
Integral Cryptanalysis of Reduced-Round
Tweakable TWINE

Muhammad ElSheikh and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada
{m elshei,youssef}@ciise.concordia.ca

Abstract. Tweakable TWINE (T-TWINE) is the first lightweight dedi-
cated tweakable block cipher family built on Generalized Feistel Struc-
ture (GFS). T-TWINE family is an extension of the conventional block
cipher TWINE with minimal modification by adding a simple tweak based
on the SKINNY’s tweakey schedule. Similar to TWINE, T-TWINE has
two variants, namely T-TWINE-80 and T-TWINE-128. The two variants
have the same block size of 64 bits and a variable key length of 80
and 128 bits. In this paper, we study the implications for adding the
tweak on the security of T-TWINE against the integral cryptanalysis. In
particular, we first utilize the bit-based division property to search for
the longest integral distinguisher. As a result, we are able to perform
a distinguishing attack against 19 rounds using 26 × 263 = 269 chosen
tweak-plaintext combinations. We then convert this attack to key recov-
ery attacks against 26 and 27 rounds (out of 36) of T-TWINE-80 and
T-TWINE-128, respectively. By prepending one round before the distin-
guisher and using dynamically chosen plaintexts, we manage to extend
the attack one more round without using the full codebook of the plain-
text. Therefore, we are able to attack 27 and 28 rounds of T-TWINE-80
and T-TWINE-128, respectively.

1 Introduction

A Tweakable block cipher (TBC) is a symmetric-key cryptographic primitive
that takes an auxiliary input called tweak in addition to the inputs of traditional
block ciphers, plaintext message and cryptographic key [11]. Ideally, a different
tweak value gives randomly chosen and different instant of the permutation
over the message space without needing to change the key which may be costly
in traditional block ciphers. A Tweakable block cipher is a powerful primitive
that can be used in several applications such as disk encryption in which the
repeated same plaintext should be encrypted to different ciphertexts under the
same key. The concept of tweakable block ciphers also allows interesting modes
for authenticated encryption such as OCB3 [10] and Counter-in-Tweak [12].

There are two general approaches to build TBCs: (i) using ordinary block
ciphers through modes of operation, and (ii) dedicated constructions. Both the
LRW and XEX modes of operations [13] are examples of the first approach. For

2 M. ElSheikh et al.

a block cipher with n-bit block, the security of these modes is guaranteed up to
around 2n/2 queries. For a higher level of security, we can use a dedicated TBC
that is built with the tweak concept from the beginning such as Deoxys-BC [8],
SKINNY [1], and CRAFT [2].

Tweakable TWINE (T-TWINE) [14] is the first lightweight dedicated TBC
that is built on Generalized Feistel Structure (GFS). It was built with the goal of
reducing the cost of design, security evaluation, and implementation. Therefore,
the designers decided to reuse a well-designed GFS block cipher, TWINE [19],
and attached an extremely simple tweak scheduling to it. Similar to TWINE, T-
TWINE has two variants namely, T-TWINE-80 and T-TWINE-128. These variants
have the same block size of 64 bits, a tweak of 64 bits, and a variable key length
of 80 and 128 bits.

The security of T-TWINE is evaluated by its designers against distinguishing
attacks including differential, linear, impossible differential, and integral crypt-
analysis. Regarding the integral cryptanalysis, they only reported an 11-round in-
tegral distinguisher. Key recovery attacks based on impossible differential against
reduced-round of T-TWINE are presented in [21].

Our Contributions. In this work, we study the security of T-TWINE against
the integral attack. More precisely,

1. We utilize a Mixed-Integer-Linear Programming (MILP) model of the bit-
based division property to search for the longest integral distinguisher in the
chosen tweak, chosen tweak-plaintext, and chosen tweak-ciphertext attack
settings. As a result, we found two 11-round integral distinguishers using
a tweak with only one active nibble in the chosen tweak setting. We also
checked the 11-round distinguisher reported in the design paper and we show
that it is not correct. All the found 11-round distinguishers are verified ex-
perimentally. Furthermore, we found several 19-round integral distinguishers
in both chosen tweak-plaintext and chosen tweak-ciphertext settings. This
allows us to attack an extra three rounds more than TWINE which has
16-round integral distinguisher [23]. The best distinguishing attack can be
performed using 26 × 263 = 269 chosen tweak-plaintext combinations.

2. We employ meet-in-the-middle [15] and partial-sum [6] techniques to convert
the best distinguishing attack to key recovery attacks against 26 (27) out of
36 rounds of T-TWINE-80 (T-TWINE-128) by appending 7 (8) rounds after
the disntinguisher.

3. By prepending one round before the distinguisher and using dynamically
chosen plaintexts [3], we managed to extend the attack one more round
without using the full codebook of the plaintext. Therefore, we are able to
attack 27 and 28 rounds of T-TWINE-80 and T-TWINE-128, respectively.

Table 1 summarizes the complexities of our attacks and contrast them with the
complexities of the impossible differential attacks presented in [21].

Outline. The rest of this paper is organized as follows. In Section 2, we briefly
revisit the specifications of T-TWINE and the integral cryptanalysis using the

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 3

Table 1: Attack results on T-TWINE where CTP denotes chosen tweak-plaintext.

Attack #Rounds Data Time Memory Reference

T-TWINE-80

Imp. diff. 25 265.5 CTP 270.86 266 [21]

Integral
26 270.58 CTP 272.62 267.62 Sec. 4.1

27 270.95 CTP 275.79 271.08 Sec. 5.1

T-TWINE-128

Imp. diff. 27 264 CTP 2120.83 2118 [21]

Integral
27 271.58 CTP 2109.54 290.58 Sec. 4.2

28 272.27 CTP 2113.38 294.32 Sec. 5.1

bit-based division property. The detailed integral distinguishing attacks against
T-TWINE is explained in Section 3. In Section 4, we describe the key recovery at-
tacks against 26 and 27 rounds of T-TWINE-80 and T-TWINE-128, respectively.
Then, the details of our attacks against 27 and 28 rounds of T-TWINE-80 and
T-TWINE-128 using dynamically chosen plaintexts are presented in Section 5.
Finally, the paper is concluded in Section 6.

2 Preliminaries

2.1 T-TWINE Specifications

The following notation is used throughout the rest of the paper:

– K: The 80 or 128 bits master key.
– Kj : The jth nibble of K. The indices of the nibbles begin from 0.
– RKi: The 32-bit round key used in round i.
– RKi

j : The jth nibble of RKi. The indices of the nibbles begin from 0.
– T : The 64-bit tweak.
– Tj : The jth nibble of the tweak T .
– RT i: The 24-bit round tweak used in round i, where RT i ← ti0||ti1||
ti2||ti3||ti4||ti5, and tij is the jth nibble of RT i.

