) with few cryptographic protections. This work studies proximity
searchable encryption applied to the iris biometric.

Prior work proposed inner product functional encryption as a technique to build proximity biometric databases
(Kim et al., SCN 2018). This is because binary Hamming distance is computable using an inner product. This
work identifies and closes two gaps in using inner product encryption for biometric search:

1. Biometrics naturally use long vectors often with thousands of bits. Many inner product encryption schemes

generate a random matrix whose dimension scales with vector size and have to invert this matrix. As a
result, setup is not feasible on commodity hardware unless we reduce the dimension of the vectors. We
explore state-of-the-art techniques to reduce the dimension of the iris biometric and show that all known
techniques harm the accuracy of the resulting system. That is, for small vector sizes multiple unrelated
biometrics are returned in the search. For length 64 vectors, at a 90% probability of the searched biometric
being returned, 10% of stored records are erroneously returned on average.
Rather than changing the feature extractor, we introduce a new cryptographic technique that allows one to
generate several smaller matrices. For vectors of length 1024 this reduces the time to run setup from 23 days
to 4 minutes. At this vector length, for the same 90% probability of the searched biometric being returned,
.02% of stored records are erroneously returned on average.

2. Prior inner product approaches leak distance between the query and all stored records. We refer to these
as distance-revealing. We show a natural construction from function hiding, secret-key, predicate, inner
product encryption (Shen, Shi, and Waters, TCC 2009). Our construction only leaks access patterns and
which returned records are the same distance from the query. We refer to this scheme as distance-hiding.

We implement and benchmark one distance-revealing and one distance-hiding scheme. The distance-revealing
scheme can search a small (hundreds) database in 4 minutes while the distance-hiding scheme is not yet practical,
requiring 3.5 hours.

As a technical contribution of independent interest, we show that our scheme can be instantiated using sym-
metric pairing groups reducing the cost of search by roughly a factor of three. We believe this analysis extends to
other schemes based on projections to a random linear map and its inverse analyzed in the generic group model.

Keywords: Searchable encryption, biometrics, proximity search, inner product encryption.

*A conference version of this work is published at AsiaCCS 2022 |[CADT22| under DOI Number: 10.1145/3488932.3497754 and the
title “Proximity Searchable Encryption for the Iris Biometric.” This version contains substantial material that is not present in the
conference version.



1 Introduction

Biometrics are measurements of physical phenomena of the human body. We focus on the iris biometric in this
work. The iris is an interesting biometric because it has high entropy, stays stable throughout life, is not determined
genetically, and is easily accessible [PPJ03|. Iris data, like all biometric data, is noisy, which means that two readings
from the same iris are unlikely to be identical. Feature extractors convert such physical phenomena to a digital
representation that is more stable but still noisy. The output of feature extractors is called a template. Biometric
databases are used for both security critical applications (such as access control) and privacy critical applications
(such as immigration). Let D be some distance metric and ¢ be some distance threshold. Applications building on
biometric templates require:

1. Low False Reject Rate (FRR) templates from the same biometric are within distance ¢ with high probability,
and

2. Low False Accept Rate (FAR) templates from two different biometrics are within distance ¢ with low
probability.

Learning stored biometric templates enables an attacker to reverse this value into a convincing biometric [GRGB™12,
MCYJ18,|AF20], enabling presentation attacks |[VS11,HWKLI18,|[SDDN19] that can compromise users’ accounts and
devices. Since biometrics cannot be updated, such a compromise lasts a lifetime.

Securing biometric data is not straightforward. Using plain encryption or hashes (as for passwords storage) would
effectively protect compromised templates but also prevents the server from performing any distance comparison.

Searchable encryption [SWPO00,CGKO11,BHJP14FVY 17| enables servers to be queried without decrypting the
data. For a distance metric D, proximity searchable encryption returns all records that are within distance ¢. That
is, for a dataset x1,...,z¢ and a query y, one should return all x; such that D(z;,y) < t. Since biometric data is
inherently noisy, proximity searchable encryption is a key tool to secure biometric databases while allowing queries.

Iris feature extractors usually produce binary vectors that are similar in Hamming distancdﬂ (fingerprints are
usually compared by set difference, faces with 1.2 norm). Kim et al. proposed to use secret-key, function-hiding
inner product encryption or IPEg, o for encrypted comparison of binary Hamming biometrics [KLM™ 18, KLM*16].
IPEf ok allows computation of inner product without revealing underlying values. Inner product of vectors z,y in
{—1,1}" encodes Hamming distance:

D(z,y) = (n = (2,9))/2.

More formally the functionality of IPEgm s is as follows: as in standard encryption, one generates a secret key
sk <— Setup(-) and a ciphertext ct, < Encrypt(z,sk) . Then one can generate a token tk, < TokGen(y,sk) , and use
this token in Decrypt (without sk) to learn the inner product (x,y). That is,

Decrypt(cty, tky) = (x,y).

One can use IPEg, g to build proximity search by encrypting ct; <— Encrypt(x;, sk) and providing all ct; to the database
server (additional data can be associated with x; using traditional encryption). For queries y the client provides
tk, < TokGen(y,sk) to the server. The server can compute the inner product between the query and each stored
record and should return all records with the appropriate inner product. The server does work proportional to the
database size. This is in contrast to keyword searchable encryption where the desiderata is for the server’s work to
be proportional to the result set size.

We identify and close two gaps in the use of inner product encryption to build proximity searchable encryption
for the iris.

1.1 Owur Contribution

Multi Random Projection Inner Product Encryption Daugman’s seminal iris feature extractor [Dau05,
Dau09] produces a vector of length n = 1024, the open source OSIRIS [ODGS16| system uses n = 32768 by default,
and recent neural network feature extractors [AF19] use n = 2048.

INote that real-valued vectors for the Euclidean distance can be converted to binary vectors for the Hamming distance using mean or
median thresholding, where values above the mean/median are encoded as 1 and values below as 0.



The most efficient IPEg, o schemes rely on dual pairing vector spaces |OT15] in bilinear groups. The secret key
for such constructions is a random matrix A € Fy*™ and its inverse A~ g is a large prime that is the order of the
bilinear pairing. Setup for the scheme must invert a random A € Fj*".

This operation is prohibitive for n > 1000, as is the case for iris feature extractors. For the most efficient known
scheme which we call Random Projection with Check or RProjC [KLM™18|, the authors’ parallel implementation of
key generation in FLINT [Har10| (on a modern 16 core machine), generating keys for n = 240, took 4.6 hours. In
our experiments, Setup time grows cubicly as expectedﬂ Through interpolation, we estimate the time to generate
keys for n = 1024 at 23 days.

While one can train feature extractors with smaller n, we show (in Section |4) that known techniques harm the
quality of the biometric features, making the irises of different people appear similar. The false accept vs false reject
rate tradeoff degrades, leaving the application with the choice of either not matching readings of the same iris or
matching readings of difference individuals’ irises. Both choices have consequences for the resulting application.

In Section and Table 3] we show that for a small size dataset of 356 individuals using a feature extractor with
n = 64 and a distance t that enables a 90% true accept rate, searching for an individual in the dataset returns 40
incorrect biometrics with an average query! By comparison when n = 1024, queries return .06 incorrect biometrics
on average. Datasets with more individuals are not available; we expect this rate to be consistent across dataset
sizes.

Section [5] introduces a new transform for inner product encryption that generates multiple matrices A, ..., Ay
and their inverses during key generation where each A; is an (N + 1) x (N + 1) matrix, where N = [n/c], instead
of a single large pair A, A~!. Recall that the encryption and token generation algorithms take as input vectors z
and y respectively. Vectors z and y are then split into o component vectors of size N. Correctness then relies on the
fact that

o—1

i=0
where x;,y; are component vectors of x and y. To hide partial information, both x and y are augmented when they
are split into component vectors:

/
€T; = 1 H LixNy -y Lix N+ (N—-1)

Yi = Gi |l YisNs oo Vi N (N 1)

fori=0,...,0 — 1 and (p,...,(,—1 is a linear secret sharing of 0 that is chosen in TokGen. The intuition is that any
collection of ¢ — 1 or fewer components represents a random group element, so one cannot learn information about
inner products between vector components. We show security of a prior IPE scheme with multi random projection
in Section [5| (we also apply the technique to a scheme of Okamoto and Takashima [OT12, Section 4] in Section .
This technique is not generic, our construction modifies the internal working of the underlying IPE scheme. The
intuition is that to preserve correctness internal randomness needs to be stripped and replaced by a global one. This
prevents an attacker from mixing and matching ciphertext components (or token components). Such mixing and
matching is allowed for multi-input inner-product encryption. We compare the two notions in Section [3.1}

We implemented two versions of proximity search building on this form of IPEg, ¢. The first is a direct application
of the RProjC [KLM™18| scheme and the second is our new multi random projection version, called Multi Random
Projection with Check or MRProjC. To benchmark, we encrypted a single reading of each individual (¢ = 356) from
the ND0405 dataset [PSO™09,BF16] which is a superset of the NIST Iris Evaluation Challenge [PBFT08|. Queries
are drawn from other readings in the ND0405 dataset. This performance is summarized in Table [I] with search
taking approximately 4 minutes. Our multi random projection technique reduces time for Setup by four orders
of magnitude with minimal impact on the timings of the rest of the algorithms. This multi random projection
technique makes proximity searchable encryption on a 350 biometric dataset feasible.

Distance Hiding Proximity Search By design, for any searched value y, proximity search from IPEg o allows
the server to compute the distance [KLM™ 18] between y and all stored recordsﬂ This establishes a geometry on the
space of stored records. If the server has side information on the stored records z;, they may be able to reconstruct

2We have not evaluated sub-cubic matrix inversion in finite fields.
3Some prior work allows computation of approximate distance |KIK12| using locality sensitive hashes [IM98§], allowing the server to
see how many hashes match, the number of matches approximates distance.



Scheme IPE Type MRProj | Hide Operation Time

Name IPE fh ‘ sk ‘ pred used D Setup ‘ Blndex ‘ Trpdr ‘ Search ‘
RProjC [KLM*18] | v | V — — — 2M 10.8 .07 235
MRProjC [KLM™1§] | v | v — v — 268 10.8 .08 241
MRProj (asym.) | [BCSW19] | v/ | v v v v 268 10.8 22.4 | 12600
MRProj (sym.) [BCSW19] | v | v v v v 225 4.3 52 3580

Table 1: Time (in seconds) for operations with ¢ = 356 records stored at n = 1024. All algorithms are naturally
parallelizable. Timing for the single base scheme RProjC is interpolated from smaller vector lengths. Blndex encrypts
the dataset at initialization time, Trpdr generates a search token, and Search finds the resulting indices. fh, sk
and pred indicate that the underlying IPE scheme is respectively a function-hiding, secret key and/or predicate only
scheme. Hide D indicates that the scheme does not reveal the distance between the stored value and the query. The
symmetric version of MRProj uses the SS512 curve and the asymmetric version uses the MNT159 curve.

global geometry from the local geometry revealed by pairwise distances [PBDTO05,|/AEGT06]. While we are not
aware of any leakage abuse attacks directly against proximity search, there are attacks against k-nearest neighbor
databases [KPT19,KE19]E| Distance allows one to easily compute the k-nearest points so attacks that can exploit
this leakage apply. Like most leakage abuse attacks, the efficacy of these attacks depends on what the adversary
knows about the stored data. We discuss these attacks more in Section [l

For applications where such leakage is unacceptable (or the adversary has side information on the encrypted
data), we show a transform from a predicate version of inner product encryption to proximity search that does
not reveal pairwise distance. A predicate IPE scheme produces ciphertexts ct, and tokens tk, which allow one to
effectively check if (z,y) = 0 (instead of revealing the inner product). Barbosa et al. [BCSW19| recently proposed
such a scheme that is a modification of Kim et al.’s construction [KLM™18]. Their construction simply removes
the group elements that allow one to check the inner product, so we call this Random Projection or RProj. We call
such a scheme an IPEg sk pred sScheme. Applying our multi random projection technique to this scheme yields a new
predicate IPE scheme that we call Multi Random Projection or MRProj. IPEg sk pred allows one to test if the inner
product is equal to some value i as follows: add an n + 1?* element as —1 to x, denoted ', and create y; = y||i.
Then, (z',y;) = (x || -1,y || ) = 0 if and only if (x,y) = i. One can check all values in a set Z by generating a token
tk,, for each i € Z. Setting Z = {n — 20, ....,n — 2« t}, yields a proximity check (these tokens are permuted before
being sent to the server). We show that with such a construction, an adversary cannot distinguish between two sets
of encrypted records and queries as long as they have the same leakage discussed below.

The simplicity and generality of this construction is an advantage, it immediately benefits from efficiency im-
provements in inner product encryption and can be built from multiple computational assumptionsﬂ However, the
size of tk, and the search time now grow linearly with ¢. For the iris ¢ is usually around .3n.

Since the server can see if the same tk,, matches different records, when two records are both within distance
t, the server learns if they match the same distance (but not the specific distance). Thus, the resulting proximity
scheme leaks two pieces of information:

Access Pattern [IKK12,[CGPR15| The set of records returned by the query. If z; and z; are both returned by
a query it must be the case that D(z;,x;) < 2t. Preventing attacks that only require access pattern usually
requires oblivious RAM [GKLT20]. This is the high level approach taken by Boldyreva and Tang [BT21] in
parallel work. They proposed a scheme that hides all leakage using oblivious data structures in conjunction
with locality-sensitive hashes [IM98]. Their scheme is interactive, requiring several rounds of communication,
but only uses symmetric key cryptography and is faster in a network with short round trip times.

Distance Equality Leakage For a database x4, ...,z and for a searched value y, if there are multiple records z;, x;
such that D(z;,y) <t and D(z;,y) < t then our scheme additionally reveals if D(z;,y) = D(z;,y).

No information is leaked about data that is not returned (beyond that it was not returned). Biometrics are well

4Here we focus on attacks that apply to proximity searchable encryption. There is a rich history of leakage abuse attacks against
different types of searchable encryption [IKK12JCGPR15|KKNO16,WLD*17,GSB*17|GLMP18,KPT19,MT19|KE19/KPT20,FMC20].

5Throughout this work, we refer to proximity searchable encryption constructions by the name of the underlying IPE scheme. As an
example, MRProj will be used to denote both Barbosa et al’s IPE scheme with our multi random projection technique applied to it and
the distance-hiding proximity search built using it.



spreadﬂ so one does not expect readings of two biometrics to be close to a query. As mentioned, the vector size has
a large impact on the number of improper records that will be returned by a query (recall for n = 64, 40 improper
records are returned, when n = 1024, .06 improper records are returned). Since MRProj only leaks when multiple
records are returned it is critical to ensure an accurate system, underscoring the importance of our multi random
projection approach enabling Setup for large n where high correctness is possible.

In RProjC and MRProjC, the server learns the pairwise distance between the query y and all records z;. So in
that setting, n only affects correctness, not security.

The search complexity of MRProj is roughly a multiplicative of ¢t ~ .3n slower than for MRProjC. See the difference
in concrete timing in Table [} For n = 1024, corresponding to a ¢ &~ 307, the measured multiplicative overhead is
only 52.5. Closing this performance gap is the main open problem resulting from this work; MRProj search is not
fast enough.

Our analysis of MRProj is secure and correct with either a symmetric or asymmetric pairing. We implement
both options. In our search implementation, the symmetric pairing instantiation is roughly 3 times faster than the
asymmetric pairing instantiation. To the best of our knowledge, this is the first time that a function hiding inner
product encryption has been analyzed in a symmetric pairing group, this analysis may be of independent interest.
In Section [J] we posit additional avenues for improving search efficiency.

1.2 Organization

The rest of this work is organized as follows: Section [2] describes mathematical and cryptographic preliminaries,
Section [3] reviews further related work, Section [d] describes the n vs accuracy tradeoff for the iris and its impact
on security, Section [5| introduces the multi random projection technique, Section |§| shows that IPEg sk pred suffices
to build proximity search, Section [7] discusses our implementation, Section [§| applies MRProj to the IPE scheme of
Okamoto and Takashima, and Section [J] concludes.

2 Preliminaries

Let A be the security parameter throughout the paper. We use poly()) and negl(\) to denote unspecified functions

that are polynomial and negligible in A, respectively. For some n € N, [n] denotes the set {1,--- ,n}. Let x & s
denote sampling = uniformly at random from the finite set S. Let ¢ = ¢(\) € N be a prime, then G, denotes a cyclic
group of order ¢. Let x denote a vector over Z, such that = (z1,--- ,z,) € Zq , the dimension of vectors should be
apparent from context. Consider vectors z = (21, -+ ,2,) and y = (y1,- -+ ,Yn), their inner-product is denoted by

(z,y) = > i, x;y;. Let X be a matrix, then XT denotes its transpose.

Hamming distance is defined as the distance between the bit vectors x and y of length n: D(x,y) = [{i|x; # vi}|-
We note that if a vector over {0,1} is encoded as x11, = 1 if ; =1 and x4,; = —1 if x; = 0 then it is true that
(T1,y+1) =n —2D(,y).

