
Frontrunning on Automated Decentralized
Exchange in Proof Of Stake Environment

Andrey Sobol

Abstract

This paper will contain the analysis of frontrunning potential on
Quipuswap - a decentralized exchange with automated marketmaking
in the context of the Proof Of Stake family consensus algo over Tezos
protocol, and a proposal to boost the frontrunning resistance of the
protocol via the implementation of commit reveal scheme.

1

Contents

1 Introduction 3
1.1 Frontrunning . 3
1.2 Frontrunning in blockchain . 3
1.3 Doublespending . 3

2 Frontrunning in automated Dex 4
2.1 Quipuswap . 4
2.2 Quipuswap Fee . 4

3 Consensus algo families 5
3.1 Proof of Work . 5
3.2 Slot based Proof of Stake . 5
3.3 Randomness in Tezos . 5

4 Trade transaction in Quipuswap 6
4.1 TezToToken . 6
4.2 TokenToTez . 7

5 Main attack method 8
5.1 3 transactions in 1 block . 8
5.2 The order of transactions . 8

6 Limiting 9

7 Commit-reveal 9
7.1 Security deposit . 10
7.2 Should the commit-reveal method be implemented? 10

8 Arbitration prividge 11
8.1 Commit-reveal . 11

9 Conclusion 12

10 Acknowledgments 12

2

1 Introduction

1.1 Frontrunning

The best way of getting a comlete idea of economic processes lies in the
understanding of infomation asymmetry [1] as it provides the agents on the
market with different facts at separate points in time. The agents tend to
manipulate the information regarding business transactions to their benefit.
Such a phenomenon is called frontrunning [2].

1.2 Frontrunning in blockchain

Blockchain is a decentralized network of nodes with constant data exchange
regarding the modifications in their state or mempool. As the transaction
order is not assigned until the finalization state any decentralized exchange
based on Blockchain will be prone to frontrunning.

1.3 Doublespending

For the major part the issues related to doublespending [3] are similar to the
ones related to frontrunning. Only doublespending affects a certain user’s
balance in several competing transactions when frontrunning resembles the
competition to affect the state that belongs to a specific decentralised ex-
change.

3

2 Frontrunning in automated Dex

2.1 Quipuswap

In automated DEX (Decentralized Exchange) there are universal formulas to
estimate the transaction price: those which stem from past trnsactions and
those which affect the liquidity pool.

For example, Quipuswap [4] [5] is a uniswap-like [6] automated decentral-
ized exchange with a fixed fee that equeals the following:

x · y = k

where constant k = 1

0 1 2 3 4 5
0

1

2

3

4

5

x

y

Thus a transaction affecting product x · y [7] may be inserted before the
user’s transaction changing the transaction fee.

2.2 Quipuswap Fee

In Quipuswap transaction fee is incorporated and all possible revenue calcu-
lations shall taking the transaction fee into account.

feeRate = 333

4

meaning that fee can be calculated according to the formula:

fee =
1

feeRate
= 0.003003003 ≈ 0.3%

3 Consensus algo families

3.1 Proof of Work

In Proof of Work [8] protocol every miner aims at finding a Proof of Work
proof in order to modify the blockchain. The winner of the evolutionary pow
lotery will be revealed only post factum and the possibility to create every
particular block depends on the hashpower in every second of the process
and will not be know until the very end.

There are several research papers [9] [10] [11] that analyse fruntrunning
in PoW setting in detail.

3.2 Slot based Proof of Stake

In slot based Proof of Stake [12] [13] we have a set of slots

Sl = {sl0, sl1...}

as well as a set of blocks that reffer to one another

B = {b0, b1...}

3.3 Randomness in Tezos

For every cycle in Tezos a new randomness [15] is formed which assignes
the baking priority providing us with the infromation regarding the bakers
beforehand. sli.

sli = (bakerk, bakerl...)

In the beginning of every cycle the order of bakers and their priority is
public.

5

4 Trade transaction in Quipuswap

To illustrate a possible attack this paper will only consider smart contract
functions: TokenToTez and TezToToken.

Attacks related to functions investLiquidity and DivestLiquidity are
identical to TokenToTez and TezToToken thus such opportunities for fron-
trunning are not different from the ones listed and described below.

4.1 TezToToken

s state of the current liquidity pool

tezosAmount the number of Tez sent by a user

tokenAmount minumum of tokens the user is willing to get back

TezToToken(s, tezosAmount, tokenAmount) :

S × TezosAmount× TokenAmount→ S × TokenAmount

The result S × TokenAmount returns the new state and the number of
tokens received by the user.

TezToToken(s, tezosAmount, tokenAmount) =

=

{
(news, tokensOut) tokensOut ≥ tokenAmount

(s, 0) tokensOut < tokenAmount

Where news and tokensOut calculated as:

news.tezPool = s.tezPool + tezosAmount

news.tokenPool =
s.invariant

news.tezPool − tezosAmount
feeRate

news.invariant = news.tezPool · news.tokenPool

tokensOut = s.tokenPool − news.tokenPool

6

Overall the function by changing the token pool in accordance to the
formula x · y = k and k = 1 provided that tokensOut ≥ tokenAmount
meaning that the customer will be able to get the required number of tokens.
Otherwise the exchange will not happen and the state liquidity pool will not
change.

