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Abstract. We present a novel lattice-based zero-knowledge proof system for showing that (arbitrary-
sized) committed integers satisfy additive and multiplicative relationships. The proof sizes of our
schemes are between two to three orders of magnitude smaller than in the lattice proof system of
Libert et al. (CRYPTO 2018) for the same relations. Because the proof sizes of our protocols grow
linearly in the integer length, our proofs will eventually be longer than those produced by quantum-
safe succinct proof systems for general circuits (e.g. Ligero, Aurora, etc.). But for relations between
reasonably-sized integers (e.g. 512-bit), our proofs still result in the smallest zero-knowledge proof sys-
tem based on a quantum-safe assumption. Of equal importance, the run-time of our proof system is at
least an order of magnitude faster than any other quantum-safe scheme.

1 Introduction

Zero-knowledge proofs are fast becoming widespread in practical cryptography, and recent advances in their
constructions that utilize the nice algebraic properties of finite fields and pairings, has resulted in a plethora
of fairly fast schemes with very short proofs. The quantum-safe literature, while also producing some recent
breakthrough results, is somewhat more subdued. The most efficient known technique for creating quantum-
safe zero-knowledge proofs for arbitrary circuits are the PCP / IOP proof systems (e.g. Aurora [7] and Ligero
[1]) which only rely on the security of cryptographic hash functions. The proofs produced by such schemes
are even sub-linear in length, being logarithmic for Aurora and square-root for Ligero. And apart from digital
signatures (e.g. [13], which are essentially zero-knowledge proofs) and commitment schemes with opening
proofs (e.g. [4]), there hasn’t been any zero-knowledge proofs for “useful” relations that outperform the
aforementioned generic proofs, at least in terms of proof size. This state of affairs is a bit peculiar, because
unlike for basic primitives (e.g. encryption / signatures), making a quantum-safe mathematical hardness
assumption does not seem to aid in creating shorter zero-knowledge proofs over just assuming the existence
of generic collision-resistant hash functions.

The recent work of [2,15] that builds on [4] to create efficient zero-knowledge proof systems for multiplica-
tive and Zq-linear relations raises the possibility that one can indeed construct lattice-based zero-knowledge
proofs for useful, natural relations that are smaller than those produced by generic proofs. In this work, we
design zero-knowledge proofs for arbitrary-length integer addition and multiplication, which for reasonably
sized lengths (e.g. up to 512-bits) result in the shortest, and fastest, known zero-knowledge proofs based on
the hardness of a quantum-safe problem.3

While our proof sizes are linear, they have some advantages over the generic sub-linear proof systems
like Ligero and Aurora. Both of the aforementioned schemes use the Kilian / Micali [19,28] approach which
entails committing to the encoding of the messages in a Merkle tree and then outputting several hundred

? This is the full version of [26] presented at ACM CCS 2020.
3 As many other practical schemes utilizing the Fiat-Shamir framework, we show the security of our scheme in

the ROM based on the hardness of a quantum-safe problem rather than the more desirable security reduction
in the QROM. The recent results of [20,12,23,11], which give QROM proofs of protocols proven in the ROM
under different assumptions or looser reductions, give evidence that such schemes are in fact still secure against
quantum attackers. There also hasn’t been an example of any natural scheme proved secure in the ROM based on
a quantum-safe problem that ends up being insecure in the QROM.



paths of that tree to prove knowledge of the committed message. Even though the depth of this tree may only
be logarithmic in the instance size, the fact that one needs to open several hundred paths imposes a “start-
up” cost of somewhere between 50-100KB for 128-bit security. So while a linear-size proof will eventually be
longer than these approaches, for small instance sizes our proofs end up being somewhat shorter.

Another dimension in which our scheme, and lattice schemes in general, outperform is efficiency. The
fundamental operation used in lattice schemes over polynomial rings is polynomial multiplication, which is
extremely efficient when performed using the number theoretic transform (NTT). As an example, despite
lattice-based encryption schemes having public keys and ciphertexts around 1KB, which is 30X longer than
those of elliptic curve schemes, they can be 5X faster than the most efficient instantiations of the latter;
requiring under 3 micro-seconds per encryption on standard processors (c.f. [27]). While zero-knowledge
proofs involve a lot more operations than encryption schemes, these constructions can still be significantly
more efficient than generic proofs which require somewhere between half a second (for Ligero) and around 5
seconds (for Aurora) to prove knowledge of a generic (SHA-256) commitment.

For example, we show that proving knowledge of an additive relation between 32 (resp. 128)-bit integers
results in proof sizes of 11 (resp. 25) KB (see Figure 4), while multiplicative relations have proof sizes of 15
(resp. 40) KB (see Figure 6).4 We provide implementations of our protocols that achieve a running time of
2.4 milliseconds, on a standard laptop, for 128-bit multiplication proofs. As far as we are aware, these are
the most efficient potentially quantum-safe proofs for these problems. And because the operations involved
in lattice constructions have been shown to be readily ported to more constrained devices, this opens up
the possibility of quantum-safe zero-knowledge proofs being used in “daily” interactions, e.g. credit card
transactions, where operations should take (significantly) less time than a second.

Apart from [7,1], the only other quantum-safe solution for these problems that we’re aware of is the work
of [22] which also bases these operations on the hardness of lattice problems. The proofs in [22] use the
Stern-proof approach, which requires repetitions of a Σ-protocol having soundness error 2/3, and so even
simple proofs of commitment openings are several megabytes long. Furthermore, the multiplication proof
committed to every step of the Karatsuba algorithm, which ends up requiring commitments of asymptotic
lengthO(klog2 3), for multiplication of k-bit integers. This could make the entire proof on the order of hundreds
of megabytes. In contrast, our multiplication algorithm uses an in-place NTT transformation which keeps
the length of the proof linear for most reasonable parameters.5 In practice, we estimate that the size of the
proofs in [22] are about three orders of magnitude larger than in the current work.

Proving that committed data satisfies additive and multiplicative relations can be useful in many real-
world scenarios. As a simple example that uses both, consider an auction or a collection of stock purchase
orders. The bidder/buyer places a set of orders for xi quantity of item i at price yi. Because the final price
paid may depend on the prices of non-winning bidders, it is important to wean out invalid bids. So the
bidder/buyer may also prove that he has greater than

∑
i xi · yi in his account (which has been certified by

a bank). In general, because our proofs are quite efficient and fairly short when the number of operations is
not too large, they can be used inside “smart contracts” (in a very broad sense) that utilize addition and
multiplication.

1.1 Polynomial / Vector Commitments and Zero-Knowledge Proofs

Our results build on the recent progress from [2] and [15] on proving relations between committed messages
in the lattice-based commitment scheme from [4]. The commitment scheme in [4] works over a polynomial
ring Rq = Zq[X]/(Xd + 1) and the commitment to messages mi ∈ Rq is of the form

~t0 = B0~r,

ti = 〈~bi, ~r〉+mi,

4 These numbers include the combination of the commitment size and the proof size.
5 Asymptotically, our multiplication scheme does increase by a factor of log k, but this logarithmic growth first

appears for very large (e.g. 2048-bit) integers, which is probably not particularly relevant to practical applications.
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where B0, bi are public random matrices, and ~r is a randomness vector chosen in the commitment procedure.
It was already shown in [4] how to prove, in zero-knowledge, the knowledge of the messages and linear relations
(over Rq) of the mi. The results of [2] extended this to efficient proofs of multiplicative relations and [15]
showed that one can prove linear relations over the Zq. In particular, if the NTT6 of mi ∈ Rq is the vector
~vi ∈ Zdq , then [2] allows one to prove relations of the form ~v1 ◦~v2 = ~v3 ∈ Zdq , where ◦ denotes component-wise

multiplication. The result of [15] allows proofs of the form ~v1 = M~v2 over Zdq . It is also easy to see that these
results can be extended to arbitrary-length vectors.

Slightly more formally, the results of [4,2,15] provide a binding and hiding vector commitment scheme
(with Com,Open operations), along with zero-knowledge proofs of knowledge of the following relations:

1. [Product Proof] Given a commitment c, prove knowledge of ~vi ∈ Zmq such that Open(c) = (~v1, ~v2, ~v3) ∧
~v1 ◦ ~v2 = ~v3.

2. [Unstructured Linear Proof] Given a commitment c and a matrix M ∈ Zn×mq , prove knowledge of
~v1 ∈ Zmq , ~v2 ∈ Znq such that Open(c) = (~v1, ~v2) ∧M~v1 = ~v2.

In this work, we will use this abstraction to prove additive and multiplicative relations between integers.
Our proofs will generally consist of many instantiations of the product and unstructured linear proofs, and
the most efficient approach for combining these proofs is not to run them separately, but rather run them
simultaneously and reuse many overlapping parts. We describe, and implement, a framework for creating such
proofs. Of independent interest is also our novel technique for proving “relaxed” range proofs of committed
values. Unlike typical range proofs, which linearly depend on k for proving that an integer is in the range
[0, 2k), we show how to create a “relaxed” range proof which proves that elements are in the range [0, n · 2k)
for some small value n, but without having the proof size depend on k. We believe that this technique can
find applications outside of our integer relations proof. We now elaborate on our techniques in more detail.

1.2 Our Results and Techniques

The works of [2,15] instantiated the commitment scheme of [4] over polynomial rings of the form Rq =
Zq[X]/(Xd + 1) with d = 128 and q a prime of size ≈ 232. Inside the zero-knowledge proof, certain auxiliary
terms in Rq need to be committed to, and so it is advantageous to take the size of this ring to be as small as
possible. On the other hand, technical reasons prevent the q in the commitment scheme from being too small,
and too small a d will not allow for random challenges with small coefficients to have 128 bits of entropy.
Additionally, having q < 232 allows for more efficient operations in modern CPUs. For these reasons, it is
preferable to always use the same ring (and not increase the modulus q) when working with large integers.
We will now describe several solutions for integer relation proofs. The most straightforward one, described
in Section 1.2, applies when the integers are very small (e.g. 16 bits). In this case, one can just perform
the operations directly in the underlying ring modulo q ≈ 232, with the only necessary check being that the
sum / product do not “wrap around” modulo q. In Section 1.2 we describe an amortization technique for
performing batches of 128 integer operations at the cost of almost one such operation, with the caveat being
that the q in Rq may need to be somewhat increased.

These approaches do not work for larger integers, and we instead need to do addition and multiplication
directly over the binary representations. This is the main result of the current work and an overview of the
techniques is given below.

Operations on small integers. Suppose that q ≈ 232 and and we would like to create a proof that the
product of two integers is the third (i.e. m1m2 = m3). If the two multiplicands are smaller (in absolute value)

than 214, then one can create a proof as follows: let c = Com(m1,m2,m3,~b1,~b2), where mi ∈ Z1
q and ~bi ∈ Z15

q

are the binary decompositions (we can assume that it’s in two’s complement, but any representation can be

6 If Xd+1 = (X−r1)·. . .·(X−rd) mod q, then the NTT coefficients ofm ∈ Rq are (m mod X−r1, . . . ,m mod X−
rb) = (m(r1) mod q, . . . ,m(rd) mod q).
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supported) of mi. Define the matrix M ∈ Z1×15
q be [20 21 22 . . . 213 − 214]. We would then want to prove

the following relation:

~v1 ◦ ~v2 = ~v3 ∧
(

for i = 1, 2, ~bi ◦ (~1−~bi) = 0 ∧M~bi = ~vi

)
.

Notice that because the above proves that all the coefficients of ~bi are binary, it implies that M~bi is less (in
magnitude) than 214, and so the product ~v1 ◦~v2 = ~v3, which we prove modulo q, also holds over the integers.

Addition of arbitrary-length integers. Suppose that ak . . . a1a0 is the binary representation of the

integer a =
k∑
i=0

ai2
i. Then define the polynomial a =

k∑
i=0

aiX
i ∈ Z[X]. Note that even if a+ b = c as integers,

it’s possible that a + b 6= c due to the carries involved in binary integer addition that isn’t present in the
addition of polynomials. Nevertheless, (a+ b)(2) = c(2) and so there exists a polynomial f such that

a+ b+ f · (X − 2) = c. (1)

It’s not hard to see that this polynomial f consists exactly of the carries that appear when performing the
schoolbook addition of ak . . . a1a0 and bk . . . b1b0. And because f corresponds to the carries when adding two
numbers, its coefficients are binary.

If we define a matrix M =


−2 0 . . . 0
1 −2 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . −2
0 0 . . . 1

 ∈ Z(k+1)×k, then M ~f interpreted as a polynomial over Z[X]

is equal to f · (X − 2). To prove that ~a,~b,~c are binary vectors and ~a +~b = ~c as binary representations of

integers, one would create a commitment Com(~a,~b,~c, ~f) and prove that

~a ◦ (~1− ~a) = 0 ∧~b ◦ (~1−~b) = 0 ∧ ~c ◦ (~1− ~c) = 0

∧ ~f ◦ (~1− ~f) = 0 ∧ ~a+~b+M ~f = ~c.

Because all the coefficients of ~a,~b,~c, ~f are proved to be binary, the linear relation ~a+~b+M ~f = ~c, which is
proved over Zq, also holds over Z. The work of [18] also proved correctness of addition by proving an equality
equivalent to (1), but the underlying components (i.e. the commitment and the ZK proof) are different.
In particular, the very efficient multiplicative and linear proofs that our abstract framework uses are not
compatible with the commitments used in [18]. We conjecture that using our framework can improve the
whole MatRiCT system of [18], but it would certainly involve a lot of non-trivial details; and we leave doing
it as an open problem.

