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Abstract. This paper studies concrete security with respect to expected-time adversaries. Our first
contribution is a set of generic tools to obtain tight bounds on the advantage of an adversary with
expected-time guarantees. We apply these tools to derive bounds in the random-oracle and generic-
group models, which we show to be tight.
As our second contribution, we use these results to derive concrete bounds on the soundness of public-
coin proofs and arguments of knowledge. Under the lens of concrete security, we revisit a paradigm by
Bootle at al. (EUROCRYPT ’16) that proposes a general Forking Lemma for multi-round protocols
which implements a rewinding strategy with expected-time guarantees. We give a tighter analysis, as
well as a modular statement. We adopt this to obtain the first quantitative bounds on the soundness
of Bulletproofs (Bünz et al., S&P 2018), which we instantiate with our expected-time generic-group
analysis to surface inherent dependence between the concrete security and the statement to be proved.

Keywords: concrete security, proof systems

1 Introduction

Cryptography usually adopts a worst-case angle on complexity. For example, in the context of concrete
security, a typical theorem shows that an adversary running for at most t steps succeeds with advantage at
most ε. In this paper, we instead study the concrete security of cryptographic schemes and assumptions as
a function of the expected running time of the adversary.

Expected-time complexity is a natural measure in its own right – e.g., it is very common in cryptanalysis,
as it is often much easier to analyze. But it is also a useful technical tool – indeed, simulators and extractors
are often expected time, sometimes inherently so [1]. To use these technical tools, we need assumptions to
hold with respect to expected time.

The problem has been studied closely by Katz and Lindell [15], who also suggest expected-time adversaries
as a natural model, which however also comes with several technical challenges. Either way, the resulting
common wisdom is that assumptions which are true with respect to (non-uniform) worst-case polynomial
time are true for expected polynomial-time, and often more fine-grained statements are possible via Markov’s
inequality (see below). However, for concrete security, such generic argument fail to give tight bounds.

Summary of contributions. This paper makes progress on two fronts.
First, as our main technical contribution, we introduce general tools to give tight concrete security bounds

in information-theoretic settings (e.g., in the random-oracle or generic-group models) for expected-time
adversaries. Our tools can easily translate many existing proofs from the worst-case to the expected-time
regime. We derive for example tight bounds for finding collisions in a random oracle, for the PRF security of
random oracles, and for computing discrete logarithms in the generic-group model. We also obtain bounds
for the security of key-alternating ciphers against expected-time adversaries.

Second, we study a “Forking Lemma” to prove soundness of multi-round public-coin proofs and arguments
(of knowledge) satisfying a generalized notion of special soundness, enabling witness extraction from a suitable
tree of accepting interactions. In particular, we follow a blueprint by Bootle et al. [6], which has also been
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adopted by follow-up works [28,7,8]. In contrast to prior works, we provide a concrete analysis of the resulting
expected-time witness extraction strategy, and also give a modular treatment of the techniques which may
be of independent interest.

We showcase these tools by deriving concrete bounds for the soundness of Bulletproofs [7] in terms of
the expected-time hardness of solving the discrete logarithm problem. Instantiating the bound with our
generic-group model analysis will in particular illustrate the dependence of soundness on group parameters
and on the complexity of the statement to be proved. We are unaware of any such result having been proved,
despite the practical appeal of these protocols.

The remainder of this introduction provides a detailed overview of our results.

1.1 Information-Theoretic Bounds for Expected-Time Adversaries

Our first contribution is a framework to prove tight bounds with respect to expected-time adversaries. We
focus on information-theoretic analyses, such as those in the random oracle [3] and the generic group [26,19]
models.

Our focus on tight bounds is what makes the problem hard. Indeed, one can usually obtain a non-tight
bound using Markov’s inequality. For example, the probability εpT,Nq of a T -time adversary finding a
collision in a random oracle with N outputs satisfies εpT,Nq ď T 2{2N , and this bound is tight. If we instead
aim to upper bound the probability εpµT , Nq of finding a collision for an adversary that runs in expected
time µT “ ErT s, Markov’s inequality yields, for every T˚ ą µT ,

εpµT , Nq ď Pr rT ą T˚s `
pT˚q2
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where the right-most inequality is the result of setting T˚ such that µT
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upper bound
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as a corollary of the techniques we introduce below. This bound is tight: To see this, take an adversary which
initially flips a biased coin, which is heads with probability µT {

?
N . If the coin is tails, it aborts, failing to

find a collision. If the coin is heads, it makes
?
N queries to find a collision with high probability. Then, this

adversary succeeds with probability ΩpµT {
?
Nq “ Ωp

a

µ2
T {Nq, and its expected run time is µT .

Both (1) and (2) show that µT ě Ωp
?
Nq must hold to find a collision with probability one. However,

exact probability bounds are important in the regime µT “ op
?
Nq. For example, say we are asked to find a

collision in at least one out of u independent random oracles, and the expected number of queries to each
is µT . Then, a hybrid argument bounds the probability by u ¨ εpµT , Nq, making the difference between a
square-root and a cube-root bound on εpµT , Nq important.

A Generic Approach for bad-flag analyses.We aim for a general approach to transform information-
theoretic bounds for worst-case query complexity into bounds with respect to expected query complexity. If
an existing analysis (with respect to worst-case complexity) follows a certain pattern, then we easily obtain
an expected query complexity bound.

More concretely, many security proofs follow the “equivalent-until-bad” format (as formalized by Bellare
and Rogaway [4], but equivalent formulations can be derived from the works of Maurer [18] and Shoup [27]).
The goal here is to upper bound the advantage of an adversary A distinguishing two games G0 and G1, which
behave identically until some bad flag bad is set. Then, the distinguishing advantage is upper bounded by
the probability of setting bad to true – an event we denote as BADA. Typically, G0 is the “real world” and
G1 is the “ideal world”. Now, let Q1 be the number of queries by an adversary A in G1, which is a random
variable. Then, we say that this game pair satisfies δ-boundedness if

Pr
”

BADA
| Q1 “ q

ı

ď δpqq
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for all q ě 1 and adversaries A. This condition is not without loss of generality, but it can be ensured in all
examples we verified.

Our first main theorem (Theorem 1) shows that if δpqq “ ∆ ¨ qd{N , then the probability of setting BADA

(in either of the two games), and hence the advantage of distinguishing G0 and G1, is upper bounded as

Pr
”

BADA
ı

ď 5 ¨

ˆ

∆ErQ0s
d

N

˙1{d

,

where (quite) crucially Q0 is the number of queries of A in G0. This asymmetry matters in applications - we
typically measure complexity in the real world, but δ-boundedness only holds in the ideal world.

Proof idea. The key step behind the proof of Theorem 1 is the introduction of an early-terminating

adversary B, which behaves as A in attempting to set bad, but aborts early after U “

Y

d
a
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a

N{∆q queries, where u “ 2´d. One can then show that (we can think of the following probabilities in
G0)
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which is of the right order.

Therefore, the core of the proof is to show Pr
”
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ı
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ˆ

d

b

∆E rQ0s
d
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˙

. This will require using

δ-boundedness first, but a careful reader may observe that this will only upper bound the probability with
respect to E rQ1s, and not E rQ0s. The bulk of the proof is then to switch between the two.

Examples. We apply the above framework to a few examples, to show its applicability. We show bounds
on the hardness of discrete logarithms in the generic-group model [26,19], and on the collision-resistance
and PRF security of random oracles. In particular, our framework also works for notions which are not
indistinguishability based, such as collision-resistance of a random oracle, by introducing a suitable world G1

where it is hard to win the game.

The H-Coefficient method. Equivalent-until-bad analyses are not always the simplest way to prove
security (despite the fact that in principle every analysis can be cast in this format, as shown in [20]). We
also give a variant of the above approach tailored at proving security in a simpler version of the H-coefficient
method [23,10] which considers what is referred to as pointwise-proximity in [14]. This amounts to using the
standard H-coefficient method without bad transcripts. (To the best of our knowledge, this simpler version
of the method is due to Bernstein [5].) This allows us to obtain expect-time versions of security bounds for
the PRF/PRP switching lemma and for key-alternating ciphers, the latter building on top of work by Hoang
and Tessaro [14]. We provide the details of this in Section 4.

1.2 Forking Lemmas and Concrete Soundness

One motivation for studying expected-time adversaries is as a tool to prove bounds for worst-case complexity,
rather than as a goal on itself. We expose here one such application in the context of proving soundness
bounds for public-coin proofs/arguments (of knowledge). In particular, soundness/proof-of-knowledge proofs
for several protocols (like [6,28,7,8]) rely on generalizations of the Forking Lemma (originally proposed
by Pointcheval and Stern [25] for three-round protocols) which adopt expected-time witness extraction
strategies. These have only been analyzed in an asymptotic sense, and our goal is to give a concrete-security
treatment. We propose here a modular treatment of these techniques, and instantiate our framework to
provide concrete bounds on the soundness of Bulletproofs [7], a succinct proof system which has enjoyed
wide popularity.
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Forking Lemmas. Pointcheval and Stern’s original “Forking Lemma” [25] deals with Σ-protocols that
satisfy special soundness - these are three-round protocols, where a transcript takes the form pa, c, dq, with c
being the verifier’s single random challenge. Here, given common input x, the prover P proves knowledge to
V of a witness w for a relation R. The proof of knowledge property is proved by giving an extractor B which
produces a witness for x given (black-box) access to a prover P˚ – if P˚ succeeds with probability ε, then B
succeeds with probability (roughly) ε2. Concretely, B simulates an execution of P˚ with a random challenge
c, which results in a transcript pa, c, dq, and then rewinds P˚ to just before obtaining c, and feeds a different
challenge c1 to obtain a transcript pa, c1, d1q. If both transcripts are accepting, and c ‰ c1, a witness can be
extracted via special soundness. Bellare and Neven [2] give alternative Forking Lemmas where B’s success
probability approaches ε, at the cost of a larger running time.

Expected-time extraction. It is natural to expect that the success probability of B above degrades
exponentially in the number of required accepting transcripts. Crucially, however, one can make the Forking
Lemma tight with respect to probability if we relax B to have bounded expected running time. Now, B runs
P˚ once with a random challenge c and, if it generates a valid transcript pa, c, dq, we rewind P˚ to before
receiving the challenge c, and keep re-running it from there with fresh challenges until we obtain a second
valid transcript pa, c1, d1q for c ‰ c1. The expected running time is only twice that of P˚.

A general Forking Lemma. An extension of this idea underlies the analysis of recent succinct public-
coin multi-round interactive arguments of knowledge [6,28,7,8], following a workflow introduced first by
Bootle et al. (BCCGP) [6] which extracts a witness from a tree of multi-round executions obtained by clever
rewinding of P˚. In particular, since the number of generated accepted interactions is large (i.e., exponential
in the number of rounds), the usage of an expected-time strategy is essential to extract with good enough
probability.

These works in fact prove the stronger property of witness-extended emulation [13,17]. This means that
with black-box access to a prover P˚, an expected-time emulator E (1) generates a transcript with the same
distribution as in an interaction between P˚ and the verifier V, and (2) if this transcript is accepting, then a
valid witness is produced along with it. In the case of arguments, it is possible that (2) fails, but this would
imply breaking an underlying assumption.

The BCCGP framework was refined in follow-up works [28,7,8], but these remain largely asymptotic.
We give here a clean and modular treatment of the BCCGP blueprint, which makes it amenable to a
concrete security treatment. In our treatment, we introduce the notion of predicate-extended emulation. This
is parameterized by a predicate Π whose output depends on the public parameters of the proof system, the
statement being proven, and a third auxiliary input aux. Property (2) of this notion requires that when the
transcript is accepting, the emulator produces aux satisfying Π. Witness-extended emulation is captured as
a special case by the predicate Πwit which checks if aux is a valid witness for the statement.

To capture the BCCGP workflow we consider an intermediate predicate which checks if aux is a well-
formed tree of transcripts. Analyzing security with respect to this predicate will in particular require using
our tools from the first part of the paper to analyze the probability that we generate such a tree. Security
with respect to different predicates is related by considering an extractor X which produces output satis-
fying one predicate given input which satisfies another (e.g. extract a witness from a well-formed tree of
transcripts). Prior uses of the BCCGP approach had minor technical gaps in their proofs when accounting
for the possibility that the extractor will fail on some trees of transcripts because the cheating prover has
(implicitly) broken a presumed hard computational problem; our approach captures this possibility cleanly
by considering predicates corresponding to the computational problem.

In Appendix A, we compare our expected-time forking lemma to one with strict running-time guarantees
and confirm that the expected-time approach achieves a clear benefit in terms of tightness of the reduction.

Application to Bulletproofs.Finally, we apply the above framework to obtain a bound on the concrete
soundness for public-coin interactive argument systems, and focus on Bulletproofs [7].1 We obtain a bound in
terms of the expected-time hardness of the discrete logarithm problem, and we combine this with our generic-

1 Our focus is somewhat arbitrary, and motivated by the popularity of this proof system.
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group analysis to get a bound on the soundness in the generic-group model.2 Of independent interest, the
result relies on a tight reduction of finding non-trivial discrete log relations to the plain discrete log problem
– which we give in Lemma 3.