Our proofs rely on the Schwartz-Zippel lemma [Sch79,Zip79]. We use the version from Kim et al.’s work [KLM™ 16|
Lemma 2.9]:

Lemma 1 (Schwartz-Zippel Lemma). Fiz a prime p and let f € Fp[z1,--- ,x,] be an n-variate polynomial with
degree at most d and which is not identically zero. Then,

Pr[xla”' ;xnﬁ]}-?p:f(xl,”' ;xn)zo]gd/p

We define symmetric bilinear groups.

Definition 1 (Symmetric Bilinear Group). Suppose Gy and Gr are two groups (respectively) of prime order q with
generators g1 € G1 and gr € G respectively. We denote a value x encoded in Gy with either g7 or [x]1, we denote
values encoded in Gr similarly. Let e : Gy x G; — Grp be a non-degenerate (i.e. e(g1,91) # 1) bilinear pairing
operation such that for all x,y € Zq, e([z]1, [y]1) = e(g1,91)"Y. Assume the group operations in G1 and G and the
pairing operation e are efficiently computable, then (G1,Gr,q,e) defines an symmetric bilinear group.

6Section [4] goes over the characteristics of the iris biometric in more details.



As we show in Section [b] our scheme is secure in a symmetric bilinear generic group. However, we also present
timing results with an asymmetric group that was used to argue the security of previous function-hiding inner prod-
uct encryption schemes [KLM ' 18, [KLM ™16, BCSW19|. Proofs of security in a symmetric bilinear group extend to
an asymmetric bilinear group. Correctness of our scheme follows in either setting.

2.1 Generic Group Model

The constructions presented in Figures[5]is based on a original construction proved secure in the asymmetric generic
bilinear group model |BBS04,BBG05|. However, we show security directly in the symmetric generic bilinear group
model which is presented below. The particularity of the generic group model is to replace actual group elements by
handles. Using these handles, the adversary is able to perform group and pairing operations. We adapt Kim et al.’s
generic bilinear group oracle definition to the symmetric setting:

Definition 2 (Generic Bilinear Group Oracle). The generic bilinear group oracle is a stateful oracle defined as
follows:

e Setup(1*): Generate two fresh nonces pp,sp & {0,1}* and a prime q, and store them. Initialize an empty table
Tab = {} and set the internal state to subsequent call of Setup to fail. Finally, return (pp,sp,q).

e Encode(k,z,i): Receive k € {0,1}*, 2 € Zy and i € {1,T}. If k # sp return L. Else, generate a fresh nonce
hé {0,1}* and add the entry h + (x,1) to table Tab. Return the handle h.
o Add(k,hy,hs): Receive k,hy, hy € {0,1}*.
1. If k # pp or one of the handles hy, hy is absent from table Tab or hy, hy do not map to values (x1,41) and
(z1,12) with iy = iq, return L.
2. Compute x = 1 + x2 € Zq.
(a) If h — (z,i1) in Tab return h.
(b) Else, generate a fresh handle h & {0,1}*, set h ~ (z,i1) in Tab and return h
e Pair(k,hy,hs): Receive k,hy, hy € {0,1}7.
1. If k # pp or one of the handles hy, hy is absent from table Tab or do not map to values (x1,1) and (x2,1)
respectively, return L.
2. Else, compute x = 11%9 € Zqg
(a) If h = (z,T) in T return h.
(b) Else, generate a fresh handle h & {0,1}*, set h ~ (z,T) in Tab and return h

o ZeroTest(k,z): Receive k,x € {0,1}*. If k # pp or h is absent from table T, return L. Else, return “zero” if
T € Zq 15 0 and “non-zero” otherwise.

As in previous works [KLM™18|/KLM™16,[BCSW19], we will analyze security by viewing each query as forming
a formal polynomial. We re-state Remark 2.8 from Kim et al. [KLM™16]:

The generic bilinear group oracle is formally defined in terms of handles, however one can view oracle queries as
formal polynomials. Each Encode query specifies a new formal variable for the polynomial. The adversary can then
build terms for the polynomial by making Add and Pair oracle queries. The ZeroTest query outputs zero when the
previously built polynomial evaluates to zero.

2.2 Inner Product Encryption

Functional encryption allows to compute a function on an encrypted input (the attribute), and retrieve the result
without revealing more on the input. Predicate encryption is restricted to predicates, functions that output a single
bit. While some works try to build schemes for general functionalities, other focus on specific ones. In the latter,
one line of work aims to build efficient and secure schemes for inner products. In such schemes, the ciphertext and
token encode vectors x and y, respectively, allowing to compute (x,y), the inner product between z and y, when



running the decryption algorithm on the corresponding ciphertext and token. These schemes are called inner-product
functional encryption schemes.

The predicate version of inner product encryption [KSWO08,[SSW09] works in a similar manner, but instead of
the decryption outputting the inner product value, it outputs 1 if (x,y) = 0, 0 otherwise. E] Secret-key predicate
encryption with function privacy supporting inner products queries was first proposed by Shen et al. [SSW09|. The
scheme they presented is both attribute and function hiding, meaning that an adversary running the decryption
algorithm gains no knowledge on either the attribute or the predicate.

We define secret-key inner production functional encryption (IPEgm o) and secret-key inner product predicate
encryption (IPEm sk pred) Over the message space Ly.

Definition 3 (Secret key inner product functional encryption). Let A € N be the security parameter. Define
IPEq o = (Setup, Encrypt, TokGen, Decrypt), a secret-key inner product functional encryption scheme over Lq as

e (pp, sk) < Setup(1*): Generate public parameter pp and secret key sk.
e ct, < Encrypt(sk,xz): Take secret key sk and input vector x € Ly and generate ciphertext ct,.
o tk, < TokGen(sk,y): Take secret key sk and input vectory € Zy and generate token tky.

o z < Decrypt(pp, tky, ct,): Take public parameters pp, ciphertext ct, and token tk, and outputs value z € Zg.

Correctness: For any x € Zy,y € Ly,

cty < Encrypt(sk,z)
thy < TokGen(sk,y) | > 1 — negl(\).
z<—Decrypt(pp,tky ,ct;)

m%:@m

advantage in the ExplIF;\ED game (defined in Figure|l|). Token and encryption queries must meet the following admis-
sibility requirements, Vi € [1,7],Vj € [1,s],

Security of admissible queries: Let r = poliS)\) and s = poly(A). Any PPT adversary A has only negl(\)
4

0) (0 1) @
@) = @)

Definition 4 (Secret key inner product predicate encryption). Secret key inner product predicate encryption (IPEgm sk pred)
is defined similarly to secret key inner product functional encryption, with the difference that the output of the de-
cryption algorithm is now z € {0,1}.

Correctness For any x € Zy,y € Ly,

cty < Encrypt(sk,z)
tky < TokGen(sk,y) >1-— neg/()\)'
b<—Decrypt(pp, tky ,cts)

Pr <= (t0.0) L 0)

Security of admissible queries: Let r = poly()\) and s = poly(A). Any PPT adversary A has only negl(\)
advantage in the ExplI’?\’,':D game (defined in Figure |1]). Token and encryption queries must meet one of the two
following admissibility requirements, Vi € [1,7],Vj € [1, 5],

@™y =0 A (@ gt =0

1 )

or
@,y ) £0 A @My £ 0.

The above definition is called full security in the language of Shen, Shi, and Waters [SSW09|. Note that this definition
is selective (not adaptive), as the adversary specifies two sets of attributes and token values apriori. When discussing
privacy it can be interesting to use a simulation-based security definition as it allows to specify exactly which amount
of information is leaked.

"In some works, predicate inner product encryption outputs a message m when (z,y) = 0 instead of a single bit.



We define the following game between challenger C and adversary A:

. C draws 8 & {0,1}.
. C computes (sk, pp) < Setup(1*), sends pp to A.

) , (1)

1

2

3. For 1 < <r, A chooses attribute vectors x(o),x(l) € Z;‘.
4. For 1 < j < s, A chooses vectors y; Y, € Ly

5

. Denote
R:= (;Ego),x(ll)) s, (:cs.o),xgl)) ,

S = (yg())vygl)) PN (y§0)7yg1)) .

6. A sends R and S to C.
7. A loses the game if R and S are not admissible.

8. A receives from C a list of ciphertexts

P = {ctz(ﬂ) < Encrypt (sk,x(m)}

i

r
i=1

and a list of tokens

T7®B) .— {ﬁéﬁ) + TokGen (Sk,y;ﬂ)) }S L
=

9. A returns 8’ € {0,1}.
10. A’s advantage is

AVEFINP () = | PrAY, TO, C0) = 1] = PrLA?, 70, 00) = 1]

Figure 1: Definition of EprIP]{[E p for inner product encryption.

Definition 5 (Simulation-based security for IPE). Let IPE = (Setup, TokGen, Encrypt, Decrypt) be an inner product
encryption scheme over Zy. Then IPE is SIM-secure if for all PPT adversaries A, there exists a simulator S such
ExpTar

that for the experiment Expgjﬁw described in Figure@ the advantage of A (adv ) is
| Pr[l « Realjpe4(17)] — Pr[l < Ideal;pg 4 (11)] | < negl()).

Kim et. al. [KLM™16, Remark 2.5] show that Definition [5| implies Definition

2.3 Proximity searchable encryption

In this section we define prozimity searchable encryption (PSE), a variant of searchable encryption that supports
proximity queries.

Definition 6 (History). Let X € M be a list of keywords drawn from space M, let F be a class of predicates over
M. An m-query history over W is a tuple History = (X, F'), with F'= (f1,--- , fm) a list of m predicates, f; € F.

Definition 7 (Access pattern). Let X € M be a list of keywords. The access pattern induced by an m-query history
History = (X, F) is the tuple
AccPatt(History) = (f1(X),- -+, fm(X)).

Definition 8 (Distance Equality). Let History(o)7 History(l) be m-query histories for predicates of the type f,(x) =

2

(D(z,y) < t).



Real|pE7A(1’\)

(sk, pp) < IPE.Setup(1*)
b« AIPE.TokGen(sk,-),IPE.Encrypt(sk,-)(1)\)

Output b

Idealipg, 4(1%)

(sk, pp) < IPE.Setup(1%)
b+ ASCO) (1)
Output b

Figure 2: Definition of experiment Exp'SPIEM. ® denotes the information leakage received by the simulator S such that
(i, j) = (<37i7yj> = 0) for all 4, 5.

Let DisEq(History(O), History(l)) =1 if and only if for each j it is true that
{(l) k)

Definition 9 (Proximity Searchable Encryption). Let

(D(mi“’wﬁ“’)—D(rif’%y;”)AD(ri”,yﬁl’);éD(r;”,y;”))}
)

\
(D" 52Dy AP 5 =D () i)

is the empty set.

o )\ € N be the security parameter,

e DB = (M, --,My) be a database of size £,

o Keywords X = (x1,--- ,x¢), such that x; € Zg relates to M,

o F={fy:|ly€Zy, t €N} bea family of predicates such that, for a keyword x € Zy, f, +(x) =1 if D(z,y) <t,

0 otherwise.

The algorithms PSE = (PSE.Setup, PSE.BIndex, PSE.Trpdr, PSE.Search) defines a proximity searchable encryption
scheme:

PSE.Setup(1*) — (sk, pp),
PSE.Bindex(sk, X) — Ix,

PSE. Trpdr(sk, fy.+) — tky:, and
PSE.Search(pp, Qy.t,Ix) = Jx yt-

We require the scheme to have the following properties:

Correctness Define Jx 1+ = {i|fy+(zi) =1,2; € X}. PSE is correct if for all X and f,; € F:

Ix < PSE.Blindex(sk,X)
Qy,t+PSE.Trpdr(sk,f,.1) | > 1 — negl(\).

Pr JI = Jx)%t
J'+PSE.Search(pp,Qy,+,1x)

Security for Admissible Queries Any PPT adversary A has only negl()\) advantage in the experiment ExpfzstD
defined in Figure[3, for £ = poly(\) and m = poly(\).

3 Further Related Work

3.1 Functional encryption

We review further related work on functional and predicate encryption.



We define the following game between challenger C and adversary A:

1. C draws 3 & {0,1}.

2. C computes (sk, pp) < PSE.Setup(1*) and sends pp to .A.
3. A chooses and sends History(o), History(l) to C.

4. A loses the game if

AccPatt(History®) # AccPatt(History!)) v DisEq(History'”, History™)) = 0
5. A receives I®) and Q® from C.

6. A outputs 8’ € {0,1}.

7. A’s advantage in the game is:

AdEP (3) = | PrA 1O, QO) = 1] — PrA(1*, 1M, QW) = 1]

Figure 3: Definition of Exp?f{,ED.

Function privacy for public key schemes Building distance-hiding proximity searchable encryption from inner
product encryption requires the latter to be function-hiding. The PSE scheme presented in this work is secret key,
but one could want to build a public-key variant. Such a scheme would require public key function-hiding IPE.

Achieving function privacy for public key functional encryption is not straightforward. The adversary can encrypts
ciphertexts on its own and run the function on the corresponding inputs, allowing them to learn information on the
function’s behavior.

Boneh et al. [BRS13a] presented a function-hiding identity-based encryption scheme which requires token inputs
to be sampled from a distribution with super-logarithmic min-entropy. Their function privacy notion then requires
that for y sampled from such a distribution, the corresponding token tk, must be indistinguishable from a token tk,,
where u was independently and uniformly sampled. In a subsequent work [BRS13b], Boneh et al. consider the notion
of function-hiding public key subspace-membership encryption which supports subspace-membership predicates, a
generalization of inner products.

Multi-input functional encryption Readers familiar with multi-input functional encryption for the inner prod-
uct may notice some similarities between this line of work and the multi-random projection technique.

Multi-input functional encryption (MIFE) [GGG™14] is a generalization of functional encryption that supports
functions with multiple inputs. Token generation works as in standard functional encryption but encryption allows for
multiple users to encrypt their inputs independently. Decryption then takes the token tk ¢ and the multiple ciphertexts
cty, -+ ,ct, and computes f(z1,- -+ ,z,). In the case of multi-input IPE [AGRW17,/ACF 18|, the supported function

is of the form N

Z(Cﬂi’ Yi)-

i=0
The main challenge to building MIFE schemes is to combine ciphertexts generated using independent randomness
in a secure manner.

Although multi-input IPE and multi-random projection seem to achieve similar goals they are different concepts.

In multi-input IPE, one should be able to decrypt ct; with any available value for cts, ..., ct,. In the multi-random
projection all components of a single ciphertext should only work with each other. In other words, multi-input IPE
allows for mix-and-matches whereas MRProj must prevent it. Mix-an-matching would indeed allow the adversary to
create ciphertexts and tokens that are not admissible, resulting in a break of security. To prevent this, multi-random
projection requires global randomness to tie the multiple ciphertexts (respectively tokens) together.
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3.2 Proximity search

We review further related work on proximity search. Li et al. [LWW 10|, Wang et al. [WMT*13] and Boldyreva
and Chenette [BC14] reduced proximity search to keyword equality search. These works propose two complimentary
approaches:

1. When adding a record z; to a database, also insert all close values as keywords, that is {z; | D(z;,z;) < t} are
added as keywords associated to x;.

2. The second approach requires searchable encryption supporting disjunctive search. Disjunctive search generally
allows to perform search using a set of keywords, returning a record when at least one of those keywords is a
match. This approach inserts just z;, but when searching for y it searches for the disjunction V., p, )<t Ti-

Either approach can be instantiated using a searchable encryption scheme that supports disjunction over keyword
equality (inheriting any leakage). However, for biometrics, the number of keywords V| p(z,,y)<¢{2: } usually grows ex-
ponentially in ¢. In existing disjunctive schemes, the size of the query grows with the size of the disjunction [FVY 117,
making this approach only viable for constant values of .

Kuzu et al.’s [KIK12] solution relies on locality sensitive hashes [IM98|. A locality sensitive hash ensures that close
values have a higher probability to produce collisions than values that are far apart. Thus, proximity search can be
built from any scheme supporting disjunctive keyword equality, inheriting any leakage. The server learns the number
of matching locality sensitive hashes for each record (which is expected to be more than 0). The number of matching
locality sensitive hashes is a proxy for the distance between the query value and the records. More matching locality
sensitive hashes implies smaller distance. This allows the server to establish the approximate distance between each
record and the query.

Zhou and Ren [ZR1§| propose a variant of inner product encryption that reveals if the distance is less than ¢
only. However, their security is based on Az; and yB hiding x; and y for secret square matrices A and B. Security
is heuristic with no underlying assumption or proof of information theoretic security.