Multiplication of arbitrary-length integers. Suppose that ~a,~b,~c are the binary decompositions of a, b, c
and ab = c. If we interpret the binary decomposition of an integer as a polynomial (like in Section 1.2), then
we obtain an equality that is analogous to (1) – in particular

ab+ f · (X − 2) = c, (2)

where f is again a polynomial corresponding to the carry vector when performing the schoolbook multipli-
cation of ak . . . a1a0 and bk . . . b1b0. There are, however, two important differences between (1) and (2). The
first is that our abstract framework does not natively support polynomial multiplication ab. The second
issue is that the polynomial f corresponding to the carry is no longer binary, but has coefficient in the range
between 0 and k. The naive way to give a proof that the coefficients of ~f are between 0 and k is to prove that
~f ◦ (~1− ~f) ◦ . . . ◦ (~k − ~f) = 0. Such a proof is unfortunately quite costly as it is O(k) times larger than just
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one proof. A better approach is to rewrite all the coefficients of ~f in binary to create a vector ~f ′ and then
prove that ~f ′ ◦ (~1 − ~f ′) = 0. This is better because the length of ~f ′ is a log k factor larger than the length

of ~f , and so our proof will only be a factor of O(log k) larger. But since this is still a noticeable overhead
in practice, we will aim for another way to resolve this issue that only increases the proof size by a small
additive factor.

Let us first explain how the multiplication ab is handled. We certainly do not want to commit to the k
multiplicative “shifts” of b multiplied by ai involved in the schoolbook multiplication as that would again
increase the proof by a factor of O(k). Instead, we will make use of the fact that we can prove component-wise
products and linear relations in order to prove the multiplication ab using their NTT representations.7 Let
g(X) be a polynomial of degree d > 2k such that g(X) = (X − r1) · . . . · (X − rd) mod q for ri ∈ Zq. It is
easy to set up an initial q so that such a polynomial (it could even be g(X) = Xd − 1) exists. Then define
M to be the Vandermonde matrix

M =


1 r1 r21 . . . r

d−1
1

1 r2 r22 . . . r
d−1
2

. . . . . . . . . . . . . . .

1 rd r2d . . . r
d−1
d

 ∈ Zd×dq ,

and furthermore define Mk ∈ Zd×kq to be the first k columns of M . Then the NTT of the polynomial a, defined

as (a(r1), . . . ,a(rd)), can be written as Mk~a, when ~a = [a0 a1 . . . ak]T (we use Mk instead of M because
a only has degree k, and so the later columns of M don’t affect the NTT). Using the ring-homomorphic

properties of the NTT, if ab = c in the ring Zq[X]/(g(X)), then we have that (Mk~a) ◦ (Mk
~b) = M~c mod q.

But since the degree of a and b is less than k < d/2, the product ab does not get reduced modulo g(X), and
so ab = c holds over Zq[X] as well. Thus proving this equality using our abstract framework would involve

committing to ~a,~b,~c and â, b̂, ĉ ∈ Zdq , where

â = Mk~a, b̂ = Mk
~b, ĉ = M~c. (3)

We can then use the product proof to show that â ◦ b̂ = ĉ, and then the unstructured linear proof to prove
the relations in (3). Proving polynomial multiplication therefore requires just three extra commitments.

We now move on to showing how to prove that the coefficients of f in (2) are small. While we know that
they are in the range between 0 and k, it is not really necessary for the prover to prove exactly this fact. All
that is needed is to show that the coefficients of f are small enough so that (2) holds over Z[X] rather than
Zq[X]. So rather than using a standard range proof, we will use a significantly more efficient “relaxed” range

proof. The main idea for the proof is the fact8 that for any vectors ~f ∈ Zk and ~y ∈ Zn, the probability over
the random choice of R ∈ {0, 1}n×k that the maximum coefficient of R~f + ~y mod q will be at least half of

the largest coefficient of ~f is at least 1− 2−n. To put it another way, if the coefficients of R~f + ~y mod q are
small, then the coefficients of ~f must be small as well.

The above observation can be transformed into a zero-knowledge proof that ~f has small coefficients as
follows (this idea was also recently independently used in [6]): the prover generates the masking vector ~y,
receives the challenge R from the verifier (or uses the Fiat-Shamir heuristic to generate R himself9) and

creates the vector ~z = R~f + ~y mod q. He then applies the same type of rejection sampling technique used
in Fiat-Shamir lattice signatures/commitment schemes to hide the dependence of ~f on ~z. If the rejection
sampling procedure passes, the prover outputs ~z (otherwise, the proof is restarted). Using the unstructured

linear proof, he can also output a proof that ~z = R~f + ~y mod q. The verifier sees R,~z, and the commitment

7 We point out that this NTT representation is not (necessarily) related to the NTT representation over the ring
Rq discussed in Section 1.1. In particular, we now want an NTT over a ring whose degree depends on k, whereas
the NTT in Section 1.1 is done over the fixed ring Rq.

8 Which is a slight generalization of [5, Lemma 2.3]
9 To keep the size of the proof small, only a seed that generates R is included in the proof and R itself is generated

as R = hash(seed) where hash is some public domain extension function (XOF) based on, for example, SHA-3.
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Com(~f, ~y) and can check by himself that the coefficients of ~z are small, and then verify the unstructured

linear proof. This proves that the coefficients of ~f are indeed at most twice the coefficients of ~z. Because the
~f used by the honest prover has coefficients at most k, the `2-norm of the vector R~f is O(k2

√
n), and so the

rejection sampling technique prescribes that the coefficients of ~y and of ~z also be O(k2
√
n). For n = 128 and

typical values of k (e.g. k ≤ 1024), this value will be comfortably less than q ≈ 232.

Amortized proofs. The “relaxed” range proof from above can also be used to amortize proofs that follow
the idea in Section 1.2. Recall that the idea was to commit to the integers mi as one-dimensional vectors
and then prove that these integers are short via binary decomposition. Because the basic objects in the
commitments and proofs in [2,15] are elements in the ring Zq[X]/(X128 + 1), a commitment to one element
in Zq is as expensive as a commitment to 128 elements (i.e. a commitment to an integer m is as expensive
as a commitment to a 128-dimensional integer vector ~m). But the reason that the proof in Section 1.2
does not stay equally short for messages ~mi ∈ Z128 (instead of mi ∈ Z) is because we also required the
binary decomposition of each integer. When we only had one small integer, this wasn’t an issue because this
decomposition fit into one commitment, but with 128 integers, we are essentially increasing the vector length
by a logarithmic factor.

The relaxed range proof gives us a different way to prove smallness of the elements in the vector ~mi. In
particular, if one shows that R~mi+~y has small coefficients, then this implies that all the integers comprising
~mi are small. But as in the previous section, the size of the coefficients that one can prove increases by a
factor of O(k2

√
n), where k = n = 128. Thus depending on the original sizes of the integers involved in

the computation, one may need to increase the value of q in order to ensure that modular reduction does
not occur, especially for multiplication where the factor of O(k2

√
n) gets multiplied twice. Nevertheless,

increasing q may be a good trade-off for being able to pack 128 proofs into one commitment and proof.

2 Preliminaries

2.1 Notation

Denote Zp to be the ring of integers modulo p. Let q be an odd prime. We write ~v ∈ Rm to denote vectors over
a ring R and matrices over R will be written as regular capital letters M . Define In to be the n× n identity
matrix over Zq. Also, ~0n and 0n,m are the zero vector and the zero matrix in Znq and Zn×mq respectively.
For simplicity, we denote 0n = 0n,n. By default, all vectors are column vectors. We write ~v||~w for a usual
concatenation of ~v and ~w (which is still a column vector). For ~v, ~w ∈ Zkq , ~v ◦ ~w is the usual component-

wise multiplication. We write x
$← S when x ∈ S is sampled uniformly at random from the finite set S and

similarly x
$← D when x is sampled according to the distribution D. We write [n] to denote the set {1, . . . , n}

and also [a, b] = {x ∈ Z : a ≤ x ≤ b}.
Let Wk,q be the set of polynomials in Zq[X] with degree less than k. For a power of two d, denote R and

Rq respectively to be the rings Z[X]/(Xd + 1) and Zq[X]/(Xd + 1). Bold lower-case letters denote elements
in R or Rq and bold lower-case letters with arrows represent column vectors with coefficients in R or Rq.
We also write bold upper-case letters for matrices in R or Rq. By default, for a polynomial denoted as a
bold letter, we write its i-th coefficient as its corresponding regular font letter subscript i, e.g. f0 ∈ Zq is a
constant coefficient of f ∈ Rq.

Modular reductions. We define r′ = r mod± q to be the unique element r′ in the range − q−12 ≤ r
′ ≤ q−1

2

such that r′ = r mod q. We also denote r′ = r mod+q to be the unique element r′ in the range 0 ≤ r′ < q
such that r′ = r mod q. When the exact representation is not important, we simply write r mod q.

Sizes of elements. For an element w ∈ Zq, we write ‖w‖∞ to mean |w mod± q|. Define the `∞ and `2
norms for w = w0 + w1X + . . .+ wd−1X

d−1 ∈ R as follows:

‖w‖∞ = max
j
‖wj‖∞, ‖w‖ =

√
‖w0‖2∞ + . . .+ ‖wd−1‖2∞.
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If ~w = (w1, . . . ,wm) ∈ Rk, then

‖ ~w‖∞ = max
j
‖wj‖∞, ‖ ~w‖ =

√
‖w1‖2 + . . .+ ‖wk‖2.

For δ ∈ N, we denote Sδ = {w ∈ R : ‖w‖∞ ≤ γ}.

Two’s complement. An integer w ∈ [−2N−1, 2N−1 − 1] is represented in two’s complement as a vector of
N bits (w0, . . . , wN−1) ∈ {0, 1}N such that

w = −wN−12N−1 +

N−2∑
i=0

wi2
i.

For readability, we define functions TCN (w) and sTCN (w) as:

TCN (w) = (w0, . . . , wN−1)

sTCN (w) = (w0, . . . , wN−2,−wN−1).
(4)

2.2 Cyclotomic Rings

Suppose q splits into l prime ideals of degree d/l inR. This means Xd+1 ≡ ϕ1 . . .ϕl (mod q) with irreducible
polynomials ϕj of degree d/l modulo q. We assume that Zq contains a primitive 2l-th root of unity ζ ∈ Zq
but no elements whose order is a higher power of two, i.e. q − 1 ≡ 2l (mod 4l). Therefore, we have

Xd + 1 ≡
∏
j∈Z×2l

(
X

d
l − ζj

)
(mod q). (5)

where ζj (j ∈ Z×2l) ranges over all the l primitive 2l-th roots of unity.
Let Wq := Wd/l,q. We define the Number Theoretic Transform (NTT) of a polynomial p ∈ Rq as follows:

NTT (p) :=

 p̂0...
p̂l−1

 ∈W l
q where p̂j = p mod (X

d
l − ζ2j+1).

We also define the inverse NTT operation. Namely, for a vector ~v ∈W l
q, NTT

−1 (~v) is the polynomial p ∈ Rq
such that NTT (p) = ~v.

2.3 Challenge Space

Let C := {−1, 0, 1}d ⊂ Rq be the challenge set of ternary polynomials with coefficients −1, 0, 1. We define

the following probability distribution C : C → [0, 1]. The coefficients of a challenge c
$← C are independently

identically distributed with P (0) = 1/2 and Pr(1) = Pr(−1) = 1/4.
Consider the coefficients of the polynomial c mod (Xd/l − ζj) for c ← C. Clearly all coefficients follow

the same distribution over Zq. Let us write Y for the random variable over Zq that follows this distribution.
Attema et al. [2] give an upper bound on the maximum probability of Y .

Lemma 2.1. Let the random variable Y over Zq be defined as above. Then for all x ∈ Zq,

Pr(Y = x) ≤ 1

q
+

2l

q

∑
j∈Z×q /〈ζ〉

l−1∏
i=0

∣∣∣∣12 +
1

2
cos(2πjyζi/q)

∣∣∣∣ . (6)

In particular, [2,15] computed that for q ≈ 232, the maximum probability for each coefficient of c mod Xd/l−
ζj is around 2−31.4.

An immediate consequence of Lemma 2.1 is that polynomial c
$← C is invertible in Rq with overwhelming

probability as long as parameters q, d, l are selected so that q−d/l is negligible.
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2.4 Module-SIS and Module-LWE Problems

In our protocols, where the commitment scheme from [4] is used, the security is based on the well-known com-
putational lattice problems, namely Module-LWE (M-LWE) and Module-SIS (M-SIS) [21]. Both problems
are defined over Rq.

Definition 2.2 (M-SISκ,m,B). Given A
$← Rκ×mq , the Module-SIS problem with parameters κ,m > 0 and

0 < B < q asks to find ~z ∈ Rmq such that A~z = ~0 over Rq and 0 < ‖~z‖∞ ≤ B. An algorithm A is said to
have advantage ε in solving M-SISκ,m,B if

Pr
[
0 < ‖~z‖∞ ≤ B ∧ A~z = ~0

∣∣∣A $← Rκ×mq ; ~z ← A(A)
]
≥ ε.

Definition 2.3 (M-LWEm,λ,χ). The Module-LWE problem with parameters m,λ > 0 and an error dis-
tribution χ over R asks the adversary A to distinguish between the following two cases: 1) (A,A~s + ~e) for

A
$← Rm×λq , a secret vector ~s

$← χλ and error vector ~e
$← χm, and 2) (A,~b)

$← Rm×λq ×Rmq . A is said to
have advantage ε in solving M-LWEm,λ,χ if∣∣∣Pr

[
b = 1

∣∣∣A $← Rm×λq ; ~s
$← χλ; ~e

$← χm; b← A(A,A~s+ ~e)
]

(7)

− Pr
[
b = 1

∣∣∣A $← Rm×λq ; ~b
$← Rmq ; b← A(A,~b)

]∣∣∣ ≥ ε.
For our constructions in this work, the practical hardness of either of the problems against known attacks

is not affected by the parameter m. Therefore, we sometimes simply write M-SISκ,B or M-LWEλ,χ. The
parameters κ and λ denote the module ranks for M-SIS and M-LWE, respectively.