Our bound is in particular on the probability AdvsoundPS,GpP
˚q of a cheating prover P˚ convincing a verifier

V (from proof system PS) on input x generated by a (randomized) instance generator G, and we show that

AdvsoundPS,GpP
˚q ď AdvwitPS,GpBq `O

˜

qP˚ ¨ LM
3 log2pMq

a

|G|

¸

,

where qP˚ measures the number of group operations by P˚, M is the number of multiplication gates for
a circuit representing the relation R, L is a parameter of that circuit (which we assume is small for this
discussion, but may be as large as 2M), AdvwitPS,GpBq is the probability of B extracting a witness w for an x
sampled by G, where B is an extractor whose (expected) running time amounts to roughly M3 that of P˚.

This bound is interesting because it highlights the dependence of the soundness probability on the group
size |G| and on M . It in fact shows that for typical instantiations, where |G| « 2256, the guaranteed security
level is fairly low for modest-sized circuits (say with M “ 220). It is a good question whether this bound can
be made tighter, in particular with respect to its dependence on M .

We also note that for specific instance generators G our tools may be helpful to estimate AdvwitPS,GpBq.

2 Preliminaries

Let N “ t0, 1, 2, . . . u and Ną0 “ Nzt0u. For N P N, let rN s “ t1, 2, . . . , Nu. For j ą k we adopt the

conventions that
śk
i“j ni “ 1 and pmj ,mj`1, . . . ,mkq “ pq. Equivalence mod p is denoted ”p.

We let PermpSq denote the set of all permutations on set S and FcspS, S1q denote the set of all functions
from S to S1. Sampling x uniformly from the set S is denoted xÐ$ S. The notation S “ S1 \ S2 means
that S “ S1 Y S2 and S1 X S2 “ H, i.e., S1 and S2 partition S. We let t0, 1u˚ denote the set of finite-length
bitstrings and t0, 1u8 denote the set of infinite-length bitstrings.

We let y Ð AOpx1, x2, . . . ; cq denote the execution of A on input x1, x2, . . . and coins c P t0, 1u8

with access to oracle(s) O, producing output y. When c is chosen uniformly we write yÐ$ AOpx1, x2, . . . q.
For a stateful algorithm A with state s we use y Ð AOpx1, x2, ¨ ¨ ¨ : s; cq as shorthand for the expression
py, sq Ð AOpx1, x2, . . . , s; cq. When some of an algorithm’s output is not going to be used we will write ¨ in
place of giving it a variable name.

We use pseudocode games, inspired by the code-based game framework of Bellare and Rogaway [4]. See
Fig. 1 for some example games. If H is a game, then PrrHs denotes the probability that it outputs true. We
use ^, _, ô, and  for the logical operators “and”, “or”, “iff”, and “not”.

Running-time conventions. The most commonly used notion for the running time of an algorithm is
worst-case. For this, one first fixes a computational model with an associated notion of computational steps.
Then an algorithm A has worst-case running time t if for all choice of x1, x2, . . . and c it performs at most
t computation steps in the execution AOpx1, x2, . . . ; cq, no matter how O responds to any oracle queries A
makes.

In this paper we are interested in proving bounds that instead depend on the expected number of
computation steps that A performs. There may be randomness in how the inputs x1, x2, . . . to A and the
responses to O queries are chosen (in addition to the random selection of c).

There is more variation in how expected running time may be defined. We will provide our bounds in
terms of the expected running time of adversaries interacting with the “real” world that they expect to
interact with. Such a notion of expected runtime is brittle because the expected runtime of the adversary
may vary greatly when executing in some other world; however, this notion is the strongest for the purposes of

2 This bound is helped by the fact that our casting of the generic-group model allows multi-exponentiations
(g0, . . . , gn, a0, . . . , an Ñ

śn
i“0 g

ai
i ) as a unit operation. This does not change the derived bound in the generic-group

model, while decreasing the number of generic-group queries made by the Bulletproofs verifier.
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Game Hdl
GpAq

gÐ$ G˚
hÐ$ G
aÐ$ Apg, hq
Return pga “ hq

Game Hdl-rel
G,n pAq

g Ð pg0, . . . , gnq Ð$ Gn
pa0, . . . , anq Ð$ Apgq
If @i, ai ”p 0 then

Return false
Return p

śn
i“0 g

ai
i “ 1Gq

Adversary Cpg, hq
For i “ 0, . . . , n
xiÐ$ Zp; yiÐ$ Zp
gi Ð gxi ¨ hyi

pa0, . . . , anq Ð$ Appg0, . . . , gnqq
If
ř

i aiyi ”p 0 then return 0
Else return ´

ř

i aixi{
ř

i aiyi

Fig. 1. Left: Game defining discrete log security of group G. Middle: Game defining discrete log relation security
of group G. Right: Reduction adversary for Lemma 3.

our results because it will guarantee the same bounds for notions of expected running time which restrict the
allowed adversaries more. See [12,16] for interesting discussion of various ways to define expected polynomial
time.

For many of the results of this paper, rather than directly measuring the runtime of the adversary we will
look at the (worst-case or expected) number of oracle queries that it makes. The number of oracle queries
can, of course, be upper bounded by the number of computational steps.

Useful lemmas. We will make use of Markov’s inequality and the Schwartz-Zippel Lemma, which we
reproduce here.

Lemma 1 (Markov’s Inequality). Let X be a non-negative random variable and c ą 0 be a non-negative
constant, then

PrrX ą cs ď PrrX ě cs ď ErXs{c.

Lemma 2 (Schwartz-Zippel Lemma). Let F be a finite field and let p P Frx1, x2, . . . xns be a non-zero
polynomial with degree d ě 0. Then

Prrppr1, . . . , rnq “ 0s ď d{|F|

where the probability is over the choice of r1, . . . , rn according to riÐ$ F.

Discrete Logarithm Assumptions. Let G be a cyclic group of prime order p with identity 1G and
G˚ “ Gzt1Gu be its set of generators. Let pg0, . . . , gnq P Gn and pa0, . . . , anq P Zp. If

śn
i“0 g

ai
i “ 1G and a

least one of the ai are non-zero, this is said to be a non-trivial discrete log relation. It is believed to be hard
to find non-trivial discrete log relations in cryptographic groups (when the gi are chosen at random). We
refer to computing

śn
i“0 g

ai
i as a multi-exponentiation of size n` 1.

Discrete log relation security is defined by the game in the middle of Fig. 1. In it, the adversary A is given
a vector g “ pg0, . . . , gnq and attempts to find a non-trivial discrete log relation. We define Advdl-relG,n pAq “
PrrHdl-rel

G,n pAqs. Normal discrete log security is defined by the game in the left panel of Fig. 1. In it, the adversary

attempts to find the discrete log of h P G with respect to a generator g P G˚. We define AdvdlGpAq “ PrrHdl
GpAqs.

It is well known that discrete log relation security is asymptotically equivalent to discrete log security.
The following lemma makes careful use of self-reducibility techniques to give a concrete bound showing that
discrete log relation security is tightly implied by discrete log security.

Lemma 3. Let G be a group of prime order p and n ě 1 be an integer. For any B, define C as shown in
Fig. 1. Then

Advdl-relG,n pBq ď AdvdlGpCq ` 1{p.

The runtime of C is that of B plus the time to perform n ` 1 multi-exponentiations of size 2 and some
computations in the field Zp.
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Proof. The claimed runtime of C is clear from its code. To understand the claimed advantage bound, let
a1 P Zp be the discrete log of h with respect to g in Hdl

GpCq.
Note that when B is running, each gi is a uniformly and independently sampled element of G from the

perspective of A. This gives us

Advdl-relG,n pBq “ PrrDi, ai ıp 0^
ś

i g
ai
i “ 1Gs

where we think of the probability as being measured in Hdl
GpCq. Furthermore, note that,

n
ź

i“0

gaii “ 1G ô
n
ÿ

i“0

aipxi ` a
1yiq ”p 0.

Solving the latter equation for a1, we have that a1 “ ´
ř

i aixi{
ř

i aiyi as long as this division is well-defined
(i.e.,

ř

i aiyi ıp 0). Thus we have,

AdvdlGpCq “ Prr
ś

i g
ai
i “ 1G ^

ř

i aiyi ıp 0s.

Note that
ř

i aiyi ıp 0 implies Di, ai ıp 0. Then we can perform some calculations to obtain our result via,

Advdl-relG,p,npBq “ PrrDi, ai ıp 0^
ś

i g
ai
i “ 1Gs

ď PrrDi, ai ıp 0^
ś

i g
ai
i “ 1G ^

ř

i aiyi ıp 0s ` PrrDi, ai ıp 0^
ř

i aiyi ”p 0s

“ Prr
ś

i g
ai
i “ 1G ^

ř

i aiyi ıp 0s ` PrrDi, ai ıp 0^
ř

i aiyi ”p 0s

“ AdvdlGpCq ` PrrDi, ai ıp 0^
ř

i aiyi ”p 0s

ď AdvdlGpCq ` 1{p.

The last inequality comes from the Schwartz-Zippel lemma. We can think of B’s output as specifying the
linear function

ř

i aiYi P ZprY0, ..., Yns, which is non-zero if at least one of the ai is non-zero. Note that B’s
view is independent of the yi’s, so we can think of them as being sampled after B is executed. By Schwartz-
Zippel, the probability this function equals zero over a uniform choice of yi’s is at most 1{p. [\

3 Bad Flag Analysis For Expected-Time Adversaries

In this section we show how to (somewhat) generically extend the standard techniques for analysis of “bad”
flags from worst-case adversaries to expected-time adversaries. Such analysis is a fundamental tool for cryp-
tographic proofs and has been formalized in various works [4,18,27]. Our results are tailored for the setting
where the analysis of the bad flag is information theoretic (e.g. applications in ideal models), rather than
reliant on computational assumptions.

We start by introducing our notation and model for identical-until-bad games in Section 3.1. Then in
Section 3.2 we give the main theorem of this section which shows how to obtain bounds on the probability
that an expected time adversary causes a bad flag to be set. Finally, in Section 3.3 we walk through some
basic applications (collision-resistance and PRF security in the random oracle model and discrete log security
in the generic group model) to show the analysis required for expected time adversaries follows from simple
modifications of the techniques used for worst-case adversaries.

3.1 Notation and Experiments For Identical-until-bad Games.

Identical-until-bad games. Consider Fig. 2 which defines a pair of games G
pG,G1q
0 and G

pG,G1q
1 from a

game specification pG,G1q. Here G and G1 are stateful randomized algorithms. At the beginning of the game,
coins c0, c1, and cA are sampled uniformly at random.3 The first two of these are used by G and G1 while

3 In the measure-theoretic probability sense with each individual bit of the coins being sampled uniformly and
independently.
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Game GpG,G
1q

b pAq
c0 Ð$ t0, 1u8

c1 Ð$ t0, 1u8

cA Ð$ t0, 1u8

tÐ 0
badÐ false
sÐ ε
s1 Ð ε
Run AOrac

pcAq

Oracpxq
tÐ t` 1
If  bad then

badt Ð G1px : s1; c0, c1q
If badt then badÐ true

If bad then dÐ b
Else dÐ 1
y Ð Gpd, x : s; c1, cdq
Return y

Fig. 2. Identical-until-bad games defined from game specification pG,G1q.

the last is used by A.4 The counter t is initialized to 0, the flag bad is set to false, and states s and s1 are
initialized for use by G and G1.

During the execution of the game, the adversary A repeatedly makes queries to the oracle Orac. The
variable t counts how many queries A makes. As long as bad is still false (so  bad is true), for each query
made by A the algorithm G1 will be given this query to determine if bad should be set to true. When b “ 1,
the behavior of Orac does not depend on whether bad is set because the output of the oracle is always
determined by running Gp1, x : s; c1, c1q. When b “ 0, the output of the oracle is defined in the same way
up until the point that bad is set to true. Once that occurs, the output is instead determined by running
Gp0, x : s; c1, c0q. Because these two games are identical except in the behavior of the code d Ð b which is
only executed once bad “ true, they are “identical-until-bad”.

In this section, the goal of the adversary is to cause bad to be set to true. Bounding the probability that
A succeeds in this can be used to analyze security notions in two different ways. For indistinguishability-
based security notions (e.g. PRG or PRF security), the two games Gb would correspond to the two worlds
the adversary is attempting to distinguish between. For other security notions (e.g. collision resistance or
discrete log security), we think of one of the Gb as corresponding to the game the adversary is trying to
win and the other as corresponding to a related “ideal” world in which the adversary’s success probably can
easily be bounded. In either case, the fundamental lemma of game playing [4] can be used to bound the
advantage of the adversary using a bound on the probability that bad is set.

A combined experiment. For our coming analysis it will be useful to relate executions of G
pG,G1q
0 pAq and

G
pG,G1q
1 pAq to each other. For this we can think of a single combined experiment in which we sample c0, c1,

and cA once and then run both games separately using these coins.

For b P t0, 1u, we let QA
b be a random variable denoting how many oracle queries A makes in the

execution of G
pG,G1q
b pAq during this experiment. We let BADA

t rbs denote the event that G1 sets badt to true

in the execution of G
pG,G1q
b pAq. Note that BADA

t r0s will occur if and only if BADA
t r1s occurs, because the

behavior of both games are identical up until the first time that bad is set and G1 is never again executed
once bad is true. Hence we can simplify notation by defining BADA

t to be identical to the event BADA
t r0s,

while keeping in mind that we can equivalently think of this event as occurring in the execution of either
game. We additionally define the event that bad is ever set BADA

“
Ž8

i“1 BAD
A
i , the event that bad is set by

one of the first j queries the adversary makes BADA
ďj “

Žj
i“1 BAD

A
j , and the event that bad is set after the

j-th query the adversary makes BADA
ąj “

Ž8

i“j`1. Clearly, PrrBADA
s “ PrrBADA

ďjs`PrrBADA
ąjs. Again we

can equivalently think of these events as occurring in either game. When the adversary is clear from context
we may choose to omit it from the superscript in our notation.