– Xi: The 16 nibbles input to round i. The indices of the round begin from 1.
– Xi

j : j
th nibble of Xi.

– x[m]: mth bit of the nibble x where x[0] is the least significant bit.
– ⊕: The XOR operation.
– ||: The concatenation operation.
– Rotz(x): The z-bit left cyclic shift of x.

As we mentioned above, T-TWINE is an extension of the conventional block
cipher TWINE. It takes a tweak of 64 bits as an extra input in addition to a
block of plaintext with 64 bits in order to produce a block of ciphertext using
80 or 128 bits of a secret key. T-TWINE structure consists of three parts: data
processing which is a slightly modified version of the equivalent part in TWINE
to deal with the extra input, key scheduling function of TWINE, and tweak
scheduling function. The two variants of T-TWINE are the same except in the
key scheduling function.

4 M. ElSheikh et al.

X i

0
X i

1
X i

2
X i

3
X i

4
X i

5
X i

6
X i

7
X i

8
X i

9
X i

10
X i

11
X i

12
X i

13
X i

14
X i

15

X
i+1

0
X

i+1

1
X

i+1

2
X

i+1

3
X

i+1

4
X

i+1

5
X

i+1

6
X

i+1

7
X

i+1

8
X

i+1

9
X

i+1

10
X

i+1

11
X

i+1

12
X

i+1

13
X

i+1

14
X

i+1

15

F F F F F F F F

ti

5
ti

4
ti

3
ti

2
ti

1
ti

0
RK i

0
RK i

1
RK i

2
RK i

3
RK i

4
RK i

5
RK i

6
RK i

7

S

Fig. 1: T-TWINE Round Function

Table 2: Nibble shuffle π

h 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π[h] 5 0 1 4 7 12 3 8 13 6 9 2 15 10 11 14

π−1[h] 1 2 11 6 3 0 9 4 7 10 13 14 5 8 15 12

Data Processing. The round function is based on a variant of Type-2 GFS
[18] with 16 4-bit nibbles as depicted in Fig. 1. It consists of a nonlinear layer
(F -function operations), round tweak XOR, and a diffusion layer which is a 16-
nibble shuffle operation (π, see Table 2). The F -function operation is a round-key
XOR followed by 4-bit Sbox (S, see Table 3). This round function is iterated 36
times in both variants where the diffusion layer is omitted from the last round.

Key Scheduling Function. Each variant of T-TWINE has its own key sched-
ule. The key scheduling function is used to stretch 80/128 bits of the master
key K to 36 32-bit round keys RKi where 1 ≤ i ≤ 36. Algorithms 1 and 2 in
Appendix A show the details of these key schedules. For more details, see [14,19].

Tweak Scheduling Function. A 64-bit tweak T is used to generate 36 24-bit
round tweaks RT i where 1 ≤ i ≤ 36 using a permutation-based function. Firstly,
the 64-bit tweak T is loaded to 16 4-bit nibbles t1j where 0 ≤ j ≤ 15. In i-th round,

the first 6 nibbles (ti0, . . . , t
i
5) are used as the round tweak RT i, then these nibbles

are shuffled using a 6-nibble permutation πt, s.t. (0, 1, 2, 3, 4, 5)→ (1, 0, 4, 2, 3, 5).
After that, all nibbles are shifted by 6 nibbles to construct ti+1

j where 0 ≤ j ≤ 15
as depicted in Fig 2.

2.2 Integral Cryptanalysis

Integral cryptanalysis was firstly introduced by Daemen et al. in [4] to analyze
the security of the block cipher SQUARE. Subsequently, Knudsen and Wagner [9]
formalized this technique. It is a chosen-plaintext attack and can be performed
as follows. Firstly, the cryptanalyst constructs a set of plaintexts that has a
constant value at some bits while the other bits vary through all possible values.

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 5

Table 3: 4-bit Sbox (S) of T-TWINE in hexadecimal form

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) c 0 f a 2 b 9 5 8 3 d 7 1 e 6 4

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

t6 t7 t8 t9

t10 t11 t12 t13

t14 t15 t1 t0

t4 t2 t3 t5

π
t

RT
i

t
i

ti+1

Fig. 2: Tweak Schedule of T-TWINE

After that, the cryptanalyst calculates the XOR sum of all bits (or some of them)
on the corresponding ciphertext. If it is always 0 irrespective of the used secret
key, these bits are called balanced. This property can be used to distinguish the
block cipher under test form a random permutation.

Bit-Based Division Property. In [20], Todo and Morii proposed the bit-based
division property, which can be used to build a longer integral distinguisher for
block ciphers with block size less than 32 bits. Xiang et al. [22] overcome the
problem of the restriction on the block size using the division trails. They pro-
posed systematic rules to represent the bit-based division property propagation
as a set of Mixed Integer Linear Programming (MILP) constraints. Hence, we
can use MILP solvers to search for a distinguisher.

Definition 1 (Bit-based Division Property[20]). Let X be a multiset whose
elements take a value of Fn2 . When the multiset X has the division property D1n

K ,
where K denotes a set of n-dimensional vectors whose i-th element takes 0 or 1,
it fulfills the following conditions:

⊕
x∈X

xu =

{
unknown if there exists k ∈ K s.t. u � k,

0 otherwise.

where xu =
∏n
i=1 x[i]u[i], u � k if u[i] ≥ k[i] ∀i, and x[i], u[i] are the i-th bits

of x and u, respectively.

Definition 2 (Division Trail[22]). Let fr denote the round function of an
iterated block cipher. Assume that the input multiset to the block cipher has the
initial division property D1n

{k}, and denote the division property after i-round

propagation through fr by D1n

Ki
. Thus, we have the following chain of division

6 M. ElSheikh et al.

property propagations: {k} def
= K0

fr−→ K1
fr−→ K2

fr−→ · · · fr−→ Kr. Moreover, for
any vector k∗i ∈ Ki(i ≥ 1), there must exist a vector k∗i−1 ∈ Ki−1 such that k∗i−1
can propagate to k∗i by the division property propagation rules. Furthermore,
for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki−1 can propagate to ki for all
i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

Using the division trial, the search process for an integral distinguisher is
converted to check if the division trail k0 → · · · → ei (a unit vector whose
i-th element is 1) does exist or not. If it does not exist, then the i-th bit of
r-round output is balanced. This process can be modeled efficiently as an MILP
optimization problem. Further details can be found in [22,16,5].