2.5 Probability Distributions

For sampling randomness in the commitment scheme that we use, and to define a variant of the Ring Learning
with Errors problem, we need to define an error distribution χd on R. In this paper we sample the coefficients
of the random polynomials in the commitment scheme using the distribution χ on {−1, 0, 1} where ±1 both
have probability 5/16 and 0 has probability 6/16. This distribution is chosen (rather than the more “natural”
uniform one) because it is easy to sample given a random bitstring by computing a1 + a2 − b1 − b2 mod 3
with uniformly random bits ai, bi.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output a vector ~z whose distribution
should be independent of a secret randomness vector ~r, so that ~z cannot be used to gain any information on
the prover’s secret. During the protocol, the prover computes ~z = ~y + c~r where ~r is the randomness used

to commit to the prover’s secret, c
$← C is a challenge polynomial, and ~y is a “masking” vector. To remove

the dependency of ~z on ~r, we use the uniform rejection sampling technique as in [24,13].
The main advantages of having uniform rather than Gaussian sampling are twofold. Firstly, (i) it allows

us to use standard compression techniques, i.e. chopping of low-order bits as in Dilithium [13] and (ii) it
significantly decreases the protocol run-time due to simpler implementation.

Approximate Range Proofs. Baum and Lyubashevsky [5] showed that if C~s has small coefficients, for a vector
~s over Zq and uniformly random binary matrix C, then with high probability ~s must have small coefficients
as well. We slightly generalise their result for C~s+~e where ~e is an arbitrary vector over Zq. The proof follows
almost identically as in [5].

Lemma 2.4. Let ~s ∈ Zmq and ~e ∈ Znq . Then

Pr

[
‖C~s+ ~e‖∞ <

1

2
‖~s‖∞ : C

$← {0, 1}n×m
]
≤ 2−n.
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2.6 Commitment Scheme

We recall the commitment scheme from [4] used in our constructions. Suppose that we want to commit to a
message vector ~m = (m1, . . . ,mn) ∈ Rnq for n ≥ 1 and that module ranks of κ and λ are required for M-SIS

and M-LWE security, respectively. Then, in the key generation, a matrix B0
$← Rκ×(κ+λ+n)q and vectors

~b1, . . . ,~bn
$← Rκ+λ+nq are generated and output as public parameters. For optimization, some part of them

can be set as the zero or identity matrices, but this is not important for our purposes.

To commit to the message ~m, we first sample ~r
$← χd·(κ+λ+n). Now, there are two parts of the commitment

scheme: the binding part and the message encoding part. Particularly, we compute

~t0 = B0~r mod q,

ti = 〈~bi, ~r〉+mi mod q,

for i ∈ [n], where ~t0 forms the binding part and each ti encodes a message polynomial mi.

3 Framework for Multiplicative and Linear Relations

We present a general framework for proving multiplicative and linear relations between committed messages
using the techniques presented in [2,15]. Concretely, suppose that prover P has a vector of n messages
~m = (~m1, . . . , ~mn) ∈ Znlq . Then, P wants to prove the following:

1. ∀P ∈ pp, P (~m) = ~0 where each P :
(
Zlq
)n → Zlq in pp is a public polynomial of n variables over Zlq,

2. A~m = ~u for ulp = (A, ~u) ∈ Zvl×nlq × Zvlq 10.

For our applications, we will only consider polynomials P ∈ pp of total degree at most three. However,
this can be extended to more general polynomials at the cost of larger number of garbage commitments.

We denote Ln (pp, ulp) ⊆ Znlq to be the language of messages ~m, which satisfy all two properties above.
Proving knowledge of ~m ∈ Ln (pp, ulp) consists of two parts. First, using the product proof argument from

[2], we prove P (~m) = ~0 for all P ∈ pp. Then, we apply the unstructured linear proof from [15] to show that
A~m = ~u. Since an overwhelming majority of the techniques used is thoroughly described in previous work,
we skip some technical details and refer them to [2,15]. For completeness, we sketch out main contributions
of [2,15] in Appendix A.

3.1 Main Protocol

We briefly recall that we work over the cyclotomic ring Rq with dimension d which is a power-of-two. Prime
q is selected so that polynomial Xd + 1 splits into polynomials of degree d/l as in (5). We will follow the
“commit-and-prove” functionality [14,10]. Namely, our main protocol π = (Com(~m), Π3

n(pp, ulp)) can be split
into two parts:

– Comn,3(~m): Prover P generates randomness ~r
$← χ(λ+κ+n+3)d and outputs (~t0, t1, . . . , tn+3) of the fol-

lowing form: {
~t0 = B0~r,

ti = 〈~bi, ~r〉+ NTT−1 (~mi) for i ∈ [n].
(8)

– A protocol Π3
n(pp, ulp) defined in Figure 1 for proving that ~m belongs to Ln,n′(pp, ulp). It combines proto-

cols shown in Appendix A.3 and A.4. We assume the verifier V already has commtiments ~t0, t1, . . . , tn+3.

10 Actually, A can have arbitrary number of rows but then we would have to pad rows with zeroes in order to get a
multiple of l.
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Soundness error of this protocol is around q−d/l if we assume M-SIS is hard. If parameters are chosen
such that q−d/l is not negligible then we describe in Appendix A how to increase soundness using Galois
automorphisms.

We briefly describe the protocol from Figure 1. Prover P starts by sampling a vector of small polynomials
~y and sending ~w = B~y. Furthermore, the prover samples a random polynomial g with the first d/l coefficients
equal to 0. Then, it sends a commitment tn+1 to g as a part of the unstructured linear proof (ULP) as well
as ~w.

Given challenges α1, . . . ,αξ ∈ Rq from the verifier V, prover P computes garbage commitments t′1, t
′
2

along with a polynomial v as central components of the product proof (PP). The prover is also given a
challenge ~γ ∈W vl

q . Then, P calculates w′,h as a part of ULP. Next, the prover returns (t′1, t
′
2,v,w

′,h).
In the final rounds, V samples a challenge polynomial from C and sends it to P. The prover then computes

~z = ~y + c~r and applies rejection sampling. If it does not abort, then P outputs ~z.
As far as the verification equations are concerned, the verifier checks that ~z consists of only small polyno-

mials and B~z0
?
= ~w+ c~t0. Then, Lines 03-06 and 07-10 in Figure 2 correspond to PP and ULP respectively.

Prover P Verifier V

Inputs:

B0 ∈ Rκ×(λ+κ+n+3)
q ;~b1 . . . ,~bn+3 ∈ Rλ+κ+n+3

q B0;~b1, . . . ,~bn+3

~r ∈ {−1, 0, 1}(λ+κ+n+3)d ⊂ Rλ+κ+n+3
q

~t0, t1, . . . , tn

~t0 = B0~r

mi = NTT−1 (~mi) , ti = 〈~bi, ~r〉+mi for i ∈ [n]

~y
$← S

(λ+κ+n+3)
δ1−1 and set ~w = B0~y

g
$← {f ∈ Rq : f0 = . . . = fd/l−1 = 0}

tn+1 = 〈~bn+1, ~r〉+ g tn+1, ~w - ~γ = (~γ1, . . . , ~γv)
$←W vl

q

α1, . . . ,αξ, ~γ� α1, . . . ,αξ
$←Rq

For t = 1, . . . , ξ :

ψt,0 :=
∑
i≤j≤`

µt,i,j,`〈bi, ~y〉〈bj , ~y〉〈b`, ~y〉

ψt,1 :=
∑
i≤j≤`

µt,i,j,` (〈bi, ~y〉〈bj , ~y〉m` + 〈bi, ~y〉〈b`, ~y〉mj + 〈bj , ~y〉〈b`, ~y〉mi)

+
∑
i≤j

ηt,i,j〈bi, ~y〉〈bj , ~y〉

ψt,2 :=
∑
i≤j≤`

µt,i,j,`
(
〈~b`, ~y〉mimj + 〈~bj , ~y〉mim` + 〈~bi, ~y〉mjm`

)
+
∑
i≤j

ηt,i,j
(
mi〈~bj , ~y〉+mj〈~bi, ~y〉

)
+

n∑
i=1

νt,i〈~bi, ~y〉

t′1 = 〈~bn+1, ~r〉 −
ξ∑
t=1

αtψt,2, t
′
2 = 〈~bn+2, ~r〉 −

ξ∑
t=1

αtψt,1 + 〈~bn+1, ~y〉,v =

ξ∑
t=1

αtψt,0 − 〈~bn+2, ~y〉

For j ∈ [n] : pj = NTT−1

(
v∑
i=1

ATi,j~γi

)

w′ = 〈
n∑
j=1

pj~bj + ~bn+1, ~y〉,h =
n∑
j=1

mjpj −
〈~u,~γ〉
l

+ g t′1, t
′
2,v,w

′,h-

c� c
$← C

~z = ~y + c~r

If ‖~z‖∞ ≥ δ1 − β1, abort ~z - Ver(tn+1, ~w,αi, ~γ, t
′
1, t
′
2,v,w

′,h, c, ~z)

Fig. 1. ProtocolΠ3
n(pp, ulp) for proving ~m = (~m1, . . . , ~mn) ∈ Ln(pp, ulp). We denote polynomials in pp = {P1, . . . , Pξ}

as in (33) and ulp = (A, ~u). Also, we partition the matrix A as in (43). Verification equations Ver are defined in Figure
2. Parameters δ1, β1 are used for uniform rejection sampling.
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Ver(tn+1, ~w,αi, ~γ, t
′
1, t
′
2,v,w

′,h, c, ~z)

01 ‖~z‖∞
?
< δ1 − β1

02 B0~z
?
= ~w + c~t0

03 For i ∈ [n] and j ∈ [2] :

04 fi = 〈~bi, ~z〉 − cti,f ′j = 〈~bj , ~z〉 − t′j

05 −
∑ξ
t=1

∑
i≤j≤`αtµt,i,j,`fifjf` + c

∑ξ
t=1

∑
i≤j αtηt,i,jfifj

06 −c2
∑ξ
t=1

∑n
i=1αtνt,ifi +

∑ξ
t=1 c

3ρt
?
= −c2f ′1 + cf ′2 − v

07 For i = 0, . . . , d/l − 1 : hi
?
= 0

08 For j ∈ [n] : pj = NTT−1
(∑v

i=1A
T
i,j~γi

)
09 tf =

∑n
i=1 tipi −

〈~u,~γ〉
l

10 〈
∑n
i=1 pi

~bi + ~bn+1, ~z〉
?
= w′ + c(tf + tn+1 − h).

Fig. 2. Verification equations for Figure 1.

Security Analysis. The protocol π = (Com(~m), Π3
n(pp, ulp)) for proving ~m ∈ Ln (pp, ulp) is an honest-

verifier zero-knowledge proof of knowledge under the hardness of M-SIS and M-LWE. Indeed, correctness
and zero-knowledge follow identically as in [2, Theorem 5.1] and [15, Theorem 4.1].

For soundness, we describe the main difference from the previous works. Define an extractor E as in [15,
Theorem 4.1]. Unless E finds a MSISκ,8dβ solution, where β = δ1−β1−1, it computes vectors ~y∗ and ~r∗ such
that for every accepting transcript with fixed first message (tn+1, ~w), ~z = ~y∗+ c~r∗. The next step would be
to set messages m∗i ∈ Rq which satisfy:

ti = 〈~bi, ~r∗〉+m∗i for i ∈ [n].

Let ~m∗i = NTT (m∗i ) ∈ W l
q. Recall that we additionally need to prove ~m∗1, . . . , ~m

∗
n ∈ Zlq. If Rq splits

completely, i.e. l = d, then Wq = Zq so we are done. Otherwise, an additional argument is needed. This will
depend on various applications (e.g. Sections 4 and 5) and we leave this out of scope of the proof here. Lastly,
proving that ~m∗1, . . . , ~m

∗
n satisfy relations w.r.t. (pp, ulp) follows identically as in the proof of [15, Theorem

4.1].

Proof size. We look at the size of the non-interactive proof outputs created by the protocol π. We observe
that for the non-interactive proof w, v and w need not to be included in the output as they are uniquely
determined by the remaining components. Additionally, the challenges can be generated from a small seed
of 256 bits, which itself is generated as the hash of some components. Therefore, the contribution of the
challenges to the total proof length is extremely small and thus we neglect it.

As “full-sized” elements of Rq, we have ~t0, t1, . . . , tn+1, t′1, t
′
2, and h (in fact, h is missing d/l coefficients,

but that is a negligible consideration). Therefore, we have in total n+ κ+ 4 full-sized elements of Rq, which
altogether costs (n+ κ+ 4)d log q bits.

The only remaining part is ~zi’s. Due to rejection sampling, each coefficient of ~zi can be bounded in
absolute value by δ1. If we then take into account the total number of coefficients in ~zi and an additional
sign bit for each coefficient, then we get

(λ+ κ+ n+ 3) · d · log (2δ1)
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bits of communication required for all ~zi’s together. Also, we find a bound β1 on the infinity norm of c~r. It
is easy to see that no coefficient of the product c~r can exceed d. Thus, we can set β1 = d. Hence, in order to
obtain the expected number of repetitions M for the rejection sampling, one would choose δ1 which satisfies:

1/M =

(
2(δ1 − β1)− 1

2δ1 − 1

)(λ+κ+n+3)d

≈ e−(λ+κ+n+3)dβ1/δ1 .

In conclusion, the overall proof length is about

(n+ κ+ 4)d log q + (λ+ κ+ n+ 3) · d · log (2δ1) bits. (9)

We can apply well-known proof length optimizations such as the standard compression techniques as in
[13] or bounding β1 = ‖c~r‖∞ more cleverly. We provide more details in Appendix A.5.

Commitment generation inside π. We remark that the stand-alone protocol in Fig. 1, i.e. without
Comn,3(~m), is not honest-verifier zero-knowledge. The reason is that the randomness vector ~r is fixed before
the protocol begins and thus the argument that tn+1, t

′
1, t
′
2 are indistinguishable from random is not valid.