The fact that both games behave identically until bad is set true allows us to make several nice observa-
tions. If BAD does not hold, then Q0 “ Q1 must hold. If BADt holds for some t, then both Q0 and Q1 must

4 We emphasize that these algorithms are not allowed any randomness beyond the use of these coins.
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be at least t. One implication of this is that if Q1 “ q holds for some q, then BAD is equivalent to BADďq.
Additionally, we can see that PrrBADąqs ď PrrQb ą qs must hold.

Defining our events and random variables in this single experiment will later allow to consider the
expectation ErQd0|Q1 “ qs for some d, q P N. In words, that is the expected value of Q0 raised to the d-
th power conditioned on c0, c1, cA having been chosen so that Q1 “ q held. Since Q0 and Q1 can only
differ if BAD occurs we will be able to use PrrBAD|Q1 “ qs to bound how far ErQd0|Q1 “ qs can be from
ErQd1|Q1 “ qs “ qd.

δ-boundedness. Existing analysis of identical-until-bad games is done by assuming a worst-case bound
qA on the number of oracle queries that A makes (in either game). Given such a bound, one shows that
PrrBADA

s ď δpqAq for some function δ. We will say that a game specification pG,G1q is δ-bounded if for all
A and q P N we have that

PrrBADA
|Q1 “ qs ď δpqq.

As observed earlier, if Q1 “ q holds then badt cannot be set for any t ą q. Hence PrrBADA
|Q1 “ qs “

PrrBADA
ďq|Q1 “ qs.

We will, in particular, be interested in that case that δpqq “ ∆ ¨ qd{N for some ∆, d,N ě 1.5 We think
of ∆ and d as “small” and of N as “large”. The main result of this section bounds the probability that an

adversary sets bad by O
´

d
a

δ pErQbsq
¯

for either b if pG,G1q is δ-bounded for such a δ.

While δ-boundedness may seem to be a strange condition, we show in Section 3.3 that the existing
techniques for proving results of the form PrrBADA

s ď δpqAq for A making at most qA queries can often be
easily extended to show the δ-boundedness of a game pG,G1q. The examples we consider are the collision-
resistance and PRF security of a random oracle and the security of discrete log in the generic group model.
In particular, these examples all possess a common form. First, we note that the output of Gp1, . . . q is
independent of c0. Consequently, the view of A when b “ 1 is independent of c0 and hence Q1 is independent
of c0. To analyze PrrBAD|Q1 “ qs we can then think of c1 and c1 being fixed (fixing the transcript of
interaction between A and its oracle in GG1 ) and argue that for any such length q interaction the probability
of BAD is bounded by δpqq over a random choice of c0.

We note that this general form seems to typically be implicit in the existing analysis of bad flags for
the statistical problems one comes across in ideal model analysis, but would not extend readily to examples
where the probability of the bad flag being set is reduced to the probability of an adversary breaking some
computational assumption.

3.2 Expected-Time Bound From δ-boundedness

We can now state our result lifting δ-boundedness to a bound on the probability that an adversary sets bad
given only its expected number of oracle queries.

Theorem 1. Let δpqq “ ∆¨qd{N for ∆, d,N ě 1. Let pG,G1q be a δ-bounded game specification. If N ě ∆¨6d,
then for any A,

PrrBADA
s ď 5

d

c

∆ ¨ ErQA
0 s
d

N
“ 5 d

b

δ
`

ErQA
0 s
˘

.

If N ě ∆ ¨ 2d, then for any A,

PrrBADA
s ď 3

d

c

∆ ¨ ErQA
1 s
d

N
“ 3 d

b

δ
`

ErQA
1 s
˘

.

We provide bounds based on the expected runtime in either of the two games since they are not necessarily
the same. Typically, one of the two games will correspond to a “real” world and it will be natural to desire
a bound in terms of the expected runtime in that game. In Section 5, we show via a simple attack that the
d-th root in these bounds is necessary.

5 We could simply let ε “ ∆{N and instead say δpqq “ εqd, but for our examples we found it more evocative to write
these terms separately.
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Proof (of Theorem 1). We start with the proof for Q0, which is slightly more complex. Then we will provide
the proof for Q1, which is simpler because we avoid a step in which relate ErpQB

1 q
ds and ErpQB

0 q
ds.

The Q0 case. Let u “ 2´d and U “

Y

d
a

Nu{∆
]

. Note that δpUq ď u. Now let B be an adversary that

runs exactly like A, except that it counts the number of oracle queries made by A and halts execution
if A attempts to make a U ` 1-th query. We start our proof by bounding the probability of BADA by

the probability of BADB and an O
´

d

b

δ
`

ErQA
0 s
˘

¯

term by applying Markov’s inequality. In particular we

perform the calculations

PrrBADA
s “ PrrBADA

ďU s ` PrrBADA
ąU s (3)

“ PrrBADB
ďU s ` PrrBADA

ąU s (4)

ď PrrBADB
s ` Pr

“

QA
0 ą U

‰

(5)

ď PrrBADB
s ` ErQA

0 s{U (6)

ď PrrBADB
s ` 3ErQA

0 s
d
a

∆{N. (7)

Step 4 follows because for all queries up to the U -th, adversary B behaves identically to A (and thus
BADA

i “ BADB
i for i ď U). Step 5 follows because BADB

ąU cannot occur (because B never makes more than
U queries) and BADA

ąU can only occur if QA
0 is at greater than U . Step 6 follows from Markov’s inequality.

Step 7 follows from the following calculation which uses the assumption that N ě ∆ ¨ 6d and that u “ 2´d,

U “
Y

d
a

Nu{∆
]

ě
d
a

Nu{∆´ 1 “ d
a

N{∆
´

d
?
u´ d

a

∆{N
¯

ě
d
a

N{∆

ˆ

d
?

2´d ´ d

b

∆{p∆ ¨ 6dq

˙

“
d
a

N{∆ p1{2´ 1{6q .

In the rest of the proof we need to establish that PrrBADB
s ď 2ErQA

0 s
d
a

∆{N . We show this with ErQB
0 s,

which is clearly upper bounded by ErQA
0 s. We will do this by first bounding PrrBADB

s in terms of ErpQB
1 q
ds,

then bounding ErpQB
1 q
ds in terms of ErpQB

0 q
ds, and then concluding by bounding this in terms of ErQB

0 s. For
the first of these steps we expand PrrBADB

s by conditioning on all possible values of QB
1 and applying our

assumption that pG,G1q is δ-bounded to get

PrrBADB
s “

U
ÿ

q“1

PrrBADB
|QB

1 “ qsPrrQB
1 “ qs ď

U
ÿ

q“1

p∆ ¨ qd{NqPrrQB
1 “ qs

“ ∆{N
U
ÿ

q“1

qdPrrQB
1 “ qs “ ∆ErpQB

1 q
ds{N.

So next we will bound ErpQB
1 q
ds in terms of ErpQB

0 q
ds. To start, we will give a lower bound for ErpQB

0 q
d|QB

1 “

qs (when q ď U) by using our assumption that pG,G1q is δ-bounded. Let R0 be a random variable which
equals QB

0 if BADB does not occur and equals 0 otherwise. Clearly R0 ď QB
0 always. Recall that if BADB

does not occur, then QB
0 “ QB

1 (and hence R0 “ QB
1 ) must hold. We obtain

ErpQB
0 q
d|QB

1 “ qs ě ErRd0|Q
B
1 “ qs

“ qdPrr BADB
|QB

1 “ qs ` 0dPrrBADB
|QB

1 “ qs

“ qdp1´ PrrBADB
|QB

1 “ qsq

ě qdp1´ δpqqq ě qdp1´ uq.

The last step used that δpqq ď δpUq ď u because q ď U .
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Now we proceed by expanding ErpQB
1 q
ds by conditioning on the possible value of QB

1 and using the above
bound to switch ErpQB

0 q
d|QB

1 “ qs in for qd. This gives,

ErpQB
1 q
ds “

U
ÿ

q“1

qd ¨ PrrQB
1 “ qs

“

U
ÿ

q“1

ErpQB
0 q
d|QB

1 “ qs ¨
qd

ErpQB
0 q
d|QB

1 “ qs
¨ PrrQB

1 “ qs

ď

U
ÿ

q“1

ErpQB
0 q
d|QB

1 “ qs ¨
qd

qdp1´ uq
¨ PrrQB

1 “ qs

“ p1´ uq´1ErpQB
0 q
ds

Our calculations so far give us that PrrBADB
s ď p1´ uq´1ErpQB

0 q
ds ¨∆{N . We need to show that this is

bounded by 2ErQB
0 s

d
a

∆{N . First note that QB
0 ď U always holds by the definition of B, so

p1´ uq´1ErpQB
0 q
ds ¨∆{N ď p1´ uq´1ErQB

0 s ¨ U
d´1 ¨∆{N.

Now since U “
Y

d
a

Nu{∆
]

, we have Ud´1 ď pNu{∆qpd´1q{d which gives

p1´ uq´1ErQB
0 s ¨ U

d´1 ¨∆{N ď p1´ uq´1pupd´1q{dqErQB
0 s

d
a

∆{N.

Finally, recall that we set u “ 2´d and so

p1´ uq´1pupd´1q{dq “
2´d¨pd´1q{d

1´ 2´d
“

21´d

1´ 2´d
ď

21´1

1´ 2´1
“ 2.

Bounding ErQB
0 s ď ErQA

0 s and combining with our original bound on PrrBADA
s completes this case. [\

The Q1 case.Now we consider Q1. This case proceeds similarly, but avoids the need to relate ErpQB
1 q
ds and

ErpQB
0 q
ds. Using that pG,G1q is δ-bounded, for any adversary C we obtain

PrrBADC
s “

ÿ

qě1

PrrBADC
|QC

1 “ qsPrrQC
1 “ qs

ď
ÿ

qě1

p∆ ¨ qd{NqPrrQC
1 “ qs

“ ∆{N
ÿ

qě1

qdPrrQC
1 “ qs

“ ∆ErpQC
1 q
ds{N.

Let u “ 1 and U “

Y

d
a

N{∆
]

. Note that δpUq ď u. Now let B be an adversary that runs exactly like A,

except that it counts the number of oracle queries made by A and halts execution if A attempts to make a
U ` 1-th query. Then,

PrrBADA
s ď PrrBADB

s ` ErQA
1 s{U (8)

ď ∆ErpQB
1 q
ds{N ` 2ErQA

1 s
d
a

∆{N (9)

ď ErQB
1 s ¨ U

d´1 ¨∆{N ` 2ErQA
1 s

d
a

∆{N (10)

ď ErQB
1 s

d
a

∆{N ` 2ErQA
1 s

d
a

∆{N (11)

ď 3
d

c

∆ ¨ ErQA
1 s
d

N
(12)
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Game Hcr
b pAq

tÐ 0
πÐ$ PermprN sq
For i ą N do πris Ð i
winÐ false
Run ARo,Fin

Return win

Finpx, yq
If x ‰ y and Ropxq “ Ropyq then

winÐ true
Return win

Ropxq
If T rxs ‰ K then return T rxs
tÐ t` 1
T rxs Ð πrts
XÐ$ rN s
If X P tπris : i ă tu then

badÐ true
If b “ 0 then
T rxs Ð X
tÐ t´ 1

Return T rxs

Fig. 3. Game capturing collision-resistance of a random oracle (when b “ 0).

Step 9 makes use of the following calculation which follows because N ě ∆2d,

U “
Y

d
a

N{∆
]

ě
d
a

N{∆´ d
a

∆{N ¨ d
a

N{∆

ě
d
a

N{∆´ d

b

∆{∆2d ¨ d
a

N{∆ “ d
a

N{∆´ p1{2q ¨ d
a

N{∆

“ 1{2 d
a

N{∆.

This completes the proof. [\

3.3 Example Applications of Bad Flag Analysis

In this section we walk through some basic examples to show how a bound of Prrbad|Q1 “ qs ď ∆ ¨ qd{N can
be proven using essentially the same techniques as typical bad flag analysis for worst-case runtime, allowing
Theorem 1 to be applied. All of our examples follow the basic structure discussed earlier in this section. We
write the analysis in terms of two games which are identical-until-bad and parameterized by a bit b. In the
b “ 1 game, the output of its oracles will depend on some coins we identify as c1, while in the b “ 0 case the
output will depend on both c1 and independent coins we identify as c0. Then we think of fixing coins c1 and
the coins used by the adversary, which together fix Q1 (the number of queries A would make in the b “ 1
case), and argue a bound on the probability that bad is set over a random choice of c0.

We write the necessary games in convenient pseudocode and leave the mapping to a game specification
pG,G1q to apply Theorem 1 implicit. We will abuse notation and use the name of our pseudocode game to
refer to the corresponding game specification.

Collision-resistance of a random oracle. Our first example is the collision resistance of a random
oracle. Here an adversary is given access to a random function h : t0, 1u˚ Ñ rN s. It wins if it can find x ‰ y
for which hpxq “ hpyq, i.e., a collision in the random oracle. One way to express this is by the game Hcr

0

shown in Fig. 3. The random oracle is represented by the oracle Ro and the oracle Fin allows the adversary
to submit supposed collisions.