In the following, we summarize the MILP models of the propagation rules of the
bit-based division property through the basic operations in block ciphers.

– Model for COPY: Let (a)
COPY−−−−→ (b1, b2, . . . , bm) denote the division trail

through COPY function, where a single bit (a) is copied to m bits. Then, it
can be described using the following MILP constraints:

a− b1 − b2 − · · · − bm = 0, where a, b1, b2, . . . , bm are binary variables.

– Model for XOR: Let (a1, a2, . . . , am)
XOR−−−→ (b) denote the division trail

through an XOR function, where m bits are compressed to a single bit (b)
using an XOR operation. Then, it can be described using the following MILP
constraints:

a1 + a2 + · · ·+ am − b = 0, where a1, a2, . . . , am, b are binary variables.

– Model for S-boxes: The division property through an S-box can be ob-
tained by representing the S-Box using its algebraic normal form (ANF)
[22]. The division trail though an n-bit S-box can be represented as a set of
2n-dimensional binary vectors ∈ {0, 1}2n which has a convex hull. The H-
Representation of this convex hull can be computed using readily available
functions such as inequality generator() function in SageMath1 which
returns a set of linear inequalities that describe these vectors. We use this
set of inequalities as MILP constraints to present the division trail though
the S-box.

3 Integral Distinguishing Attacks

Since T-TWINE is an extension of TWINE which has 16-round integral distin-
guisher using 263 chosen plaintexts [23], in this section we study the effect of
the freedom gained by adding a tweak to the structure. Thereby, we report the
result regarding the integral distinguishers in the three attack settings: chosen

1 http://www.sagemath.org/

http://www.sagemath.org/

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 7

tweak, chosen tweak-plaintext, and chosen tweak-ciphertext. To this end, we
utilize MILP models of the propagation rules of the bit-based division property
described in the previous section to automate the search process using Gurobi
optimizer [7]. We obtain the best distinguisher in two steps. In the first step, we
look for a distinguisher that covers the maximum number of rounds irrespective
of the data complexity. Then, we try to reduce the data complexity of the longest
one in the second step. We use the following notation to present the status of
each nibble of the tweak, plaintext, and ciphertext:

– C each bit of the nibble is fixed to constant.

– A all bits of the nibble are active.

– Ã all bits of the nibble are active except one arbitrary bit is constant.

– B each bit of the nibble is balanced (the XOR sum is zero).

– U a nibble with unknown status.

Chosen tweak setting. In this setting, all the plaintext bits are fixed to con-
stant values and some or all the bits of the tweak are active while the remaining
bits are constant.

In the first step, we set all bits of the tweak to active. We then target r rounds
and use our MILP model to search for some balanced bits. If there is at least one
balanced bit, we increase the target rounds to r+1 and repeat the search process
in the same way. Otherwise, we conclude that the disnguisher with the maximum
number of rounds based on our model covers r rounds. Based on our evaluation,
there is no distinguisher for 12 or more rounds and the longest distinguisher is an
11-round one. In the second step, we try to reduce the data complexity of that
11-round distinguisher by minimizing the number of active nibbles in the tweak.
To this end, we start with only one active nibble and if there is no balanced bits,
we progressively increase the number of active nibbles. Fortunately, we find two
distinguishers with only one active nibble as shown bellow:

Plaintext C C C C C C C C C C C C C C C C
Tweak C C C C C C C C C C C C C C A C 11R−−→ U U U U U U U B U U U U U U U U
Tweak C C C C C C C C C C C C C C C A 11R−−→ U U U U U B U U U U U B U U U U

It should be mentioned that the designers have reported in [14] a different 11-
round integral distinguisher in which the plaintext nibbles are fixed to constant,
the three nibbles (5, 10, 11) in the tweak are actives, and the remaining nibbles
in the tweak are fixed to constant. This distinguisher has two balanced nibbles
(0, 11) in the ciphertext side as shown below. However, when we test this distin-
guisher using our MILP model with the same input settings, we confirmed that
there is only one balanced nibble (11) in the ciphertext side.

Plaintext C C C C C C C C C C C C C C C C
Tweak C C C C C A C C C C A A C C C C 11R−−→ B U U U U U U U U U U B U U U U 7 ([14])

Tweak C C C C C A C C C C A A C C C C 11R−−→ U U U U U U U U U U U B U U U U 3(Ours)

8 M. ElSheikh et al.

Since the data complexity for each one of the two 11-round integral distinguishers
we have proposed is 24, we have verified the correctness of them experimentally
to validate our results. Additionally, the data complexity of the 11-round distin-
guisher with the same input settings as the distinguisher reported in [14] is 212,
we also have verified experimentally that it has only one balanced nibble (11) in
the ciphertext side which is consistent with the result using our MILP model2.

Chosen tweak-plaintext setting. In this setting, some of plaintext bits are
active and the remaining bits are constant. For the tweak, some or all bits are
active and the remaining bits are constant.

Since the goal of the first step is to obtain the longest distinguisher, we set
the 64 bits of the tweak and 63 bits of the plaintext to active and the remaining
bit of the plaintext to constant3. We then target r rounds and iterate over the
64 positions of the constant bit until we find some balanced bits or terminate
without finding any. In the first case, we increase the target rounds to r + 1
and repeat the search process in the same way. Otherwise, we conclude that the
disnguisher with the maximum number of rounds based on our model covers r
rounds. In our evaluation, we found that the 19-round distinguisher is the longest
one.

In order to convert the distinguishing attack to a key recovery attack appli-
cable for both variants T-TWINE-80 and T-TWINE-128, the data complexity of
the distinguisher must be less than 280. Therefore, we limit the search process
to find a distinguisher that needs up to 80 active bits.

During the second step, we try to reduce the data complexity by minimizing
the number of active bits in both plaintext and tweak. We follow the technique
described in [17] to reduce the active bits of the plaintext. In particular, we
repeat the previous step for 19 rounds and instead of stopping the search process
if there are some balanced bits, we keep a record of the position of the constant
bit in case of no balanced bits. In our evaluation, there are 32 bits corresponding
to the nibbles (1, 3, 5, 7, 9, 11, 13, 15) that must be active to obtain 19-round
distinguisher and the remaining bits may be active or constant. After that, we
try all the combinations of 2 out of 32 bits that might be constant and check
if the 19-round distinguisher exists. Unfortunately, such distinguisher does not
exist if we set any two bits in the plaintext to constant. Regarding the active
bits reduction in the tweak, we start with only one active nibble and if there is
no distinguisher, we progressively increase the number of active nibbles.