In order to make the protocol in Fig. 1 zero-knowledge, one would generate additional randomness vector
~r′ and send ~τ0 = B′0~r

′ where B′0 is a public matrix. Additionally, one would sample ~y′ similarly as ~y′ and
output ~w′ = B′0~y

′. Then, the prover would run the protocol in Fig. 1, i.e. the product and linear proof parts,
but with ~r′ and ~y′ instead of ~r and ~y respectively. At the end, P sends masked openings to both ~r and ~r′:

~z = ~y + c~r and ~z′ = ~y′ + c′~r′

for challenges c, c′
$← C. With this approach, tn+1, t

′
1, t
′
2 are indistinguishable from random under the M-

LWE assumption since ~r′ was indeed generated by the prover. However, introducing additional randomness
significantly increases the proof size.

3.2 Polynomials of Total Degree 2

Recall that our framework allows to include in pp multivariate polynomials of degree at most three. However,
it is easy to see that when pp contains no polynomials of degree three, then only one garbage commitment t′1
is enough to prove multiplicative relations [2] (by reasoning identically as in Section A.3). Hence, the total
proof size is now equal to

(n+ κ+ 3)d log q + (λ+ κ+ n+ 2) · d · log (2δ1) bits, (10)

for s defined as in (9). We will denote this modified protocol as π = (Comn,2(~m), Π2
n(pp, ulp)).

4 Integer Addition

In this section we provide an efficient zero-knowledge proof for integer addition for committed messages.
Specifically, given commitments to integers a, b, c (depending on the application, some of these values can
be given out in the clear), we want to prove that a+ b = c. In order to consider both positive and negative
values, we use the two’s complement representation (see Section 2.1).

4.1 Two’s Complement

Suppose a, b, c ∈ [−2N−1, 2N−1 − 1] and we want to prove a + b = c. Then, a can be represented in two’s

complement as N bits a0, . . . , aN−1 ∈ {0, 1} which satisfy a = −aN−12N−1 +
∑N−2
i=0 ai2

i. Similarly, we write
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b = −bN−12N−1 +
∑N−2
i=0 bi2

i and c = −cN−12N−1 +
∑N−2
i=0 ci2

i. Then, by the two’s complement addition
algorithm we obtain the following system of equations:

f0 + a0 + b0 = c0 + 2f1
f1 + a1 + b1 = c1 + 2f2

...

fN−2 + aN−2 + bN−2 = cN−2 + 2fN−1
fN−1 + aN−1 + bN−1 = cN−1 + 2fN−1.

for a carry vector ~f = (f0, . . . , fN−1) ∈ {0, 1}N so that f0 = 0. We remark that two’s complement addition
implies a+ b = c only if the last two carry bits are identical (i.e. fN−1).

Since all values in the system of equations above are small, we can equivalently consider it modulo q and
we rewrite it in a vector notation:

~f + ~a+~b ≡ ~c+ 2J ~f (mod q) (11)

where ~a = TCN (a),~b = TCN (b),~c = TCN (c) and

J =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 1

 ∈ ZN×Nq . (12)

One observes that the matrix IN − 2J is upper-triangular and det(IN − 2J) = −1. Thus, it is also invertible.
Now we transform the problem of proving addition in terms of our framework.

Small integers. Let us assume that N = l, i.e. we are interested in proving addition of small l-bit numbers.
First, we prove that ~m = (~a,~b,~c, ~f) is a binary vector and d0 = 0. These conditions can be captured by
defining a set of pp multivariate quadratic polynomials as follows. Define

Fa(~m) = ~a ◦ ~a− ~a

and observe that Fa(~m) = ~0 if and only if ~a binary values (similarly for Fb, Fc). Note that we also need to

ensure that f0 = 0, i.e. ~f is a well-formed carry vector. This can be done by defining a slightly different
polynomial

Ff (~m) = ~f ◦ ~f − ~χ ◦ ~f,

where ~χ := (0, 1, . . . , 1) ∈ Zlq. Then, ~f ∈ {0, 1}l and f0 = 0 is equivalent to Ff (~m) = ~0. Finally, set

pp = {Fa, Fb, Fc, Ff} (13)

On the other hand, Equation 11 is equivalent to A~m = ~0 where

A :=
(
IN IN −IN (IN − 2J)

)
∈ ZN×4Nq . (14)

Then set ulp = (A,~0). Eventually, we transform the problem of proving integer addition into an instance of
our framework, i.e.

a, b, c ∈ [−2N−1, 2N−1 − 1] ∧ a+ b = c⇔ ~m ∈ L4 (pp, ulp) . (15)

We provide a simple protocol for proving addition of small integers in Figure 3.
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Prover P Verifier V

Inputs:

a, b, c ∈ [−2N−1, 2N−1 − 1] such that a+ b = c; B0;~b1, . . . ,~b6

B0 ∈ Rκ×(λ+κ+6)
q ;~b1, . . . ,~b6 ∈ Rλ+κ+6

q

~a = TCl(a),~b = TCl(b),~c = TCl(c)

~f = (I − 2J)−1(~c− ~a−~b) ∈ Zlq
Run Com4,2(~a||~b||~c||~f)

Run Π2
4 (pp, ulp)

Fig. 3. Simple proof of integer addition where N = l. Here, pp and ulp are defined in (13) and (14) respectively.
We also use the two’s complement decomposition TCl as defined in (4). Protocols Comn,2(~m) and Π2

4 (pp, ulp) are
described in Section 3.2 for n = 4.

Security Analysis. Correctness and zero-knowledge of the protocol follow directly from the discussion above
and previous works [15, Theorem 4.1].

Let us focus on soundness of our protocol. From Section 3.1 we know that there is an efficient extractor
E which obtains

~m∗ = (~a∗,~b∗,~c∗, ~f∗) ∈ L4 (pp, ulp) .

Indeed, the way we defined pp in (13) assures that messages ~a∗,~b∗,~c∗ and ~f∗ are binary and thus, over Zq
as well. Then, E can simply compute a∗ = −a∗N−12N−1 +

∑N−2
i=0 a∗i 2

i and similarly for b∗, c∗. Hence, by (15)
we have a∗ + b∗ = c∗.

Large integers. Suppose that one is interested in proving addition of large N -bit integers, i.e. N = γl for
some γ > 1. The approach is almost identical as before. However, since N > l, we need to partition the
vector ~a = (~a0, . . . ,~aγ−1) where each ~ai ∈ Zlq (similarly for ~b,~c, ~f). Then, we send commitments ta,i, . . . , tf,i

to ~ai, . . . , ~fi respectively where i = 0, . . . , γ − 1.
In order to prove that ~m = (~a,~b,~c, ~f) ∈ Z4γl

q is a binary vector, we need to define multivariate polynomials
Fa,i(~m) = ~ai ◦ ~ai − ~ai as well as Fb,i, Fc,i for i ∈ [γ]. Recall that we still need to show f0 = 0. Hence, we

define Ff,0(~m) = ~f0 ◦ ~f0 − ~χ ◦ ~f0 and Ff,i(~m) = ~fi ◦ ~fi − ~fi for i > 0. Finally, set

pp = {(Fa,i), (Fb,i), (Fc,i), (Ff,i) : i = 0, . . . , γ − 1}.

We still define the matrix A as in (14) and set ulp = (A,~0). To sum up, we reduced the problem of proving
addition of N -bit integers to an instance of our framework:

a, b, c ∈ [−2N−1, 2N−1 − 1] ∧ a+ b = c⇔ ~m ∈ L4γ (pp, ulp) . (16)

Proof size. For small values N ≤ l, we will run the protocol from Figure 1. Then, by taking calculations
from Section 3.2, we obtain the following total proof size:

(7 + κ)d log q + (λ+ κ+ 6) · d · log (2δ1) bits. (17)

For proving addition of large integers, we apply the protocol from Figure 8 which uses automorphisms.
Suppose that N = γl some γ. Then, we know from Appendix A.5 and Section 3.2 that the proof size of
Π2

4γ (pp, ulp) is (2d/l + 1)d log q + k(λ+ κ+ 4γ + d/l + 1)d · log (2δ1) bits. Hence, by including sizes of the

commitments ~t0, ta,i, . . . , tf,i sent by the prover in Com4γ,2(~m), the total proof size can be bounded by:

(2d/l + 4γ + κ+ 1)d log q + k(λ+ κ+ 4γ + d/l + 1)d · log (2δ1) bits.
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N l k κ λ δ1 δ2 D proof size

32 32 1 11 10 217 (q − 1)/214 11 11.0KB

128 128 4 10 10 218 (q − 1)/213 14 24.8KB

512 128 4 10 10 218 (q − 1)/213 14 44.7KB

Fig. 4. Proof size comparison for proving integer addition a+ b = c for a, b, c ∈ [−2N−1, 2N−1 − 1]. In each scenario,
we pick q ≈ 230 and d = 128. Here, parameters δ1, δ2, D are used for the commitment compression (see Section A.5).

Table 4 illustrates proof sizes for concrete parameters. We remark that we already include standard
optimization techniques described in Appendix A.5 and A.6. As in prior works (cf. [17,16,8,15,2]), we measure
the hardness of these problems in terms of root Hermite factor δ. Concretely, we aim for δ ≈ 1.0045 in order
to obtain around 128-bit security. For each instantiation in Figure 4 we select q ≈ 230 and appropriate
parameters λ, κ such that the root Hermite factor (for both SIS and LWE) δ ≈ 1.0045.

In Appendix B we describe how to apply our protocol in the context of range proofs.

5 Integer Multiplication

We present how to prove knowledge of integers a, b, c such that ab = c. Unlike in [22], we do not follow the
schoolbook or Karatsuba algorithms. Instead, we make use of the properties of FFT multiplication. Con-
cretely, let us write a, b ∈ [−2N−1, 2N−1−1] and c ∈ [−22N−1, 22N−1−1] in two’s complement representation,

i.e. a = −aN−12N−1 +
∑N−2
i=0 ai2

i, b = −bN−12N−1 +
∑N−2
i=0 bi2

i and c = −cN2N +
∑N−1
i=0 ci2

i. Now, define

a(X) = a0 + a1X + · · ·+ aN−2X
N−2 − aN−1XN−1 ∈ Z[X]

and similarly for b, c ∈ Z[X]. Clearly, the coefficient vector of a is sTCN (a). Now, observe that a(2)b(2) −
c(2) = 0. Hence, there exists a polynomial f of degree at most 2(N − 1)− 1 which satisfies:

a(X)b(X)− c(X) = (X − 2)f(X). (18)

Lemma C.1 says that ‖f‖∞ ≤ N + 1. Our goal will be to prove (18).
Let Rq,2l = Zq[X]/(X2l−1). Note that each ζi ∈ Zq is a root of the polynomial X2l−1 modulo q since ζ

was defined in Section 2 as the primitive 2l-th root of unity. Therefore, the ring Rq,2l splits completely. One
can define the NTT operation over Rq,2l as follows. Concretely, for a polynomial f ∈ Rq,2l with a coefficient

vector ~f , the NTT of f is the vector ~f ′ ∈ Z2l
q such that V ~f = ~f ′ where V is the Vandermonde matrix

V =


1 1 · · · 1
1 ζ · · · ζ2l−1

1 ζ2 · · · ζ2(2l−1)

...
...

...
...

1 ζ2l−1 · · · ζ(2l−1)(2l−1)

 ∈ Z2l×2l
q .

We will use the homomorphic property of NTTs, i.e. for any two polynomials f , g,h ∈ Rq,2l with coefficient

vectors ~f,~g,~h respectively, we have

h = fg ⇐⇒ V~h = (V ~f) ◦ (V ~g).

Clearly, V is invertible. Also, let us partition V = (V1||V2) where each Vi ∈ Z2l×l
q .

Suppose that l = N . The key idea to prove (18) is to treat a, b, c,f as polynomials in Rq,2l and equiva-
lently consider (18) over Rq,2l as long as N is much smaller than q. In order to make sure there is no modular
reduction, we have to later prove that f has relatively small coefficients. Observe that proving (18) over Rq,l
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is equivalent to the same equation over Zq[X] as long as we make sure that polynomials a, b have degrees
less then l, i.e. no overflow modulo X2l − 1 occurs.

Let ~f = (~f1||~f2) ∈ Z2l
q be the coefficient vector of f . At the beginning, prover P generates vectors

~e1, . . . , ~ed/l
$← Slδ3−1 from a uniform distribution. Then, P sends commitments to ~fi, ~ei. The verifier generates

a uniformly random matrix B = (B1||B2), where each Bi ∈ {0, 1}d×l and sends to P. Next, the prover applies
rejection sampling on

~g = B~f + ~e = B1
~f1 +B2

~f2 + ~e ∈ Zdq , (19)

where ~e = (~e1|| . . . ||~ed/l), and outputs ~g. Eventually, V checks whether ~g is small. Furthermore, since B and
~f ′ are known to the verifier, proving ~g = B~f + ~e is an instance of an unstructured linear proof (Appendix

A.4). Eventually, by Lemma 2.4, this implies that ~f is relatively small as well.
Going back to our integers a, b, c, denote ~a = sTCl(a) (see (4)) and (~a′1||~a′2) = ~a′ = V1~a ∈ Z2l

q where each

~a′i ∈ Zlq (and the same for ~b). Also, set (~c1||~c2) = sTC2l(c), (~c
′
1||~c′2) = V ~c and (~f ′1||~f ′2) = V ~f . Furthermore,

we let
~m = (~a,~a′1,~a

′
2,
~b,~b′1,

~b′2,~c1,~c2,~c
′
1,~c
′
2,
~f1, ~f2, ~f

′
1,
~f ′2, ~e1, . . . , ~ed/l).

Note that ~m ∈ Z(14+d/l)l
q . Then, (18) is equivalent to G1(~m) = G2(~m) = ~0 where

Gi(~m) := ~a′i ◦~b′i − ~c′i − ~γi ◦ ~f ′i for i = 1, 2

and (~γ1||~γ2) = (1− 2, ζ − 2, ζ2 − 2, . . . , ζ2l−1 − 2) is the NTT of X − 2.