In it, we have written Ro in a somewhat atypical way to allow comparison to Hcr
1 with which it is

identical-until-bad. The coins used by these games determine a permutation π sampled at the beginning of
the game and a value X chosen at random from rN s during each Ro query.6 We think of the former as c1
and the latter as c0. Ignoring repeat queries, when in Hcr

1 the output of Ro is simply πr1s, πr2s, . . . in order.
Thus clearly, PrrHcr

1 pAqs “ 0 since there are no collisions in Ro. In Hcr
0 the variable X modifies the output

of Ro to provide colliding outputs with the correct distribution.

6 We define πris “ i for i ą N just so the game Hcr
1 is well-defined if A makes more than N queries.
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Game Hprf
b pAq

T r¨, ¨s Ð$ FcsprN s ˆD,Rq
F r¨s Ð$ FcspD,Rq
KÐ$ rN s
b1Ð$ ARor,Ro

Return b1 “ 1

Ropk, xq
If k “ K then

badÐ true
If b “ 0 then return F rxs

Return T rk, xs

Rorpxq
Return F rxs

Fig. 4. Games capturing PRF security of a random oracle.

These games are identical-until-bad, so the fundamental lemma of game playing [4] gives us,

PrrHcr
0 pAqs ď PrrHcr

0 pAq sets bads ` PrrHcr
1 pAqs “ PrrHcr

0 pAq sets bads.

Now think of the adversary’s coins and the choice of π as fixed. This fixes a value of Q1 and a length Q1

transcript of A’s queries in Hcr
1 pAq. If A made all of its queries to Fin, then Ro will have been executed 2Q1

times. On the i-th query to Ro, there is at most an pi ´ 1q{N probability that the choice of X will cause
bad to be set. By a simple union bound we can get,

PrrBAD|Q1 “ qs ď qp2q ´ 1q{N.

Setting δpqq “ 2q2{N we have that Hcr is δ-bounded, so Theorem 1 gives

PrrHcr
0 pAqs ď 5

2

c

2 ¨ ErQA
0 s

2

N
.

Pseudorandomness of a random oracle.Now consider using a random oracle with domain rN sˆD and
range R as a pseudorandom function. The games for this are shown in Fig. 4. The real world is captured by
b “ 0 (because to output of the random oracle Ro is made to be consistent with output of the real-or-random
oracle Ror) and the ideal world by b “ 1.

The coins of the game are random tables T and F as well as a random key K. We think of the key as c0
and the tables as c1. Because we have written the games so that the consistency check occurs in Ro, we can
clearly see the output of the oracles in Hprf

1 are independent of c0 “ K.
These games are identical-until-bad so from the fundamental lemma of game playing we have,

PrrHprf
0 pAqs ´ PrrHprf

1 pAqs ď PrrHprf
0 pAq sets bads.

Now we think of c1 and the coins of A as fixed. Over a random choice of K, each Ro query has a 1{N change
of setting bad. By a simple union bound we get,

PrrBAD|Q1 “ qs ď q{N.

Defining δpqq “ q{N we have that Hprf is δ-bounded, so Theorem 1 gives

PrrHprf
0 pAqs ´ PrrHprf

1 pAqs ď 5 ¨ ErQA
0 s{N.

Discrete logarithm security in the generic group model. Next we consider discrete logarithm
security in the generic group model for a prime order group G with generator g. One way to express this
is by the game Hdl

0 shown in Fig. 5. In this expression, the adversary is given labels for the group elements
it handles based on the time that this group element was generated by the adversary. The more general
framing of the generic group model where gx P G is labeled by σpxq for a randomly chosen σ : Z|G| Ñ t0, 1ul

for some l ě rlog |G|s can easily be reduced to this version of the game.
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Game Hdl
b pAq

p0p¨q Ð 0; p1p¨q Ð 1
p2p¨q Ð X
tÐ 2; xÐ$ Z|G|
x1Ð$ AInit,Op

Return x “ x1

Initpq
`Ð 2
If p2pxq P P1

x then
badÐ true
If b “ 0 then `Ð x

Return `

Oppj,αq
Require jris ď t for i “ 1, . . . , |j|

Require α P Z|j|
|G|

tÐ t` 1
ptp¨q Ð

ř|j|
i“1αris ¨ pjrisp¨q

`Ð t
If ptp¨q P Pt´1 then
`Ð mintk ă t : ptp¨q “ pkp¨qu

If ptpxq P Pt´1
x and ptp¨q R Pt´1 then

badÐ true
If b “ 0 then `Ð mintk ă t : ptpxq “ pkpxqu

Return `

Fig. 5. Game capturing discrete logarithm security of a generic group (when b “ 0). For i P N and x P Z|G|, we use
the notation Pi “ tp0, . . . , piu Ă Z|G|rXs and Pix “ tppxq : p P Piu Ă Z|G|.

At the beginning of the game polynomials p0p¨q “ 0, p1p¨q “ 1, and p2p¨q “ X are defined. These are
polynomials of the symbolic variable X, defined over Z|G|. Then a random x is sampled and the goal of the

adversary is to find this x. Throughout the game, a polynomial pi represents the group element gpipxq. Hence
p0 represents the identity element of the group, p1 represents the generator g, and p2 represents gx. We think
of the subscript of a polynomial as the adversary’s label for the corresponding group element. The variable
t tracks the highest label the adversary has used so far.

We let Pi denote the set of the first i polynomials that have been generated and Pix be the set of their
outputs when evaluated on x. The oracle Init tells the adversary if x happened to be 0 or 1 by returning
the appropriate value of `. The oracle Op allows the adversary to perform multi-exponentiations. It specifies
a vector j of labels for group elements and a vector α of coefficients. The variable t is incremented and its

new value serves as the label for the group element
ś

i g
αris
jris where gjris is the group element with label jris,

i.e., gpjrispxq. The returned value ` is set equal to the prior label of a group element which equals this new
group element (if ` “ t, then no prior labels represented the same group element).

The only coins of this game are the choice of x which we think of as c0. In Hdl
1 , the adversary is never told

when two labels it handles non-trivially represent the same group element so the view of A is independent
of c0, as desired.7 Because the view of A is independent of x when b “ 1 we have that PrrHdl

1 pAqs “ 1{|G|.
From the fundamental lemma of game playing,

PrrHdl
0 pAqs ď PrrHdl

0 pAq sets bads ` PrrHdl
1 pAqs “ PrrHcr

0 pAq sets bads ` 1{|G|

Now thinking of the coins of A as fixed, this fixes a value of Q1 and a length Q1 transcript of queries that
would occur in Hdl

1 pAq. This in turn fixes the set of polynomials PQ1`2. The flag bad will be set iff any of
polynomials in the set

tpp¨q ´ rp¨q|p ‰ r P PQ1`2u

have the value 0 when evaluated on x. Note these polynomials are non-zero and have degree at most 1. Thus,
applying the Schwartz-Zippel lemma and a union bound we get,

PrrBAD|Q1 “ qs ď

ˆ

q ` 3

2

˙

¨ p1{|G|q ď 6q2{|G|.

7 Two labels trivially represent the same group element if they correspond to identical polynomials.
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Note the bound trivially holds when q “ 0, since Prrbad|Q1 “ qs “ 0, so we have assumed q ě 1 for the
second bound. Defining δpqq “ 6q2{|G| we have that Hdl is δ-bounded, so Theorem 1 gives

PrrHdl
0 pAqs ď 5 2

d

6 ¨ ErQA
0 s

2

|G|
`

1

|G|
.

4 Expected-Time Indistinguishability Proofs From Point-wise Proximity

In this section we show that a basic version of the H-Coefficient Method known as point-wise proximity can
be generically extended to give tight bounds for expected-time attackers. Similar to Section 3, these result
extend a ∆ ¨ qd{N bound when q is the worst-case runtime of the adversary to an Op d

a

∆ ¨ qd{Nq bound
when q is the expected runtime of the adversary.

We start in Section 4.1 by describing the abstract framework we will use for these indistinguishability
proof and recalling the H-coefficient method and point-wise proximity technique. Then in Section 4.2 we
provide the main result of this section that showing point-wise proximity proofs can be generically extended
to cover expected-time attackers. Finally in Section 4.2 we recall some applications where security can be
proven using point-wise proximity.

4.1 Indistinguishability Framework

Model and notation.For this section we will consider a distinguisher D that interacts with some game F
or G. To discuss the H-Coefficient method it will be convenient to following the random system abstraction
of Mauer [18] for D, F , and G. That is, rather than modeling them as computational entities we will only
reason about them via the distributions they induce over outputs.

Fix sets X and Y which are, respectively, the set of queries D may make to a game and the set of responses
a game may return. A game F defines a set of probability functions tpFi uiPNą0 , where pFi : X iˆYi´1ˆY Ñ
r0, 1s for each i and for any xi P X i and yi´1 P Yi´1 it holds that

ř

yPY p
F
i px

i, yi´1, yq “ 1. Similarly, a

distinguisher D defines a set of probability functions tpDi uiPNą0
, where this time pDi : X i´1ˆYi´1ˆX Ñ r0, 1s

for each i and for any xi´1 P X i´1 and yi´1 P Yi´1 it holds that
ř

xPX p
D
i px

i´1, yi´1, xq “ 1.
Typically, analysis is done assuming a fixed upper bound q on the number of queries made by D which

is captured by only defining pDi for i P rqs. To model expected time D we will think of there being some
special value Fin so that xi “ Fin indicates that this is D’s final query.

For any transcript τ “ px1, y1, . . . , xq, yqq define |τ | “ q. Let T denote the set of τ for which the last
query x|τ | is Fin (and no earlier queries were Fin). We refer to T as the set of complete transcripts, because
these transcripts represent a complete interaction between a distinguisher and a game. For any transcript
τ define pF pτq “

śq
i“1 p

F
i px

i, yi´1, yiq and pDpτq “
śq
i“1 p

D
i px

i´1, yi´1, xiq where xi “ px1, . . . , xiq and
yi “ py1, . . . , yiq for each i.

We think of a distinguisher D and game F as inducing a distribution over the set of complete transcripts.
We let TDF denote the random variable distributed according to this distribution, which is defined by PrrTDF “

τ s “ pDpτq ¨ pF pτq for any τ P T . Note that the random variable |TDF | captures the number of oracle queries
made by D when interacting with F , and thus Er|TDF |s is the expected number of oracle queries it makes
in this interaction. We will require that after a complete interaction with a game, the distinguisher guesses
a bit (thought of as a guess whether it is interacting with F or G). To make this explicit we can require
that for every τ “ px1, y1, . . . , xq, yqq P T we have pDq`1px

q, yq, 1q ` pDq`1px
q, yq, 0q “ 1. We use this to define

the distribution over the bit output by D when interacting with F , denoted DpTDF q, in the obvious way. We

define AdvdistG,F pDq “ PrrDpTDG q “ 1s ´ PrrDpTDF q “ 1s.
In typical analysis using worst-case runtime it is common to note that one can assume D is deterministic

(i.e. that pDi px
i´1, yi´1, xq P t0, 1u always holds) without loss of generality. We cannot do so when we only

have a bound on the expected runtime of D because the number of oracle queries it makes may depend on
its randomness.
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When games F and G are clear from context, we define

X` “ tτ P T : pGpτq ą pF pτqu

X´ “ tτ P T : pGpτq ă pF pτqu

X“ “ tτ P T : pGpτq “ pF pτqu.

Thus X` is the set of complete transcripts more likely to occur when a distinguisher is interacting with G.8

Similarly, X´ is the set of complete transcripts more likely when interacting with F and X“ is the set of
complete transcripts that are equally likely. Note that T “ X` \X´ \X“.

H-Coefficient method and point-wise proximity. The well-known H-Coefficient Method [5,10,21]
gives a framework for obtaining a bound on AdvdistG,F pDq from a worst-case bound on the number of oracle
queries that the distinguisher D makes. Let q denote this worst-case bound.

In this method, one first defines sets Good and Bad so that X` “ Good \ Bad. Then one shows that
1´pF pτq{pGpτq ď εpqq for all τ P Good with |τ | “ q and that PrrTDG P Bads ď δpqq. From these, some simple

calculations show that AdvdistG,F pDq ď εpqq ` δpqq for any distinguisher D making q queries.
For some applications it is known that one can use a more basic version of the H-coefficient method in

which X` “ Good. Hence, PrrTDG P Bads “ 0 trivially and one gets AdvdistG,F pDq ď εpqq for any D making at

most q queries by showing that 1 ´ pF pτq{pGpτq ď εp|τ |q for all τ P X`. This version of the H-coefficient
method was referred to as point-wise proximity by Hoang and Tessaro [14]. It was used by Bernstein [5],
Patarin [22], and Chang and Nandi [9].

The main result of this section shows that for some choices of ε, a bound of 1´ pF pτq{pGpτq ď εp|τ |q for
all τ P X`, automatically gives a bound on AdvdistF,GpDq based on the expected number of oracle queries that
D makes. We were unable to obtain an expected time result analogous to the full H-coefficient method and
leave this as an interesting question for future work.

4.2 Expected-time Analysis from Point-wise Proximity

Now we move to bounding the advantage of expected time adversaries. Let pF,Gq be a pair of games. We
will say they are ε-restricted if 1´ pF pτq{pGpτq ď εp|τ |q for all τ P X`. We will, in particular, be interested
in the case that εpqq “ ∆ ¨ qd{N for some ∆, d, and N .

The following theorem gives our bound on AdvdistG,F for ε-restricted pF,Gq based on the expected runtime
of the distinguisher. This expected runtime may differ in F and G, so our result is written to apply to the
expected runtime with respect to either game.