Abuse Attacks Searchable encryption achieves acceptable performance by leaking information to the server. See
Kamara, Moataz, and Ohrimenko for an overview of leakage types in structured encryption [KMO18]. The key to
attacks is combining leakage with auxiliary data, such as the frequency of values stored in the data set. Together these
sources can prove catastrophic — allowing the attacker to recover either the queries being made or the data stored
in the database. We consider attacks that rely on injecting files or queries [ZKP16| to be out of scope. Common,
attackable, relevant leakage profiles are:

1. Response length leakage [KKNO16,|GLMP18] Often known as volumetric leakage, the attacker is given access
to only the number of records returned for each query. Based on this information, attacks cross-correlate with
auxiliary information about the dataset, and identify high frequency items in both the encrypted database and
the auxiliary dataset.

2. Query equality leakage [IWLD717] the attacker is able to glean which queries are querying the same value, but
not necessarily the value itself. Attacks on this profile rely on having information about the query distribution,
and much like the response length leakage attacks, match that with auxiliary information based on frequency.

3. Access pattern leakage [IKK12||CGPR15| here the attacker is given knowledge if the same dataset element is
returned for different queries. This allows the attacker to build a co-occurrence matrix, mapping which records
are returned for pairs of queries. Based on the frequencies of the co-occurrence matrix for the encrypted dataset,
and the co-occurrence matrix for the auxiliary dataset, the attack can identify records.

Recent attacks have targeted the geometry present in range search [GSB™17[LMP18|GLMP18,KPT20,FMC™20].
Building on the co-occurrence matrix (available with access pattern leakage) consider the case when records a, b, ¢ are
returned by a first query and ¢, d, e are returned by a second query. One can immediately infer that the comparison
relation between a and d is the same as the comparison relation between b and e. As more constraints of this type
are collected one can build an ordering of all records (up to reflection).

In two (or three) dimensional Euclidean space, trilateration has been practiced for hundreds of years: one is
assumed to know the location of x4, ...,z and the pairwise distances D(x;,y) and is trying to find the location of y.
Determining the location of y requires k to be one larger than the dimension. The problem is more difficult but well
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studied for approximate distances [EA11|. Similar ideas can be applied in discrete metrics with each learned distance
reducing the set of possible y. In the Hamming metric of dimension n, k = O(n) suffices [TFL19,LTBL20}|Lai20].

4 Iris Statistics and Leakage

This section introduces iris feature extractors and shows that reducing the length of the feature extractor harms the
uniqueness of the resulting biometric. Reduced uniqueness harms both the correctness (because the wrong set of irises
is returned) and security of the MRProj construction (because the server learns information about returned irises).
Daugman |[Dau05,/Dau09] introduced the seminal iris processing pipeline. This pipeline assumes a near infrared
camera. Iris images in near infrared are believed to be independent from the visible light pattern; the near-infrared
iris pattern is epigenetic, irises of identical twins are believed to be independent [Dau09,[HBF10]. Traditional iris
recognition consists of three phases:

Segmentation takes the image and identifies which pixels should be included as part of the iris. This produces a
{0, 1} matrix of the same size as the input image with 1s corresponding to iris pixels.

Normalization takes the variable size set of iris pixels and maps them to a fixed size rectangular array. This can
roughly be thought of as unrolling the iris.

Feature Extraction transforms the rectangular array into a fixed number of features. In Daugman’s original work
this consisted of convolving small areas of the rectangle with a 2D wavelet. Modern feature extractors are
usually convolutional neural networks.

In identification systems the tradeoff is between FRR and FAR. FRR is how frequently readings of the same biometric
are regarded as different. FAR is how frequently readings of different biometrics are regarded as the same. As
described above, when one wishes to match a biometric y against a database one considers matches as the set
{z;|D(x;,y) <t} for some metric D and distance parameter ¢. Selecting a small ¢ increases FRR and reduces FAR.
Before investigating the dependence on feature vector length and the FRR/FAR tradeoff we introduce the feature
extractor and dataset used in this analysis.

Feature Extractor For the feature extractor, we use the recent pipeline called ThirdEye [AF18|/AF19], which is
publicly available [Ahm20]. The software produces a 1024 dimensional real valued feature vector. We convert this
to a binary vector by setting f/ = 1 if f; > Exp[f;] where the Exp[f;] is the expectation of the individual feature,
otherwise f/ = 0. We train the feature extractor as specified in [AF19).

Biometric Database There are many iris datasets collected across a variety of conditions. In this work we use
the NotreDame 0405 dataset [PSO™09,BF16| which is a superset of the NIST Iris Evaluation Challenge [PBFT08].
This dataset consists of images from 356 biometrics (we consider left and right eyes as separate biometrics) with
64964 images in total. (See Appendix for similar results with the IITD dataset |[KP10|.) Figure shows
the histograms for the testing portions of the feature extractor outputs. The blue histogram contains comparisons
between different readings of the same biometric while the red histogram contains comparisons between different
biometrics. Let ¢ = ¢/1024 be the fractional Hamming distance, the FRR is the fraction of the blue histogram to
the right of ¢ and the FAR is the fraction of the red histogram to the left of ¢'. There is overlap between the red
and blue histogram indicating that there is a tradeoff between FRR and FAR.

4.1 Performance of Biometric Identification with Small Dimension

The efficiency of IPE based proximity search critically depends on the number of features n (see Table |5). In our
experiments we estimate Setup for n = 1024 for the schemes of Kim et al. [KLM™ 16| and Barbosa et al. [BCSW19]
to take 23 days on a modern server machine (see details in Section . It is tempting to consider statistical methods
to produce feature vectors of reduced size. We show this comes at a cost to the quality of the resulting feature
vectors. This motivates our approach to reduce the complexity of Setup in Section [f] Our analysis consists of two
major parts:

1. We compare different mechanisms for reducing the size of feature vectors using n = 64 as the target dimension.

2. Using the best feature reduction mechanism we compare the FRR/FAR, tradeoff for n < 1024, showing direct
impacts for the correctness and security of the resulting biometric search.
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(a) ND 0405 Histogram with n = 1024 (b) ND 0405 Histogram with n = 64

Figure 4: Hamming distance distribution for images from the same iris in blue, and different irises in red. Histograms
are produced using ThirdEye . Resulting histograms for the ND 0405 dataset. Figureshows the histogram
when n = 1024 with a small overlap between distances comparisons of the same iris and different irises. This overlaps
is increased substantially when n = 64 in in Figure 3b). Figure 3b) is produced using the E method.

4.1.1 Dimensionality Reduction Method

We consider four different mechanisms for dimension reduction and consider their impact on FRR/FAR. For all
techniques, the most important phenomena is that variance of Different comparisons increases as the sample size
decreasesﬂ Compare Figure and Figure This makes the tails of Same and Different wider, leading to
worse identification. The four mechanisms we consider ard’t

Random Sample Select a random subset of positions of size 64 and use this as the feature extractor. We denote
this technique by R-64 (for random).

Error Rate Minimization Hollingsworth et al. [HBF08| and Bolle et al. [BPCR04] propose the concept of “fragile
bits” which are more likely to be susceptible to bit flips. Their work is based on the Gabor based feature
extractor (described at the beginning of this section) while ThirdEye [AF19] is a convolutional neural network.

We select the 64 bits which have the least probability of flipping. Results for this approach are shown in Table
and denoted by S-64 (for stable).

Surprisingly, this approach is worse than random sampling. We believe this approach to be appropriate for
the Gabor based feature extractor since it produces large number of noisy features due to noise in different
readings of an iris. This is in contrast to our feature extractor which outputs a succinct feature vector where
the CNN tries to make individuals features independent.

Error Delta Maximization This approach uses bits which maximize the difference between the means of the intra
and inter class distributions. These are bits where the difference between intra class and inter class error is the
highest. That is, we select the bits that maximize the following difference:

P , 1- P . ,
miaX <$,y<—DiIf‘fer(-)nt[5CZ 7é yz] z,yeé‘ame[xz 7& yz]>

Here, “Same” indicates that the readings x,y come from the same iris and “Different” means that they came
from distinct irises. The intuition is that bits are the most useful as they maximize the difference in probability
of error between the same and different comparisons. The hope is to overcome the weakness of the prior

8This is consistent with previous observations that sampling from the iris red histogram behaves similarly to a binomial distribution
where the number of trials is proportional the included entropy of the iris [SSF19].
9For all experiments we computed the mechanism four times and report the average in Table
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False Accept Rate (FAR)

Size | 0] .01].02|.03|.04].05].06|.07].08].09] .10
1024 [ 50 [ .03 [.02[ .00 .00 0o1[.00].01[.00] 0[] O
R-64 | 99 | 38 | 29 | .24 | .22 | .18 | .17 | .16 | .14 | .13 | .12
S-64 | 1| .61 | .61 | .51 | .41 | 41 | 41 | 32| .32 | .32 | .26
E-64 | 97 | .30 | .24 | .18 | .14 | .14 | .10 | .10 | .10 | .07 | .07
T-64 | .96 | .27 | .16 | .13 | .13 | .09 | .09 | .06 | .06 | .06 | .04

Table 2: False reject rate (FRR) for the ND0405 datasets, for output size n = 64 and for different dimensionality
reduction techniques. Queries are drawn from Same distribution. We vary a threshold ¢ and report the FRR when
allowing for the corresponding FAR. The original n = 1024 system is presented for comparison.

approach which did not consider the entropy of bits across different biometrics. The top 64 bits are used. This
approach is denoted by E-64 (for error). This approach improves over both R and S techniques.

Training Network Lastly, we train the ThirdEye architecture |AF19] from scratch to output a smaller feature
vector of size n = 64 for both datasets. Essentially we train a new feature extractor on the same training data
to reduce dimensions. The feature extractor remains the same but is now constrained to learn 64 features. This
is achieved by changing the number of neurons in the second last layer of our convolutional neural network.
We can expect this to perform better than random sampling since the feature extractor is explicitly learning
to classify using 64 features. We use T-64 (for train) to denote this technique.

Results are summarized in Table[2] The E and T techniques outperform the R and S techniques. Going forward we
use the E dimensionality reduction technique for the rest of this work because it is simpler to compute for different
vector sizes.

4.1.2 Impact of reducing n

We now show that decreasing n using the E method hurts the identification quality of the iris biometric. First we
note that an FRR of < .10 requires a distance tolerance of ¢ > .3n (see the histograms in Figure |4). However,
comparisons between different irises are tightly centered around t = .5n. This means for a dataset {;}{_; for most
pairs x;,x; there exists some value * such that D(z;,2*) < t and D(x;,2*) < t. This means for most pairs z;, z;,
there is some query that will cause them both to be returned.

The goal of this subsection is to understand behavior on actual queries. We consider a distribution over z* of
different readings of individuals stored in the dataset to see how frequently multiple records are returned. Recall that
multiple records being returned impacts the system correctness for both the MRProjC and MRProj constructions. It
additionally affects leakage for MRProj. For these analysis we consider the ND-0405 dataset with the F mechanism
for reducing the size of a feature vector (see the previous subsection).

We use the value ACount, which represents how frequently a record of a different biometric would be returned
by an in use search system, to evaluate the impact of the dimensionality reduction. To achieve both correctness and
security, one needs ACount to be as close to 0 as possible, assuming randomly distributed queries.

We consider correctness of the system at different feature vector lengths n. We select a random reading of each
biometric to represent the encrypted dataset. We first select a ¢ that yields at most < 10% FRR (for comparisons of
the same iris on the training dataset). We then use the following procedure:

1. Initialize matrix C; ; = 0356356,

2. Pick T C {1, ...., 356} of size 150 randomly.

3. For each 7 in Z:

(a) Select 3 random readings of iris ¢, denoted z} (removing reading that is encrypted)ﬂ
(b) For all j if D(z},z;) <tand D(x},z;) <t C;,; =C;,;+ 1.

4. Compute ACount = 329 (235:50]21 Cw-) /(3 * 150).

10Every iris in the ND0405 dataset has at least 4 readings so this is the maximum number of queries that will have an equal number
of readings from the size 150 subset.
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Vector Length
ACount | 64| 96 | 128 | 256 | 384 | 512 | 768 | 1024 |
Avg. 40.8 | 345 [ 13.0 | 6.03 | 3.86 | 1.03 | .53 | .06

2 .75 74| 42 .23 A7 .083 | .076 | .019

g

Table 3: Effect of dimensionality reduction on the correctness and security of the resulting biometric search system.
ACount is the average number of improperly records when searching for a biometric that is in the dataset. All feature
extractors with n < 1024 use the E method to select features.

FRR False Accept Rate

Size | 0] .01 ].02].03]|.04].05].06|.07|.08].09].10

12470 1] 1] 1| ] 1] 1] 1] 1] 1] 1
512 | 57 | 1| 1| 1| 1| 1| 1| 1| 1| 1| 1
256 | A7 | 99 | 1| 1| 1| 1| 1| 1| 1| 1| 1
192 | 48 99| 1| 1| 1| 1| 1| 1| 1| 1] 1
128 | 5409999 | 1| 1| 1| 1| 1| 1| 1] 1
96 | 40 | 99 [ 99 [ 99| 1| 1| 1| 1| 1| 1] 1
64 | 27| .97 .99 .99 .99 |.99| .99 1| 1| 1] 1

Table 4: TAR for different output sizes and probabilities of leakage for the IITD Dataset. Summary of FAR for
queries drawn from Same distribution for noise tolerance parameters. We vary a threshold ¢, report the FRR when
FAR is as listed. All sizes use the R methodology.

We ran this experiment 40 times and report the mean and standard deviation of ACount in Table As one can
see keeping a vector size of n = 1024 has a three order of magnitude reduction in the average number of improperly
returned records, underscoring the importance of inner product encryption to work with large n.

Leakage on readings of the same iris There are two types of biometric databases, those which associate a
single reading x; of a biometric with each record r; and those where multiple readings of a biometric x; 1, ..., Z;
are associated with a single record. Until now, we’ve implicitly assumed that the database has only one reading of
a biometric. We now briefly consider the implications of leakage between readings of the same biometric. That is,
Zi1,..., T; , are readings from the same biometric and associated with a record r; in the biometric database. First
note that x; o, and z; g are likely to be close together (because readings of the same biometric are similar).

One may able to infer information about x; 1, ..., z; & from access pattern and distance equality leakage. One may
be able to learn the relative positioning of the different readings by which values Z are return by a query y (if it is not
all values). Similarly, we expect the adversary to learn distance equality leakage for the entire set x; 1, ..., z; . Both
of these leakage profiles allow an adversary to construct geometry of a biometric’s different readings. This may allow
the adversary to determine the type of noise present in that individual’s biometric. It may be possible to use noise
rates to draw conclusions about sensitive attributes about the corresponding person. Biometric systems frequently
demonstrate systemic bias [DRD"20]. As one example most datasets draw from volunteer undergraduates students.
Systems accuracy varies based on sensitive attributes such as gender, race, and age (see [DRD™20, Table 1]). Thus
one may be able to infer sensitive attributes based on the relative size of |Z|/k.

If one stores multiple readings, it seems important to use cryptographic techniques to hide such leakage. A
potential solution is to instead store a single reading that is the average of the multiple readings [ZD08] and make
other values associated data that are not searchable.

4.2 Statistical Analysis for IITD Dataset

The IITD dataset which consists of 224 persons and 2240 images. The IITD dataset is considered “easier” than the
NDO0405 dataset because images are collected in more controlled environments leading to less noise and variation
between images. Table [4] shows the FAR/FRR tradeoff for IITD dataset akin to Table [2] We additionally measured
the number of improperly returned records as in Table |3} improper records where only observed for length 64. Since
IITD is easier than NDO0405, this indicates that the needed biometric dimension depends on collection conditions.

15



5 Multi Random Projection IPE

As described in the Introduction, we show a general technique improving Setup efficiency for IPE schemes where
ciphertexts and tokens are projected into dual vector spaces by a pair of matrices A, A~'. When applied to a
secret-key function hiding predicate IPE (respectively secret-key function hiding IPE), this technique yields an IPE
scheme with the same security properties. We call this multi random projection technique. The key idea is to create
multiple pairs of matrices of smaller dimension for subvectors of the inputs. These independent encodings are then
combined with an additive secret sharing of 0 in the encryption so that computation with ciphertexts and tokens
is only useful when using all of the components. Without this additional step, an adversary could discard some
subvectors of the inputs and still learn the inner products of the remaining ones. In this section we show security of
the technique when applied to the RProj scheme of Barbosa et al. [BCSW19, Section 4HE|

This scheme from Barbosa et al. is built upon an asymmetric bilinear pairing. In the conference version of
this work, we applied the multi-random projection technique to this asymmetric scheme. This work will shows the
construction is secure with a symmetric bilinear pairing. This analysis allows one to choose between a Type 1, 2
or 3 pairinglﬂ whichever provides the best performance. In our experiments using the Charm library [AGM™13|,
presented in Sectionlﬂ7 the symmetric pairing is more efficient. Other recent implementations using Charm [CWD™18,
HCT™15,[LW21] found superior performance with a symmetric pairing.