We need to show that ~a,~b,~c2 ∈ {0, 1}l−1 × {−1, 0} and ~c1 is binary. We do that by defining Fa(~m) =
~a ◦ ~a− ~χ ◦ ~a where ~χ = (1, . . . , 1,−1) ∈ Zlq (and similarly for Fb, Fc1 , Fc2). Then, we set:

pp := {G1, G2, Fa, Fb, Fc1 , Fc2}. (20)

Next, we have to prove the relation between ~a and ~a′, i.e. ~a′ = V1~a and similarly for ~b,~c. For ~f , however,
we will show the inverse i.e. V −1 ~f ′ = ~f . This will be crucial for the soundness argument. We can combine
all these linear relations between polynomial and NTT coefficients above, along with (19) into one equation

A~m = ~u where A ∈ Z(5+d/l)l×(14+d/l)l
q and ~u ∈ Z(5+d/l)l

q are defined as

A =


V1 −I2l 0l 02l 02l 02l 02l 02l 02l,d

02l,l 02l V1 −I2l 02l 02l 02l 02l 02l,d
02l,l 02l 02l,l 02l V −I2l 02l 02l 02l,d
02l,l 02l 02l,l 02l 02l 02l −I2l V −1 02l,d
0d,l 0d,2l 0d,l 0d,2l 0d,2l 0d,2l B 0d,2l Id

 (21)

and ~u = (~05l||~g). Let ulp = (A, ~u). Finally, we use our framework from Section 3 to prove that ~m ∈
L14+d/l (pp, ulp).

5.1 Main Protocol

Figure 5 describes a simple protocol for proving integer multiplication. We briefly analyse security of the pro-
tocol. First, correctness and zero-knowledge follow straightforwardly from the discussion above and previous
works [15, Theorem 4.1].

Soundness arguments works as follows. From Section 3.1 and the discussion above, there is an efficient
extractor E which extracts openings of the commitments ti:

~m∗ = (~a,~a′1,~a
′
2,
~b,~b′1,

~b′2,~c1,~c2,~c
′
1,~c
′
2,
~f1, ~f2, ~f

′
1,
~f ′2, ~e1, . . . , ~ed/l).

We have to prove that ~m∗ is a vector over Zq. By definition of pp and ulp, we know that ~a,~a′i satisfy ~a ∈ Zlq
and V~a = (~a′1||~a′2). Since V and ~a are over Zq, we conclude that ~a′,~a

′
2 are also over Zq. We argue similarly for
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Prover P Verifier V

Inputs:

a, b ∈ [−2N−1, 2N−1 − 1] and c ∈ [−22N−1, 22N−1 − 1] such that c = ab B0;~b1, . . . ,~b16+d/l

B0 ∈ Rκ×(λ+κ+16+d/l)
q ;~b1, . . . ,~b16+d/l ∈ Rλ+κ+16+d/l

q

~e1, . . . , ~ed/l
$← [−δ′1 + 1, δ′1 − 1]l

~e = (~e1, . . . , ~ed/l)

~a = sTCl(a),~b = sTCl(b),~c = sTC2l(c)

a =

l−1∑
i=0

aiX
i, b =

l−1∑
i=0

biX
i, c =

l−1∑
i=0

ciX
i

f = (ab− c)/(X − 2) ∈ Z[X], ~fi = (fil, . . . , fil+l−1) for i = 1, 2(
~a′1
~a′2

)
= V1~a,

(
~b′1
~b′2

)
= V1

~b,

(
~c′1
~c′2

)
= V1~c,

(
~f ′1
~f ′2

)
= V1f1 + V2f2

Run Com14+d/l,2

(
~a||~a′1||~a′2||~b||~b′1||~b′2||~c||~c′1||~c′2||~f1||~f2||~f ′1||~f ′2||~e

)
B1, B2� B1, B2

$← {0, 1}d×l ⊂ Zl×lq

~g = B1
~f1 +B2

~f2 + ~e

If ‖~g‖∞ ≥ δ′1 − β′1, abort ~g -

Run Π2
14+d/l (pp, ulp) ‖~g‖∞

?
< q/12

Check ver. eq. for Π2
14+d/l (pp, ulp)

Fig. 5. Proof of integer multiplication where N = l. Here, pp and ulp are defined in (20) and (21) respectively. We
use the signed two’s complement decomposition sTCl from (4). Protocols Com14+d/l,2(~m) and Π2

14+d/l (pp, ulp) are
described in Section 3.2 for n = 14 + d/l.

other extracted messages ~b,~b′i,~ci,~c
′
i. Next, we know from the definition of pp that ~a′i ◦~b′i−~c′i−~γi ◦ ~f ′i = ~0 for

i = 1, 2. Since all the entries in ~γi ∈ Zlq are non-zero, we conclude that ~f ′i ∈ Zlq. Furthermore, we know that

V −1(~f ′1||~f ′2) = (~f1||~f2). Therefore, ~f1, ~f2 ∈ Zlq since both V −1 and ~f ′i are over Zq. This also directly implies

that all ~ei ∈ Zlq
Essentially, E finds binary (apart from the last coefficient which is in {−1, 0}) polynomials a∗, b∗, c∗ ∈

Rq,2l, where the former two are of degree at most l− 1, and a polynomial f∗ ∈ Rq,2l of degree at most 2l− 1
such that a∗b∗−c∗ = (X−2)f∗ over Rq,2l. We argue that the absolute values of coefficients of (X−2)f∗ are
strictly less than q/2. This would imply that this equation also holds over Z[X] and thus a∗(2)b∗(2) = c∗(2).

As discussed earlier, E is able to extract vectors ~fi ∈ Zlq, ~e ∈ Zdq such that B0
~f0 + B1

~f1 + ~e = ~g for
challenge matrices B0, B1 and a response ~g from a deterministic prover P∗. We know that ‖~g‖∞ < q/12.
Then, since B = (B1||B2) ∈ Zd×2lq is a matrix of random binary values, by Lemma 2.4 we get that the

maximum coefficient of (~f∗1 ||~f∗2 ) is strictly smaller that q/6, i.e. ‖f∗‖∞ < q/6, with probability at least
1− 2d. Hence, ‖(X − 2)f∗‖∞ < q/2 with an overwhelming probability.

Proof size. First, consider the case when q−d/l is negligible. By taking calculations from Section 3.2 and
accounting for one extra response ~g ∈ Zdq from P, we obtain the following total proof size:

(17 + d/l + κ)d log q + (λ+ κ+ 16 + d/l) · d · log (2δ1) + d · log (2δ′1) bits. (22)

Now, we need to compute β′, i.e. a bound on ‖B1
~f1 +B2

~f2‖∞. From Lemma C.1 we can give a naive bound
β1 ≤ 2l(N + 1). We also need to make sure that δ′ < q/12 but since we will usually select q ≈ 230, this is
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not a problem. Concretely, we use δ′ = 226. Thus, the expected number of repetitions M for the rejection
sampling for ~g satisfies:

1/M =

(
2(δ′1 − β′1)− 1

2δ′1 − 1

)d
≈ e−dβ

′
1/δ
′
1 .

When q−d/l is not negligible, we apply the protocol from Figure 8. By taking calculations from Appendix
A.5 and Section 3.2, we obtain the following proof size:

(15 + 3d/l + κ)d log q + k(λ+ κ+ 15 + 2d/l)d · log (2δ1) + d · log (2δ′1) bits.

We provide concrete proof sizes for specific values of N in Figure 6. Similarly as in Section 4.1, we select
q ≈ 230 and appropriate parameters λ, κ such that the root Hermite factor (for both SIS and LWE) is around
δ ≈ 1.0045. When calculating the sizes, we already implement small optimizations described in Section C.2
along with improvements to the main framework in Appendix A.5 and A.6.

Additionally, one could consider picking a different base (e.g. 3 instead of 2) to cover larger ranges for
a, b, c. In this case, one would apply the protocol from Figure 1 with polynomials of degree three.

N l k κ λ δ1 δ2 D proof size

32 32 1 11 10 217 (q − 1)/214 11 14.5KB

128 128 4 10 10 218 (q − 1)/213 14 40.2KB

512 128 4 10 10 218 (q − 1)/213 14 99.8KB

Fig. 6. Proof size comparison for proving integer multiplication ab = c for a, b ∈ [−2N−1, 2N−1− 1]. In each scenario,
we pick q ≈ 230 and d = 128. Here, parameters δ1, δ2, D are used for the commitment compression (see Section A.5).

In Section C we describe small tricks improvements to the multiplication protocol which slightly improve
the proof size.

6 Implementation

We provide an open-source constant-time single-threaded implementation of our integer addition and mul-
tiplication proof systems for integers of length N = 128. The software can be obtained from

github.com/gregorseiler/irelzk.

It borrows heavily from the implementation techniques that have been used to speed up the Kyber [9],
Dilithium [13] and NTTRU [27] lattice-based schemes. The software is optimized for x86 CPUs supporting
the AVX2 instruction set and especially all of the polynomial arithmetic over Rq is fully vectorized. Most
parts of the AVX2 code are written using C intrinsics, while the AVX2 NTT is implemented in assembly
language. As in many lattice-based construction based on the Module-LWE and Module-SIS problems, among
the most time-consuming tasks are the expansion of the commitment matrices B0 and ~bi and polynomial
multiplication.

The matrix B0 ∈ Rκ×(λ+κ+n+2)
q is chosen with the structure B0 = (Iκ | B′0) with B′0 ∈ R

κ×(λ+n+2)
q .

Likewise, the vectors ~bi, i = 1, . . . , n + 2, are of the form ~bi = ~0κ ‖ ~ei ‖ ~b′i where ~ei is the i-th standard

basis vector of length n+ 2 and ~b′i ∈ Rλq . We expand all uniformly random polynomials in B0 and ~bi from
the same 32-bit seed using the output stream of AES-256 in counter mode, where we use a fresh nonce
for each polynomial. Our vectorized rejection sampling implementation samples up to 8 uniformly random
coefficients simultaneously and the AES implementation is based on the AES-NI instructions.

For fast polynomial multiplication, whenever possible, we keep polynomials in the NTT basis represen-
tation to save NTT operations, and also sample uniformly random polynomials directly in the NTT basis.
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Specifically, uniform polynomials that are sent as part of the proofs are sent in the NTT basis. Our code
also includes fast in-place implementations of the Galois automorphisms that operate in the NTT basis.

The AVX2 optimized NTT implementation operates on dense vectors of 8 32-bit coefficients. It uses the
modified Montgomery reduction algorithm from [29] and [27] to reduce intermediate 64 bit products. This
allows to handle dense vector registers more efficiently and saves multiplication instructions that lie on the
critical path. To our knowledge, it is the first time the technique has been used for 32-bit arithmetic. At
the core of the code lies a vectorized interleaved butterfly implementation that processes 32 coefficients in 4
vector registers at a time. The instruction for parallel Montgomery and single-word reductions in a butterfly
operation are very carefully scheduled, taking into account the front-end decoding throughput from the L1
cache and the back-end execution resources. A full NTT execution runs in 540 cycles on an Intel Skylake
core.

For the hash function that is needed in the Fiat-Shamir transform to obtain all the challenge polynomials,
we use SHAKE128. We list the runtimes of our implementation in Figure 7.

Addition Multiplication

Proving 1.09 ms 2.39 ms
Verifying 0.20 ms 0.41 ms

Fig. 7. Timings of our implementation of the integer addition and multiplication proof system for integers of length
N = 128 on a single core of an Intel Skylake CPU running at 3.5 GHz. The given numbers are the medians of 500
executions each.
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9. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe,
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Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(1):238–268, 2018.

14. Alex Escala and Jens Groth. Fine-tuning groth-sahai proofs. In Hugo Krawczyk, editor, Public-Key Cryptography
- PKC 2014 - 17th International Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires,
Argentina, March 26-28, 2014. Proceedings, volume 8383 of Lecture Notes in Computer Science, pages 630–649.
Springer, 2014.

15. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical exact proofs from lattices: New tech-
niques to exploit fully-splitting rings. IACR Cryptol. ePrint Arch., 2020:518, 2020. https://eprint.iacr.org/

2020/518.

16. Muhammed F. Esgin, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Lattice-based zero-knowledge proofs: New
techniques for shorter and faster constructions and applications. In CRYPTO (1), volume 11692 of Lecture Notes
in Computer Science, pages 115–146. Springer, 2019.

17. Muhammed F. Esgin, Ron Steinfeld, Amin Sakzad, Joseph K. Liu, and Dongxi Liu. Short lattice-based one-out-
of-many proofs and applications to ring signatures. In Robert H. Deng, Valérie Gauthier-Umaña, Mart́ın Ochoa,
and Moti Yung, editors, Applied Cryptography and Network Security - 17th International Conference, ACNS
2019, Bogota, Colombia, June 5-7, 2019, Proceedings, volume 11464 of Lecture Notes in Computer Science, pages
67–88. Springer, 2019.

18. Muhammed F. Esgin, Raymond K. Zhao, Ron Steinfeld, Joseph K. Liu, and Dongxi Liu. Matrict: Efficient,
scalable and post-quantum blockchain confidential transactions protocol. In ACM Conference on Computer and
Communications Security, pages 567–584. ACM, 2019.

19. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In STOC, pages
723–732. ACM, 1992.

20. Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of fiat-shamir signatures in the
quantum random-oracle model. In EUROCRYPT (3), volume 10822 of Lecture Notes in Computer Science, pages
552–586. Springer, 2018.
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A Additional Background

As already mentioned in Section 3, the key ingredients for proving ~m ∈ Ln(pp, ulp) are the new efficient
product proof [2] and unstructured linear proof [15] protocols. For completeness, we sketch out main ideas
used in the previous works [2,15].

A.1 Automorphisms

In this section we work over the cyclotomic ring Rq with dimension d which is a power-of-two. Prime q is
selected so that polynomial Xd + 1 splits into polynomials of degree d/l as in (5).

The ring Rq has a group of automorphisms Aut(Rq) that is isomorphic to Z×2d ∼= Z2 × Zd/2,

i 7→ σi : Z×2d → Aut(Rq),

where σi is defined by σi(X) = Xi. Note that for i ∈ Z×2d and odd j it holds that (σi(X − ζj)) = (X − ζji−1

)
in Rq (as ideals), and for f ∈ Rq,

σi
(
f mod (X − ζj)

)
= σi (f) mod

(
X − ζji

−1
)
.