Theorem 2. Let εpqq “ ∆ ¨ qd{N for ∆, d,N P Ną0 satisfying N ě ∆ ¨ 6d. Let pF,Gq be an ε-restricted pair
of games. Let H P tF,Gu and H P tF,GuztHu. Then for any B,

Advdist
H,H

pBq ď 5
d

c

∆ ¨ Er|TBH |s
d

N
“ 5 d

b

εpEr|TBH |sq.

In Section 5, we give a simple attack which shows that the d-th root is necessary in the bound.

Proof. The theorem follows from the following three lemmas. The proofs of these lemmas are, respectively,
given in Section 4.6, Section 4.5, and Section 4.4.

Lemma 4. Let ε, ∆, d, N , F , G, H, H, and B be defined as in Theorem 2. Let u “ 2´d and U “
Y

d
a

Nu{∆
]

.

Then there exists D such that

Advdist
H,H

pBq ď Advdist
H,H

pDq ` 3 d
a

∆{N ¨ Er|TBH |s.

For any I, the bound |TDI | ď U always holds and additionally Er|TDI |s ď Er|TBI |s.

8 Technically, such transcripts will be equally likely if pDpτq “ 0.
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Lemma 5. Let F and G be defined as in Theorem 2. Let D be a distinguisher. Then,

AdvdistG,F pDq ď p∆{Nq ¨ Er|T
D
G |

ds.

Lemma 6. Let pF,Gq be ε-restricted and d P Ną0. Let D be a distinguisher such that εp|TDG |q ď u always
holds for some u P p0, 1q. Then,

Er|TDG |
ds ď p1´ uq´1 ¨ Er|TDF |

ds.

First suppose H “ G. Then from Lemma 4 we get AdvdistG,F pBq ď AdvdistG,F pDq ` 3 d
a

∆{N ¨ Er|TBG |s for D

making at most U queries. Applying Lemma 5 gives AdvdistG,F pDq ď p∆{Nq ¨ Er|T
D
G |

ds. Noting that u P p0, 1q,

we have Er|TDG |
ds ď p1´ uq´1 ¨ Er|TDG |

ds.

Now suppose H “ F . Then from Lemma 4 we get AdvdistF,GpBq ď AdvdistF,GpDq ` 3 d
a

∆{N ¨ Er|TBF |s for D

making at most U queries. Let D be the adversary which runs just like D, but outputs the opposite bit. Then

AdvdistF,GpDq “ AdvdistG,F pDq. Applying Lemma 5 gives AdvdistG,F pDq ď p∆{Nq ¨ Er|T
D
G |

ds. Clearly |TDG | “ |T
D
G |.

From Lemma 6 we have Er|TDG |
ds ď p1´ uq´1 ¨ Er|TDF |

ds.

So in either case we have Advdist
H,H

pBq ď p∆{Nq ¨ p1 ´ uq´1 ¨ Er|TDH |
ds ` 3 d

a

∆{N ¨ Er|TBH |s. Now we can

emulate calculations from the end of the proof of Theorem 1 to show that if u “ 2´d, then

p∆{Nq ¨ p1´ uq´1 ¨ Er|TDH |
ds ď 2Er|TDH |s

d
a

∆{N.

Plugging this in (and using Er|TDH |s ď Er|TBH |s from the construction of D) gives the stated bound. [\

4.3 Example Applications of Point-wise Proximity

Because Theorem 2 is so generic, we can automatically extend existing proofs using point-wise proximity for
worst-case attackers to apply to expected-time attackers.

Switching Lemma. One application of point-wise proximity is the Switching Lemma. Fix N P N and let
F be a game returns uniformly random x P rN s sampled with replacement and G be the game that returns
uniformly random x P rN s sampled without replacement. Let AdvslN p¨q “ AdvdistF,Gp¨q The standard switching

lemma says that if A makes at most q oracle queries, then AdvslpAq ď q2{2N . This result has numerous ap-
plications, including proving the collision-resistance of a random oracle and bounding the difference between
the PRP and PRF security of a block cipher.

Of particular interest to us is the proof of Chang and Nandi [9], which proved it using point-wise proximity.
In particular, their proof shows that pF,Gq is ε-restricted for εpqq “ q2{2N . Thus, we can refer to Theorem 2
to obtain that

AdvslN pAq ď 5

c

Er|TAF |s
2

2N
.

Key-alternating ciphers. Hoang and Tessaro [14] used point-wise proximity to study the security of
key-alternating ciphers. A key-alternating cipher is a construction of a blockcipher generalizing the Even-
Mansour construction [11]. It constructs a blockcipher KACrπ, ts : pt0, 1unqt`1 ˆ t0, 1un Ñ t0, 1un from a
public family of permutations π : Nˆt0, 1un Ñ t0, 1un. KACrπ, tspK, xq returns yt defined by: y0 Ð x‘K0

and yi Ð πpi, yi´1q ‘Ki for i “ 1, . . . , t.
Let F and G be the games defining strong PRP security of KACrπ, ts in the random permutation model

where F is the real game and G is the ideal game. Let Advsprpn,t p¨q “ AdvdistF,Gp¨q. Hoang and Tessaro proved
that pF,Gq are ε-restricted for εpqq “ 4tqt`1{pt2nqt. We can apply Theorem 2 to obtain that

Advsprpn,t pAq ď 5

ˆ

4t ¨ Er|TAF |s
t`1

pt2nqt

˙1{pt`1q

.

Hoang and Tessaro additionally used point-wise proximity to study the security of XOR cascades for blockci-
pher key-length extension. Again, their proofs for worst-case adversaries automatically give us expected-time
bounds.
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4.4 Proof of Lemma 4

Let u “ 2´d and U “
Y

d
a

Nu{∆
]

. Note that εpUq ď u. Let D be a distinguisher that runs exactly like B, but

halts early and outputs 0 if B attempts to make more than U oracle queries. Clearly for this D the bound
the bound |TDI | ď U always holds and additionally Er|TDI |s ď Er|TBI |s for any game I.

Now we can bound the advantage of B by the advantage of D and the probability that B ever makes
more than U queries, obtaining

Advdist
H,H

pBq “ PrrBpTBH q “ 1s ´ PrrBpTB
H
q “ 1s

“ PrrBpTBH q “ 1^ |TBH | ď U s ` PrrBpTBH q “ 1^ |TBH | ą U s

´ PrrBpTB
H
q “ 1^ |TB

H
| ď U s ´ PrrBpTB

H
q “ 1^ |TB

H
| ą U s

“ Advdist
H,H

pDq ` PrrDpTBH q “ 1^ |TBH | ą U s

´ PrrBpTB
H
q “ 1^ |TB

H
| ą U s

ď Advdist
H,H

pDq ` Prr|TBH | ą U s.

By Markov’s inequality, we have that

Prr|TBH | ą U s ď Er|TBH |s{U.

Furthermore, from calculation used in the proof of Theorem 1 we have that if u “ 2´d and N ě ∆ ¨ 6d, then
U´1 ď 3 d

a

∆{N . This gives the bound of

Advdist
H,H

pBq ď Advdist
H,H

pDq ` 3 d
a

∆{N ¨ Er|TBH |s,

completing the proof. [\

4.5 Proof of Lemma 5

This lemma follows from the following calculation

AdvdistG,F pDq ď
ÿ

τPX`

pDpτq ¨ pGpτq ´ pDpτq ¨ pF pτq

“
ÿ

τPX`

pDpτq ¨ pGpτq ¨
`

1´ pF pτq{pGpτq
˘

ď
ÿ

τPX`

pDpτq ¨ pGpτq ¨ εp|τ |q

ď
ÿ

τPT
pDpτq ¨ pGpτq ¨ εp|τ |q

“ p∆{Nq ¨ Er|TDG |
ds.

For the second step we needed that pGpτq ‰ 0 for τ P X`. [\

4.6 Proof of Lemma 6

Recall we have u P p0, 1q and εp|τ |q ď u (for all τ P T with pDpτq ‰ 0). For H P tF,Gu and ˝ P t`,´,“u we
define,

S˝H “
ÿ

τPX˝

pDpτq ¨ pHpτq ¨ |τ |d.
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Note then that Er|TDH |
ds “ S`H `S

´
H `S

“
H since X`, X´, and X“ partition T . Now S“G “ S“F and S´G ď S´F

follow immediately from the definitions of X´ and X“. To compare S`G and S`F we first note that for τ P X`

we have that pGpτq{pF pτq ď p1´ uq´1.9 Then we obtain that

S`G “
ÿ

τPX`

pDpτq ¨ pGpτq ¨ |τ |d “
ÿ

τPX`

pDpτq ¨ pF pτq ¨ |τ |d ¨ ppGpτq{pF pτqq

ď p1´ uq´1
ÿ

τPX`

pDpτq ¨ pF pτq ¨ |τ |d “ p1´ uq´1S`F .

Note that p1´ uq´1 ą 1 will hold because u P p0, 1q. Then we have

Er|TDG |
ds “ S`G ` S

´
G ` S

“
G ď p1´ uq

´1S`F ` S
´
F ` S

“
F

ď p1´ uq´1pS`F ` S
´
F ` S

“
F q “ p1´ uq

´1 ¨ Er|TDF |
ds.

This completes the proof. [\

5 Tightness of Expected-Time Bounds

In this section we establish that Theorem 1 and Theorem 2 are tight. In particular, we observe that the d-th
root was necessary. The basic idea for both is to consider an adversary that flips a coin, halting immediately
if it gets tails and otherwise performing an attack (using many queries) that achieves constant advantage.

Tightness of Theorem 1. Suppose there exists A making exactly qA “
d
?
N oracle queries such that

PrrBADA
s ě ε P r0, 1s.10 Let 0 ď q ď qA be a given bound on the expected runtime of an adverasry. Then

let B be the adversary that samples d from t0, 1u so that Prrd “ 1s “ q{qA and halts immediately if d “ 0.
Otherwise, it runs A. Note that ErQB

0 s “ ErQB
1 s “ qA ¨ Prrd “ 1s “ q. Then,

PrrBADB
s “ PrrBADB

^ d “ 0s ` PrrBADB
|d “ 1sPrrd “ 1s

“ 0` PrrBADA
s ¨ q{qA

ě εq{
d
?
N “ ε ¨ d

b

qd{N.

Tightness of Theorem 2. Suppose there exists A making exactly qA “
d
?
N oracle queries such that

Advdist
H,H

pAq ě ε P r0, 1s. Let 0 ď q ď qA be a given bound on the expected runtime of an adverasry. Then

let B be the adversary that samples d from t0, 1u so that Prrd “ 1s “ q{qA and is halts immediately with
output 0 if d “ 0. Otherwise, it runs A. Note that Er|TBF |s “ Er|TBG |s “ qA ¨ Prrd “ 1s “ q. Then,

Advdist
H,H

pAq “ PrrBpTBG q “ 1s ´ PrrBpTBF q “ 1s

“ Prrd “ 1s ¨ pPrrBpTBG q “ 1|d “ 1s ´ PrrBpTBF q “ 1|d “ 1sq

“ q{qApAdv
dist
H,H

pAqq

ě εq{
d
?
N “ ε ¨ d

b

qd{N.

6 Concrete Security For A Forking Lemma

In this section we apply our techniques to obtaining concrete bounds on the soundness of proof systems.
Of particular interest to us will be proof systems that can be proven to achieve a security notion known
as witness-extended emulation via a very general “Forking Lemma” introduced by Bootle, Cerulli, Chaidos,

9 This follows from 1´ pF pτq{pGpτq ď εp|τ |q ď u ă 1 for such τ .
10 Think of ε as some large constant probability, e.g. ε “ 1{2.
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Π Πpπ, u, auxq returns true iff Name

Πwit pu, auxq P Rπ Valid Witness

ΠG,n
dl

śn
i“0 π

auxi
i “ 1G Discrete Log Relation

Πn
val aux is a valid n-tree for u Valid Tree

Πn
nocol aux has no challenge collisions Collision-Free Tree

Fig. 6. Predicates we use. Other predicates Πbind and Πrsa are only discussed informally.

Groth, and Petit (BCCGP) [6]. Some examples include Bulletproofs [7], Hyrax [28], and Supersonic [8].
Our expected-time techniques arise naturally for these proof systems because witness-extended emulation
requires the existence of an expected-time emulator E for a proof system which is given oracle access to a
cheating prover and produces transcripts with the same distribution as the cheating prover, but additionally
provides a witness w for the statement being proven whenever it outputs an accepting transcript.

In this section we use a new way of expressing witness-extended emulation as a special case of a more
general notion we call predicate-extended emulation. The more general notion will serve as a clean, modular
way to provide a concrete security version of the BCCGP forking lemma. This modularity allows us to hone
in on the steps where our expected time analysis can be applied to give concrete bounds and avoid some
technical issues with the original BCCGP formulation of the lemma.

In the BCCGP blueprint, the task of witness-extended emulation is divided into a generic tree-extended
emulator which for any public coin proof system produces transcripts with the same distribution as a cheating
prover together with a set of accepting transcripts satisfying a certain tree structure and an extractor for
the particular proof system under consideration which can extract a witness from such a tree of transcripts.
The original forking lemma of BCCGP technically only applied for extractors that always output a witness
given a valid tree with no collisions. However, typical applications of the lemma require that the extractor be
allowed to fail when the cheating prover has (implicitly) broken some presumed hard computational problem.
Several works subsequent to BCCGP noticed this gap in the formalism [7,28,8] and stated slight variants of
the BCCGP forking lemma. However, these variants are still unsatisfactory. The variant lemmas in [7,28]
technically only allows extractors which fail in extracting a witness with at most negligible probability for
every tree (rather than negligible probably with respect to some efficiently samplable distribution over trees,
as is needed). The more recent variant lemma in [8] is stated in such a way that the rewinding analysis at the
core of the BCCGP lemma is omitted from the variant lemma and (technically) must be shown separately
anytime it is to be applied to a proof system. None of these issues represent issues with the security of the
protocols analyzed in these works. The intended meaning of each of their proofs is clear from context and
sound, these issues are just technical bugs with the formalism of the proofs. However, to accurately capture
concrete security it will be important that we have a precise and accurate formalism of this. Our notion of
predicate-extended emulation helps to enable this.