Construction The construction is in Figure |5l We first argue correctness and then security. For security, we show
the scheme satisfies a stronger simulation-based definition of security, as in the work of Barbosa et al. [BCSW19|.
Unlike Kim et al. [KLM ' 18/KLM " 16] and Barbosa et al. [BCSW19] we work directly with symmetric bilinear groups.
They both argued security assuming asymmetric bilinear groups

Correctness First note that (z,y) = > ;_, (x¢, ye), and thus

. i g (! T_Bx_BT_ N

AT etk i) e [i]) = gi #(0) B B 0D
_ i B @)Ta(yy) . aB Y7 Cet{meye)

=97 =9r
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If (z,y) = 0 then TI7_, TIY , e(tke[i], cte[i]) = e(g1, 92)° = 1, which is the identity element in Gz and is easily detectible
and T < Decrypt(pp, tk,ct) with probability 1. If (x,y) # 0, then the probability that T < Decrypt(pp, tk,ct) is
Prlaf - (,9) = 0] < 9/q.

We argue that the scheme in Figure [5| satisfies Definition

Theorem 1. In the Generic Group Model (Deﬁm’tz’on@) for symmetric bilinear groups the construction in Figure@
is a secure IPEgm sk pred Scheme according to Definition @

Proof of Theorem[1 Our scheme builds on the scheme of Barbosa et al. [BCSW19] built in turn on the work Kim
et al. [KLM™16]. Our proof uses similar definitions of formal variables. The scheme works by having a challenger
interact with a simulator S and two oracles, O,y e, and (’)’Encrypt in the ideal scheme, and a pair of oracles, Ookgen and
OEncrypt, in the real scheme. For this proof, we will build the simulator S which can correctly simulate the distribution
of tokens and ciphertexts only using the predicate evaluation on whether the inner product of the two vectors is 0.
This information is supplied to the simulator by the oracles O, c., and Ollfncrypt to match the functionality of the

encryption scheme. This is the information leakage described in Figure

Inner-product collection Let i,j be shared counters between the token generation and encryption oracles. Let
) ¢ Zq and yY) e Zq denote respectively the adversary’s ith query to the token generation oracle and j* query
to the encryption oracle. The collection of mappings Cj, is defined as

o @) =0 i @,y0) =0
® 1 (i,7) = 1 otherwise.

M Functional encryption for orthogonality (OFE) as defined by Barbosa et al. is equal to predicate inner product encryption, as defined
in this work.

12Type 1 pairing denotes a symmetric bilinear pairing whereas type 2 and 3 are asymmetric bilinear pairings.

13Both symmetric and asymmetric pairings work for functionality. For security, a symmetric pairing suffices.
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Setup(1*,n, 0):

1. Sample a symmetric bilinear group (G1,Gr,q, e) and choose generator g € G1.

2. Output pp = (G1,Gr,q,e,n,0) as public parameters and sk = (g, {B¢, B} }7_,).
TokGen(pp, sk, y):

1. Sample « & Zy.

2. Split input y € Zy into o subvectors y, of size [n/c] and pad with zeroes if needed.
3. For 1 < ¢ <o, define y, =1 || yo and set tke = [ - (y;)T - By ]1.

4. Output tk = (tkq, - - , tky).

Encrypt(pp, sk, z):

1. Sample g & Zg.

2. Split input x € Zj into o subvectors z, of size [n/c], and pad with zeroes if needed.
3. For 1 </ <o — 1, sample (, & Z, then set ¢, = — 22;1 .

4. For 1 </ < o define 2, = ¢ || ¢ and set ct, = [ 8- (z,)T - B} 1.

5. Output ct = (cty, - ,cty).

Decrypt(pp, tk, ct):

1. Compute z = (H‘Z:lﬂfile(tkg[i],ctdi])).

2. Return T if z is equal to 1 € G, L otherwise.

Figure 5: Construction of MRProj.

Formal variables The simulator constructs formal variables for the unknowns of the system in order to respond
as correctly as possible. Consider the following notation:

e Let Q be the maximum number of queries made by an adversary.
e Let 0 and N be as in the construction in Figure

o Foralli€[Q], € [o] and k € [N], let &, 30, &{) §") represent the hidden variables o, 3@,z ("),

Let ZA)g,kmL and lA)Zk’m represent the entry in position (k, m) of the B, and B} matrices respectively,

Let féi) be the formal variables for Céi) where the simulator tracks the constraints that for each i € [Q], >°7_, ¢ éi) =
0, and

Let §$2n and tAE?n represent formal polynomials as constructed below,

N N

$0 =30 bekam = bem + >0y bekm (1)
k=1 k=2
N N

~(2 ~1(1 7% (7 7% ~ (17 7%

B =D Vi = G Vi + D et B (2)
k=1 k=2

Then the universe of formal variables is f = R U T, where

R — {d(i)’é(i)}ie[Q] U {sﬁn , fﬁf)n}iem .
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and

T = {&(i),B(i)}ie[Q]
o fe2 i &)

)

U {?)M,m ) I;Zk,m}

1€[Q], £€[o], kE[N]
Le[o], m,kE[N]

5.1 Specification of simulator, S

Let A be a PPT adversary that makes at most Q = poly(\) queries to the oracles. The simulator S starts by
initializing an empty set of inner products Ci, and two empty tables 77,77 which map handles to the polynomials
over the variables of R. The state of the simulator consists of these three objects, (Cip, T1,Tr), which are updated
after each query received. The simulator S answers the adversary’s queries as follows.

Token generation queries On input z(*) € 73, Ofgigen Sends the collection i) to the simulator.
1. S updates Ci, < Cj.,.
2. For1<{<og,1<m<N,S generates a new handle hy , & {0,1}* and adds the mapping Ay, — & §$Zn
to Tl.
3. S then sets tky = h&l, cee ,hg,N.

4. Finally, S returns the token tk = (tky, - ,tks).

Encryption queries On input y® e Zy,

1. O . sends the collection C{; to the simulator.

Encryp
2. S updates Cip < Cj.
3. For1</<o,1<m<N,

S generates a new handle hy ﬁ {0, 1})‘ and adds the mapping hg, — B(i) . fé?n to 1.

4. S sets cty =hg1, -, henN-

5. Finally, S returns the ciphertext ct = (cty,- - ,ct,).

Addition oracle queries Given hy,hy € {0,1}*, S

1. Verifies that formal polynomials py, ps exist in table T, 7 € {1, T} such that h; — p; and hy — po. If it is not
the case S returns L.

2. If a handle for (p; + p2) already exists in T;; S returns it.

3. Otherwise, S generates a new handle h & {0,1}*, adds the mapping h — (p; + p2) to T, and returns h.
Pairing oracle queries Given hy, hy € {0,1}}, S

1. Verifies that formal polynomials pi, p2 exist in table 77, such that h; — p; and hy — po in T7.

2. If it is not the case S returns L.

3. If a handle for (p; - p2) already exists in T, S returns it.

4. Otherwise, S generates a new handle h & {0,1}*, adds the mapping h — (p; - p2) to Tr and returns h.
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Zero-testing oracle queries Given h € {0,1}*, S verifies that formal polynomials p exists in T,, 7 € {1, T}, such
that h — p. If it is not the case S returns L. S then works as follows.

1. It “canonicalizes” the polynomial p by expressing it as a sum of products of formal variables in 7 with poly(\)
terms.

2. If 7 =1 and p is the zero polynomial, S outputs “zero.” Otherwise output “non-zero”.

3. If 7 = T the simulator decomposes p into the form

Q
~ (1) 35 20 20()
p=3 adp0. <pi7j<{s§)2n, tgfm EG[WE[N])

i,j=1
(TR —) 5

where for 1 <4,5 < @Q, p;; is defined as

o,N
— NONAE))
Dij = Cij - ( Z Se,m tz,m>
Lm=1
where ¢; j € Z4 is the coefficient of the term §§1)1ng i, and f; ; consists of the remaining terms.

4. Ifforall 1 <4,5 <@, (i,4) = 01in G, (corresponding to a zero inner product) and f;; does not contain any
non-zero term, S outputs “zero”. Otherwise it outputs “non-zero”.

5.2 Correctness of S

Canonicalization is efficient We first need to show that the canonicalization process in step 1 of Zero-testing
oracle queries is efficient. Since the adversary can only obtain handles to new monomials using token generation and
encryption queries, the monomials are all over formal variables in R. Also, since the adversary can make ) queries at
most, the polynomial p they can build and submit to the zero-testing oracle has at most poly(Q) terms and degree
2.

Then using Equations |1| and [2] the formal polynomial p can be expressed as a polynomial over formal variables in
T. Since p has degree at most 2 over variables in R, it can be expressed as a sum of at most poly(Q,n) monomials
over variables in 7 and has degree at most poly(n). Since both the polynomial over R and the canonical polynomial
over T are polynomially-sized, this is efficient.

Correctness of token, encryption, and group queries The simulator’s responses to token generation, encryp-
tion and group oracle queries are distributed identically as in the real experiment.

Correctness of zero-test queries We now show correctness of the simulator’s answers to zero-testing oracle
queries. Unlike prior work we use symmetric bilinear groups. This means, we must argue, that the simulator is
correct with the additional flexibility provided to the adversary by the ability to take linear combinations of TokGen
and Encrypt which are now both in G; and to pair these elements. Concretely, this means that the adversary has the
ability to ask to pair elements of tk with other elements of tk and elements of ct with elements of ct which was not
possible before. In the asymmetric group setting, the adversary was limited to pairing elements in ct with elements
in tk. Equation [3[ shows how the simulator splits each query into two parts p; ; which consists of valid decryptions
(scaled by some values) and f; ; which consist of some other elements. The goal of the proof is to show that for the
polynomial f; ;, the following two points hold:

1. The terms of f; ; are low degree polynomials of the hidden variables B, and the values «, 8, (. The polynomial
fi; is either O for all values of x,y encrypted by the adversary or non-zero across all values of z,y.

19



2. That the polynomials are low-degree enough that we can use the Schwartz-Zippel lemma (Lemma (1)) to show
that the nonzero polynomial f; ; evaluates to O with low probability. The probability space is the hidden
randomness of the scheme, specifically the choice of B, and the values «, 3, .

Lemma 2. For 7 =1 the simulator’s behavior is correct with overwhelming probability.

Proof of Lemma[3 Note that the only monomials that the adversary obtains are in response to key generation and
ciphertext queries. The canonical polynomial is of the form

Q
p= Z ( Z CZ ml A(l ) ( Z Cﬁm2 ) (4)
i=1 ¢,m=1 £,m=1
Q o,N N 4
SO o o E

i=1 £,m=1 k=1
o,N N
nrs N
+B(l)< Z CE%,Q er(zk) bik m>
lm=1 k=1

Il
M@
iy
; Mi
/\

N

bo1m + Z yéll)c : Eé,k,m>>

Cez b; 1 + Z Ty l)c : I;Zk,m>>
=2

+
S
/N
S
3 S
& 2
/N

where the variables

[ 1ok }1Sm§N€Z
¢,m,10 “0,m,2 1<t<o q-

Note that the sums
N .
be,m + Z y% “bek,m
can not be the identically zero polynomial over the formal variables

{be.km }eelo], kmelN]-

The sums
£ By + Z &% b
can only be the identically zero polynomial over the formal variables

{l;z,k,m}fe[o], k,me[N]

if (éi) = 0 which happens with negligible probability. Both of these facts are true regardless of the actual values
of the adversary’s queries. Recall {&9};¢(q), {B(i)}ie[Q], and {Bg,k,m}ge[o—L k,me[n] are sampled uniformly and inde-
pendently in the real game. Furthermore, the values {3}‘7k7m}g€[0]7 k,me[N] in the real game are products formed by
the inverse computation which are the sum of monomials of degree N. Thus, under the assumption that the above
sums are nonzero, the entire value of p can be expressed as a nonzero polynomial of degree at most N + 1 = poly(})
in a, g, b. By Lemma (Schwartz-Zippel), p evaluates to non-zero with overwhelming probability for random «, 3, b.
This implies that the simulator is correct with overwhelming probability. This completes the proof of Lemma[2 O

Lemma 3. For 7 =T the simulator’s behavior is correct with overwhelming probability.
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Proof of Lemma[3 We prove Lemma [3] by two claims Claims [T] and [2] that consider whether f; ; has any non-zero
terms.

Claim 1. If f; ; does not contain any non-zero term then S outputs the correct value.

Proof of Claim[1. If f; ; does not contain any term, then p is of the form

o, N ) )
( S s zzn)

k
:M‘O
=
=

o

i,j=1 £,m=1
Q . o,N N ) ) N ] R
= > aWp gy ( (Z@;EQ : be,k,m> : (Zﬁcﬁ? -bz,k,m»
i,j=1 tm=1 \ k=1 k=1
Q g . .
~ (i) A A~ * N
= Z al )ﬂ(]) Cij- < (xz(J))T ‘B; - Bg‘ . yZ(Z)>
ij=1 =1

[
:MQ
il
>
>

)iy ( ¢+ <i§j>,@§“>>
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&
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—

(OF

N
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>
=
=
~

I
:M‘Q
o

p is the zero polynomial when all (7, j) inner products are zero, which can be known by checking if (¢, j) — 0 in Cip.
This completes the proof of Claim O

Claim 2. If f; ; has at least one nonzero term then S’s output is correct with overwhelming probability.

Now suppose that for some 7, j € [Q] the polynomial f; ; contains at least one term. Then we claim that f; ; cannot
be the identically zero polynomial over the formal variables { (A)“Cm }eelo],k,me[N], irrespective of the adversary’s
choice of admissible queries. To show this we first need to describe all the possible types of terms in f; ;. This is a
generalization of [KLM™ 18| Lemma 3.3] to the symmetric pairing setting.

Proposition 1. The polynomial f; ; must contain

(@)

Cross-Terms A “cross-term” of the form cx s,

tl(j) where ¢ € Zg is non-zero and Iy # la.

orcxt

gl)s?) where ¢ € Zgq s non-zero.
J

Square Terms A “square-term” of the form cx* s, g)tg)

Partial Inner Products Some “partial inner product” of the form c sl(thl(Jk) where ¢ € Zg and | € [o],k € [n].

(@)

Basic Polynomial No cross-terms, square-terms, or partial inner products and must be a polynomial of only s,
or tl(j ).

We must show that in the 4 cases, f; ; cannot be identically zero. If the polynomials are nonzero with a degree
polynomial in the security parameter, they are unlikely to evaluate to 0.

Note that in all settings we need to consider the fact that the f;; can contain terms of the form c * sél)sgj ) or
C * tz(z?tg ) where ¢ € Zq is non-zero. Note in the above that ¢;,¢; may be the same or different. The goal is to show
that f; ; cannot be identically zero in each of the above cases regardless of the adversary’s choice of {20y},

The intuition for this part of the proof is that s terms are formal variables in B, and are thus degree 1 polynomials
of those values. However, B} is an inverse of B, and thus each entry of B} is a degree N polynomial in the entries
of By. Recall that s terms are formed from B, and ¢ terms are formed from Bj. This means that cross-terms and
square terms are distinct polynomials with degree N 4 1, 2 (for s cross terms) and 2N (for ¢ cross terms). Thus,
they never cancel each other.
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() 40

Cross-Terms and Square Terms In this case there is some cross term c - Soms * Uyim,

() 40)
/7,m7 e]‘,mj

with BZl. Specifically, one can rewrite the above as

where ¢ € Z is non-zero

and (l;,m;) # (I;,m;). The value cx*s cross-terms were constructed by strictly multiplying elements of B,

(i) 40)

c: S@ Nz Zj, ' =

BWa (bmym +Zy N ba,k,m> (ngf) -0 €;,1,m; +er k-1 51, m ) : (5)
We now recall the form of b* terms. For a value k € [N], let S, denote [N]\k and let 7 ¢ denote the set of bijections
from S—_p — Sy, and sgn represent a sign function that maps inputs to {—1,1}. The variable

l; . Zﬂ'k,mi Sgn(ﬂ-v kv ml) HTES—.k bZi,rﬂr(r) (6)
ba,k,m det(B) '

Consider the expansion of Equation |5|into monomials of b. Each monomial in the expansion contains the product
of exactly two variables in column ¢; of B but no variables in column ¢;. However, we now evaluate whether f; ;
can be identically zero should these cross-terms include polynomials multiples elements from B, together and/or
elements of le together. First, we must show that these newly formed cross-terms do not contain terms that
would cancel with terms from previously constructed cross-terms. This can be shown by evaluating the degrees of
the polynomials. All of the monomials in numerator of the definition of Equation [5| have degree exactly IV, the new
polynomials available to the adversary do not. (We refer the reader to [KLM 18| for why different cross terms cannot

cancel one another. Here we focus on why the newly available terms cannot cancel any cross term.) Specifically, all

() (?) ()t(]) consist of
monomials of total degree exactly 2N (see Equation @ Therefore, if you have a combination of all these types of

cross terms, the resulting polynomial f; ; could not be identically zero.

terms of the form cx* s, consist of monomials of degree exactly 2. All terms of the form ¢,

Square Terms Lastly, we consider the case where f; ; consists of nonzero terms that have no products between s

and ¢. Kim et al. [KLM*18| showed non-zero terms of the form sl(‘i) or t(] ) will not cancel out with each other in
fi,;. However, we now need to consider the case in which we have squared terms. Consider the canonical polynomial
in Lemma [2] as described in Equation [4] where there are additionally square terms. That is,

Q o,N o,N . .
= Zé‘(l) ( Z Cé m1 8 m> + (5‘(1))2< Z CZZn,S ' (§§?Zn)2>
1=1

lm=1 {m=1

—I—B(i)( Z ¢ m3 t ) +(B9)? (Z sz4 A%m) (7)

Lm=1 Lm=1

Recall, that the expansion of ¢ terms are monomials of degree exactly N as described in Equation @ Thus, note
that terms of the type 3§ have degree exactly 1, terms of the type 32 have degree exactly 2, terms of the type t have
degree exactly N and terms of the type 2 have degree exactly 2N. Thus, expanding Equatron in terms of b yields
a polynomial that is not identically zero and whose monomials are linearly independent. So since there is at least
one nonzero coefficient the resulting polynomial f; ; could not be identically zero.