4.2 TokenToTez

s state of the current liquidity pool

tokenAmount the number of Tez sent by a user

tezosAmount minumum of tokens the user is willing to get back

TokenToTez(s, tokenAmount, tezosAmount) :

S × TokenAmount× TezosAmount→ S × TezosAmount

The result S × TezosAmount returns the new statea and the number of
tokens received by the user.

TokenToTez(s, tokenAmount, tezosAmount) =

=

{
(news, tezOut) tezOut ≥ tezosAmount

(s, 0) tezOut < tezosAmount

Where news and tezOut is calculated as:

news.tokenPool = s.tokenPool + tokenAmount

news.tezPool =
s.invariant

news.tokenPool − tokenAmount
feeRate

news.invariant = news.tezPool · news.tokenPool

tezOut = s.tezPool − news.tezPool

The function is identical to TezToToken.

7

5 Main attack method

The user initiats a transaction in the system: (TezToToken, tezosAmount, tokenAmount).
The validators apply this transaction to the present state s.

If TezToToken(s, tezosAmount, tokenAmount) is valid, it returns (news, tokensOut)
while tokensOut 6= tokenAmount. Such a transaction is prone to baker’s at-
tack attempts.

5.1 3 transactions in 1 block

If bakerattacker forms a block battacker in the slot slattacker in such a case of an
optimal attack the order of three transactions [16] will form the following set
battacker.

(TezToTokenattacker, T ezToToken, TokenToTezattacker) ⊂ battacker

5.2 The order of transactions

1. (s1, tokensOutattacker) = TezToTokenattacker(s, tezosAmountattacker,∞)

2. (s2, tokensOutuser) = TezToToken(s1, tezosAmountuser, tokenAmountuser)

3. (s3, tezOutattacker) = TokenToTezattacker(s2, tokensOutattacker,∞)

8

∞ states that this transaction can be processed at any price. In prac-
tice bakerattacker will assign a bigger price different from ∞ as there’s no
possibility to apply ∞ in Tesoz.

tezosAmountattacker is a prerequisite for s1 transition into tokensOutuser =
tokenAmountuser.

Condition for successful attack:

tezOutattacker > tezosAmountattacker

Profit for attacker will be:

profit = tezOutattacker − tezosAmountattacker

6 Limiting

To prevent frontrunning regarding the transaction, it’s required to fullfill the
following condition:

tokensOut = tokenAmount

Where tokensOut is calculated in regards to s the state of protocol as of
the time of the transaction processing.

In this situation only one of such transactions will be incorporated into
one block, as after the transaction has been accepted s will be changed and it
will no longer be possible to reach this condition tokensOut = tokenAmount.

7 Commit-reveal

Possible protection solution is to ammend the protocol to make two-piece
transaction. It will consist of the following two parts:

1. Commit - revealing hash(TezToToken, tezosAmount, tokenAmount, salt)

2. Reveal - revealing TezToToken, tezosAmount, tokenAmount, salt that
can be announced at any moment

The state of s is transferred as of the time of publishing Reveal.
Commit and Reveal cannot be announced in one block thus preventing

any possible manipulations by one baker.

9

7.1 Security deposit

Under Commit stage it will be possible to submit security deposits that
may account for the priorities for future transactions. Meaning that Reveal
transaction may be icorporated into the block in the following order:

deposit(txi) > deposit(txi+1) > ...

The outcomes of implementing the Commit Reaveal method alongside
the security deposits will be quite interesting. It will endanger the secu-
rity deposits of any baker that recoursed to frontrunning by creating several
simultaneous transactions in TezToToken attacker and TokenToTex. Thus
boosting the frontrunning resistance of the system.

7.2 Should the commit-reveal method be implemented?

As its implementation will drastically complicate the protocol, in fact trans-
forming it into a new one, it is recommended to introduce this method in the
following version of the protocol.

10

8 Arbitration prividge

Time in blockchain is discreet and is revealed in the for of block slots.

Sl = {sl0, sl1...}

While on the centralised exchange the bidding is a continious process
within time.

When bakerattacker with priority over slattacker it gets the arbitration pre-
vilidge among the centralised exchanges.

To create conditions for such a situation, no frontrunning is required.
It is sufficient to take advantage of the block creating ability and initiate
TezToTokenattacker or TokenToTezattacker and process the reverce transac-
tion on the centralised exchange.

8.1 Commit-reveal

The Commit-reveal metod will impede the development of such a scenario.
Only if the baker bakerattacker controls 2 slots at a time - {sli, sli+1}. In this
case both Commit and Reveal transactions can be initiated.

11

9 Conclusion

Decentralized exchanges, with or without automatic marketmaking, are prone
to frontrunning. We see this in practice in ethereum conditions, we will see
the same when QS is deployed in production.