In Section 6.1, we provide the syntax of proof systems as well as defining our security goals of predicate-
extended emulation (a generalization of witness-extended emulation) and generator soundness (a general-
ization of the standard notion of soundness). Then in Section 6.2, we provide a sequence of simple lemmas
and show how they can be combined to give our concrete security version on the forking lemma. Finally
in Section 6.3, we discuss how our forking lemma can easily be applied to provide concrete bounds on the
soundness of various existing proof systems. As a concrete example we give the first concrete security bound
on the soundness of the Bulletproof zero-knowledge proof system for arithmetic circuits by Bünz et al. [7].

6.1 Syntax and Security of Proof Systems

Proof System. A proof system PS is a tuple PS “ pS,R,P,V, µq specifying a setup algorithm S, a relation
R, a prover P, verifier V, and µ P N. The setup algorithm outputs public parameters π. We say w is a witness
for the statement u if pu,wq P Rπ. The prover (with input pu,wq) and the verifier (with input u) interact via
2µ` 1 moves as shown in Fig. 7.
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xPπpu,wq,Vπpuqy
σP Ð K; σV Ð K; m´1 Ð K

pm0, σPq Ð$ Pπpu,w,m´1, σPq

For i “ 1, . . . , µ do
pm2i´1, σVq Ð$ Vπpu,m2i´2, σVq

pm2i, σPq Ð$ Pπpu,w,m2i´1, σPq

tr Ð pm´1,m0,m1, . . . ,m2µq

dÐ Vπpm2µ, u, σVq

Return ptr, dq

Fig. 7. Interaction between (honest) prover P and verifier
V with public parameters π. Here tr is the transcript and
d P t0, 1u is the decision.

Here tr is the transcript of the interaction
and d P t0, 1u is the decision of V (with d “

1 representing acceptance and d “ 0 repre-
senting rejection). Perfect completeness requires
that for all π and pu,wq P Rπ, Prrd “ 1 :
p¨, dq Ð$ xPπpu,wq,Vπpuqys “ 1. If PS is public-coin,
then m2i´1 output by V each round is set equal to its
random coins. In this case, we let Vπpu, trq P t0, 1u
denote V’s decision after an interaction that pro-
duced transcript tr.11 Throughout this section we
will implicitly assume that any proof systems under
discussion is public-coin. We sometimes refer to the
verifier’s outputs as challenges.

Predicate-extended emulation.The proof sys-
tems we consider were all analyzed with the notion
of witness-extended emulation [13,17]. This requires
that for any efficient cheating prover P˚ there exists an efficient emulator E which (given oracle access to P˚

interacting with V and the ability to rewind them) produces transcripts with the same distribution as P˚

and almost always provides a witness for the statement when the transcript it produces is accepting. We will
capture witness-extended emulation as a special case of what we refer to as predicate-extended emulation.
We cast the definition as two separate security properties. The first (emulation security) requires that E
produces transcripts with the same distribution as P˚. The second (predicate extension) is parameterized
by a predicate Π and requires that whenever E produces an accepting transcript, its auxiliary output must
satisfy Π. As we will see, this treatment will allow a clean, modular treatment of how BCCGP and follow-up
work [7,6,28,8] analyze witness-extended emulation.

We start by considering game Hemu defined in Fig. 8. It is parameterized by a public-coin proof system
PS, emulator E, and bit b. The adversary consists of a cheating prover P˚ and an attacker A. This game
measures A’s ability to distinguish between a transcript generated by xP˚πpu, sq,Vπpuqy and one generated
by E. The emulator E is given access to oracles Next and Rew. The former has P˚ and V perform a round
of interaction and returns the messages exchanged. The latter rewinds the interaction to the prior round. We
define the advantage function Advemu

PS,EpP
˚,Aq “ PrrHemu

PS,E,1pP
˚,Aqs ´ PrrHemu

PS,E,0pP
˚,Aqs. For the examples

we consider there will be an E which (in expectation) performs a small number of oracle queries and does a
small amount of local computation such that for any P˚ and A we have Advemu

PS,EpP
˚,Aq “ 0.

Note that creating a perfect emulator is trivial in isolation; E can just make µ`1 calls to Next to obtain
a tr with the exactly correct distribution. Where it gets interesting is that we will consider a second, auxiliary
output of E and insist that it satisfies some predicate Π whenever tr is an accepting transcript. The adversary
wins whenever tr is accepting, but the predicate is not satisfied. This is captured by the game Hpredext shown
in Fig. 8. We define AdvpredextPS,E,ΠpP

˚,Aq “ PrrHpredext
PS,E,ΠpP

˚,Aqs. Again this notion is trivial in isolation; E can
just output rejecting transcripts. Hence, both security notions need to be considered together with respect
to the same E.

The standard notion of witness-extended emulating is captured by the predicate Πwit which checks if aux
is a witness for u, that is, Πwitpπ, u, auxq “ ppu, auxq P Rπq. Later we will define some other predicates. All
the predicates we will make use of are summarized in Fig. 6. A proof system with a good witness-extended
emulator under some computational assumption may be said to be an argument of knowledge.

Hard predicates.One class of predicates to consider are those which embed some computational problem
about the public parameter π that is assumed to be hard to solve. We will say that Π is witness-independent
if its output does not depend on its second input u. For example, if S outputs of length n vector of elements
from a group G (we will denote this setup algorithm by SnG) we can consider the predicate ΠG,n

dl which checks
if aux specifies a non-trivial discrete log relation. This predicate is useful for the analysis of a variety of

11 We include m´1 “ K in tr as a notational convenience.
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Game Hemu
PS,E,bpP

˚,Aq
iÐ 0; pS, ¨, ¨,V, µq Ð PS
πÐ$ S
pu, s, σAq Ð$ Apπq
ptr1, ¨q Ð$ xP˚πpu, sq,Vπpuqy
ptr0, ¨q Ð$ ENext,Rew

pπ, uq
b1Ð$ Aptrb, σAq

Return b1 “ 1

Game Hpredext
PS,E,ΠpP

˚,Aq
iÐ 0; pS, ¨, ¨,V, µq Ð PS
πÐ$ S
pu, s, ¨q Ð$ Apπq
ptr, auxq Ð$ ENext,Rew

pπ, uq
Return pVπpu, trq ^  Πpπ, u, auxqq

Nextpq
Require i ď µ
If i “ 0 then
σ0
P Ð K; σ1

V Ð K; m´1 Ð K

Else
pm2i´1, σ

i`1
V q Ð$ Vπpu,m2i´2, σ

i
Vq

pm2i, σ
i`1
P q Ð$ P˚πpu, s,m2i´1, σ

i
Pq

mÐ pm2i´1,m2iq

iÐ i` 1
Return m

Rewpq
Require i ą 0
iÐ i´ 1
Return ε

Fig. 8. Games defining predicate-extended emulation security of proof system PS.

Game Hpred
S,ΠpAq

πÐ$ S
auxÐ$ Apπq
Return Πpπ, ε, auxq

Game Hsound
PS,GpP

˚
q

pS, ¨, ¨,V, ¨q Ð PS
πÐ$ S
pu, sq Ð$Gpπq
p¨, dq Ð$ xP˚πpu, sq,Vπpuqy
Return d “ 1

Game Hwit
PS,GpBq

pS, ¨, ¨,V, ¨q Ð PS
πÐ$ S
pu, sq Ð$Gpπq
w Ð Bpπ, u, sq
Return pu,wq P Rπ

Fig. 9. Left. Game defining hardness of satisfying predicate Π. Right. Games defining soundness of proof system
PS with respect to instance generator G and difficulty of finding witness for statements produced by G.

proof systems [6,7,28]. Other useful examples include: (i) if S output parameters for a commitment scheme
with Πbind that checks if aux specifies a commitment and two different opening for it [6,8,28] and (ii) if S
outputs a group of unknown order together with an element of that group and Πrsa checks if aux specifies a
non-trivial root of that element [8].

Whether a witness-independent predicate Π is hard to satisfy given the output of S is captured by the
game Hpred shown on the left side of Fig. 9. We define AdvpredS,Π pAq “ PrrHpred

S,Π pAqs. Note, for example, that if SnG
and ΠG,n

dl is used, then this game is identical to discrete log relation security, i.e., Advpred
SnG ,Π

G,n
dl

pAq “ Advdl-relG,n pAq
for any adversary A.

Generator soundness.Consider the games shown on the right side of Fig. 9. Both are parameterized by a
statement generator G which (given the parameters π) outputs a statement u and some auxiliary information
s about the statement. The first game Hsound measure how well a (potentially cheating) prover P˚ can use s
to convince V that u is true. The second game Hwit measures how well an adversary B can produce a witness
for u given s. We define AdvsoundPS,GpP

˚q “ PrrHsound
PS,GpP

˚qs and AdvwitPS,GpBq “ PrrHwit
PS,GpBqs.

Note that the standard notion of soundness (that proving false statements is difficult) is captured by
considering G which always outputs false statements. In this case, AdvwitPS,GpAq “ 0 for all A. In other
contexts, it may be assumed that it is computationally difficult to find a witness for G’s statement.

6.2 Concrete Security Forking Lemma

Now we will work towards proving our concrete security version of the BCCGP forking lemma. This lemma
provides a general framework for how to provide a good witness-extended emulator for a proof system. First,
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BCCGP showed how to construct a tree-extended emulator T which has perfect emulation security and
(with high probability) outputs a set of transcripts satisfying a tree-like structure (defined later) whenever it
outputs an accepting transcript. Then one constructs, for the particular proof system under consideration,
an “extractor” X which given such a tree of transcripts can always produce a witness for the statement or
break some other computational problem assumed to be difficult. Combining T and X appropriately gives a
good witness-extended emulator.

Before proceeding to our forking lemma we will provide the necessary definitions of a tree-extended
emulator and extractor, then state some simple lemmas that help build toward our forking lemma.

Transcript Tree. Fix a proof system PS “ pS,R,P,V, µq and let the vector n “ pn1, . . . , nµq P Nµą0

be given. Let π be an output of S and u be a statement. For h “ 0, . . . , µ we will inductively define an
pnµ´h`1, . . . , nµq-tree of transcripts for pPS, π, uq. We will often leave some of pPS, π, uq implicit when they
are clear from context.

First when h “ 0, a pq-tree is specified by a tuple pm2µ´1,m2µ, `q where m2µ´1,m2µ P t0, 1u
˚ and

` is an empty list. Now an pnµ´ph`1q, . . . , nµq-tree is specified by a tuple pm2pµ´hq´1,m2pµ´hq, `q where
m2pµ´hq´1,m2pµ´hq P t0, 1u

˚ and ` is a length nµ´ph`1q list of pnµ´h, . . . , nµq-trees for pPS, π, u, trq.
When discussing such trees we say their height is h. When h ă µ we will sometimes refer to it as a partial

tree. We use the traditional terminology of nodes, children, parent, root, and leaf. We say the root node is at
height h, its children are at height h´ 1, and so on. The leaf nodes are thus each at height 0. If a node is at
height h, then we say it is at depth µ´ h.

Every path from the root to a leaf in a height h tree gives a sequence pm2pµ´hq´1,m2pµ´hq, . . . ,m2µ´1,m2µq

where pm2pµ´iq´1,m2pµ´iqq are the pair from the node at height i. Now if we fix a transcript prefix tr1 “
pm´1,m0, . . . ,m2pµ´h´1q´1,m2pµ´h´1qq, then we can think of tr1 and the tree as inducing

śµ
i“1 ni differ-

ent transcripts tr “ pm0, . . . ,m2µ´1,m2µq, one for each path. We will say that the tree is valid for tr1 if
Vπpu, trq “ 1 for each transcript tr induced by the tree. Note that tr1 is an empty list when h “ µ so we can
omit reference to tr1 and simply refer to the tree as valid.

Suppose V’s coins are drawn from SˆZp for some set S and p P N. We will refer to the second component
of its coins are the integer component. Let node be a parent node at height i ą 0. If any two of its children
have m2pµ´i`1q´1 with identical integer components, then we say that node has a challenge collision. A tree
has a challenge collision if any of its nodes have a challenge collision.

A tree-extractor emulator should return trees which are valid and have no challenge collision. We capture
this with the predicates Πnval and Πnnocol defined by:

- Πnvalpπ, u, auxq returns true iff aux is a valid n-tree.
- Πnnocolpπ, u, auxq returns true iff aux is an n-tree that does not have a challenge collision.

Tree-extended Emulator. Let a proof system PS “ pS,R,P,V, µq and let pn1, . . . , nµq P Nµą2 be given.
Then consider the tree-extended emulator T given in Fig. 10 which comes from BCCGP. The sub-algorithms
Ti are given a partial transcript tr. They call Next to obtain the next messages of a longer partial transcript
and attempt to create a partial tree with is valid for it. This is done by repeatedly calling Ti`1 to construct
each branch of the tree. Should the first such call fail, then Ti will abort. Otherwise, it will continue calling
Ti`1 as many times as necessary to have ni`1 branches. The base case of this process is Tµ which does
not need children branches and instead just checks if its transcript is accepting, returning K to its calling
procedure if not. The following result shows that T emulates any cheating prover perfectly and almost always
outputs a valid tree whenever it outputs an accepting transcript. The technical core of the lemma is in the
bound on the expected efficiency of T.