Partial Inner Product In this case there is some partial inner product c*sl(zl)etluk) where ¢ € Zg and [ € [0], k € [n].

Kim et al. [KLM 18| showed that no form of this term s( )t( k) consists of monomials of degree exactly N. As before,
these terms will not cancel with the terms available to the adversary which consist of monomials of degree exactly
N +1, 2 and 2N. Therefore, if you have a combination of partial inner products, the resulting polynomial f; ; could
not be identically zero.
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Basic Terms This argument in identical to the case of Kim et al. [KLM™18|. In particular, the terms of f; ; must
be linearly independent and not identically zero.

Since we have shown that the polynomial f; ; can not be identically zero and it has polynomial degree in all cases
the simulator’s output of “non-zero” is correct overwhelming probability. This completes the proof of Lemma[3] U

This completes the proof of Theorem [}

5.3 Limitation of the multirandom projection technique

The technique presented in this section requires to modify the internal workings of the underlying IPE scheme. Thus
it is not a black-box technique.

To give an intuition on why it cannot be applied in a black-box manner we’ll consider Barbosa et al.’s predicate
IPE scheme. Ciphertexts and tokens in Barbosa et al.’s scheme are of the form

and
tk, = [0 - yT - B*]2

where 7,0 are independently and randomly sampled in Z, for each ciphertext and token. Decryption yields [0 -
2B - B*Ty}T. Since (z,y) is a multiplicative factor there, vd can be ignored when the inner product evaluates to
Z€ro.

If we tried to apply our technique in a black box manner, these random values would be preserved. Then each
sub-ciphertext and token would have independent randomness from the underlying IPE scheme. During decryption,
this would cause an issue as we would not be able to factorize the randomness (since it was sampled independently)
and thus the sum of the inner products would not cancel out when needed. We would indeed end up with something
of the form: v161 - (x1,y1)+ - + Y000 - (To, Yo ), which would not evaluate to zero when the partial inner products are
not zero (with high probability), even though the overall inner product (x,y) is itself zero. We thus need to remove
this internal randomness and replace it by a global one. O

6 Building distance hiding PSE

As mentioned in Section [2), Hamming distance can be calculated using the inner product between the two biometric
vectors. As such, we can use a range of possible inner product values as the distance threshold.

Predicate function-hiding secret key IPE [SSW09|, or IPEf sk pred, allows one to test if the inner product between

two vectors is equal to zero. By appending a value to the first vector and -1 to the second vector, we can support
equality testing for non-zero values. Generating several tokens or ciphertexts, one per distance in the range, allows
to test if the inner product is below the chosen threshold.
We show that one can use IPEg ek pred to construct PSE for Hamming distanceE At a high level, each keyword is
encoded as a {-1,1} vector and -1 is appended to it, which in turn is encrypted with IPEm sk preq. Keywords are
similarly encoded but this time a distance from the range is appended to them, and tokens generated as part of the
underlying IPEg sk pred SCheme.

Construction 1 (Proximity Searchable Encryption). Fix the security parameter A € N. Let IPEg, sk pred = (IPE.Setup,
IPE. TokGen, IPE.Encrypt, IPE.Decrypt) be a predicate function-hiding secret key IPE scheme over ZZ'H. Let x; € Zy
and X = (z1,--- ,x¢) be the list of keywords. Let F be the set of all predicates such that for any x; € X, fy(z;) =1
if the Hamming distance between x; and the query vector y € Zg is less or equal to some chosen threshold t € Z,,
fy.t(x:) = 0 otherwise. Figure @ is a proximity searchable encryption scheme for the Hamming distance.

Theorem 2 (PSE main theorem). Let IPEg, o pred = (IPE.Setup, IPE. TokGen, IPE.Encrypt, IPE.Decrypt) be an IND-
secure function-hiding inner product predicate encryption scheme over Z;‘“. Then IPSE = (PSE.Setup, PSE.Bindex,
PSE.Trpdr, PSE.Search), a secure proximity searchable encryption scheme for the Hamming distance, such that for

MSupport of addition/deletion of records seems achievable by deleting after search and inserting new ciphertexts in the database.
However this would result in additional access pattern leakage since these record would be clearly identifiable by the server.
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any PPT adversary Apsg for Expf]’ff%, there exists a PPT adversary Ajpe for ExplIP]‘\‘;:D, such that for any security

parameter X € N,
PSE IPE
AdVEPIND = AdyEPIND

Proof of Theorem[4 The correctness of the scheme follows from the correctness of the underlying IPE scheme. As-
sume there exists z; € X, i € [1,4], such that f,;(x;) = 1. That is D(y, z;) < t with D(y, z;) the Hamming distance
between vectors y and x;. Then there exists a unique tk; € @, such that b; < IPE.Decrypt(pp, tk;,ct;) and b =1
with overwhelming probability by the correctness of the IPE scheme. Now assume that for some z; € X, i € [1,/],
we have fy (x;) = 0. Then for all tk; € Q, ¢, b; < IPE.Decrypt(pp, tk;,ct;) and b; = 1 with negligible probability.
Then considering the worst case where either D(y,z,) =t or for all z; € X, f, +(x;) = 0, we have:

Pr[PSE.Search(pp, Q.1 Ix) = Jx,y.¢]
IPE.Decrypt(pp,tk;,ct;)
#(D(wi,y)=dy) }
>1—£(t+1) x negl(A).

>1—4(t+1) xPr

We now prove the security of the construction. Let Apsg be a PPT adversary for the experiment Exp?}c{,ED and Cipg
be an challenger for Exp'E\E p- We build a PPT adversary Ajpg for the experiment Exp'E\E, p as follows:

1. Apg receives pp from Cipg and forwards it to Apsg.

2. Ajpg receives two m-query histories History(o), History(l) from Apsg where History(ﬁ) = (XB) F®) for B €

{0,1}.
3. For each xi(ﬁ) € XB i [1,4], Aipe encodes it as xi(ﬂ)* € {-1,1}™ and creates the query S; = (xi(o)*H -1, xi(l)*H -1).
4. Ajpg sets S = 51,---, 5.

5. For each f;ﬁ) e FO) je[l,m]:

(a) Apg extracts a vector yj(ﬁ) S ZZ” and t € N.
(b) Apg encodes yj(ﬂ) as yj(ﬁ)* € {-1,1}" and creates D;O) = (dp,--- ,d¢) such that d, = n—2k with 0 < k < ¢t.
(¢) Ajpg creates D§O)* by reordering the elements in D§O) such that for all k € [0, ¢] and dfﬁo) € D§O)*, dg) € D](l)

we have ((Ii(o),yj(0)> . d;co)) = ((xi(l),yj(1)> Z dg)). (Ajpe can always find a permutation to make this
last condition by the admissibility requirement.)

(d) Ajpe samples a random permutation ¢; : [0,¢] — [0, ].
(e) For 0 < k <t, Ape creates yj(ﬁ)*H d,(f) with 8 € {0,1}, d,(co) € Dj(.o)* and d,(cl) € D§1). Then Ajpg computes

R = (0 )

and sets R; = (R;O), R;l)).
(f) Ape sets R= Ry, , Ry,.

6. Ajpe sends the token generation queries R and encryption queries S to Cipg and receives back a set of tokens
T®) = tkg?g, e ,tk(ﬂ) and a set of encrypted keywords C'%) = ctgﬁ), e ,ctéﬁ) such that

m,t
tkg,ﬁk) <+ IPE.TokGen(sk, yj(ﬁ)*H déﬂ))
ctgﬁ) < IPE.Encrypt(sk, l‘i(ﬂ)*H -1)

for i € [1,4], 7 € [1,m], k € [0,t] and B € {0,1}. Ajpg forwards T¥) and C®) to Apsg, respectively as the
encrypted index I®) and the list of queries Q%).

7. Ape receives 8’ € {0,1} from Apsg and returns it.
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PSE.Setup(1*) — (sk, pp):

1. Run and output (sk, pp) < IPE.Setup(1*).
PSE.Trpdr(sk, fyt) = Q.+

For 0 < 7 <t compute d; = n — 2j.

Set D = (do, ..., dy).

Sample random permutation  : [0,¢] — [0, ¢].
Compute D* = (D) = {d§,--- ,d; }.

Encode y as y * € {—1,1}".

For 0 < j <t call tk; < IPE. TokGen(sk,y *|| d}).
7. Output Qy; = (tko, - - ,tke).

A

PSE.BIndex(sk, X) — Ix:

1. For each keyword z; € X, i € {1,---,¢},
encode z;* € {—1,1}",
compute ct; < IPE.Encrypt(sk, z;*|| -1).

2. Output Ix = (cty, -+ ,cty).

PSE.Search(pp, Qy.t, Ix) = Jx g1

1. Initialize Jx , ¢ = 0.

2. For each ct; € Ix and for each tk; € Qy ¢,
call b; < IPE.Decrypt(pp, tk;, ct;).
If b; =1, add i to Jx 4 ¢, continue to ct;y;.

3. Output Jx y -

Figure 6: Construction of proximity search from IPEf ek pred-

Since the number of token generation queries, m x t, sent by Ajpg remains polynomial in the security parameter, the
advantage of Apsg is
AdvEPIND = AdyEPIND
PSE IPE

This completes the proof of Theorem [2} O

Table [5| presents the resulting efficiency of distance hiding PSE schemes based on different IPEg sk pred constructions.
This table corresponds to t + 1 tokens with all operations on dimension n + 1.

7 Implementation

This section presents an implementation and an evaluation of the PSE scheme proposed in this paper. We imple-
mented the MRProj construction described in section [5| and the resulting PSE (see section @ schemes in Python
3. These implementations can be found in a Github repository [ACD"21]. Our IPE implementations uses the
Charm [AGM™13] and FLINT [Harl0] libraries for the pairing group operations and finite field arithmetic in Z,.
For comparison purposes, we used the pairing group over the asymmetric curve MNT159, the same as in Kim et al.’s
FHIPE implementation [Lew16|. For testing with a symmetric pairing group we used SS512.

The search, encryption and token generation algorithms were parallelized. Benchmarking tests for each algorithm
were implemented and the number of random projections, the distance threshold and the input vector sizes for these
tests can vary. This allowed us to compare efficiency for different parameters and pinpoint values that yield a practical
and accurate scheme. With a number of random projections equal to 1, we obtain Setup timings and secret key size
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Underlying IPE scheme

MRProj | [BCSW19, Section 4] | [BCSW19, Section 5] [KT14] [SSW09|
Order Prime Prime | Prime Prime Composite |
Setup o((n+1)/0)® (n+1)° (n+1)° (6n + 6)° dn + 8
Blndex ln+o+1) Ln+1) £(12n + 21) 60(n+1) £(32n + 36)
Trpdr t+1)(n+o+1) t+1)(n+1) t+1)(A2n+21) | 6(t+1)(n+1) | (t+1)(24n + 40)
Search LE+1)(n+o+1) LE+1)(n+1) Lt +1)(6n+12) | 64(t+1)(n+1) £(t+1)(4n + 8)
|sk| 2((n+1)*/o+2n+0 +3) 2(n+1)° +2 24n + 42 60(n + 1)? 4n + 8
|Z| l(n+o+1) Ln+1) £(6n +12) 64(n + 1) £(2n+4)
[tky,¢] t+1)(n+o+1) t+D(n+1) t+1)(6n+12) | 6(t+1)(n+1) t+1)(2n+4)

Table 5: PSE scheme efficiency for keywords of size n depending on underlying IPEg, sk pred Scheme. Upper part of
the table shows number of group or pairing operations per function. Lower part of the table shows number of group
elements per component. The scheme of Shen, Shi, and Waters [SSW09| uses a composite order group whose order
is the product of four large primes. The number n is the length of the biometric template, o is the number of bases
in the multi random projection scheme, ¢ is the desired distance tolerance, and ¢ is the total number of records in
the database.

Time
[KLMT1g] |

MRProj w/ SS512 MRProj w/ MNT159 MRProjC RProjC
n o t | Setup | Blndex | Trpdr | Search | Setup | Blndex | Trpdr | Search | Trpdr | Search Setup
128 3 38 34 7 .8 58 75 1.5 .36 234 .01 31 4 % 10°
192 5 57 38 9 1.8 130 47 2.2 .8 495 .01 46 1.3 x 10*
256 7 76 43 1.2 3.2 228 57 2.9 1.4 850 .02 62 3.2 x 10*
384 10 | 115 73 1.7 7.4 514 94 4.4 3.1 1870 .03 92 1.1 x 10°
512 13 | 153 106 2.3 13 907 153 5.7 5.7 3282 .04 140 2.6 x 10°
768 19 | 230 169 3.4 28 2030 269 8.6 13.4 7210 .06 185 8.6 x 10°
1024 | 25 | 307 225 4.3 52 3580 268 10.8 22.4 12600 .08 241 2.0 x 10°

Table 6: Operations timing (in seconds) for different vector sizes. n is the vector length, o the number of bases used,
and t = .30 the distance tolerance. Setup and Blndex procedures for MRProj and MRProjC schemes are the same
procedures, MRProjC uses vectors whose length is 1 fewer. Setup and Blndex procedures for MRProj and MRProjC
schemes are the same procedures, MRProjC uses vectors whose length is 1 fewer. We only report these algorithms for
MRProj. Timing for MRProjC Setup is interpolated. Measured n = 10 to 240 in steps of 10 cubic fit with coefficients
y = .0032% — 57822 + 362 — 557 with R? = .996.

for RProjC. Setting the distance threshold to 0 allows us to get timings for MRProjC. We used iris readings from the
ND 0405 as input vectors to the benchmarking tests to be as realistic as possible.

7.1 Evaluation

We evaluate our implementations on a Linux server with an AMD Ryzen 9 3950X 16-Core processor and 64GB of
RAM. Remember that the preferred input vector size for correctness is 1024 (as stated in Section .

Timing We evaluate the timing efficiency of our PSE construction with and without the multi random projection
technique. When using the multi random projection technique we report on timings for both the asymmetric MNT159
curve and the symmetric SS512 curve. Table [6] reports the timings for the algorithms in the PSE scheme. RProjC
corresponds to Kim et al.’s FHIPE construction. MRProjC corresponds to the same scheme but with the multi
random projection technique applied. In the last column of the timing section of the table, we report the timing of
the Setup algorithm without this multi random projection construction.

During our tests, we noticed a jump in Setup timings when going from sub-vectors of 40 to 60 group elements,
we thus chose o values that yield sub-vectors lengths of approximately 40. We make four main observations.

1. Setup and Blndex have comparable performance for MRProj and MRProjC (the only difference is adding 1 to
underlying dimension). However, Trpdr is substantially slower for MRProj since it prepares ¢t + 1 tokens, but
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Sizes

MRProj RProjC [KLM*18]
n o |t |EncDB| |sk| |sk|
128 3 38 5.9 MB | 560 KB 1.6 MB
192 |5 | 57 | 8.9MB | 770 KB 3.6 MB
256 7 76 12 MB | 980 KB 6.4 MB
384 10 | 115 | 18 MB | 1.5 MB 14 MB
512 13 | 153 | 24 MB | 2.1 MB 26 MB
768 19 | 230 | 36 MB | 3.2 MB 57 MB
1024 | 25 | 307 | 47 MB | 4.3 MB 100 MB

Table 7: Sizes (in Megabytes/Kilobytes) for different vector sizes. n is the vector length, o the number of bases used,
and t = .30 the distance tolerance. Storage for the MRProjC Setup is interpolated. Measured n = 10 to 240 in steps
of 10 quadratic fit with coefficients y = 9622 4+ 192z + 573 with R? = 1.

performance remains reasonable.

2. Distance hiding has a large impact on the Search algorithm. MRProjC Search takes 4 minutes, MRProj Search
takes 3.5 hours for the MNT159 curve and 1 hour for the SS512 curve. All approaches scan the whole database
which is problematic for large datasets. We discuss possible solutions in Section [9]

3. The use of a symmetric pairing dramatically improves search time by roughly a factor of between 3 and 4 across
testing parameters. However, it does increase the time to generate the trapdoor by roughly a factor of 2.