In our evaluation, there are several 19-round integral distinguishers using
tweak with two active nibbles. Moreover, we are able to reduce the active bits to
7 bits for some of them and 6 bits for the distingiusher that we will use during the

2 The code can be found at:
https://github.com/mhgharieb/Integral-Attack-T-TWINE

3 The data complexity of plaintext must be less than the full codebook because using
the full codebook of any permutation (a random permutation or a block cipher)
always gives a balanced output.

https://github.com/mhgharieb/Integral-Attack-T-TWINE

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 9

Plaintext A A A A Ã A A A A A A A A A A A
Tweak C C C A A C C C C C C C C C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C C C C C C C C C C A 19R−−→ U U U U U U U U U U U U U B U U

Plaintext A A A A A A Ã A A A A A A A A A
Tweak C C C C C C Ã C C C C C C C A C 19R−−→ U U U U U U U U U U U U U U U B
Tweak C C C C C C C C C C C C A C A C 19R−−→ U U U U U U U U U U U U U U U B
Tweak C C C C C C C C C C C C C C A Ã

19R−−→ U U U B U U U U U U U U U U U U

Plaintext A A A A A A A A A A Ã A A A A A
Tweak Ã C C A C C C C C C C C C C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C A C C C C C C C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C C C C C C A C C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak C C C A C C C C C C C C A C C C 19R−−→ U U U U U U U U U U U U U B U U
Tweak Ã C C C C C C C C C C C A C C C 19R−−→ U U U U U U U B U U U U U U U U
Tweak C A C C C C C C C C C C A C C C 19R−−→ U U U U U U U U U U U B U U U U
Tweak C C C C A C C C C C C C A C C C 19R−−→ U U U U U U U B U U U B U U U U
Tweak C C C C C C C C C A C C A C C C 19R−−→ U U U U U U U B U U U U U U U U
Tweak C C C C C C C C C C C A A C C C 19R−−→ U U U U U U U B U U U U U U U U

Fig. 3: 104 19-round integral distinguishers in chosen tweak-plaintext setting, where
the three groups consist of 4× (1 + 1) = 8, 4× (4 + 1 + 4) = 36, and 4× (4 + 1 + 1 +
1 + 4 + 1 + 1 + 1 + 1) = 60 distinguishers.

A A A Ã A A A A A A A A A A A A Ciphertext

U U U U U U B U U U U U U U U U 19R←−− C C C C C C C C C A C C C C A C Tweak

U U U U U U B U U U U U U U U U 19R←−− C C C C C C C C C C C C C C A Ã Tweak

A A A A A A A Ã A A A A A A A A Ciphertext

U U U U U U U U U U B U U U U U 19R←−− Ã C C C C C C C C C C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C A C C C C C C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C C C C C C A C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C C C C C C C C A A C C C Tweak

A A A A A A A A A A A Ã A A A A Ciphertext

U U U U U U U U U U B U U U U U 19R←−− C A C C C C C C C C C C A C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C C A C C C C C C C A C C C Tweak

A A A A A A A A A A A A A Ã A A Ciphertext

U U U U U U U U U U B U U U U U 19R←−− Ã C C A C C C C C C C C C C C C Tweak

U U U U B U U U U U U U U U U U 19R←−− C C C A A C C C C C C C C C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C A C C A C C C C C C C C C Tweak

U U U U B U U U U U B U U U U U 19R←−− C C C A C C C C C C C A C C C C Tweak

U U U U U U U U U U B U U U U U 19R←−− C C C A C C C C C C C C A C C C Tweak

A A A A A A A A A A A A A A A Ã Ciphertext

U U U U U U B U U U U U U U U U 19R←−− C C C C C C Ã C C C C C C C A C Tweak

Fig. 4: 104 19-round Integral distinguishers in chosen tweak-ciphertext setting, where
the five groups consist of 20, 28, 8, 32, and 16 distinguishers.

key recovery attacks. Figure 3 summarizes 40 distinguishers with 28×263 = 271,
and 64 distinguishers with 27 × 263 = 270 chosen tweak-plaintext combinations.

10 M. ElSheikh et al.

Chosen tweak-ciphertext setting. In this setting, some of ciphertext bits
are active and the remaining bits are constant. For the tweak, some or all bits
are active and the remaining bits are constant.

We followed the same technique we have used in chosen tweak-plaintext set-
ting and we found that the 19-round integral distinguisher is the longest one.
Like chosen tweak-plaintext setting, the distinguisher does not exist if there are
two constant bits in the ciphertext. Also, there are several two active nibbles
combinations of the tweak that lead to 19-round distinguisher. Moreover, we are
able to reduce, for some of them, the active bits to only 7. Figure 4 summarizes
104 19-round integral distinguishers, 64 of them need 27 × 263 = 270 chosen
tweak-ciphertext combinations and the remaining need 28 × 263 = 271 chosen
tweak-ciphertext combinations.

4 Integral Attacks on T-TWINE

We convert the distinguishing attacks described in the previous section to key
recovery attacks against reduced-round versions of T-TWINE. In particular, we
target 26 and 27 rounds of T-TWINE-80 and T-TWINE-128, respectively, using
the following 19-round distinguisher that needs 6 and 63 active bits of the tweak
and the plaintext, respectively:

Plaintext : (A,A,A,A,A,A,A3,A,A,A,A,A,A,A,A)
Tweak : (C, C, C, C, C, C,A1,3, C, C, C, C, C, C, C,A, C)

↓ 19R
(U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,U ,B)

where A3 means all bits of the nibble are active except bit 3, counted from the
least significant bit, is constant and A1,3 means bits (0 and 2) are active and
bits (1 and 3) are constant.

In the following, we revisit the Meet-in-the-Middle technique [15] and Partial-
Sum technique [6] that we use to enhance the time complexities of our proposed
attacks.

Meet-in-the-Middle Technique. Let Zij , (0 ≤ j ≤ 7) denote the output of
the F functions in i-th round of T-TWINE. Consider the 19-round distinguisher
mentioned above, then the nibble X20

15 is balanced (
⊕
X20

15 = 0). Since this
nibble can be expressed as a linear combination of Z20

7 and X21
14 , we can obtain

the following relation ⊕
Z20
7 =

⊕
X21

14

In meet-in-the-middle technique [15], each sum is independently computed
from ciphertexts (e.g., see Fig. 5) and the subkeys used during the computation
are stored in two different tables indexed by the value of the sum. After that, we
consider the matches between the two tables, in the same manner of the meet-
in-the-middle attack, as candidate subkeys because they satisfy the previous
relation. Since the procedure to obtain both

⊕
Z20
7 and

⊕
X21

14 independently

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 11

involves less number of subkeys than the one to obtain
⊕
X20

15 directly, the time
complexity will be improved.