Lemma 7. Let PS “ pS,R,P,V, µq be a public coin proof system. Suppose V’s challenges are uniformly
drawn from S ˆZp for set S and p P N. Let n “ pn1, . . . , nµq P Nµą0 be given. Let N “

śµ
i“1 ni. Let P˚ be a

cheating prover and A be an adversary. Define T as shown in Fig. 10. Then the following all hold:

1. Advemu
PS,TpP

˚,Aq “ 0

2. AdvpredextPS,T,Πn
val
pP˚,Aq “ 0
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Algorithm TNext,Rew
pπ, uq

ptr, treeq Ð$ TNext,Rew
0 pπ, u, pqq

Return ptr, treeq

TNext,Rew
µ pπ, u, trq

pm2µ´1,m2µq Ð Nextpq
tr.addpm2µ´1,m2µq

If Vπpu, trq “ 1 then
`Ð pq

treeÐ pm2µ´1,m2µ, `q
Else treeÐ K

Call Rewpq
Return ptr, treeq

TNext,Rew
i pπ, u, trq //0 ď i ă µ
pm2i´1,m2iq Ð Nextpq
tr.addpm2i´1,m2iq

ptr1, tree1q Ð$ TNext,Rew
i`1 pπ, u, trq

If tree1 ‰ K then
`Ð ptree1q
While |`| ă ni`1 do
p¨, tree1q Ð$ TNext,Rew

i`1 pπ, u, trq
If tree1 ‰ K then `.addptree1q

treeÐ pm2i´1,m2i, `q
Call Rewpq
Return ptr1, treeq

Fig. 10. The BCCGP tree-extended emulator.

3. AdvpredextPS,T,Πn
nocol
pP˚,Aq ď 5µN{

?
2p

4. The expected number of times T executes Vπpu, ¨q is N .
5. The expected number of queries that T makes to Next is less than µN`1.12 Exactly one of these queries

is made while i “ 1 in Next.

For comparison, in Appendix A we analyze a natural tree-extended emulator with a small bounded worst-
case runtime. Its ability to produce valid trees is significantly reduced by its need to work within a small
worst-case runtime, motivating the need for T to only be efficient in expected runtime.

Proof (of Lemma 7). All of the claims except the third follow from BCCGP’s analysis of T. The advantage

AdvpredextPS,T,Πn
nocol
pP˚,Aq can be upper-bounded by the probability that the integer component of V’s output

is repeated across any of T’s queries to Next. BCCGP bounded this probability by applying Markov’s
inequality to obtain an upper bound on T’s running time and then applying the birthday bound to get an
OpµN{ 3

?
pq bound. We can instead apply our switching lemma analysis from Section 4.3 (or the techniques

from our analysis of the collision resistance of a random oracle in Section 3.3) to obtain the stated bound
because V will sample µN challenges in expectation. [\

Extractors. Let X be an algorithm and Π1,Π2 be predicates. We say that X is a pΠ1,Π2q-extractor if
Π1pπ, u, auxq ñ Π2pπ, u,Xpπ, u, auxqq. Let T be an emulator. Then we define E:rT,Xs to be the emulator
that on input pπ, uq with oracle access to Next and Rew will first compute ptr, auxq Ð$ TNext,Rewpπ, uq and
then returns ptr,Xpπ, u, auxqq. The following straightforward lemma relates the security of T and E:.

Lemma 8. Let PS be a proof system, T be an emulator, Π1 and Π2 be predicates, P˚ be a cheating prover,
and A be an adversary. Let X be a pΠ1,Π2q-extractor. Then the following hold:

- Advemu
PS,E:rT,XspP

˚,Aq “ Advemu
PS,TpP

˚,Aq
- Advpredext

PS,E:rT,Xs,Π2
pP˚,Aq ď AdvpredextPS,T,Π1

pP˚,Aq

Forking lemma.Finally, we can state and prove our concrete security version of the BCCGP forking lemma.
It captures the fact that any protocol with a pΠnval^Πnnocol,Πwit_Π˚q-extractor has a good witness-extended
emulator (assuming Π˚ is computationally difficult to satisfy).13

12 More precisely, the expected number of queries that T makes to Next is the number of nodes in a pn1, . . . , nµq-tree.
This is

řµ
i“0

śi
j“1 nj , where

ś0
j“1 nj “ 1.

13 The existence a pΠn
val ^Πn

nocol,Πwit _Π˚q-extractor is a natural generalization of special soundness.
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Adversary BEpπq
iÐ 0
pu, s, ¨q Ð$ Apπq
p¨, auxq Ð$ ENext,Rew

pπ, uq
Return aux

Next,Rew
//Defined as in Fig. 8

Fig. 11. Reduction adversary for Theorem 3.

Theorem 3 (Forking Lemma). Let PS “ pS,R,P,V, µq be a public coin proof system. Suppose V’s
challenges are uniformly drawn from S ˆ Zp for set S and p P N. Let n “ pn1, . . . , nµq P Nµą0 be given. Let
N “

śµ
i“1 ni. Let P˚ be a cheating prover and A be an adversary. Define T as shown in Fig. 10. Let Π˚ be

a witness-independent predicate. Let X be a pΠnval ^ Πnnocol,Πwit _ Π˚q-extractor. Let E “ E:rT,Xs. Let BE be
as defined in Fig. 11. Then the following all hold:

1. Advemu
PS,EpP

˚,Aq “ 0

2. AdvpredextPS,E,Πwit
pP˚,Aq ď AdvpredPS,Π˚pBEq ` 5µN{

?
2p

3. The expected number of times T executes Vπpu, ¨q (inside of E) is N .

4. The expected number of queries that E makes to Next is less than µN ` 1. Exactly one of these queries
is made while i “ 1 in Next.

5. The expected runtime of BE is approximately TA`QE ¨TP˚`TE where Tx is the worst-case runtime of x P
tA,P˚,Eu and QE ă µN`1 is the expected number of queries that E makes to Next in Hpredext

PS,E,Π˚pP
˚,Aq.

It will be useful to have the following simple lemma for comparing Advpredext with different choices of
predicate that are related by logical operators. It can be derived from basic probability calculations.

Lemma 9. Let PS be a proof system, E be an emulator, Π1 and Π2 be predicates, P˚ be a cheating prover,
and A be an adversary. Then,

AdvpredextPS,E,Π1_Π2
pP˚,Aq ` AdvpredextPS,E,Π1^Π2

pP˚,Aq
“

AdvpredextPS,E,Π1
pP˚,Aq ` AdvpredextPS,E,Π2

pP˚,Aq.

and

AdvpredextPS,E,Π1
pP˚,Aq ď AdvpredextPS,E,Π1_Π2

pP˚,Aq ` AdvpredextPS,E, Π2
pP˚,Aq.

Proof (of Theorem 3). Applying Lemma 7 and Lemma 8, and observing how E is constructed give us the
first, third, and fourth claim. For the other claims we need to consider the adversary BE. Note that it runs E
just it would be run in Hpredext

PS,E,Π˚pP
˚,Aq, so the distribution over pπ, auxq is identical in Hpred

S,Π pBEq as in that

game. Furthermore, recall that Π˚ is witness-independent, so it ignores its second input. It follows that,

AdvpredextPS,E, Π˚pP
˚,Aq “ PrrVπpu, trq ^  p Π˚pπ, u, auxqq in Hpredext

s

ď PrrΠ˚pπ, u, auxq in Hpredext
s

“ PrrΠ˚pπ, ε, auxq in Hpred
s “ AdvpredS,Π pBEq.

The claimed runtime of B is clear from its pseudocode (noting that the view of E is distributed identically
to its view in Hpredext so its expected number of Next queries is unchanged).
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Adversary Apπq
pu, sq Ð$Gpπq
Return pu, s, pπ, uqq

Aptr, σAq

pπ, uq Ð σA
b1 Ð Vπpu, trq
Return b1

Adversary Bpπ, u, sq
iÐ 0
p¨, wq Ð$ ENext,Rew

pπ, uq
Return w

Next,Rew
//Defined as in Fig. 8

Fig. 12. Adversaries used in Theorem 4.

For the second claim, we perform the calculations

AdvpredextPS,E,Πwit
pP˚,Aq ď AdvpredextPS,E,Πwit_Π˚pP

˚,Aq ` AdvpredextPS,E, Π˚pP
˚,Aq

“ AdvpredextPS,E,Πn
val^Πn

nocol
pP˚,Aq ` AdvpredPS,Π˚pBq

“ AdvpredextPS,E,Πn
val
pP˚,Aq ` AdvpredextPS,E,Πn

nocol
pP˚,Aq ` AdvpredPS,Π˚pBq

ď 5µN{
a

2p` AdvpredPS,Π˚pBq.

This sequence of calculation uses (in order) Lemma 9, Lemma 8 and the bound we just derived, Lemma 9
(again), and Lemma 7.

6.3 Concrete Bounds on Soundness

Now we discuss how the forking lemma we just derived can be used to provide concrete bounds on soundness.
First we make the generic observation that witness-extended emulation implies soundness. Then we discuss
how we can use these results together with our expected-time generic group model bound on discrete log
security to give concrete bounds on the soundness of various proof systems based on discrete log security, in
particular giving the first concrete bound on the soundness of the Bulletproofs proof system for arithmetic
circuits.

Witness-extended emulation implies soundness.The following theorem observes that finding a witness
for u cannot be much more difficult that convincing a verifier u if an efficient witness-extended extractor
exists.

Theorem 4. Let PS “ pS,R,P,V, µq be a proof system, G be a statement generator, E be an emulator, and
P˚ be a cheating prover. Define A and B as shown in Fig. 12. Then,

AdvsoundPS,GpP
˚q ď AdvwitPS,GpBq ` Advemu

PS,EpP
˚,Aq ` AdvpredextPS,E,Πwit

pP˚,Aq.

The runtime of that A is roughly that of G plus that of V. The runtime of B is roughly that of E when given
oracle access to P˚ and V interacting.

Proof (Sketch). The use of V in A ensures that the probability E outputs an accepting transcript must be
roughly the same as the probability that P˚ convinces V to accept. The difference between these probabil-
ities is bounded by Advemu

PS,EpP
˚,Aq. Then the Πwit security of E ensures that the probability it outputs a

valid witness cannot be much less than the probability it outputs an accepting transcript. The difference
between these probabilities is bounded by AdvpredextPS,E,Πwit

pP˚,Aq. Adversary B just runs E to obtain a witness,

so AdvwitPS,GpBq is the probability that E would output a valid witness.
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Discrete log proof systems. A number of the proof systems in [6,7,28] were shown to have a pΠnval ^

Πnnocol,Πwit _ ΠG,n
dl q-extractor X. For any such proof system PS, Theorem 4 and Theorem 3 bound the

soundness of PS by the discrete log relation security of G against an expected-time adversary BE:rT,Xs.
Moreover, we can then apply Lemma 3 to tightly bound this adversary’s advantage by the advantage of an
expected-time adversary against normal discrete log security. We know how to bound the advantage of such
an adversary in the generic group model from Section 3.3.

So to obtain a bound on the soundness of these proof systems in the generic group model we can just
apply these results to the proof system. To obtain our final concrete security bound in the generic group
model we need only to read the existing analysis of the proof system and extract the following parameters,

- p: the size of the set V draws the integer component of its challenges from
- |G|: the size of the group used
- N “

śµ
i“1 ni: the size of the tree that X requires

- n ě 1: the number of group elements in the discrete log relation instance
- qV: the number of multi-exponentiations V performs14

- qX: the number of multi-exponentiations that X performs

We say such a proof system PS “ pS,R,P,V, µq and extractor X have parameters pp, |G|, N, n, qV, qXq. We
obtain the following theorem for such a system, bounding its soundness in the generic group model.

Theorem 5. Let PS “ pS,R,P,V, µq be a proof system and X be an extractor that has parameters pp, |G|, N, n, qV, qXq.
Let G be a statement generator performing at most qG multi-exponentiations and P˚ be a cheating prover
that performs at most qP˚ multi-exponentiations each time it is run. Define B as shown in Fig. 12. Then in
the generic group model we have,

AdvsoundPS,GpP
˚q ď AdvwitPS,GpBq ` 5

d

6 ¨Q2
C

|G|
`

2

|G|
`

5µN
?

2p

where QC “ qG ` pµN ` 1qqP˚ ` qX `NqV ` n` 1. The runtime of B is roughly that of E:rT,Xs when given
oracle access to P˚ and V interacting.