Let k be a divisor of l and σ := σ2l/k+1 ∈ Aut(Rq). Then, we can write

(
Xd + 1

)
=

∏
j∈Z×

2l/k

k−1∏
i=0

σi
(
X

d
l − ζj

)
.

A.2 Weak Opening

Attema et al. [2] introduce the notion of a weak opening that is produced by the opening proof. The
commitment scheme in [4] is still binding with respect to this notion if M-SIS is hard.

Definition A.1. A weak opening for the commitment ~t = (~t0, t1)T consists of l polynomials c̄i ∈ Rq, a
randomness vector ~r∗ over Rq and a message m∗ ∈ Rq such that

‖c̄i‖1 ≤ 2d and c̄i mod (Xd/l − ζ2i+1) 6= 0 for all 0 ≤ i ≤ l − 1,

‖c̄i~r∗‖∞ ≤ 2β for all 0 ≤ i ≤ l − 1,

B0~r
∗ = ~t0,

〈~b1, ~r∗〉+m∗ = t1.

A.3 Product Proof

Simple case. For readability, we first consider the case when we only need to prove knowledge of ~m so
that P (~m) = ~0 for a single P ∈ pp. As mentioned before, we assume P is a multivariate polynomial of total
degree at most 3. Hence, we can write a general formula for P :

P (~x1, . . . , ~xn) :=
∑
i≤j≤`

~µi,j,` ◦ (~xi ◦ ~xj ◦ ~x`) +
∑
i≤j

~ηi,j ◦ (~xi ◦ ~xj)

+

n∑
i=1

~νi ◦ ~xi + ~ρ

(23)
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Clearly, P (~m1, . . . , ~mn) = ~0 is equivalent to

P (m1, . . . ,mn) :=
∑
i≤j≤`

µi,j,`mimjm` +
∑
i≤j

ηi,jmimj

+

n∑
i=1

νimi + ρ = 0

(24)

where mi = NTT−1 (~mi) and µi,j,` = NTT−1 (~µi,j,`) (and similarly for ηi,j ,νi,ρ).

We follow the strategy from [2]. Let ~y
$← S

(λ+κ+n+d/l+2)d
δ1−1 and c

$← C. For i ∈ [n], define fi = 〈~bi, ~y〉 −
cmi. Then, we can expand the sum

∑
i≤j≤`−µi,j,`fifjf` as:

c3

 ∑
i≤j≤`

µi,j,`mimjm`

−
 ∑
i≤j≤`

µi,j,`〈bi, ~y〉〈bj , ~y〉〈b`, ~y〉


− c2

 ∑
i≤j≤`

µi,j,`

(
〈~b`, ~y〉mimj + 〈~bj , ~y〉mim` + 〈~bi, ~y〉mjm`

)
+ c

 ∑
i≤j≤`

µi,j,` (〈bi, ~y〉〈bj , ~y〉m` + 〈bi, ~y〉〈b`, ~y〉mj + 〈bj , ~y〉〈b`, ~y〉mi)

 .

(25)

Similarly, we have:

c
∑
i≤j

ηi,jfifj =c3

∑
i≤j

ηi,jmimj

+ c

∑
i≤j

ηi,j〈bi, ~y〉〈bj , ~y〉


− c2

∑
i≤j

ηi,j

(
mi〈~bj , ~y〉+mj〈~bi, ~y〉

) ,

(26)

and

−c2
n∑
i=1

νifi =c3

(
n∑
i=1

νimi

)
− c2

(
n∑
i=1

νi〈~bi, ~y〉

)
. (27)

Then, we observe that:

−
∑
i≤j≤`

µi,j,`fifjf`+c
∑
i≤j

ηi,jfifj − c2
n∑
i=1

νifi + c3ρ

= c3P (m1, . . . ,mn)− c2ψ2 + cψ1 −ψ0,

(28)

where ψ0,ψ1,ψ2 are defined as follows:

ψ0 :=
∑
i≤j≤`

µi,j,`〈bi, ~y〉〈bj , ~y〉〈b`, ~y〉,

ψ1 :=
∑
i≤j≤`

µi,j,` (〈bi, ~y〉〈bj , ~y〉m` + 〈bi, ~y〉〈b`, ~y〉mj + 〈bj , ~y〉〈b`, ~y〉mi)

+
∑
i≤j

ηi,j〈bi, ~y〉〈bj , ~y〉,
(29)
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and

ψ2 :=
∑
i≤j≤`

µi,j,`

(
〈~b`, ~y〉mimj + 〈~bj , ~y〉mim` + 〈~bi, ~y〉mjm`

)
+
∑
i≤j

ηi,j

(
mi〈~bj , ~y〉+mj〈~bi, ~y〉

)
+

n∑
i=1

νi〈~bi, ~y〉.
(30)

We are ready to describe a simple protocol for proving P (~m) = ~0. Prover P starts by sampling a vector

~y
$← S

(λ+κ+n+d/l+2)d
δ1−1 of small polynomials and setting ~w = B0~y. Also, the prover computes

{
t′1 = 〈~bn+d/l+1, ~r〉 −ψ2,

t′2 = 〈~bn+d/l+2, ~r〉 −ψ1 − 〈~bn+d/l+1, ~y〉.
(31)

Finally, it sets v = ψ0 − 〈~bn+d/l+2, ~y〉 and sends ( ~w, t′1, t
′
2,v) to the verifier V.

After receiving a challenge c
$← C from V, the prover computes a masked opening ~z = ~y+c~r and applies

standard rejection sampling. If it does not abort, P sends ~z to V.

Now, V checks that ~z consists of small polynomials and B0~z
?
= ~w + c~t0 over Rq. Next, V sets fi =

〈~bi, ~z〉 − cti for i ∈ [n] and also

f ′i = 〈~bn+i, ~z〉 − ct′i for i = 1, 2.

Then, the verifier checks whether:

−
∑
i≤j≤`

µi,j,`fifjf`+c
∑
i≤j

ηi,jfifj − c2
n∑
i=1

νifi + c3ρ

?
= −cf ′1 + f ′2 − v.

(32)

We briefly discuss correctness of the protocol. First, note that values fi are the same as the ones defined
above, since

fi = 〈~bi, ~z〉 − cti = c〈~bi, ~r〉+ 〈~bi, ~y〉 − c〈~bi, ~r〉 − cmi = 〈~bi, ~y〉 − cmi.

Therefore, Equation 32 follows directly from (28) and the fact that P (m1, . . . ,mn) = 0.

We also point out that by Lemma 2.1, soundness error of this protocol is about q−d/l assuming that
M-SIS is hard. We show in Appendix A.3 how to boost soundness using Galois automorphisms.

Multiple polynomials. We now describe how to prove knowledge of ~m such that P (~m) = ~0 for all P ∈ pp.
Let pp = {P1, . . . , Pξ} where ξ = |pp|. Similarly as above, we can write an explicit formula for each polynomial
Pt over Rq:

Pt(x1, . . . ,xn) :=
∑
i≤j≤`

µt,i,j,`xixjx` +
∑
i≤j

ηt,i,jxixj

+

n∑
i=1

νt,ixi + ρt.

(33)
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Clearly, for each Pt, one can also write down (28) with potentially different ψt,0,ψt,1,ψt,2 ∈ Rq. We now
linear-combine ξ such equations. Namely, for any α1, . . . ,αξ ∈ Rq we have:

−
ξ∑
t=1

∑
i≤j≤`

αtµt,i,j,`fifjf` + c

ξ∑
t=1

∑
i≤j

αtηt,i,jfifj

− c2
ξ∑
t=1

n∑
i=1

αtνt,ifi + c3
ξ∑
t=1

ρt

= c3
ξ∑
t=1

αtPt(m1, . . . ,mn)− c2
ξ∑
t=1

αtψt,2 + c

ξ∑
t=1

αtψt,1 −
ξ∑
t=1

αtψt,0.

(34)

The main idea here is to first let the verifier pick uniformly random α1, . . . ,αξ ∈ Rq, and then prove
that Q(m1, . . . ,mn) = 0, where

Q :=

ξ∑
t=1

αtPt, (35)

using the protocol from Section A.3. Concretely, prover P starts by sampling ~y
$← S

(λ+κ+n+d/l+2)d
δ1−1 and

sending ~w = B0~y. After receiving challenges α1, . . . ,αξ
$← Rq from the verifier, P computes{

t′1 = 〈~bn+d/l+1, ~r〉 −
∑ξ
t=1αtψt,2,

t′2 = 〈~bn+d/l+2, ~r〉 −
∑ξ
t=1αtψt,1 − 〈~bn+d/l+1, ~y〉.

(36)

Finally, it sets

v =

ξ∑
t=1

αtψt,0 − 〈~bn+d/l+2, ~y〉

and sends (t′1, t
′
2,v) to the verifier.

After receiving a challenge c
$← C from V, the prover sends a masked opening ~z = ~y + c~r unless the

rejection sampling aborts.

Similarly as before, V checks that ~z consists of small polynomials and B0~z
?
= ~w + c~t0. Next, V sets

fi = 〈~bi, ~z〉 − cti for i ∈ [n] and also

f ′i = 〈~bn+i, ~z〉 − ct′i for i = 1, 2.

Eventually, the verifier checks whether:

−
ξ∑
t=1

∑
i≤j≤`

αtµt,i,j,`fifjf` + c

ξ∑
t=1

∑
i≤j

αtηt,i,jfifj

− c2
ξ∑
t=1

n∑
i=1

αtνt,ifi +

ξ∑
t=1

c3ρt
?
= −cf ′1 + f ′2 − v.

(37)

As discussed in [2], the amortization technique does not decrease the soundness thanks to a nice property of
the Schwartz-Zippel lemma. Intuitively, as soon as one of the relations is false, then the linear combination
of all of the relations will be uniformly random, and this will be detected with overwhelming probability.

Boosting soundness. We recall that the two previous protocols shown in Section A.3 have soundness error
around q−d/l (ignoring the term related to solving M-SIS). In order to decrease this probability further,
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we apply Galois automorphisms. Let σ = σ2l/k+1 be the automorphism of order kd/l such that q−kd/l

is negligible. Then, by linear-combining all permutations σι(Q(m1, . . . ,mn)) with independent challenge
coefifcients φι ∈ Rq, we want to prove Q′(m1, . . . ,mn) = 0 where

Q′ :=

k−1∑
ι=0

φισ
−ι(Q(m1, . . . ,mn)). (38)

In order to do so, we follow the strategy from Section A.3.

First, let ~y0, . . . , ~yk−1
$← S

(λ+κ+n+d/l+2)d
δ1−1 and c

$← C. This time, we define f
(ι)
j := 〈~bj , ~yι〉−σι(c)mj for

j ∈ [n] and ι ∈ {0, . . . , k − 1}. Then, similarly as in (34), we have:

k−1∑
ι=0

φισ
−ι

 ξ∑
t=1

∑
i≤j≤`

−αtµt,i,j,`f (ι)
i f

(ι)
j f

(ι)
` + σι(c)

ξ∑
t=1

∑
i≤j

αtηt,i,jf
(ι)
i f

(ι)
j


+

k−1∑
ι=0

φισ
−ι

(
σι(c2)

ξ∑
t=1

n∑
i=1

−αtνt,if (ι)
i + σι(c3)

ξ∑
t=1

ρt

)

= c3Q′(m1, . . . ,mn)− c2
k−1∑
ι=0

φισ
−ι

(
ξ∑
t=1

αtψt,2

)

+ c

k−1∑
ι=0

φισ
−ι

(
ξ∑
t=1

αtψt,1

)
−
k−1∑
ι=0

φισ
−ι

(
ξ∑
t=1

αtψt,0

)
.

(39)

We can now describe the full protocol. To begin with, P samples ~y0, . . . , ~yk−1
$← S

(λ+κ+n+d/l+2)d
δ1−1 and sends

~wι = B0~yι for ι ∈ {0, . . . , k − 1}. After receiving challenges α1, . . . ,αξ
$← Rq and φ0, . . . ,φk−1

$← Rq from
V, the prover computest

′
1 = 〈~bn+d/l+1, ~r〉 −

∑k−1
ι=0 φισ

−ι
(∑ξ

t=1αtψt,2

)
,

t′2 = 〈~bn+d/l+2, ~r〉 −
∑k−1
ι=0 φισ

−ι
(∑ξ

t=1αtψt,1

)
+ 〈~bn+d/l+1, ~y〉.

(40)

and sets

v =

k−1∑
ι=0

φισ
−ι

(
ξ∑
t=1

αtψt,0

)
− 〈~bn+d/l+2, ~y〉.

Then, P sends (t′1, t
′
2,v) to the verifier.

After receiving a challenge c
$← C from V, the prover sends k masked openings ~zι = ~yι + σι(c)~r for

ι = 0, 1, . . . , k − 1, unless one of the k rejection sampling algorithms aborts.

Similarly as before, V checks that each ~zι consists of small polynomials and B0~zι
?
= ~wι + σι(c)~t0. Next,

V sets
f
(ι)
j = 〈~bi, ~zι〉 − σι(c)tj

and also
f ′i = 〈~bn+i, ~z〉 − ct′i for i = 1, 2.

Then, the verifier checks whether:

k−1∑
ι=0

φισ
−ι

 ξ∑
t=1

∑
i≤j≤`

−αtµt,i,j,`f (ι)
i f

(ι)
j f

(ι)
` + σι(c)

ξ∑
t=1

∑
i≤j

αtηt,i,jf
(ι)
i f

(ι)
j


+

k−1∑
ι=0

φισ
−ι

(
σι(c2)

ξ∑
t=1

n∑
i=1

−αtνt,if (ι)
i + σι(c3)

ξ∑
t=1

ρt

)
?
= −c2f ′1 + cf ′2 − v.

(41)
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Attema et al. show that the success probability of a cheating prover is now reduced to at most ε =
(

3
qd/l

)k
.