Partial-Sum Technique. Ferguson et al. introduced the partial-sum technique
to improve the time complexity of integral attacks [6]. Suppose the key recovery
procedure during the integral cryptanalysis involves N operations, κ-bit subkey
and 2|I| ciphertexts, then the time complexity of the direct computation will be
N×2|I|+κ operations. Using the partial-sum technique, this time complexity can
be improved as follows. We firstly store the ciphertexts that appear odd times
in the memory whereas the ciphertexts that appear even times are discarded
since they have no effect on the balanced property. Then, we guess a part of the
subkey (κ1-bit) and partially decrypt the ciphertexts through a single operation
to an intermediate state with |I1|-bit size (that can have up to 2|I1| values) such
that |I1| ≤ |I|. The time complexity of this step is 2|I|+κ1 operations. After that,
we repeat the step of storing the values that appear odd times and partially
decrypting the intermediate state using κi-bit to get another intermediate state
with |Ii|-bit size such that |Ii| ≤ |Ii−1|. The time complexity of the i-th step will
be 2|Ii−1|+κ1+···+κi where I0 is I, and the whole time complexity will be

N∑
i=1

2|Ii−1|+κ1+···+κi <

N∑
i=1

2|I|+κ = N × 2|I|+κ

In the following, we give the details of the key recovery attack against T-
TWINE-80.

4.1 Attack on 26-Round T-TWINE-80

The ciphertexts of 26-round of T-TWINE-80 can be written as X27. The process
of obtaining

⊕
X20

15 involves the following 27 round keys (See Fig. 5):

RK26, RK25
[0,1,2,3,4,5,7], RK

24
[0,1,2,6,7], RK

23
[0,4,6], RK

22
[4,5], RK

21
5 , RK20

7

However, we only need to guess 76 bits in 19 round keys and the other 8 round
keys can be computed based on the key schedule as follows:

RK24
0 = RK25

7 ⊕ S(RK26
6 ⊕ (0||CON25

L)), RK24
1 = RK26

5 ,

RK24
2 = S−1(RK26

7 ⊕RK25
0)⊕ S(RK24

7), RK23
4 = RK26

0 ,

RK23
6 = RK26

1 ⊕ (0||CON25
H), RK22

4 = RK25
0 ,

RK21
5 = RK26

4 , RK20
7 = RK26

6 ⊕ S(RK26
2)⊕ (0||CON25

L).

where CON25
L and CON25

H are predefined constants.

12 M. ElSheikh et al.

0 1 2 3 4 5 6 721R

0 1 2 3 4 5 6 722R

0 1 2 3 4 5 6 723R

0 1 2 3 4 5 6 724R

0 1 2 3 4 5 6 725R

0 1 2 3 4 5 6 726R

0 1 2 3 4 5 6 720R

T6

T14

B

0 1 2 3 4 5 6 721R

0 1 2 3 4 5 6 722R

0 1 2 3 4 5 6 723R

0 1 2 3 4 5 6 724R

0 1 2 3 4 5 6 725R

0 1 2 3 4 5 6 726R

0 1 2 3 4 5 6 720R

T14

T6

B

Fig. 5: Analysis rounds of T-TWINE-80 where the upper part is used during computing⊕
Z20

7 and the lower part is used during computing
⊕
X21

14 .

Key Recovery Procedure. We firstly construct a data structure where all the
bits of the plaintext X1 are active except the bit X1

6 [3] which is fixed to constant.
For the tweak, the 6 bits T6[0, 2]||T14 are active whereas the other bits are fixed
to constant. We then ask the encryption oracle to obtain the corresponding
ciphertext (X27). After that, we initialize two empty hash tables HZ and HX

with 256 and 240 entries to store the values of
⊕
Z20
7 and

⊕
X21

14 , respectively,
indexed by the round keys used during the computations.

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 13

Since obtaining
⊕
Z20
7 (the upper part of Fig. 5) requires much more com-

putation than obtaining
⊕
X21

14 (the lower part of Fig. 5), we only explain
the procedure to obtain

⊕
Z20
7 . The attack starts by storing the values of

X27
[0,2,3,4,5,6,7,8,9,10,11,12,13,14,15]||T6[0, 2]||T14 that appear odd times in a list called

the state S0 which has a size of up to 266 66-bit values. Then, we guess at the
i-th step a round key (or deduce it based on the key schedule as shown above)
and partially decrypt the values in the state Si−1, then store the values of the
output that appear odd times in a new state Si. For example, we guess at step 1
RK26

2 and partially decrypt X27
4 and X27

5 to obtain X26
5 = X27

5 ⊕S(X27
4 ⊕K26

2).
The state size after compression is up to 262 62-bit values. The time complexity
of this step is 24 × 266 = 270 F -function operations. Table 4 summarizes the
steps of the attack procedure.

Finally, we access the hash tables (HZ , HX) for each 76-bit key, and we con-
sider a 76-bit key as a candidate if the two entries are equal. The 4 balanced bits
lead to 4 bits filtration, therefore we get 272 76-bit candidates for the round keys
when we use a single data structure. We can reduce the number of the candidates
by repeating the attack using another data structure. Thanks to the key sched-
ule, we can obtain 276 80-bit candidates for the master key corresponding to
these 272 76-bit round keys by guessing 4-bit round key. The details of this step
can be found in Appendix B. We then get the right master key by exhaustively
searching over these candidates using 2 plaintext/ciphertext pairs.

Attack Complexity. When we use a single data structure, we need 26× 263 =
269 queries to the encryption oracle. From Table 4, we need 278.13 F -function op-
erations to compute

⊕
Z20
7 . Using the same method, we need 259.91 F -Function

operations to compute
⊕
X21

14 .

We then access the hash tables (HZ , HX) sequentially to retrieve 2 4-bit
words. For simplicity, we consider the time to retrieve a single 4-bit word as a
one F -function operation. Therefore, for this step, we need 256 × (1 + 220) ≈
276 F -function operations. Consequently, we got 272 76-bit candidates of the
round keys. As shown in Appendix B, we need 145 F -function operations for
each candidate to get the corresponding 24 80-bit candidates of the master key.
The exhaustive search over the candidates to get the right master key takes
276 + 212 26-round encryptions. Therefore, the total time complexity is 269 +

1 × 278.13+259.91

8×26 + 276

8×26 + 145×272
8×26 + 276 + 212 ≈ 276.11 26-round encryptions.