Proof. The result follows by applying Theorem 4, Theorem 3, Lemma 3, and the generic group model bound
from Section 3.3 as discussed above. [\

Concrete security of bulletproofs.Finally, we can use the above to obtain a concrete security bound
on the soundness of the Bulletproofs proof system for arithmetic circuits of Bünz et al. [7].15 To do so
we only need to figure out the parameters discussed above. Suppose the proof system is being used for an
arithmetic circuit with M multiplication gates. Using techniques of BCCGP [6] this is represented by a
size M Hadamard product and L ď 2M linear constraints. Then per Bünz et al. the proof system has the
following parameters:

- p “ p|G| ´ 1q{216

- |G| is the size of group G in which discrete logs are assumed to be hard
- N “ 7pL` 1qM3

- n “ 2M ` 2
- qV “ 3M ` log2pMq ` 4

14 Note that the size of these multi-exponentiations does not matter.
15 In particular, throughout this section we refer to the logarithmic-sized arithmetic circuit protocol described in

Section 5.2 of their paper.
16 As described in [7], the challenges are drawn from Z˚|G|. For some rounds of the protocol x, y P Z˚|G| would be

considered colliding if x ”|G| ˘y. We capture this by thinking of coins drawn from t`,´u ˆ Zp. Then p`, xq
represents x ` 1 P Z˚|G| and p´, xq represents ´x ´ 1 mod |G| “ |G| ´ x ´ 1 P Z˚|G|. Hence the collision condition
corresponds to equality in the Zp component.
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- qX “ 0

Having proven our discrete log bound in a generic group model allowing multi-exponentiations is helpful
here; it makes our bound not depend on the size of V’s multi-exponentiations.

Corollary 1. Let PS be the Bulletproofs proof system for arithmetic circuits define in Section 5.2 of [7]
using a group of size |G|. Let M denote the number of multiplication gates in the circuit and L ď 2M the
number of linear constraints. Let G be a statement generator performing at most qG multi-exponentiations
and P˚ be a cheating prover that performs at most qP˚ multi-exponentiations each time it is run. Define B
as shown in Fig. 12. Assume |G| ě 2, L ě 1, and M ě 16. Then in the generic group model,

AdvsoundPS,GpP
˚q ă AdvwitPS,GpBq `

13qG ` 258qP˚ ¨ LM
3 log2pMq ` 644 ¨ LM4

a

|G|
.

The runtime of B is roughly that of E:rT,XBs when given oracle access to P˚ and V interacting, where XB
is the Bulletproofs extractor.

We expect qP˚ to be the largest of the parameters, so the O
´

qP˚ ¨ LM
3 log2pMq{

a

|G|
¯

term dominates.

This highlights the dependence of soundness on the group size |G| and M . For typical instantiations, where
|G| « 2256, the guaranteed security level is fairly low for modest-sized circuits (say with M “ 220). It is a
good question whether this bound can be made tighter, particularly with respect to its dependence on M .

Proof. The bound was obtained by plugging our parameters (and µ “ 3 ` log2pMq) into Theorem 5, then
simplifying the expression using that |G| ě 2, L ě 1, and M ě 16. The (straightforward) details of this are
provided in Appendix B. [\
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A Fixed Runtime Tree-extended Emulator

In Section 6, we saw an efficient (in expected runtime) tree-extended emulator T. It may we worth comparing
this to how well we can do with a tree extractor when we have a hard upper bound on its runtime. In par-
ticular we present and analyze a tree extracting emulator which is the natural generalization of the standard
rewinding argument for special-sound Σ-protocols to a tree-extended emulator. The standard rewinding ar-
gument appeared originally as the Forking Lemma of Pointcheval and Stern [24]. Some alternate forking
lemmas with different running-time/advantage trade-offs were given by Bellare and Neven [2], we have not
attempted to generalize them to this setting.
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Algorithm WNext,Rew
pπ, uq

ptr, treeq Ð$ WNext,Rew
0 pπ, u, pqq

Return ptr, treeq

WNext,Rew
µ pπ, u, trq

pm2µ´1,m2µq Ð Nextpq
tr.addpm2µ´1,m2µq

treeÐ pm2µ´1,m2µ, pqq
Call Rewpq
Return ptr, treeq

WNext,Rew
i pπ, u, trq //0 ď i ă µ

pm2i´1,m2iq Ð Nextpq
tr.addpm2i´1,m2iq

ptr1, tree1q Ð$ WNext,Rew
i`1 pπ, u, trq

`Ð ptree1q

For j “ 2, . . . , ni`1 do
ptrj , treejq Ð$ WNext,Rew

i`1 pπ, u, trq
treeÐ pm2i´1,m2i, ptree1, . . . , treeniqq
Call Rewpq
Return ptr1, treeq

Fig. 13. Our tree-extended emulator with a hard upper bound on running time.

The tree extractor W we consider is given in Fig. 13. Its behavior is analogous to the tree extractor T
from Fig. 10 in Section 6 except it simply assume that every transcript it receives from its oracle is accepting.

For a given P˚ and A, define ρpP˚,Aq to be the probability that Vπpu, trq “ true after executing πÐ$ S;
pu, s, ¨q Ð$ Apπq; ptr, ¨q Ð$ xP˚pu, sq,Vπpuqy. In words, this is the probability that P˚ gets V to accept a proof
of the statement generated by A.

Lemma 10. Let PS “ pS,R,P,V, µq be a public-coin proof system where the coins of V are drawn uniformly

from Zp. Let n “ pn1, . . . , nµq P Nµą0 be given. Let M “
řµ
i“0

śi
j“1 nj and N “

śµ
i“1 ni. Let P˚ be a

cheating prover and A be an adversary. Define W as shown in Fig. 13. Then the following all hold.

1. Advemu
PS,TpP

˚,Aq “ 0

2. AdvpredPS,W,Πn
val
pP˚,Aq ď ρpP˚,Aq ´ ρpP˚,AqN

3. AdvpredPS,W,Πn
nocol
pP˚,Aq ď pM ´ 1qpM ´ 2q{2p

4. The number of queries that W makes to Next is less than M .

While the first, third, and fourth properties are as good as or better than what we showed of T, the
second property is significantly worse. As N increases, the right side of the equation approaches ρpP˚,Aq,
meaning W almost never succeeds at extracting a valid tree with accepting transcripts it produces.

Proof. The first property holds trivially because the tr output by W is obtained from the first µ`1 calls made
to Next and Rew is never called between them. The third property follows from the fourth by applying
the birthday bound on M ´ 1 random samples from Zp.

The fourth property follows from a simple inductive argument. Each time a Wi is called it makes exactly
one call to Next. so we need to count the number of times that each Wi is called and sum over i. We claim
each Wi is called

śi
j“1 nj times. This holds trivially in the base case i “ 0 because the W is called once and

ś0
j“1 nj “ 1. Inductively assuming that Wi´1 is called

śi
j“1 nj times, we just observe that Wi´1 call Wi

exactly ni times.
The second property will require a more complicated inductive argument. Let Ni “

śµ
j“i`1 nj . Note

that when Wh is called, the variable i used by Next will have value h, so we will refer to these both by
i the same. If we fix π, u, i, σiP, σiV, and a transcript prefix tri “ pm´1,m0, . . . ,m2i´3,m2i´2q then we
can think of an experiment in which we setup the variables of Next,Rew appropriately and then run
ptr, treeq Ð$ WNext,Rew

i pπ, u, triq then check whether Vπpu, trq “ true and whether tree is valid for tri.
Letting sti “ pπ, u, i, σ

i
P, σ

i
V, tr

iq be a “state” of the system we define ρsti to be the induced probability
that Vπpu, trq “ true and δsti to be the induced probability that tree is valid for tri. When we want to think
of we let STi be a random variable distributed over possible values of sti. We can think of sti inducing a
distribution over STi`1 by the result of making a single Next query. We let αstipsti`1q denote the probability
that STi`1 “ sti`1 according to this distribution. We let αpst0q denote the probability that ST0 “ st0 when
we run πÐ$ S; pu, s, ¨q Ð$ Apπq; σ0

P Ð K; σ1
V Ð K; tr0 Ð pq.
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We want to prove that for all 0 ď i ď µ, it holds that δsti ě ρNisti . For the base case note that δstµ “

ρstµ “ ρ
Nµ
stµ because tree is valid for trµ iff Vπpu, trq “ true.

Now we fix 0 ď i ă µ and inductively assume that,

δsti`1
ě ρ

Ni`1

sti`1
.

Recall the Wi will call Next once and then runs ni`1 instances of Wi`1 obtaining ptrj , treejq Note that
tree will be valid for tri iff each treej is valid for tri`1. Conditioned on the sti`1 produced by Wi’s query to
Next, the treej are independent and identically distributed. Additionally recall that tr returned by Wi will
be tri so Wi outputs an accepting transcript iff the first instance of Wi`1 outputs an accepting transcript.
These observations gives us that,

δsti “
ÿ

sti`1

δ
ni`1

sti`1
¨ αstipsti`1q and ρsti “

ÿ

sti`1

ρsti`1 ¨ αstipsti`1q.

Now we can calculate that,

δsti ě
ÿ

sti`1

´

ρ
Ni`1

sti`1

¯ni`1

¨ αstipsti`1q “
ÿ

sti`1

ρNisti`1
¨ αstipsti`1q

ě

˜

ÿ

sti`1

ρsti`1 ¨ αstipsti`1q

¸Ni

“ pρstiq
Ni .

The first inequality follows from our inductive assumption. The second inequality follows from Jensen’s
inequality. Now we move to apply this to derive our desired bounds. Letting variables be distributed as
induced by Hpred we have,

AdvpredPS,W,Πn
val
pP˚,Aq “ PrrVπpu, trq ^  Πnvalpπ, u, auxqs

“ PrrVπpu, trqs ´ PrrVπpu, trq ^Πnvalpπ, u, auxqs

“ PrrVπpu, trqs ´ PrrΠnvalpπ, u, auxqs

For the last equality we use that tr is one of the transcripts induced by the tree aux so if aux is valid, then
tr must be an accepting transcript. Since Advemu

PS,TpP
˚,Aq “ 0 holds for any A, we have that

PrrVπpu, trqs “ ρpP˚,Aq.

Now W outputs a valid tree iff W0 does, so

PrrΠnvalpπ, u, auxqs “
ÿ

st0

δst0 ¨ αpst0q ď
ÿ

st0

ρN0
st0 ¨ αpst0q

ď

˜

ÿ

st0

ρst0 ¨ αpst0q

¸N0

“ ρpP˚,AqN0 .

This completes the proof. [\

B Calculations for Corollary 1

In this section we record the calculation underlying the bound of Corollary 1. There is nothing insightful in
this calculation and generally no reason to read this section unless the reader has a need to check every last
detail of the proof.
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From Theorem 5 we have that

AdvsoundPS,GpP
˚q ď AdvwitPS,GpBq ` 5

d

6 ¨Q2
C

|G|
`

2

|G|
`

5µN
?

2p

where QC “ qG ` pµN ` 1qqP˚ ` qX `NqV ` n` 1. Further recall that for the proof system in question we
have

- µ “ 3` log2pMq
- p “ p|G| ´ 1q{2
- N “ 7pL` 1qM3

- n “ 2M ` 2
- qV “ 3M ` log2pMq ` 4
- qX “ 0.

By assumption |G| ě 2, L ě 1, and M ě 16 hold. Some implication of these that we will use are
a

|G| ´ 1 ě
a

|G|{2, N ď 14LM2, and log2pMq{M ď 1{4.

We start by rewriting the final three terms of our bound to have denominators of
a

|G| and to expand
the numerators a touch. The first term gives

5

d

6 ¨Q2
C

|G|
“

5
?

6 ¨QC
a

|G|
“

5
?

6 ¨ pqG ` pµN ` 1qqP˚ ` qX `NqV ` n` 1q
a

|G|

“
1

a

|G|
¨

”

5
?

6pqGq ` 5
?

6pµN ` 1qqP˚ ` 5
?

6pNqV ` n` 1q
ı

.

The second term gives

2

|G|
“

2{
a

|G|
a

|G|
ď

2{
?

2
a

|G|
“

?
2

a

|G|
.

The third term gives

5µN
?

2p
“

5µN
a

|G| ´ 1
ď

5µN
a

|G|{2
“

5
?

2µN
a

|G|
.

We leave the coefficient of qG alone in our final bound (other than noting 5
?

6 ă 13). Next we bound
coefficient of qP˚ as follows

5
?

6pµN ` 1q ď 5
?

6p3` log2pMqq14LM3 ` 1

“ 5
?

6
`

2{ log2pMq ` 1` 1{14LM3 log2pMq
˘

14LM3 log2pMq

ď 5
?

6
`

2{4` 1` 1{p14 ¨ 1 ¨ 163 ¨ 4q
˘

14LM3 log2pMq

ă 258LM3 log2pMq.

We combine everything else as a multiple of LM4. First we have that

5
?

6pNqVq ď 5
?

6p14LM3qp3M ` log2pMq ` 4q

“ 70
?

6LM4p3` log2pMq{M ` 4{Mq

ď 70
?

6LM4p3` 1{4` 4{16q “ 245
?

6LM4.

Next we compute that

5
?

6pn` 1q “ 5
?

6p2M ` 2` 1q “ 5
?

6LM4p2{LM3 ` 3{LM4q

ď 5
?

6LM4p2{163 ` 3{164q “ p175
?

6{216qLM4
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and

2{
a

|G| ď 2{
?

2 “
?

2 ď LM4p
?

2{LM4q ď p
?

2{216qLM4.

Finally we have

5
?

2µN ď 5
?

2p3` log2pMqqp14LM3q “ 5
?

2p3{M ` log2pMq{Mqp14LM4q

ď 5
?

2p3{16` 1{4qp14LM4q “ p245
?

2{8qLM4.

Putting them together and using a calculator gives

245
?

6LM4 ` p175
?

6{216qLM4 ` p
?

2{216qLM4 ` p245
?

2{8qLM4 ă 644LM4.

Combining all of our work indeed gives our claimed bound of

AdvsoundPS,GpP
˚q ă AdvwitPS,GpBq `

13qG ` 258qP˚ ¨ LM
3 log2pMq ` 644 ¨ LM4

a

|G|
.
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