4. Finally, this table shows that Setup without multi random projection is completely impractical for large input
vector sizes. In particular, for vectors of size 1024, Setup takes approximately 23 days. In comparison, Setup
using multi random projection takes less than five minutes for input vectors of size 1024. Our multi random
projection construction thus allows to use a large enough input vector size to maintain a high correctness while
increasing the efficiency of the setup algorithm. This is explained by the fact that the Setup algorithm’s running
time is dominated by the matrix inversion. It is then more efficient to perform multiple inversions of small
matrices than a single inversion of a bigger one.

Storage Table [7] reports on the sizes of the encrypted database and secret key. We evaluate the impact of the
multi random projection PSE construction on storage efficiency. As can be seen on Table [7] the impact is low for
small input vectors, however, it makes a big difference for larger ones. Indeed, when the size of the [KLM™ 18| grows
quadratically with the vector size, the size of the key generated with the multi random projection technique grows
with (n/o)? * ¢ &~ n?/o. For vectors of size 1024, we consider o = 25 and the secret key generated with the multi
random projection technique is 23.2 times smaller than the single basis key, confirming the asymptotic analysis.

8 Multi Random Projection applied to the OT12 IPE scheme [OT12,
Section 4]

To show the generality of our multi random projection technique we apply it to a second IPE scheme of Okamoto and
Takashima [OT12, Section 4]. We note that this scheme is a public key scheme that is adaptively attribute-hiding
against chosen plaintext attacks under the (decisional linear) DLIN assumption. This corresponds to three changes
to Definition [4] and Figure

1. The adversary no longer specifies pairs yj(o), §1)

2. The adversary can adaptively choose ¥;,1 after receiving back tk;,

, only a single value y;,
3. There is only a single challenge plaintext z(?), z(1) because the adversary can encrypt values on their own.

Since this scheme is public key and is not function hiding it cannot be directly used to instantiate PSE. We use it as
a second example of the applicability of the transform.
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8.1 Additional notation and definitions

Let F, denote a finite field of order ¢ and GL(n,F,) be the general linear group of degree n over F,. Let the vectors
e; be defined as e; = (0°71,1,0"%) for 1 < i < n. Let V be a vector space, to differentiate its elements from other
values we will use bold letters. Let b; € V, 1 < ¢ < n, then we denote the subspace generated by these vectors as
span(by,---,b,) C V. Consider the bases B = (by,---,b,) and B* = (b}, -- ,b}), and the vectors x and v then

r¥n

(x)g =Y., x;b; and (v)g~ = Y ., v;b}. Note that we will consider bases over both F, and G,.

Definition 10 (Symmetric Bilinear Group). Suppose G, G are an additive and multiplicative groups (respectively)
of prime order q with generators g € G, and gr € Gr respectively. The group G uses additive notation, and the
group Gp uses multiplicative notation. Let e : G x G — Gr be a non-degenerate (i.e. e(g,g) # 1) bilinear pairing
operation such that for all x,y € Zq, e(x(g9),y(g)) = e(g, g)*¥. Assume the group operations in G, Gr and the pairing
operation e are efficiently computable, then (G, Gr, g,e) defines a symmetric bilinear group. Let Gy, be an algorithm
that takes input 1* and outputs a description of bilinear pairing groups (q,G,Gr, g, e) with security parameter .

We use the symmetric version of dual pairing vector spaces |OT15] where the pairing is based on symmetric
bilinear groups defined in Definition

Definition 11 (Dual Pairing Vector Spaces). Let (¢,G,Gr,g,eq) be the symmetric bilinear pairing groups, then
N

———
Dual Pairing Vector Spaces (DVPS) is a tuple of prime q, N-dimensional vector space V.= G x ... x G over Fy,
cyclic group G of order q, canonical basis A defined as:

A= (ay,...,ay), a;:= (Oi’l,g,ON*i)

and pairing e : G x G — Gp. The pairing e is defined with respect to ey, from the symmetric bilinear pairing group
e(z,y) = Hfil evg(gis hi) € Gr where x = (g1,...,9n) €V and y = (hy,...,hn) € V. This pairing is nondegenerate
bilinear, i.e. e(sz,ty) = e(x,y)*t and if e(z,y) = 1 for ally € V then x = ON. For all i and j, e(a;,a;) = e(g, g)*
where §; j =1 if i = j and 0 otherwise, and e(g,9) #1 € Gr.

DPYVS also has a linear transformation (“canonical maps”) ¢; ; on'V such that ¢; j(a;) = a; and ¢; j(ar) =0 if
k # j. We define ¢; j(x) = (Oifl,gj,ON*i) where x = (g1,...,9n). We then define the dual-pairing vector space
generator as Ggpys Wwhich takes input 1* (A€eN) and N € N:

1. Runs (q,G,Gr, g, €) < Gypg (1)‘),
2. Compute AV,
3. Returning (¢,G,Gr,g,e,V, A).

Lemma 4. Let (¢,G,Gr,g,e,V,A) < Ggpys be a (DPVS) generator as described above. We can efficiently sample

a random linear transformation W by sampling random coefficients {r; ;}i j=1.... n & GL(n,F,) and setting
n,n
W= riji;.
i,j=1
The matriz R := (r; ;) and R* := ((r; ;)™ )T then defines the adjoint action on' V and we can define (W—1)T as
N,N
(W_I)T = Z 7";]'¢i’j
i,j=1

such that for any x,y € V, we have
e(W(x), W HT(y) = ez, y).

Assumption 1 (Decisional Linear Assumption). Let A € N and 8 € {0,1}. We define a generator for the Decisional
Linear Assumption (DLIN) problem, QEL’N, which on input 1*:

1. Samples paramg = (¢,G,Gr, g, ) <+ Gppg(11).
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2. Samples k,0,§,0 & F,.

3. Sets YO = (§+0)g and YV & .
4. Returns (paramg, g, kg, 089, org, Y P)).

The DLIN problem then consists in guessing 3 given (paramg, £g, kg, 6¢g, okg, Y #)) « QEL’N(I/\), The decisional
linear assumption is that for any PPT distinguisher D for the DLIN problem the advantage is:

AdvBEN()) = \ Pr[D(1*, X) = 1| X « GPN(MN)) — Pr[D(1*, X) = 1| X « GPEN(IM)] | = negl())

8.2 Construction

This construction is an adaptation of Okamoto and Takashima’s IPE scheme |[OT12, Section 4] (setting a = 1

in Figure [7| yields the original scheme). As in the original construction, we first need to describe a random dual

orthonormal bases generator, QL'EE*, which will be called in the main construction’s Setup algorithm to generate the

master keys. This is different from the previous generator as it generates « sets of bases.

Construction 2 (Dual Orthonormal Bases Generator). Let Ggpvs be a symmetric dual-pairing vector space generator
as described in Definition[I1. Let A\, N, € N, where X\ is the security parameter, N is the dimension of the vector

space and « is the number of dual orthonormal bases pairs to generate. Then on inputs 1, N and o, the orthonormal

bases generator G'VE works as follows:

1. Sample (q,G,Gr,g,e,V,A) < Gapus(1*, N).
2. Sample a non-zero element of the field, ¥ & Fy.
3. Set gr = e(g,9)? and paramy = (¢,V,Gr, A, e, gr).
4. For each basis index 1 < /{ < «:
(a) Sample a random map, as described in Lemma Xo = (xe,i.5) & GL(N,F,) and set (9¢,5) = - (XF) ™1,
where 1 <1i,j5 < N.
(b) For1 <i<N, set by; = Z;\f:l Xt - a; and by, = Zjvzl Ve,ij - aj;, where (a1,--- ,an) = A.
(c) Set By = (b&l, S ,b@,N) and B} = (bzl’ cee ,sz).
5. Return (paramy, {B¢, B} }i=1,... o).

In this construction x will always denote the attribute, and v will denote the predicate. As in the original scheme,
we assume that the first element of x is nonzero. Furthermore, note above we’ve used inner product encryption with
no associated plaintext, here we include the value m which can be decrypted if the inner product is 0 and is hidden
otherwise.

Construction 3. Let A € N be the security parameter and n,« € N such that n/a € N and define N = 4n/a + 2.
Let x,v € Fyy \ {0} and such that the first element of x is nonzero. Define the algorithms as in Figure @

Correctness If the inner product of our attribute vector and our predicate vector is zero (in each basis), (z,v) =

> {ze,ve) =0, then by the properties of our group structures we cancel terms,

H e(ce, ko) = 9;27:1 Cotwo(zeve)) _ g;E?ZI Ce) ’
/=1

and finally conclude m’ = m, therefore our construction is correct when the inner product is zero.
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Setup(1*,n, ):

1. Sample (paramy, B,B*) < GIPE(1* ),
2. For 1 </ < a, set

BE = (bf,07 T 7bl,n/a7 bl,N71)>
Bi = (b0, b n/ar
bz?m/aﬂv e ,bZNA))-

3. pk (1%, paramy, {By}i=1.... o) and sk
{BZ}Z=1,~~,a-

TokGen(pk, sk, v):

1. Sample o <

2. Divide v in a smaller vectors of length n/a, such
that v = (v1, -+, Uq)-
3. For 1 < /¢ < o, sample 7 & IF;’/O‘ and set
1 n/a 2n/a n/a 1
AN AN T AN
ké ::( 1 ,UU@,O,"' a07 Ne 0 )BZ
4. tky = (k1,...,kq)

Encrypt(pk, m, x):

1. Sample w < F,

2. Divide x in « smaller vectors of length n/«, such
that © = (z1, -+ ,Za)-

3. For 1 < ¢ < a, sample (g, ¢ & Fy,

4. Set
1 n/a 3n/o 1
AR ~~
Cy = ( CZ ,UJ(EE,O,"' aoa Pe )B(
(£)
Co =M " gt
5. Return ct, := (co, €1, -+, Cq)

Decrypt(pk, cty, sky) :

Return m/ = [],_, e(ce, ke) / o

Figure 7: Description of modified IPE algorithms.

Component

Number of Group Elements

Secret Key

8n?/a + 8n + 2

Public Key

4n? /o + 10n + 4o

Ciphertext

In + 2«

Token

4n + 2«

Table 8: Sizes in Group Elements of Each Component of Revised Scheme. The value « is how many separate bases
are used. Considering o = 1 gives sizes for the original scheme of Okamoto and Takashima. Setting o = 2(n) makes

all components a linear number of group elements.

Key Reduction The key reduction is summarized in Table[8] In the Okamoto and Takashima scheme the DPVSs
are over vectors of dimension 4n + 2 with the public key being n 4 2 basis vectors and the secret key being 2n + 1.
Ciphertexts and tokens are a single vector. By splitting into o bases we introduce an o overhead on each object
while reducing the dimension to 4n/a + 2 and also reducing the number of basis vectors released in the public and

secret key to 2n/a + 1 and n/a + 2 respectively.

Security The proposed IPE scheme achieves the same security as the original construction [OT12, Theorem 1].

Theorem 3. The IPE construction in Figure [} with « = 1 is adaptively attribute-hiding against chosen plaintext
attacks under the DLIN assumption, such that for any PPT adversary A there exists PPT distinguishers

Do-1,D1-1, Do-2-n, D1-2-h-1, D1-2-n-2
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such that for any security parameter A € N

AGEEN) < AR + AR

Dl -2-h-2

7 (AdB () + ADBEY () + AdBY (V)
h=1

28v + 11
_1’_7
q

where v € N is the mazximum number of key queries A can makeE

This proof (like the proofs we build from) involve a system of games where each game changes a single element of a
vector and is shown to be indistinguishable from the last game. These indistinguishability statements are made from
a system of problems that stem from the decision linear assumption. We modify the original problems of Okamoto
and Takashima [OT12| to include multiple bases of the DPVS. We can maintain security while spreading material
across bases, because the public portions are incomplete and the bases are sampled independently, making it difficult
to create meaningful relationships between bases. Using the same structure for our system of games and problems
(but now including security with multiple bases) we show that our scheme matches the security of Okamoto and
Takashima [OT12].

Proof of Theorem[3 For this theorem’s proof we refer the reader to Okamoto and Takashima’s proof of Theo-
rem 1 [OT12, Section 4.3.1]. Notice that in this version Games 0',1,2-h-1,---,2-h-4,3 are replaced by Games
0*,1*,2-h-1*,-- -, 2-h-4*, 3* and the dimension of the hidden subspaces is 2n/« instead of 2n. O

Lemma 5. For any PPT adversary A there exists PPT distinguishers Dy, Da-p-1, Da-p-2 such that for any security
parameter A € N in Game 0%,

22v 4+ 6
q

D2-h-2

Pr[A wins | t = 1] — % < AdDN )+ (Advgg’_’:_l(x) + AdvBLN (A)) +
h=1

where v € N is the mazimum number of key queries A can makem

Proof of Lemma[3 For a detailed high level overview of the proof, we refer the reader to Okamoto and Takashima’s
work |[OT12, Section 4.3.2]. The games and the problems described in their proofs had to be updated to fit our new
construction, but as in the original work, the goal is to show that indistinguishably of the games reduces to the DLIN
assumption through a hierarchy of Problems. In the rest of this proof, we will describe the updated version of the
needed games and problems. The tree of the reductions, from the games to the DLIN assumption, can be found in
Figure [§

We define the following 4v + 3 updated games. In each game we will only describe the component that changed
compared to the previous game (either the keys or the ciphertexts). The boxed parts in keys and ciphertexts indicate
parts that have changed compared to the previous game.

Game 0* : This game is the same as the game described in the original proof [OT12, Definition 5] except that

before the setup phase the bit ¢ & {0,1} is sampled and the game is aborted when ¢ # s, where s = 1 when
m(® = m) and s = 0 otherwise. For this proof we only consider the case where t = 1 thus m(® = m®) and ¢y is
independent from 3. The keys and ciphertexts are built as in our construction. The answer to a key query for some
vector v = (v1,- -+ ,Vq) I8

ke = (1,004,070 1,,0)p:
where 1 < (< a, o & F, and 7, & FZ/Q. The challenge ciphertexts for attribute z(#) = (ml(ﬁ), e ,xogﬁ)) and
message mP) is

cr = (CZ; wmz(ﬁ)7 On/oz7 On/oc’ On/a7 wf)Be

151n the original paper the constant was (29v + 17)/q instead of (28v + 11)/q but the proof still holds despite this small difference.
16Tn the original paper the constant was (23v + 12)/q instead of (22v + 6)/q but the proof still holds despite this small difference.

31



Game Game Game Game Game Game Game Game Game Game Game

0* 1* 2-1-1* 2-1-2% 2-1-3* 2-1-4* 2-v-1% 2-v-2% 2-y-3* 2-v-4* 3*
Type 1 Type 2 T Type 1 Type 2 T Type 3
Basic Problem 3* Basic Problem 3*
Basic Problem 1* Basic Problem 2* Basic Problem 2*

Basic Problem 0*

DLIN

Figure 8: Structure of reductions.

and

(£)

co = m® g

where 1 </ < a, 8 & {0,1} and w, (¢, e & F,.

Game 1* : This game is the same as Game 0* except that the challenge ciphertexts are now
co = (wamg(ﬁ), Zxé’ﬁl) , 0(n/o¢)-1 70n/(x70n/a7cpe)Bk

where xﬁﬁ 1) # 0 is the first coordinate of xé(ﬁ ), & F, and all other values are generated as in Game 0*.

Game 2-h-1* : For 1 < h < v, each game is the same as Game 2-(h-1)-4* (here Game 2-0-4* is Game 1*), except
that the challenge ciphertexts are now

co = (Céawmg(ﬁ); w’:vé(ﬁ) , ngg(o) +WI1/£UE(1) 70n/a790£)B14

where W', w{/, w} & F, and all other values are generated as Game 2-(h-1)-4*.

Game 2-h-2* : For 1 < h < v, each game is the same as Game 2-h-1*, except that the ht" key query for v is now

ke = (1 ove, [ o'v | 07 0, 0)s;

where o/ & F, and all other values are generated as in Game 2-h-1*.
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Game 2-h-3* : TFor 1 < h < v, each game is the same as Game 2-h-2*, except that the challenge ciphertexts are
now

cr = (Céawxg(ﬁ)a wéxe(o) + wllxe(l) 7w6,:17€(0) + wlllxe(l)70n/a’ o

0)B,

where w(), w} & F, and all other values are gencrated as Game 2-h-2*.

Game 2-h-4* : For 1 < h < v, each game is the same as Game 2-h-3*, except that the h'" key query for v is now

k@ = (l,O"Ug, On/aa(j”v@ ’TM’O)BE

where o' & F, and all other values are generated as in Game 2-h-3*.

Game 3* : The game is the same as Game 2-v-2%, except that the challenge ciphertexts are now

= (Q, womé(o) + wlxé(l) ,w{)xz(o) + w'lcce( ) , Wo xe(o) + w’l’xe(l),()”/o‘, w)B
£

where wq, wy & F, and all other values are generated as Game 2-h-2*. Notice that with this modification, ¢, becomes
independent from the bit 3 & {0,1}.