The memory complexity is dominated by storing the part of the ciphertexts
involved during the computation of

⊕
Z20
7 (the state S0) which is 266 66-bit

blocks that is equivalent to 266.04 64-bit blocks. As shown in Table 5, the lowest
time complexity can be achieved using 3 data structures and in this case the
data, time, and memory complexities are 3 × 26 × 263 = 270.58 chosen tweak-
plaintext combinations, 272.62 26-round encryprions, and 267.62 64-bit blocks,
receptively.

14 M. ElSheikh et al.

Table 4: Summary of the procedure to obtain
⊕
Z20

7 where ’Size’ refers to the size of

the intermediate state Si after the partial decryption at each step, the nibbles Xr
j in

the state Si−1 are replaced by the nibbles Xr
j s in the state Si during the i-th step, and

’Complexity’ is measured in term of F -function operations except step 0 is measured
in number of memory accesses (MA).
Step Key Size The State (Si) Complexity

0 - 266 X27
0 , X27

2 , X27
3 , X27

4 , X27
5 , X27

6 , X27
7 , X27

8 , X27
9 , X27

10 , X27
11 , X27

12 , X27
13 , X27

14 , X27
15 , T6, T14 266MA

1 RK26
2 262 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X27

10 , X27
11 , X27

12 , X27
13 , X27

14 , X27
15 , T6, T14 24 × 266 = 270

2 RK26
5 258 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X26

11 , X27
12 , X27

13 , X27
14 , X27

15 , T6, T14 28 × 262 = 270

3 RK26
7 254 X27

0 , X27
2 , X27

3 , X26
5 , X27

6 , X27
7 , X27

8 , X27
9 , X26

11 , X27
12 , X27

13 , X26
15 , T6, T14 212 × 258 = 270

4 RK25
0 250 X25

1 , X27
2 , X27

3 , X27
6 , X27

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6, T14 216 × 254 = 270

5 RK26
3 250 X25

1 , X27
2 , X27

3 , X26
6 , X26

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6, T14 220 × 250 = 270

6 RK24
1 246 X24

3 , X27
2 , X27

3 , X26
6 , X26

7 , X27
8 , X27

9 , X26
11 , X27

12 , X27
13 , X26

15 , T6 220 × 250 = 270

7 RK26
4 244 X24

3 , X27
2 , X27

3 , X26
6 , X26

7 , X26
8 , X26

9 , X26
11 , X27

12 , X27
13 , X26

15 224 × 246 = 270

8 RK26
1 244 X24

3 , X26
2 , X26

3 , X26
6 , X26

7 , X26
8 , X26

9 , X26
11 , X27

12 , X27
13 , X26

15 228 × 244 = 272

9 RK25
3 240 X24

3 , X26
2 , X26

6 , X26
7 , X25

7 , X26
9 , X26

11 , X27
12 , X27

13 , X26
15 232 × 244 = 276

10 RK25
5 236 X24

3 , X26
6 , X26

7 , X25
7 , X25

11 , X26
11 , X27

12 , X27
13 , X26

15 236 × 240 = 276

11 RK24
7 232 X24

3 , X26
6 , X26

7 , X25
7 , X27

12 , X27
13 , X24

15 , X26
15 240 × 236 = 276

12 RK24
2 228 X24

3 , X24
5 , X26

6 , X26
7 , X27

12 , X27
13 , X24

15 240 × 232 = 272

13 RK26
6 228 X24

3 , X24
5 , X26

6 , X26
7 , X26

12 , X26
13 , X24

15 244 × 228 = 272

14 RK24
4 224 X24

3 , X24
5 , X26

7 , X25
9 , X26

12 , X24
15 248 × 228 = 276

15 RK23
6 220 X24

3 , X24
5 , X26

7 , X26
12 , X23

13 248 × 224 = 272

16 RK22
4 216 X24

5 , X26
7 , X22

9 , X26
12 248 × 220 = 268

17 RK25
2 212 X24

5 , X25
5 , X22

9 252 × 216 = 268

18 RK23
0 28 X23

1 , X22
9 256 × 212 = 268

19 RK21
5 24 X21

11 256 × 28 = 264

20 RK20
7 1

⊕
Z20

7 =
⊕
S(X21

11 ⊕RK20
7) 256 × 24 = 260

Table 5: The data, time, and memory complexities using multiple data structures.

Data Time Complexity Memory

1 269 269 + 1× 278.13+259.91

8×26
+ 276

8×26
+ 145×272

8×26
+ 276 + 212 ≈ 276.11 266.04

2 270 270 + 2× 278.13+259.91

8×26
+ 276+272

8×26
+ 145×268

8×26
+ 272 + 28 ≈ 273.03 267.04

3 270.58 270.58 + 3× 278.13+259.91

8×26
+ 276+272+268

8×26
+ 145×264

8×26
+ 268 + 24 ≈ 272.62 267.62

4 271 271 + 4× 278.13+259.91

8×26
+ 276+272+268+264

8×26
+ 145×260

8×26
+ 264 ≈ 272.95 268.04

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 15

4.2 Attack on 27-Round T-TWINE-128

The ciphertexts of 27-round of T-TWINE-128 can be written as X28. The process
of obtaining

⊕
X20

15 involves the following 35 round keys:

RK27, RK26, RK25
[0,1,2,3,4,5,7], RK

24
[0,1,2,6,7], RK

23
[0,4,6], RK

22
[4,5], RK

21
5 , RK20

7

However, we only need to guess 116 bits in 29 round keys and the other 6 round
keys can be computed based on the key schedule as follows:

RK23
0 = RK27

4 , RK23
6 = RK27

2 ,

RK22
4 = RK27

6 ⊕ S(RK27
7), RK22

5 = RK26
0 ,

RK21
5 = RK25

0 , RK20
7 = RK27

1 ⊕ S(RK25
5)⊕ (0||CON23

L)⊕ (0||CON26
H).

where CON23
L and CON26

H are predefined constants.

Key Recovery Procedure. Using the same procedure we have applied in the
previous section, we can recover 2112 116-bit candidates of the round keys and
then retrieve 2124 128-bit candidates of the master key by guessing 12 bits. The
number of the candidates can be reduced by repeating the attack several times
using different values of the constant bits in the data structure.