A.4 Unstructured Linear Proof

Let ulp = (A, ~u). In order to prove knowledge of ~m ∈ Znlq such that A~m = ~u, we show that

〈A~m− ~u,~γ〉 = 0 (42)

for a uniformly random challenge vector ~γ = (~γ1, . . . , ~γv) ∈ W vl
q . We follow the approach presented in [15].

First, let us rewrite A as:

A =

A1,1 · · · A1,n

... · · ·
...

Av,1 · · · Av,n

 (43)

where Ai,j ∈ Zl×lq . Then, we have:

〈A~m,~γ〉 =

v∑
i=1

n∑
j=1

〈Ai,j ~mj , ~γi〉 =

n∑
j=1

v∑
i=1

〈~mj , A
T
i,j~γi〉

=

n∑
j=1

l−1∑
ι=0

(NTT (mj) ◦ NTT (pj))ι =

n∑
j=1

l−1∑
ι=0

NTT (mjpj)ι

=

l−1∑
ι=0

NTT

 n∑
j=1

mjpj


ι

where pj := NTT−1
(∑v

i=1A
T
i,j~γi

)
. Hence, (42) is equivalent to

∑l−1
ι=0 NTT (f)ι = 0 for

f =

n∑
j=1

mjpj −
〈~u,~γ〉
l

.

Note that the verifier can compute a commitment to f by calculating:

tf :=

n∑
i=1

tipi −
〈~u,~γ〉
l

= 〈
n∑
i=1

pi~bi, ~r〉+ f .

Next, we use the following lemma which was first introduced in [15].

Lemma A.2. Let f ∈ Rq. Then,
∑l−1
j=0 NTT (f)j = l

∑d/l−1
i=0 fiXi.

From Lemma A.2 we know that if A~m = ~u then the first d/l coefficients of f are equal to zero. Hence, the
idea is to first commit to a uniformly random polynomial g which also has the first d/l coefficients zeroes
and then later reveal h := f + g. The verifier then can manually check whether the first d/l coefficients of
h are indeed equal to zero.

Concretely, the protocol is as follows. Prover P starts by generating a vector of small polynomials ~y and
sending ~w = B0~y as well as a commitment tn+1 = 〈~bn+1, ~r〉 + g to g. After getting a challenge ~γ ∈ W vl

q ,
the prover computes f as above and sends h = f + g. Also, P sends

w′ = 〈
n∑
i=1

pi~bi + ~bn+1, ~y〉.
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Next, the verifier selects c
$← C. Finally, P outputs ~z = ~y + c~r after applying rejection sampling. Then, V

checks that (i) ~z is small, (ii) B0~z = ~w + c~t0, (iii) the first d/l coefficients of h are all zeroes and lastly:

〈
n∑
i=1

pi~bi + ~bn+1, ~z〉 = w′ + c(tf + tn+1 − h).

We observe that when A~m 6= ~u then the probability that 〈A~m− ~u,~γ〉 = 0 is equal to 1/|Wq| = q−d/l. We
show in Section A.4 how to decrease this error further if q−d/l is not negligible.

Boosting soundness. The protocol for proving unstructured linear relations in Section A.4 has soundness
error q−d/l. If this is not negligible then we introduce k independent challenges ~γ1, . . . , ~γk ∈ W vl

q and show
that

〈A~m− ~u,~γι〉 = 0 for ι = 0, . . . , k − 1.

Thus, we reduce the probability of cheating to q−kd/l.
For each ~γi, define fi and its commitment tfi similarly as in Section A.4. We show that the first d/l

coefficients of fi, i.e. fi,0, . . . , fi,d/l−1 are equal to zero. We do that by showing simultaneously f0,j−1 = . . . =
fk−1,j−1 = 0 for j ∈ [d/l].

Esgin et al. observe that the polynomial

f̄j :=
1

k

k−1∑
µ=0

Xµd/l
k−1∑
ν=0

σν
(
X−j+1fµ

)
∈ Rq

has the following property : the µd/l-th coefficient of f̄j−1 is equal to the (j − 1)-th coefficient of fµ (which
should be equal to zero). We remark that the verifier can compute a commitment to f̄j−1 by calculating:

τj =
1

k

k−1∑
µ=0

Xµd/l
k−1∑
ν=0

σν
(
X−j+1tfµ

)
=

1

k

k−1∑
µ=0

Xid/l
k−1∑
ν=0

σν

(
X−j+1〈

n∑
η=1

pµ,η~bη, ~r〉

)
+ f̄j .

(44)

The protocol now looks as follows. Prover P starts by generating d/l uniformly random polynomials

g1, . . . , gd/l satisfying gj,0 = gj,d/l = . . . = gj,(k−1)d/l = 0 and computing commitments tn+j = 〈~bn+j , ~r〉+gj
for j ∈ [d/l]. Also it samples vectors ~y0, . . . , ~yk−1 of short polynomials that are going to be used to mask ~r
k times with challenges of the form σi(c). Furthermore, P computes ~wi = B0~yi. The prover sends tgj and
~wi to V.

Next, the verifier selects uniformly random vectors ~γ0, . . . , ~γk−1 ∈ W vl
q and sends them to P. Then, the

prover computes f̄j for each j ∈ Zd/l. By construction, each µd/l-th coefficient of f̄j , where µ = 0, . . . , k−1,
is equal to 0. Note that V can compute a commitment τj to f̄j as explained above. Now the prover sets
hj = f̄j + gj and computes for i = 0, . . . , k − 1 and j = 1, . . . , d/l:

w′i,j =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

(
X−j+1〈

n∑
η=1

pµ,η~bη, ~yi−ν mod k〉

)
+ 〈~bn+j , ~yi〉.

It outputs hj and v0,j , . . . ,vk−1,j . The verifier sends a random challenge polynomial c
$← C. Eventually, P

computes ~zi = ~yi + σi(c)~r for i = 0, . . . , k − 1 and sends ~z0, . . . , ~zk−1.
Verifier V first checks if for all i = 0, . . . , k − 1,

B0~zi
?
= ~wi + σi(c)~t0.
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Then, V checks that hj,0, . . . , hj,k−1 are all equal to zero and computes τj as in (44) for j ∈ Zd/l. Finally,
the verifier checks whether for all i = 0, . . . , k − 1 and j = 1, . . . , d/l,

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν

(
X−j+1〈

n∑
η=1

pµ,η~bη, ~zi−ν mod k〉

)
+ 〈~bn+j , ~zi〉 = w′i,j + σi(c)(τj + tn+j − hj)

(45)

to test whether τj + tgj − hj really is a commitment to zero.

A.5 Main Protocol

We present a protocol for proving that ~m belongs to Ln (pp, ulp). As in Section 3.1, the prover P starts by
running Comn,3(~m). Then, P runs the protocol in Fig. 8. It applies techniques shown in Sections A.3 and
A.4. Soundness error of the protocol is around q−kd/l.

We skip the security analysis since it is almost identical to the ones described in [15, Theorem 4.1] and [2,
Theorem 5.1]. However, we note that depending on the applications, one has to make sure that it is possible
to extract messages ~m1, . . . , ~mn from the language Ln (pp, ulp) which are over Zq and not just Wq. This
additional argument, however, is not needed in the case l = d since there we automatically have Zq = Wq.

Proof size. We now look at the size of the non-interactive proof outputs created by the protocol in Figure 8
similarly as in Section 3.1. First, note that for the non-interactive proof ~wi’s, v and w′ijs need not be included
in the output as they are uniquely determined by the remaining components. Further, the challenges can be
generated from a small seed of 256 bits, which itself is generated as the hash of some components. Therefore,
the contribution of the challenges to the total proof length is extremely small and thus we neglect it.

As “full-sized” elements of Rq, we have ~t0, t1, . . . , tn+d/l, t
′
1, t
′
2, and hj (in fact,all hj are missing k

coefficients, but that is a negligible consideration). Therefore, we have in total κ + n + 2d/l + 2 full-sized
elements of Rq, which altogether costs (κ+ n+ 2d/l + 2)d log q bits.

Now, the only remaining part is ~zi’s. Due to rejection sampling, each coefficient of ~zi can be bounded in
absolute value by δ1. If we then take into account the total number of coefficients in ~zi and an additional
sign bit for each coefficient, then we get

k · ((λ+ κ+ n+ d/l + 2) · d) · log (2δ1)

bits of communication required for all ~zi’s together.
We set β1 to be the bound on the infinity norm of the concatenated vector (c0~r, . . . , ck−1~r). Note that

‖~r‖∞ = 1 and ‖ci‖1 ≤ d implies that ‖c~r‖∞ ≤ d for i = 0, . . . , k − 1. Therefore, we have the following
theoretical bound β1 = d. Hence, in order to obtain the expected number of repetitions M for the rejection
sampling, one would choose δ1 which satisfies:

1/M =

(
2(δ1 − β1)− 1

2δ1 − 1

)(λ+κ+n+d/l+2)kd

≈ e−(λ+κ+n+d/l+2)kdβ1/δ1 .

In conclusion, the overall proof length is about

(κ+ n+ 2d/l + 2)d log q + k(λ+ κ+ n+ d/l + 2)d · log (2δ1) bits. (46)

An important advantage of our proof system is that the proof length (i.e., the communication size) is
independent of the height, m, of the matrix A. Furthermore, one observes that when d/l increases then there
are more “full-sized” elements of Rq and dimensions of the commitment scheme gets larger. On the other
hand, since k decreases (for a fixed q), there are less vectors ~zi of small polynomials. Hence, we need to select
parameters such that one part does not dominate the other.
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Prover P Verifier V

Inputs:

B0 ∈ Rκ×(λ+κ+n+d/l+2)
q ;~b1 . . . ,~bn+d/l ∈ Rλ+κ+n+d/l+2

q B0;~b1, . . . ,~bn+d/l+2

~r ∈ {−1, 0, 1}(λ+κ+n+d/l+2)d ⊂ Rλ+κ+n+d/l+2
q

~t0, t1, . . . , tn+d/l

~m = (~m1, . . . , ~mn) ∈ Znlq
~t0 = B0~r

mi = NTT−1 (~mi) , ti = 〈~bi, ~r〉+ NTT−1 (~mi) for i = 1, . . . , n

~y0, . . . , ~yk−1
$← S

(λ+κ+n+d/l+2)d
δ1−1

For i = 0, . . . , k − 1 :

~wi = B0~yi

g1, . . . , gd/l
$← {f ∈ Rq : f0 = fd/l = . . . = f(k−1)d/l = 0}

For i ∈ [d/l] : tn+i = 〈~bn+i, ~r〉+ gi
tn+i, ~wi - ~γ0, . . . , ~γk−1

$←W vl
q

For i = 0, . . . , k − 1 :

(~γi,1, . . . , ~γi,v) = ~γi

αi,φi, ~γi� α1, . . . ,αξ,φ0, . . . ,φk−1
$←Rq

For t = 1, . . . , ξ :

ψt,0 :=
∑
i≤j≤`

µt,i,j,`〈bi, ~y〉〈bj , ~y〉〈b`, ~y〉

ψt,1 :=
∑
i≤j≤`

µt,i,j,` (〈bi, ~y〉〈bj , ~y〉m` + 〈bi, ~y〉〈b`, ~y〉mj + 〈bj , ~y〉〈b`, ~y〉mi) +
∑
i≤j

ηt,i,j〈bi, ~y〉〈bj , ~y〉,

ψt,2 :=
∑
i≤j≤`

µt,i,j,`
(
〈~b`, ~y〉mimj + 〈~bj , ~y〉mim` + 〈~bi, ~y〉mjm`

)
+
∑
i≤j

ηt,i,j
(
mi〈~bj , ~y〉+mj〈~bi, ~y〉

)
+

n∑
i=1

νt,i〈~bi, ~y〉.

t′1 = 〈~bn+d/l+1, ~r〉 −
k−1∑
ι=0

φισ
−ι

(
ξ∑
t=1

αtψt,2

)
, t′2 = 〈~bn+d/l+2, ~r〉 −

k−1∑
ι=0

φισ
−ι

(
ξ∑
t=1

αtψt,1

)
+ 〈~bn+d/l+1, ~y〉

v =

k−1∑
ι=0

φισ
−ι

(
ξ∑
t=1

αtψt,2

)
− 〈~bn+d/l+2, ~y〉

For ` = 0, . . . , k − 1, j ∈ [n] :

p`,j = NTT−1

(
v∑
i=1

ATi,j~γ`,i

)
For i = 0, . . . , k − 1, j ∈ [d/l] :

w′i,j =

k−1∑
µ=0

1

k
Xµ

k−1∑
ν=0

σν
(
X−j+1〈

n∑
η=1

pµ,η~bη, ~yi−ν mod k〉

)
+ 〈~bn+j , ~yi〉

For j ∈ [d/l] : hj =
1

k

k−1∑
µ=0

Xµ
k−1∑
ν=0

σν
(
X−j+1

(
n∑
η=1

mjpµ,η −
〈~u,~γµ〉
l

))
+ gj

t′1, t
′
2,v,w

′
i,j ,hj-

c� c
$← C

For i = 0, . . . , k − 1 :

~zi = ~yi + σi(c)~r

If ‖~zi‖∞ ≥ δ1 − β1, abort

~zi -

Ver(tn+1, ~wi,αi,ψi, ~γi, t
′
1, t
′
2,

v,w′i,j ,hj , c, ~zi)

Fig. 8. Protocol Π3
n(pp, ulp) for proving ~m ∈ Ln (pp, ulp) when Rq splits completely. Denote polynomials in pp =

{P1, . . . , Pξ} as in (33). Also, we partition the matrix A as in (43). Verification equations Ver are defined in Figure 9.
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Ver(tn+1, ~wi,αi,ψi, ~γi, t
′
1, t
′
2,w

′
i,j ,hj , c, ~z

′
i)

01 For i = 0, . . . , k − 1:

02 ‖~zi‖∞
?
< δ1 − β1

03 B0~zi
?
= ~wi + σi(c)~t0

04 For i = 0, . . . , k − 1, ` ∈ [n] and j = 1, 2 :

05 f
(i)
` = 〈~b`, ~zi〉 − σi(c)t`,f ′j = 〈~bn+j , ~z0〉 − ct′j

06 Check (41)

07 For i = 0, . . . , k − 1 :

08 For j ∈ [d/l] : hj,id/l
?
= 0

09 For j ∈ [n] : pi,j = NTT−1
(∑v

`=1A
T
`,j~γi,`

)
10 For j ∈ [d/l] :

11 τj = 1
k

∑k−1
µ=0X

µ∑k−1
ν=0 σ

ν
(
X−j+1

(∑n
η=1 tµpµ,η −

〈~u,~γµ〉
l

))
12 For i = 0, . . . , k − 1 and j ∈ [d/l]:

13
∑k−1
µ=0

1
k
Xµ∑k−1

ν=0 σ
ν
(
X−j+1〈

∑n
η=1 pµ,η

~bη, ~zi−ν mod k〉
)

14 +〈~bn+j , ~zi〉
?
= w′i,j + σi(c)(τj + tn+j − hj)

Fig. 9. Verification equations for Figure 8.
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Suppose that we do not use the new opening proof technique from Appendix A.6. Then, we employ
the following calculation of a maximum absolute coefficient in σi(c)~r as in [15]. For example, set d = 128.
Now in this case, a coefficient of σi(c)~r is the sum of 128 coefficients with i.i.d. P (−1) = P (1) = 5/32 and
P (0) = 22/32.11 If we calculate the convolution of this distribution, we find that a coefficient is bigger than
78 in absolute value with probability less than 2−114. Hence, by a union bound the probability that any of
the coefficients in

(
σ0(c)~r, . . . , σk−1(c)~r

)
is bigger than 78 will still be negligibly small for k ≤ 4. Therefore,

we can set β1 = 78 instead (when d = 128).