This paper describes 2 attacks - a direct attack on a specific transaction
in section 6 and an attack in which the baker has an advantage in arbitration
in section 9.

In the event of an attack on a specific transaction, it is proposed to limit
the execution of the transaction through a situation in which tokensOut =
tokenAmount for the current state. This will mean that there is no way to
front-end this particular transaction, but will also reduce the likelihood of
successful execution of this transaction.

For future versions of QS, the Commit-Reveal protocol is proposed with
the prioritization of transactions using a pledge system. It should be viewed
solely as a proposal for future versions due to its excessive complexity and
radical change in the essence of the protocol.

10 Acknowledgments

We thank Anastasiia Kondaurova, Matvii Sivoraksha, Kornii Vasylchenko,
Charlie Wiser, Tezos Foundation and Madfish.Solutions for ideas and valu-
able feedback. This work has been supported by Tezos Foundation.

12

References

[1] Aboody, David; Lev, Baruch (2000)
Information Asymmetry, R&D, and Insider Gains
Journal of Finance. 55 (6): 2747–2766. doi:10.1111/0022-1082.00305.

[2] Khan, Mozaffar and Lu, Hai, Do Short Sellers Front-Run Insider Sales?
(January 28, 2011).
MIT Sloan Research Paper No. 4706-08
https://ssrn.com/abstract=1140694

[3] Chohan, Usman W.,
The Double Spending Problem and Cryptocurrencies
(December 19, 2017).
https://ssrn.com/abstract=309017

[4] Quipuswap Source Code
https://github.com/madfish-solutions/quipuswap-core

[5] Andrey Sobol and Anastasiia Kondaurova
Governance framework for Quipuswap - automated decentralized ex-
change
https://eprint.iacr.org/2020/1017

[6] Hayden Adams. Uniswap Whitepaper
https://hackmd.io/@HaydenAdams/HJ9jLsfTz

[7] Yi Zhang, Xiaohong Chen, and Daejun Park
Formal Specification of Constant Product (x × y = k)
Market Maker Model and Implementation
Commit: c40c98d6ae35148b76742aaaa29e6eaa405b2f93
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf

[8] Bitcoin: A Peer-to-Peer Electronic Cash System
Satoshi Nakamoto
https://bitcoin.org/bitcoin.pdf

[9] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao,
Iddo Bentov, Lorenz Breidenbach and Ari Juels
Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus

13

https://ssrn.com/abstract=1140694
https://ssrn.com/abstract=309017
https://github.com/madfish-solutions/quipuswap-core
https://eprint.iacr.org/2020/1017
https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf
https://bitcoin.org/bitcoin.pdf

Instability in Decentralized Exchanges
https://arxiv.org/abs/1904.05234

[10] SoK: Transparent Dishonesty: Front-Running Attacks on Blockchain
Shayan Eskandar, Seyedehmahsa Moosavi1, and Jeremy Clark
https://users.encs.concordia.ca/~clark/papers/2019_wtsc_front.pdf

[11] Ethereum is a Dark Forest
Dan Robinson and Georgios Konstantopoulos
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff

[12] Cryptocurrencies without Proof of Work
Iddo Bentov and Ariel Gabizon and Alex Mizrahi
https://arxiv.org/abs/1406.5694

[13] Proof-of-stake in Tezos
https://tezos.gitlab.io/whitedoc/proof_of_stake.html

[14] L.M Goodman. Tezos — a self-amending crypto-ledger
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf

[15] Random seed
https://tezos.gitlab.io/whitedoc/proof_of_stake.html#random-seed

[16] Andrey Sobol. Front running under PoS: a brief review
https://medium.com/madfish-solutions/front-running-under-pos-a-brief-review-be55e60e3bd5

14

https://arxiv.org/abs/1904.05234
https://users.encs.concordia.ca/~clark/papers/2019_wtsc_front.pdf
https://medium.com/@danrobinson/ethereum-is-a-dark-forest-ecc5f0505dff
https://arxiv.org/abs/1406.5694
https://tezos.gitlab.io/whitedoc/proof_of_stake.html
https://tezos.com/static/white_paper-2dc8c02267a8fb86bd67a108199441bf.pdf
https://tezos.gitlab.io/whitedoc/proof_of_stake.html#random-seed
https://medium.com/madfish-solutions/front-running-under-pos-a-brief-review-be55e60e3bd5

	Introduction
	Frontrunning
	Frontrunning in blockchain
	Doublespending

	Frontrunning in automated Dex
	Quipuswap
	Quipuswap Fee

	Consensus algo families
	Proof of Work
	Slot based Proof of Stake
	Randomness in Tezos

	Trade transaction in Quipuswap
	TezToToken
	TokenToTez

	Main attack method
	3 transactions in 1 block
	The order of transactions

	Limiting
	Commit-reveal
	Security deposit
	Should the commit-reveal method be implemented?

	Arbitration prividge
	Commit-reveal

	Conclusion
	Acknowledgments