Attack Complexity. When we use a single data structure, we need approxi-
mately 2113.83 F -function operations to fill the hash tables, then we need addi-
tionally 2116 F -function operations to access the tables and recover 2112 116-bit
candidates. Thus, we retrieve the right master key using 2 × 2124 27-round en-
cryptions. By repeating the attack 6 times, we need 1

8×27 × (6× 2113.83 + 2116 +

2112 + · · · + 296) + 2104 + 240 = 2109.54 27-round encryptions to retrieve the
right master key. Hence, the data complexity is 6 × 269 = 271.58 chosen tweak-
plaintext combinations. The memory complexity is dominated by storing the
values of

⊕
Z20
7 in the hash table HZ . Therefore, we need 6 × 292 4-bit blocks

which is equivalent to 290.58 64-bit blocks.

5 Attacking One More Round

Chu et al. [3] presented a general method to use the dynamically chosen plain-
texts idea in order to attack one more round in the integral cryptanalysis by
adding this round before the distinguisher. In general, appending rounds before
the integral distinguisher may lead to use the full codebook of the plaintext.
However, the dynamically chosen plaintext method guarantees that we will not
use the full codebook of the plaintext. In this section, we explain how we can
prepend one round before the integral distinguisher. Consequently, we can target
27 and 28 rounds of T-TWINE-80 and T-TWINE-128, respectively.

The core idea of the method is to express one of the constant bits (c) of the
distinguisher input as a non-linear boolean function in some plaintext bits (x)

16 M. ElSheikh et al.

and key bits (k) i.e., c = f(x, k). Then, we guess the key bits (k) and carefully
select a specific plaintext set Dc

k that guarantees the constant bit c is fixed to 0
or 1 while the other bits satisfy the distinguisher input. Consequently, the whole
plaintext set used during the attack will be

⋃
Dc
k.

In our attack, the plaintext is X1 and the distinguisher input is X2. There-
fore, we have to select the plaintexts such that X2

6 [3] (the most significant bit
of X2

6) is fixed to 0 or 1 while the other bits of X2 are active. From T-TWINE
structure, X2

6 [3] = X1
9 [3]⊕ S(X1

8 ⊕ k)[3] where k = RK1
4 ⊕RT 1

2 .
Based on the algebraic normal form of T-TWINE’s Sbox, X2

6 [3] can be ex-
pressed as follows:

X2
6 [3] =X1

9 [3]⊕ 1⊕ x[0]⊕ x[2]⊕ (x[0] · x[1])⊕ (x[1] · x[2])⊕ (x[0] · x[1] · x[2])

⊕ (x[0] · x[1] · x[3])⊕ (x[1] · x[2] · x[3])

where x[i] = X8
1 [i]⊕ k[i] and k[i] = RK1

4 [i]⊕ RT 1
2 [i]. Therefore, X2

6 [3] depends
on the 5 bits X1

8 ||X1
9 [3] and the 4 bits of the round key RK1

4 .
The procedure to determine the suitable plaintext set in our attack is as

follows:

1. Initialize 32 empty lists namely D0
k and D1

k where 0 ≤ k ≤ 15.
2. For each possible value of k and for all 25 possible values of X1

8 ||X1
9 [3],

compute X2
6 [3] and store X1

8 ||X1
9 [3] in D0

k if X2
6 [3] is 0 or in D1

k if X2
6 [3] is 1.

3. For each C := {ck|0 ≤ k ≤ 15} ∈ F16
2 , if |

⋃
kD

ck
k | < 25, export C and its

corresponding {Dck
k } as a possible plaintext set.

Based on our evaluation, there are 32 plaintext sets of {Dck
k }. In each set,

there are 31 out of 32 possible values of X1
8 ||X1

9 [3]. To validate these sets, we
perform an extra step as follows: for each k, we construct X1

8 , X
1
9 such that

X1
8 ||X1

9 [3] ∈ Dck
k and X1

9 [2]||X1
9 [1]||X1

9 [0] takes all possible values, then compute
X2

6 = X1
9 ⊕ S(X1

8 ⊕ k), after that, we check if X1
8 ||X2

6 [2]||X2
6 [1]||X2

6 [0] takes all
128 possible values and X2

6 [3] = ck or not. Table 6 depicts an example of these
sets in which X1

8 ||X1
9 [3] does not take the value of 000000.

Data Collection. We firstly construct a data structure in which all bits of X1

take all the possible values except X1
8 ||X1

9 [3] ∈
⋃

Dck
k . For the tweak, all bits

are fixed to constant except the 6 bits (T3, T12[0, 2]) take all the possible values.
Then, we ask the encryption oracle to obtain the corresponding ciphertexts and
store the ciphertext associated with the active bits of the tweak in a hash table
indexed by the value of X1

8 ||X1
9 [3]. Therefore, the data complexity of a single

structure is 26 × (264 − 259) ≈ 269.95 chosen tweak-plaintext combinations.

5.1 Key Recovery Attacks

T-TWINE-80. We firstly guess the value of RK1
4 and based on the value of

k = RK1
4⊕RT 1

2 , we select a set of 269 ciphertexts corresponding to the plaintexts
that include Dck

k . After that, we apply the same steps described in Section 4.1

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 17

to obtain 272 candidates of the 76-bit round keys. It should be mentioned that
the relative relations between the round keys involved in the analysis rounds are
the same as in Section 4.1.

Using each value of RK1
4 combined with 272 76-bit candidates of the round

keys, we can compute 272 80-bit candidates of the master key. Subsequently, we
get in total 24× 272 = 276 80-bit candidates of the master. The right master key
can be retrieved by the exhaustive search over these candidates using 2 pairs of
plaintext/ciphertext.

The time complexity is 269.95+24×(278.13+259.91

8×27 + 276

8×27 + 145×272
8×27)+276+212 ≈

276.47 27-round encryptions. The time complexity can be reduced to 275.79 27-
round encryptions if we use two data structures (2×269.95 = 270.95 chosen tweak-
plaintext combinations). The memory complexity is dominated by storing the
ciphertexts associated with the active bits of the tweak. Therefore, the memory
complexity will be 271.08 64-bit blocks.

T-TWINE-128. In the same manner, we can target 28 rounds of T-TWINE-
128. By repeating the attack using different 5 data structures, we can retrieve
the right master key. The data complexity is 5 × 269.95 = 272.27 chosen tweak-
plaintext combinations. The time complexity is 2113.38 28-round encryptions.
The memory complexity is 5× 24× 292 4-bit blocks which is equivalent to 294.32

64-bit blocks.

6 Conclusion

We studied the security of T-TWINE against the integral cryptanalysis. In par-
ticular, we showed that adding a tweak to the round function structure gives the
attacker more room to target a large number of rounds in T-TWINE compared to
TWINE. More precisely, we are able to construct several integral distinguishers
that cover 19 rounds of T-TWINE whereas the longest distinguisher covers only
16 rounds of TWINE. Furthermore, we launched key recovery attacks against
27 and 28 of T-TWINE-80 and T-TWINE-128, respectively. Up to the authors’
knowledge, the presented attacks are the best-published attacks against both
variants of T-TWINE.