High/Low Order Bits. In order to reduce the size of the commitment as well as responses ~zi, we apply the
compression techniques introduced in [3] for the responses and [13] for the commitment.12 The high level
intuition for both ideas is that it is sometimes not necessary to prove knowledge of an ~r satisfyingB0~r = c·~t0;
and proving that B0~r ≈ c · ~t0 is enough (where ≈ means that the difference in the `∞ norms is small).

If one of the elements in B0 is the identity matrix, then one does not need to transmit the masked version
of the part in ~r (call it ~r′) that is multiplied by it because the product will have small norm. Even though
one doesn’t transmit this part, one still needs to be careful and do a rejection sampling on it to assure
zero-knowledge. Since nothing about ~r′ is output, in order to do the simulation, it’s important that ~r′ does
not have any effect on the transmitted part. The main idea is then to make sure that when an integer z ∈ Zq
is uniquely decomposed into high-order and low-order components as 2δ2z1+z0 where −δ2 < z0 < δ2, adding
~r′ should never affect the high-order part of the sum; and then only transmit these high-order bits. The idea
for doing this efficiently, and also making it compatible with the non-interactive version of the protocol, was
the main result of [3]. In [13], it was shown that one can write

B0~r = ~t0 = 2D · ~t0,1 + ~t0,0,

and then only transmit ~t0,1 as the public key / commitment to the verifier. Because both c and c · ~t0,0 have

small norms, the effect of c · ~t0,0 on the c · ~t0,1 part of c~t0 is only through the carry bits, which can be sent
as a “hint vector”. We point the reader to [13,25] for a full description of these techniques.

A.6 Improved Opening Proof

We remark that protocol in Figure 8 makes use of the new opening proof introduced in [2]. Concretely, in
the final round the prover P outputs

~z0
~z1
...

~zk−1

 =


~y0
~y1
...

~yk−1

+


c

σ(c)
...

σk−1(c)

 ~r.

Recall that the parameter β1 used in rejection sampling is the bound on the infinity norm of secrets we want
to mask,i.e. (

σ0(c)~r, . . . , σk−1(c)~r
)
.

In this subsection we show how to reduce β1 by a factor of k (if the upper-bound on ‖σi(c)~r‖∞ is computed
naively). Thus, (i) vectors ~zi get shorter and (ii) the SIS dimension κ decreases. We remark that this
improvement is only useful when the polynomial Xd + 1 splits completely, hence assume from now on that
l = d.

11 Recall that a coefficient of c is zero with probability 1/2 and a coefficient of ~r is zero with probability 6/16. The
probabilities of ±1 are always equal to each other.

12 The aforementioned works were constructing digital signatures. For commitment schemes, the “responses” are
analogous to the signature and the “commitment” is the public key.
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Let us write c = c0 + c1X + . . .+ ck−1X
k−1 where

ci =

d/k−1∑
j=0

cjk+iX
jk.

By definition of σ = σ2d/k+1, we have that σ(ci) = ci for each i. Therefore, we have:

σi(c) =

k−1∑
j=0

σi(Xj)cj .

The new opening proof protocol is presented as follows. Prover P samples coefficients ~y′0, . . . , ~y
′
k−1 from

Sδ1−1 as before. Then, the prover sends ~wi = B0~y
′
i. Next, it sets

~yi = B0

k−1∑
j=0

σi(Xj)~y′j


and follows the protocol above until the last round. At the end P outputs:

~z′0
~z′1
...

~z′k−1

 =


~y′0
~y′1
...

~y′k−1

+


c0
c1
...

ck−1

 ~r.

Since each ci has only d/k non-zero coefficients, we manage to decrease β1 possibly by a factor of k (in
practice the improvement is smaller if one upper-bounds ‖σi(c)~r‖ more cleverly, e.g. as in Section A.5).

After receiving vectors ~z′j , V first checks whether

B0~zj
?
= ~wj + σj(c)~t0.

for j = 0, . . . , k − 1. Then, it computes ~zi =
∑k−1
j=0 σ

i(Xj)~z′j for i = 0, . . . , k − 1. The main observation is
that by setting ~zi and ~yi as above, all the other verification equations stay the same.

We highlight that this technique is considered an improvement only when l = d. It can be generalised to
cases where l < d but then the prover would send kd/l vectors ~z′i which is considerably worse than sending
k slightly larger vectors ~zi as in Figure 8.

B Range Proof

Suppose we want to prove knowledge of an integer x which satisfies x ∈ [a, b], i.e. a ≤ x ≤ b for publicly
known integers a, b. Attema et al. [2] consider a special type of a range proof x ∈ [0, 2N ). Recall that the idea

is to decompose x =
∑N−1
i=0 xi2

i into N bits and set ~x = (x0, . . . , xN−1) (this idea was already considered
in previous works e.g. [16]). Then, they show that ~x is a binary vector using their product proof. For 32-bit
range, Attema et al. obtain proofs of size approximately 5.9KB.

In this subsection we consider range proofs for arbitrary ranges [a, b] ⊆ [−2N−1, 2N−1 − 1]. We consider
two cases.

Case 1 : b − a ≤ 2N−1 − 1. First, note that a ≤ x ≤ b if and only if there exist non-negative integers
y, z ≤ 2N−1 − 1 such that:

a+ y = x and x+ z = b.

Since a, x, y, z, b ∈ [−2N−1, 2N−1 − 1], we informally apply two proofs of integer addition from Section 4.1.
There are, however, a few small issues with this approach. First, integers a and b are known, hence we do
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not need to send commitments to them. Furthermore, we have to prove that y and z are non-negative.
This can be done as follows. Let (y0, . . . , yN−1) = TCN (y) be the two’s complement bit representation of y

(and similarly for ~a,~b, ~z). Then, y ≥ 0 if and only if yN−1 = 0. Therefore, we can simply define additional
polynomials Py, Pz ∈ pp which will check that yN−1 = zN−1 = 0.

Overall, prover P commits to three main vectors ~x, ~y, ~z (recall that ~a,~b are known) as well as 2 “carry”

vectors ~f, ~f ′. Similarly as in (11), the following holds:{
~f + ~a + ~y = ~x + 2J ~f
~f ′ + ~x + ~z = ~b + 2J ~f ′

(47)

We recall that matrix J is defined in (12).

Let ~m = (~x, ~y, ~z, ~f, ~f ′). We prove that ~m ∈ {0, 1}5N and f0 = f ′0 = yN−1 = zN−1 = 0 by defining a set
pp of multivariate polynomials similarly as in Section 4.1. These relations, along with (47), can be captured
in one single equation A~m = ~u where

A =

(
−IN IN 0N (IN − 2J) 0N
IN 0N IN 0N (IN − 2J)

)
and ~u =

(
−~a
~b

)
. (48)

Let ulp = (A, ~u). Thus, we reduced the problem of proving x ∈ [a, b] to showing that ~m ∈ L5γ (pp, ulp) where
γ = N/l.

Case 2: b − a ≥ 2N−1. The key observation is that a ≤ x ≤ b if and only if there exist integers y, z ∈
[−2N−1, 2N−1 − 1] such that

(a+ 2N−1) + y = x and x+ z = b− 2N−1.

Also, a + 2N−1, b − 2N−1 ∈ [−2N−1, 2N−1 − 1] since b − a ≥ 2N−1. Therefore, we can combine two proofs
of integer addition similarly as in the first case. The only differences here are: (i) we do not need to check

whether y and z are positive, (ii) public vectors ~a and ~b now represent a+ 2N−1 and b− 2N−1 respectively.
Consequently, the proof size becomes identical as in Case 1.

N l k κ λ δ1 δ2 D proof size

32 32 1 11 10 217 (q − 1)/214 11 11.8KB

128 128 4 10 10 218 (q − 1)/213 14 26.4KB

512 128 4 10 10 218 (q − 1)/213 14 51.3KB

Fig. 10. Proof size comparison for proving x ∈ [a, b] ⊆ [−2N−1, 2N−1 − 1]. In each scenario, we pick q ≈ 230 and
d = 128. Here, parameters δ1, δ2, D are used for the commitment compression (see Section A.5).

C More on Integer Multiplication

C.1 Proof of Lemma 5

Lemma C.1. Let a, b, c ∈ Z[X] be polynomials with coefficients in {−1, 0, 1} such that deg(a),deg(b) < N
and deg(c) < 2N . Suppose there exists a polynomial f of degree at most 2N − 1 which satisfies (18). Then,
for each coefficient fk of f corresponding to Xk, |fk| ≤ N + 1.

Proof. We first show f0 ∈ {−1, 0, 1}. Consider Equation 18 for X = 0. Then, we have a0b0 − c0 = −2f0.
Since −2 ≤ a0b0 − c0 ≤ 2, we get |f0| ≤ 1.
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In general, by considering the k-th coefficient of ab − c and (X − 2)f for k > 0, we have the following
equality: ∑

0≤i,j<N s.t. i+j=k

aibj − ck = fk−1 − 2fk.

Hence, we get |fk−1 − 2fk| ≤ N + 1. In particular, by the triangle inequality:

|fk| ≤
|fk−1 − 2fk|+ |fk−1|

2
≤ N + 1

2
+
|fk−1|

2
.

Thus, |f1| ≤ N/2 + 1. Then, one can show by induction that

|fk| ≤ (N + 1)(1/2 + 1/4 + 1/8 + ...+ 1/2k) + 1/2k < (N + 1) + 1/2k

for k ≥ 1. Since fk ∈ Z, we have |fk| ≤ N + 1.

C.2 Various Optimisations

Reducing the numbers of ~ei. The relaxed range proof for ~f requires us to introduce vectors ~e1, . . . , ~ed/l ∈
Zlq to obtain negligible probability in Lemma 2.4. Notably, we need d/l commitments to represent ~e. Here,
we show how to decrease the number of commitments by slightly modifying the relaxed range proof.

Concretely, suppose the prover samples coefficients of ~e ∈W l
q uniformly at random from [−δ′1 + 1, δ′1− 1]

and sends its commitment t15 = 〈~b15, ~r〉+NTT−1 (~e) to V. Then, the verifier generates a matrix B ∈W l×2l
q of

uniformly random binary polynomials in Wq and sends it to P. Finally, the prover computes ~g = B~f+~e ∈W l
q

and outputs ~g unless the rejection sampling aborts. The key observation here is that Lemma 2.4 can be also
applied in this setting. Namely, the probability that ‖B~f + ~e‖∞ < ‖~f‖∞ is still at most 1/2d.

At the end, P has to show that B~f + ~e = ~g where B,~g are known to the verifier. This is clearly outside
of our framework since we only consider messages and their linear relations over Zq. However, we observe

that the techniques described in Appendix A.4 can be easily extended to prove such relations as long as ~f
is over Zq.

With this modification, we reduce the number of commitments by d/l − 1. We already include this
improvement when calculating proof sizes in Figure 6.

Fully-splitting ring. In the protocol described in Figure 5 we need to commit to 14 + d/l messages. We
show how to reduce this number in the fully-splitting case, i.e. l = d and Wq = Zq. Thus, we do not have to
argue about vectors being over integers.

An alternative way to prove (18) is via a linear proof. Let us commit to ~h = ~a′ · ~b′. Later we prove,

via a product proof, that ~h is well-formed. Then, V −1~h is indeed a coefficient vector of the polynomial ab.
Therefore, Equation (18) can be equivalently written as:

V −1~h = ~c+ J2 ~f

where

J2 =


−2 0 0 · · · 0 1
1 −2 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · −2 0
0 0 0 · · · 1 −2

 ∈ Z2l×2l
q

represents multiplication by a factor X − 2 over Rq,2l.

The advantage of this approach is that we do not have to commit to ~c′ and ~f ′, and hence reduce the
number of messages to 12 + d/l. We apply this in our implementation.
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Large integers. Suppose that N = γd where γ > 1. Let us select q such that X2N + 1 splits completely
modulo q, i.e. 4N |q − 1. Then, we also have 2d|q − 1 and hence l = d.

The idea is to follow the argument in Section 5 over the ring R = Zq[X]/(X2N + 1) instead of Rq,2l. In
this setting, we would need γ and 2γ commitments to represent ~a ∈ ZNq and ~a′ = V1~a ∈ Z2N

q respectively.

By doing similar analysis for ~b,~c, ~f and accounting for the optimization from Section C.2, the total number
of commitments the prover has to send is 12γ + 1.
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