Let t = 1, we define the advantage of a PPT machine A in Game g* as Advfj'*)()\), where g =0,1,2-h-1,--- ,2-h-4, 3.
In the following proofs, we will calculate the difference of advantages for each pair of neighboring games. As in the
original proof |[OT12, Section 4.3.2] we then obtain

[ AdviZT ) [ < [ AdvT () = AdvG () [+ [ AdvE™ ™ () — AT () [+ Adv (V)

v 4
+ Z ( | Advf_h_4*)()\) _ Advg_h_l*)()\) | + Z| A(Z—h-(ifl)*)(/\) _ A(2-h—i*)(/\) ’ )
h=1

=2

~.

* 10 1
< AV () + Z (A0 O +AET () + ”q+
22v 46
< AdVIN(N) + Z (AN () +AdBEN () ) + ”q

In the above, bounds on Advbpl (M), Adv%f_*h_1 (M) and Adv;’)”fh_l(}\) are described in Lemmas (7} [8 and (9| respectively.
This hybrid proof relies on both computational and information theoretical problems. The computational problems
are the following:

Basic problem 0* embeds a DLIN instance in the smallest and simplest dual pairing vector space possible. The
resulting orthonormal bases are 3x3 matrices and are built using the random elements £ and x from the DLIN
instance. The game is then to distinguish between a vector in which the middle element is zero and a vector
in which the middle element is random.

Basic problem 1* consists in distinguishing between two challenge ciphertexts. One where the third slot contains
zeros, as in the actual construction, and the second where the third slot contains a randomized copy of the
second slot (i.e. the vector x).

Basic problem 2* consists in distinguishing between two challenge keys. One where the third slot contains zeros,
as in the actual construction, and the second where the third slot contains a randomized copy of the second
slot (i.e. the vector v).

Basic problem 3* consists in distinguishing between two challenge keys. One where the randomized vector is in
the third slot and the other where it is in the fourth slot. The second slot being all zeros in both cases.
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The information theoretical problems are the following:

Type 1 is a linear transformation inside a hidden subspace of a ciphertext. Lemma 7 [OT12| states that the
advantage of a PPT adversary A in a Type 1 distinguishing game is

[Adv 5 () — AV ()|

IA
SN

Type 2 is a linear transformation inside a hidden subspace of a ciphertext where the corresponding token is pre-
served. Lemma 9 [OT12| states that the advantage of a PPT adversary A in a Type 2 distinguishing game
is

h-2)x 8
AV 27 (A) — AV (V)| < =
q

Type 3 is a linear transformation across both hidden and partially public subspaces. Lemma 11 [OT12] states that
the advantage of a PPT adversary A in a Type 3 distinguishing game is

AT () = AP < =

»Q\»—A

We now give a detailed description of the needed computational problems and their respective proofs.

8.3 Basic Problem 0*
This is a modified version of Basic Problem 0 |OT10, Definition 18]. Let A\, € N and 8 € {0,1}. We define a
Basic Problem 0* generator, ggpo*, which on inputs 1* and a:

1. Samples k,&, p, T & Fy and §,0,w & F,.

2. Samples (¢, G, Gr,g,e,V,A) < Gyps and sets pp = (¢, V,Gr, A, e, gr) where gr = e(g, g)"*

3. For1</<a:

(a) Samples a random transformation, as described in Lemma Xo = (xe1,Xe.2,X0,3) & GL(3,F;) and sets
Ve, ve2,ves) = (X)) ™!
(b) Computes by; = /{ZJ 1 Xe,i,ja; and sets B, = (br1,be3).

)
(c) Computes b ; = SZ] 1 Veyija; and sets By = (b7 1, b7 5,b] 3).
(d) Set fr = (w,7,0)B,.
() Sets y” = (5,0,0)8; and y;") = (3,p,0)p;

4. Returns (ppa {BlaBZ>ygB af@}(:l,---,av“ga€g75€g)'

Basic Problem 0* consists in guessing 8 given

(PP, {Be, By, . fidet, o o k9. £9,069) + GO (17, a).

We define the advantage of a PPT machine Appo+ for Basic Problem 0* as
Pr{Appo- (1%, X) = 1| X + G&P° (1%, )] — Pr[dppo- (11, X) = 1| X + G2 (1}, a))]

Lemma 6. For any PPT adversary Appo- for Basic Problem 0%, there exists a PPT distinguisher D for the DLIN
problem such that for any security parameter A € N,

Adv ’JP" (V) < AdBIN(N) + =

Proof. Let Appo+ be an adversary for Basic Problem 0*. We can then build D, a distinguisher for the DLIN assump-
tion, as follows:
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1. D receives a DLIN instance (paramg,g, £g, kg, &g, 0rg, Y #?)), where paramg = (¢,G,Gr,g,e) and Y9 is
either YO = (64 0)g or YV = 4g e

2. D samples (¢,V,Gr, A e) & Gapvs(17, 3, paramg;).

3. D computes gr = e(kg,£g) = e(g,9)"* and sets pp = (¢, V,Gr, A, e, g7).

4. D considerﬂ the following basis vectors
Uy = (K7O’O)A7 Uz = (‘Kw‘f,ﬁg)A7 Uz = (0,§,O)A

such that U = (w1, us, u3) is a basis of V. Notice that from the given DLIN instance, D can efficiently compute
Uy, us.

5. Similarly D considers
IU’T = (6707 1)Aa ’U,; = (0707 1)A7 ’U,; = (Oaﬁy 1)A

such that U* = (u], ul, ul) is a basis of V. Notice that from the given DLIN instance, D can efficiently compute
uj, us, uj.

6. D samples 7, ¢ & F, such that n # 0 and sets

v = (pg,-19,nkg) = (¢,-1, 1K) A

and
w'? = (5¢g,0rg9,Y?))

7. D generates o random linear transformations Wi, -+, W, on V, as shown in Lemma [4]
8 Forl</i<a:
(a) D calculates
by = We(u;) for i = 1,3,
by, = (W, ) (u)) for i =1,2,3
and sets By = (by,1,be3) and B} = (b}, b ,, b} 3)
(b) D sets f; = Wi(v) and y\» = (W, HT (w®).

9. D sends (pp, {Eg,B’lf,yé’B), fole=1,- o, K9,€9,06g) to Appo- and returns whatever Apyo+ sends back.

For the moment assume that 1 and k are all now zero, we will later account for the probability that each could be

0. Define 7 </ £ 1n, since n # 0 it holds that 7 # 0. Similarly, define w o + k1, we have

Je= Wl(v) = WZ((@?'U»UH)A) = Wl(((w - T)Hv'Tfa TH{)A)
=W, (wul + TUQ) = W[((wﬂ', O)U) = (w,7,0)B,

17In the next two steps D considers basis vectors of the matrices IT, IT*,

K I3 1
I=|-x -£€ k&) II*= 1
13 1 k1

and observe that TI(IT*)T = k&I3. D cannot efficiently compute II.
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When 8 =0 and Y = (§ + ¢)g we have
0 -

When 8 =1 and Y = t)g where ¢ < F,, if we define p = ¢ — & — o, we have

s = (W, T (689, ok, vg)
= (W, )" (6¢g,0k9, (p+ 0+ 0)g)
w, 1)T((5§,0/<; p+0+0)a)
= (W, HT (6uf + pub + oul)
=W, ' T((5 ps0)u )
= (4, p, U)B;

Since the £ linear maps W, are sampled uniformly and independently, the distribution of the bases B, and Bj is the

same as if they had been generated using pro Then for the distributions of fy, yéﬁ ) to match the ones of the inputs
expected by A, we need k, p,£ # 0. This is true except with probability 2/¢ when § = 0, and with probability 3/¢
when S = 1. We then have:

. 5
AdVEY (V) < AdvR™(A) + p

8.4 Basic Problem 1*

This is a modified version of Problem 1 |[OT12, Definition 8]. Let A\,o,n € N, 8 € {0,1}, and set N = 4n/a + 2.
We define a Basic Problem 1* generator, Qgpl , which on inputs 1*, a and n:

1. Samples w, z & F,.

2. Samples (paramy, {B, B} }i—1 ... o) < GHE (1}, N).

3. For1 </<a:
(a) Sets Bj = (bj 4, 100 /00 Visnjasr VN 1)
(b) Samples v, & F,.
(c) Sets g“ = (0,wey, 0™/ 0™/ 0"/ ~,)p, and

gé 1) = (0,we, zeq, On/aa On/a»’YE)Be'
(d) For 2 <i<n/a, sets g¢; = wby;.

4. Return .
(paramVa {BZ, Bza géﬁ)v {gz,i}i:Q,‘.. ,n/a}le,“' 704)'

Then Basic Problem 1* consists in guessing § given
(paramV7 {B€7 Bza gé,ﬁl)a {gf,i}i:z-” 7n/a}f=1,~ ) — gbpl ( A7 n, O[).
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We define the advantage of a PPT machine App+ for Basic Problem 1* as
Advi{’bt; (A) = | Pridpp-(1%, X) = 1| X < G2PY (1%, 1, )] — Pr[Appr- (1%, X) = 1| X + G (1%, n, )]

Lemma 7. For any PPT adversary Appy< for Basic Problem 1%, there exists a PPT distinguisher D for the DLIN
problem such that for any security parameter A € N,

AL (N) < AT, (1) < AdBION + 2,

Proof of Lemma[7 Let Appi+ be an arbitrary adversary for Basic Problem 1*. Then we can build Apgo-, an adversary
for Basic Problem 0* as follows:

1. Receive a Basic Problem 0* instance
(pp7 {Bng,ye .ff}é 1,---,as KRG, 597559) (_gbpo ( ,Oé)-

2. Extract gr and paramg(q, G,Gr, g, e) from pp and run
((J7 Ga GT? g,¢€, V» A) — gdPVS(l)\a Na paramG)
Sets paramy = (¢, V,Gr, A, e, g7).
3. Forl1</<a:
(a) Sample a random linear transformation W, on V,
$
W@Z(’w@h . ng)%GL(NIF )
(b) Compute g(ﬁ) We(0,9®), 0V=4). (Recall that y® € G*.)
(c) For 2 <i < n, compute g,; = W,(0%,5¢g,0V~471).
(d) Compute:
dey = We(0,b] 1,0V ),
d@,n/oﬂ»l Z(O bé 2;ON 4)
do v = Wy(0,b} 5,071,
{de; = e(01+17§970N ) }izo,2<i<n/a
W (0

{dei = 690N T T jara<icn -1

(e) Consider the following vectors ( dj , Jat+1 18 not efficiently computable)

d[l
Zn/a+1 - Wz_l T 0 bé 270N 4)

(W, HT(0,bg,1,07 %),
=W, ) (
d; v = (W, H7(0,b3,08 %),
W) (
=W, ) (

{d;; = (W, )T (0™ kg, 08" ) }io 2<i<n/a

{dé i Wzil r 0l7 ngoN_i_l)}n/a+2§i§N71~
(f) Apr* sets Dy = (dZ,Oa T 7dZ,N) and ]A)z = (dZM e adzn/av leSn/a-&-l’ T 7dZN)’

4. Send (paramy, {Dy, f)z,géﬁ), {ge,iti=1, n}te=1,...a) to App1= and output the response bit.
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From B, = (br1,be3) and g, Appo+ is only able to compute d;,; fori=0,-- ,n/a,nf/a+2--- N. From B* =
(671,07 9, b 3) and kg, Appo- is able to compute dy; for i = 0,--- ,N. Then for 1 < ¢ < o, Dy and Dj are dual

orthonormal bases. Then when we define
def def def
w =0,y = 0,2 = p,

we have

gé 1) - (07 wer, On/av 0n/a7 V)DZ

gé 1) - (vaela Z€1, On/a”y>D’f

and for 2 < i < n,g;; = wdy,;. We then have Advbpl (V)< Advbpo ~(\) < AVEIN(N) +5/4.

Linear Algebra In the below we show that the linear system is properly prepared. Without loss of generality
consider o = 1. Then from BP0*, we have:

uj = (£,0,1)a = (£9,0,9)
= (Oa 07 1)A = (Oa 0,9)
uz = (0,r,1)a = (0,K9,9)

The matrix (X 17 (from Basic Problem 0*) is a random linear transformation (i.e. a random 3 x 3 matrix):

T11 Ti1,2 T1,3
X*l T P
( ) =221 T22 T23
3,1 X322 X3,3.

As a result for B* = (b3, b3, b3) :

by = (X HT(u}) = (X717 (¢9,0,9)
((581 1§+ 213)9, (2,18 + 72,3)9, (3,16 + 23 3)9)
= (

X7 (u3)
= (X717(0,0,9)

r1,39,7239,T3 39)
by = (X" (u3)
= (X717(0,rg,9)

(X126 +21,3)9, (T2,25 + 223)9, (T3,25 + T3 3)9)

From BP1* we have the random linear transformation (i.e. random N x N matrix) W:

w11 o W1N

’

WN,1 - WN,N
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and we obtain D = (dg, -+ ,dn_1) as follows:

dj = W(0j+1,€g’ 0N_j_2) = (w17j+2§ga e 7wN7j+2€g)a for .7 € {O? 2,3, ....,’n/Oé},
d; = W(0,b;,0N %) = W(O, (r11€ +213)9, (22,16 + 22.3)9, (v31€ + 3,3)9, 0N_4)

= ((wi,zzl,l +w; 3721 + Wi 423,1)89 + (wi 21,3 + Wi 3723 + wz‘,413,3)9) N
=1,

dujasr = W(0,635,087) = W (0,21,59, 2,59, 739,07 )

= ((wi72$1,3 + w; 3T2,3 + wi74$3,3)9> -
i

=1,

d; = W(0/,b3,0VN 771 = (wl,j+1€ga e ,wN,ijg),
forje {n/a+2,--- ,N -1}
dy_1=W(0,b5,0N %) = W(o, (z12K +213)9, (T2,2K + 22.3)g, (T32K + 23 3)9, ON*“)

N

= ((wi,2$1,2 + wi 32,2 + Wi ax32)kg + (Wi 2%1,3 + Wi 3x23 + wz‘,4$3,3)9) N
=1,

Similarly, from BP0* we have:

y(O) =(6,0,0)p- = ((mi)lf +2,3)09 + (z; 2k + ZEi’g)O‘g) 103’

y = (6,p,0)8- = ((fEi,lf +2i,3)09 + p xi3g + (Ti2k + $¢,3)09) 1os

From BP1* we have:
g = W(0,5, 0"
= W(O, (x11€ + 21,3)0G + (2126 + 21,3)09, (€218 + 2,.3)09 + (X225 + T2,3)0g,
(23,16 +233)09 + (32K + 23 3)09, 0N74>
= ((wi,2331,1 + w; 3%2.1 + W; 43,1)089 + (Wi 271 3 + Wi 3T2,3 + W, 4T3,3)0g
+ (wi2x1,2 + W; 3T2,2 + Wi 423.2)0kg + (Wi 2213 + W; 323 + wi,4$3,3)09>i:1)m N
and
gD = W (0,y™M, 0N )
= W(07 (1,16 + 11,3)0g + (71,26 + 21,3)0g, (221§ + 723)09 + (T226 + 22,3)09,
(x3,1€ + x3,3)09 + (T3,25 + 23.3)09, ON*4>
= ((wi,2$1,1 + w; 3%2,1 + Wi 423,1)0Eg + (Wi 2%1,3 + Wi 3T2 3 + Wi 43,3)00

+ (wi2x1,2 + W; 3022 + Wi 423,2)0kg + (Wi 2213 + W; 323 + wi,4$3,3)09> N
=1,
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Notice that for w < 5, 2 def p and v def .

(0,wey, 0%, 0™, 4)p = (0,8,0"*"1 0" 0", 0)p
= 5d2 + O'dN
= ((wi,2$1,1 + w; 321 + w4 4%31)0Eg
+ (wi2x1,3 + W; 3T2,3 + W; 423.3)09
+ (wi,2%1,2 + Wi 3%2,2 + Wi 4T32)0KY
+ (wi 21,3 + w3223 + wi,4$373)09)

gf?

i=1,- N

(07 wey, €y, On7 7)D = (Oa 67 On/a_la Ps On/a_la On/o{a U)D
= d0dy + pdn/a+l +ody

= ((’wi,2$1,1 + w; 3x2,1 + w; 4x31)0Eg
+ (wi 271,53 + W; 3T2,3 + Wi 4%3,3)00

+ (wi,2%1,2 + Wi 3%2.2 + W; 4T3,2)0Kg
+ (wi2x1,3 + wizr23 + w¢,4$3,3)09>

= g§1)

i=1,- N

This completes the proof of Lemma [7}

8.5 Basic Problem 2%*
This is a modified version of Problem 2 [OT12, Definition 9]. Let A,a,n € Nand 5 € {0,1} and set N = 4n/a+ 2.

We define a Basic Problem 2* generator, ggPQ* (1, o, n):
1. Sample 6, 6y, T, w, o & Fy.
2. Sample (paramy, {B¢, B} }i=1.... o) « GRE (11, N).

3. For1 </ < set .
B, = (bf,Oa T abl,n/aa b€73n/a+1 e 7b€,N)~

4. For1</{<a,forl1 <i<n/a:

(a) Set hg?i) = (0, e;, 0™, 0"/ 5ye;,0)m, and
hé,ll) = (0, §ei, TE;, On/a, (5061', O)Bz .
(b) Set g¢; = (0,we;, oe;, 0"/, 0™ 0)g,.

5. Return R
(paramV7 {va Bza {hgi)a g@,i}’i:Lv-- ,n/a}€:1,~~~ ,Ol)'

Basic Problem 2* is to guess § given

(paramV7 {Bfa BZ? {héi)a gf,i}i:l,m 7n/o¢}€:1,~~ ,a) — ggpz (1)\3

n,q).
We define the advantage of a PPT machine Appo+ for Basic Problem 2* as

AdVE® (A) = | Prldupo (1%, X) = 1| X = G (14,1, )] = Prldpgo- (1%, X) = 1| X « Gi* (1%, n, )]
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Lemma 8. Let A € N be a security parameter. For any PPT adversary Appo+ for Basic Problem 2% there exists a
PPT adversary Appo+ for Basic Problem 0% and a PPT distinguisher D for the DLIN problem such that,

AdSEZ (A) = Adv? (\) < AdvpM(\) + g

Proof of Lemma[8 Let Appo+ be an arbitrary adversary for Basic Problem 2*. Then we can build Apgo-, an adversary
for Basic Problem 0* as follows:

1. Receive a Basic Problem 0* instance
(pp7 {Bb BZ) yéﬁ)7 f@}Z:L-” s kY, fga 669) — ggpo (IA? Oé).
2. Extract g7 and paramg(q, G, Gz, G,e) from pp, run (q,V,Gr, A e) < Gaps(1*, N, paramg). Set paramy =
(q7V7 GT7 Aa €, gT)
3. For1</<a:

(a) Sample a random linear transformation Wy = (we1,- -+ ,we,N) & GL(N,F,).

(b) For 1 <4 < n/a, compute _ _
guvi = WK(Oa 03(171)7 f@a 03(’”‘71)5 0)

(¢) For 1 <i < n/a, compute
hgii) _ (Wefl)T(()?03(171)7y§5),03(N71)’0).

(d) Compute d¢o = Wi(rkg,0N71) and dp y = W, (0N 71, kg).
(e) For 1 <i<n/aand 1< j <3, compute
dpm(i-1)4i = We(0,0°071 by 5, 0079, 0).
(f) Compute d;,= (W;HT(€g,0N~1) and d; y = (W HT(N=1 ¢g).
(g) For 1 <i<n/aand 1< j <3, compute

dz,n(j—l)-l-i = (Wf_l)T(Oa 03(7;71)3 szv 03(7171')7 O)

(h) Sets D} = (dj o, ,dj ) and Dy = (dgo,+ , dpnjas e2njatt - den)-

4. Send R
(paramV7 {D27 Df? {hgé)7gl,i}i:1,-~ ,n/a}l:l,m ,a)

to -Abp2* .

5. Return ' from Appop-.

From B, = (br,1,be3) and £g, Appo+ is able to compute d;; for j =0,--- ,n/a,2n/a+1,--- ,N. Similarly, from
B* = (b} ,,b}5,b; 3) and kg, Appo+ can compute dy ; for j = 0,--- ,N. Then for 1 </ < a, Dy and Dj are dual
orthonormal bases. Then we have for 1 <i <n/a:
hy) = (0,0e;,0™*,0" oe;, 005
hg,lz) = (07 56i7 PEi, On/a7 g€, O)ik)g
gei = (0,0.)62',7'61',0”/&, 0n/a70)De‘

e

We then have
Ad bp2” A) = Ad bp0” A < Ad DLIN A) + 75
VAbPZ*( )— VAbp0*< )_ VD ( ) q

This completes the proof of Lemma [8] O
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8.6 Basic Problem 3*
This is a modified version of Problem 3 |[OT12, Definition 10]. Let A, ,n € Nand 8 € {0,1}, and set N = 4n/a+2.
We define a Basic Problem 3* generator, QEPS*, which on inputs 1*, o and n:
1. Samples 7, dp,w’,w”, k', K" & F,.
2. Samples (paramy, {B¢, B} }i=1.... o) < Q(')T)E*(lk,N, Q).
3. For1 </<a:
(a) Set By = (b0, -+ benjas besnjatt  »ben—1))-
(b) Sets B} = (b0, ,br.njasboonjati > ben—1))-
4. For1</{<a,forl1 <i<n/a
(a) Sets h{) = (0,0, 7e;, 0"/, dye;, 0)m; and hy') = (0,0/%,0"/% re;, doe;, 0)p;.

(b) Sets g, = (O,O"/a,w’ei,w”ei,0"/(’,0)32.
(c) Sets fr; = (O,O”/a,/ﬁ’ei,f@'”ei,O"/"‘,O)B[.

5. Return (paramy,
{Bla BZa {hgi)vgf,ia fZ,i}i:l,-'- ,n/a}[:l,--- ,a)~
Basic Problem 3* consists in guessing (8 given
(paramV7 {Bév 327 {hgi)7g€,ia f@,i}i:l,v-- ,n/a}€:1,'~~ ,a) <~ ggp3* (1)\7 n, Ol)
We define the advantage of a PPT machine Apps+ for Basic Problem 3* as

AV () = | Prldeps (1%, X) = 1] X = Go™ (1%, n, )] = PrlApgs- (1%, X) = 1| X « G;* (1%, 1, 0))]

Lemma 9. For any PPT adversary Appz- for Basic Problem 3%, there exists a PPT distinguisher D for the DLIN
problem such that for any security parameter A € N,

. ) 5 .
Advf’fb;* (\) < Advf’fiz* () + ; < AdBEN(\) + 4

Proof of Lemma[9 Basic Problem 3* can be decomposed into two experiments, Experiment 3-1 and 3-2 (Defini-
tions [12 and [13| respectively). We will show that these two games are close and then use the triangle inequality. We
now define these experiments.

Definition 12 (Experiment 3-1). Let n € {0,1}. We define the Experiment 3-1 generator ggxp?"l(lk,n, ):
1. Samples (paramy, {By, B} }1<i<a) < GHE (1), N, ).
2. For1l < YA < o, sets BZ = (bf,O; e 7b£,n/o¢7 b£,3n/0¢+1> s bZ,N) and B; = (bzo7 AN 7bzn/a’ bz,Qn/a+17 ce ’sz)-

$
! / 1 / "
3. Samples T,7',0p,w", ", k', K" < F,.

4. For1</{<a, for1 <i<n/a set:

hy)) = (0,0, 7e;, 0, dpe;, 0)p;,
hi,,li) = (O,O"/O‘,Tei,T’ei,Joei,O)BZ,
9ei = (070"/“,cA)’ei7cL)”(3Z-,O”/‘X,O)BK7
foi= (O,O"/O‘, ke, k" e;, 0"/0‘,0)3[.
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5. Return (paramV7{B€7 ﬁa{h’[Z ,gu, zafl z}z 1, n/a}l:l,-”,a)-
Ezperiment 3-1 consists in guessing n € {0,1} given
(paramVa {Blv BZa {hg]z)a 9ei, f@,i}i=1,~~~ 7n/oc}@:l,m ,a) — gzxp?)fl(l)\, n, O[).

We define the advantage of a PPT machine D for Experiment 3-1 as
AdEP3TH ) = | PrDOIMN X) = 1| X < GOP* 1 (1M n, )] — PrD(IMN, X) = 1| X < 6P (12 n, )]

Definition 13 (Experiment 3-2). Let n) € {1,2}. We define the Experiment 3-2 generator G2P372(1* n, a):
1. Samples (paramy, {By, B} }1<i<a) < GIVE (1N, N, a).
2. For1 </t <, sets

Bf = (bZ,Oa T 7bZ,n/a7 bZ,Sn/a+1; T abf,N)
B = (bZO’ U 7bz,n/a7 bz,Qn/a+1’ e ’bZ,N)'

! / 1 / " $
3. Samples 7,7, 60, ", w", &', K" <~ Fy.

4. For1</{<a, for1 <i<n/a set:

hglz on/e ,Tei, T €, 00€;, 0)

(0,
hgzl (0,077, 0™ 7'¢e;, 8pe;, 0)
= (0,
= (0,

YR

FR
On/a IS On/a 0

gei = , W€, W €4, y )Bg)a

n/oa ! 1 n/o
0" Kk'e;, k" e;, 0™ ,0)B,.

5. Return (paramy,
{B€7 BZy {héz)7g€,ia f[,i}i:l,--- ,n/a}ZZI,M ,a)-
Ezperiment 3-2 consists in guessing n € {1,2} given
B B* h(n) . R - gexp?)-l 1)\
(paramVa{ £ Za{ 0 7gé,zv.ff,z}1_l,~-,n/a}f—l,"-,a) — n ( ,y 1, a)~

We define the advantage of a PPT machine D for Fxperiment 3-2 as
AP 2(\) = | PrD(1M, X) = 1| X « G7P°2 (1% n, )] = Pr[D(1Y, X) = 1| X + G532 (1% n, a)]

Lemma 10. For any PPT distinguisher D and for any security parameter A € N,
1

AdP3TH()) < p

Proof. Sample 6 & F,. Then for 1 <i <n/a set

df,2n/a+i = b£,2n/a+i - abl,n/aJria
d;/aJri = bzn/oﬁ»i - 9bz,2n/a+i'
For 1 </ < «, define
DZ = (bZ,O; o ab£,2n/a7 d@,Zn/aJrlv T >d€,3n/a7 bl,?m/oz+17 e abZ,Nfl)a

* * * * * * *
DZ - (bZ,O? T 7b£,n/a7 dl,n/aJer e 7d5,2n/a7 b£,2n/a+1? T 7b£,N71)
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which form dual orthonormal bases. Then we have

hy) = (0,0"/%, 7e;, 0™ 6pe;, 0)B;
= (0,0™ 1e;, ' es, does, 0)p;

ge,i = (0,0" /o Jwes,w e“()”/o‘, 0)B,
= (0,0, &'e;,w"e;, 0", 0)p,

Foi=(0,0" K'e;, k"e;, 0/, 0)p,
= (0, 0™ &e; k' e;, 0™, 0 0)p,

In the above, 7/ = -7, &' = W' +6w” and &’ = k' +6k"”. Notice that since §, w’ and k' are sampled independently and
uniformly, then 7/, & and %’ are independently and uniformly distributed except when 7 = 0, which happens with
probability 1/q. As a result, the distributions when n = 0 and when n = 1 are equivalent, except with probability
1/q. O

Lemma 11. For any PPT distinguisher D for Experiment 3-2, there is a PPT adversary Appz+ for Basic Problem
2% such that for any security parameter A € N,

1
cxp3 2 bp2*

AP () < ADVEZ (N) +
Proof. Suppose we have a PPT distinguisher D for Experiment 3-2, then we can build a PPT adversary Appo+ for

Basic Problem 2*. On receiving a Basic Problem 2* instance (paramy,, {B[, B;, {he i ,gz,i}izl,... njatt=1,a); Abp2*
sets, for 1 </ < qa,

D, = (bf,Ov bZ,Zn/a+17 T abZ,Sn/an bE,n/a+1a t 7b5,2n/a7 b€,17 T ab&n/aa b2¢3n/a+17 t 7b€7N71)
D, = (bf,Ov bf,2n/o¢+17 T abZ,Sn/an bE,Bn/a+1a T 7b€,N71)
and
x _ (p% * * * * * * * *
Dl - (bZ,O’ b€,2n/a+17 T 7b€,3n/a’ b[,n/a-‘rl’ e 7b€,2n/(x’ b€,17 e 7bl,n/a7 bl,?)n/a-‘rl’ T 7b€,N—1)
N* * * * * *
DZ - (bl,O’ bZ,Zn/aJer e ?bK,Bn/a7 b£,3n/a+1’ T bE,Nfl)

Then Appo- samples 11,1 < F, and sets
foi =mbe; + e, for 1 <i<n/a

App2+ sends

(paramy, {ﬁz,f)zf, {hgi)vg&ivfZ,i}i:l,~-,n/a}Z:1,~~- ,a)
to D and receives back 5’ € {0,1}. Appo+ outputs §’. Thus,

hy) = (0,8e;,0™%,0"/ §oe;, 0)p

0,0m/@ o/, 561,5061, 0)p;

= :
=

h&) (0,0e;,7e;, 0™ doey, )B;

= (0,0™*, 7e;, e, does, 0)p:

= (0,we;, oe;, 0"/ 0™ 0)g,

= (0, 0,0, ge;, we;, O™ /"‘,O)D,Z

= (0, (m + naw)es, naoe;, 0™/,0"*0)p,
= (0,0™ naoe;, (1 + now)eq, 0, 0)p,
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Since d, 7,w, 0,1 and 79 are independently and uniformly sampled, then §, 7, w, o, 71 + 12w and 790 are independently
and uniformly distributed in F, except when o = 0, which happens with probability 1/¢. As a result, the distribu-

tions of (paramy;, {Dy, D}, {h%),g“, fei}i=1,- njatt=1,- ) and of the output of Qe"p‘3 2 are equivalent except with
probability 1/q. O

Then from Lemmas and [8] for any PPT adversary Apps+ there exists PPT adversaries, App+ and Appin+, such
that for any security parameter A € N we have

AdVES (V) < | PrlAspa (11,6577 (1%, m,)) = 1] = PrlAspa (11,6572 (1%, m, ) = 1]
< | Pridgs: (11,657 (1), m,)) = 1] = Prlids- (11,67 (1%, m, ) = 1]
| Prldees (11, 6775212, m.)) = 1) - Pr[Abpa*(l* G5 (1M m.)) = 1]

ex ex bp2* 7
< AdVEE T + AVEETE (V) < AdVRE ) ; < Adviolon *y

This completes the proof of Lemma [9}

This completes the proof of Lemma [5] O

9 Conclusion

Iris biometric feature extractors produce feature vectors similar in the binary Hamming metric. Inner product
encryption was proposed to build encrypted search for the binary Hamming metric. In this work we explored a
domain specific solution for secure searchable encryption for iris biometric databases.

We observed in the statistics of the iris biometric data that large vectors are required for both correctness and
minimizing leakage. With large vectors, we see that the distance between readings of the same class can be separated
from the distance distribution from the readings of other classes (see Figure . This means that with a fixed distance
threshold, we can ensure that more readings of the same class are approved while readings from other classes are
denied (with high probability).

In prior work, Setup was not feasible for large vector lengths due to the cost of inverting large matrices. In the
most relevant prior work [KLMT™18|, they skip this step in benchmarking due to the high cost. Our interpolation
results show that for n = 1024 would take roughly 23 days. This is estimated on a parallel implementation in C.
The length n = 1024 is the length of prior iris feature extractors. We do not consider this time acceptable.

In the RProjC scheme of Kim et al. [KLM™ 18|, additionally the distance is leaked between queries and all points in
the database. Based on prior work on trilaterilation, with a constant number of queries observed in n, the server can
build complete distance information between the stored data points. If the adversary knows auxiliary information
about the database, the encryption may not protect the data at all.

In this work we offer solutions to these two problems. We show a multi random projection approach that allows for
breaking large vectors into small vectors. This allows us to use smaller matrices greatly reducing the computational
time required to invert the matrices. Doing two n/2 inversions takes 1/4 the time of one size n inversion. Careful
optimization improves Setup time by four orders of magnitude while only increasing search time by 3%.

We show how to use predicate inner product encryption to build a scheme that hides the distance between the
query and the stored records. By using a predicate scheme instead of one that gives the value of the inner product,
the server only learns if the two vectors are a fixed distance from one another. This greatly reduces the information
that is leaked through remotely executing this operation. The server only learns information about data that are
close the queried point and learns nothing about data that are outside the distance threshold. We show this scheme
leaks only access pattern and distance equality leakage.

The improvement in accuracy for higher n also yields an improvement of leakage profile for our scheme . When
two or more classes are returned from a single query, this leaks that the returned items are within distance 2¢ (through
access pattern) and whether they are the same distance from the query (distance equality leakage). Decreasing the
statistical overlap between classes minimizes the probability of both leakages which translates to a more private
system for sensitive biometric data.
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The transformation comes at a cost of making search slower and no longer appropriate for moderately sized
databases. We believe that this transformation is required in order to maintain the integrity of sensitive biometric
information. Thus, our main open problem is whether or not this significant slow down to search is avoidable.
For databases at larger scales, doing a linear search of the entire database for each query is unacceptable. With
our distance hiding transformation we have to do a linear scan for each subtoken (that checks a specific distance)
and so we see a significant (but linear) slowdown over a single linear database scan. Of particular interest are
approaches that use indices that natively support k nearest neighbors but are not vulnerable to recent attacks (such
as [KPT19,KE19]) and interactive solutions where the client can guide the search.
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