18 M. ElSheikh et al.

A Key Schedule of T-TWINE

Algorithm 1: Key Schedule of T-TWINE-80

Data: The 80-bit master key K
Result: The round keys RK = RK1||RK2|| · · · ||RK36

k0||k1|| · · · ||k19 ← K;
for i← 1 to 35 do

RKi ← k1||k3||k4||k6||k13||k14||k15||k16;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);

k7 ← k7 ⊕ (0||CON i
H);

k19 ← k19 ⊕ (0||CON i
L);

k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k19 ← Rot16(k0|| · · · ||k19);

end
RK36 ← k1||k3||k4||k6||k13||k14||k15||k16;
RK ← RK1||RK2|| · · · ||RK36;

Algorithm 2: Key Schedule of T-TWINE-128

Data: The 128-bit master key K
Result: The round keys RK = RK1||RK2|| · · · ||RK36

k0||k1|| · · · ||k31 ← K;
for i← 1 to 35 do

RKi ← k2||k3||k12||k15||k17||k18||k28||k31;
k1 ← k1 ⊕ S(k0);
k4 ← k4 ⊕ S(k16);
k23 ← k23 ⊕ S(k30);

k7 ← k7 ⊕ (0||CON i
H);

k19 ← k19 ⊕ (0||CON i
L);

k0|| · · · ||k3 ← Rot4(k0|| · · · ||k3);
k0|| · · · ||k31 ← Rot16(k0|| · · · ||k31);

end
RK36 ← k2||k3||k12||k15||k17||k18||k28||k31;
RK ← RK1||RK2|| · · · ||RK36;

B Recovery of 80-bit keys of T-TWINE-80 attack

During the key recovery attack against T-TWINE-80, we have got 272 76-bit can-
didates of the 19 round keysRK26

[0,1,2,3,4,5,6,7], RK
25
[0,1,2,3,4,5,7], RK

24
[6,7], RK

23
0 , RK22

5

as shown in Section 4.1. In this section, we describe how we can transform them
to the 80-bit candidates of the master key.

Based on the key schedule of T-TWINE-80, these 19 round keys can be ex-
pressed as:

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 19

RK23
0 = V1 ⊕ CL9 ⊕ CH12 (1)

RK25
0 = V2 ⊕ CL11 ⊕ CH14 (2)

RK26
0 = V3 ⊕ CL12 ⊕ CH15 (3)

RK25
4 = V4 ⊕ CL14 ⊕ CH17 (4)

RK26
4 = V5 ⊕ CL15 ⊕ CH18 (5)

RK22
5 = V6 ⊕ CL16 ⊕ CH19 (6)

RK26
3 = V7 ⊕ CL18 ⊕ CH21 (7)

RK25
3 = V8 ⊕ CL17 ⊕ CH20 (8)

RK26
5 = V9 ⊕ CL20 ⊕ CH23 (9)

RK26
1 = V10 ⊕ CL22 ⊕ CH25 (10)

RK25
1 = V11 ⊕ CL21 ⊕ CH24 (11)

RK26
2 = V12 (12)

RK25
2 = V13 (13)

RK25
5 = V14 ⊕ CL19 ⊕ CH22 (14)

RK24
7 = V15 (15)

RK26
7 = V2 ⊕ CL11 ⊕ CH14 ⊕ S(V16 ⊕ CL6 ⊕ CH9 ⊕ S(V11)⊕ S(V15)) (16)

RK24
6 = V17 ⊕ CL3 ⊕ CH6 ⊕ S(V7)⊕ S(V16 ⊕ CL6 ⊕ CH9 ⊕ S(V11))⊕ CL23

(17)

RK26
6 = V18 ⊕ CL5 ⊕ CH8 ⊕ S(V9)⊕ S(V12)⊕ CL25 (18)

RK25
7 = V19 ⊕ CL10 ⊕ CH13 ⊕ S(V18 ⊕ CL5 ⊕ CH8 ⊕ S(V9)⊕ S(V12)) (19)

where CLi = 0||CON i
L and CHi = 0||CON i

H are predefined constants. The
variables V1, . . . , V19 are expressed as follows:

V9 = K15 ⊕ CH3 ⊕ S(V5)⊕ S(V17 ⊕ CL3 ⊕ CH6 ⊕ S(V7)) (20)

V8 = K3 ⊕ S(V3)⊕ S(K15 ⊕ CH3 ⊕ S(V5)) (21)

V4 = K10 ⊕ S(V1)⊕ S(K3 ⊕ S(V3)) (22)

V2 = K17 ⊕ S(V16))⊕ S(K10 ⊕ S(V1)) (23)

V12 = K5 ⊕ S(V17)⊕ S(K17 ⊕ S(V16)))⊕ CL8 ⊕ CH11⊕ S(V17 ⊕ CL3

⊕ CH6 ⊕ S(V7)⊕ S(V16)⊕ CL6 ⊕ CH9 ⊕ S(V11))) (24)

V18 = K12 ⊕ S(K5 ⊕ S(V17)) (25)

V10 = K0 ⊕ CL2 ⊕ CH5 ⊕ S(V8)⊕ S(V18 ⊕ CL5 ⊕ CH8 ⊕ S(V9)) (26)

V14 = K11 ⊕ CH2 ⊕ S(V4)⊕ S(K0 ⊕ CL2 ⊕ CH5 ⊕ S(V8)) (27)

V6 = K18 ⊕ S(V2)⊕ S(K11 ⊕ CH2 ⊕ S(V4)) (28)

V15 = V1 ⊕ CL9 ⊕ CH12⊕ S(A)⊕ CL4 ⊕ CH7 ⊕ S(V14)⊕ S(V13)) (29)

V11 = K19 ⊕ CL1 ⊕ CH4 ⊕ S(V6)⊕ S(A)⊕ CL4 ⊕ CH7 ⊕ S(V14)) (30)

20 M. ElSheikh et al.

V7 = B ⊕ S(K19 ⊕ CL1 ⊕ CH4 ⊕ S(V6)) (31)

V5 = K14 ⊕ S(V19)⊕ S(B) (32)

V13 = C ⊕ CL7 ⊕ CH10⊕ S(V10) (33)

V3 = K2 ⊕ S(C)⊕ S(K14 ⊕ S(V19)) (34)

V1 = K9 ⊕ S(A))⊕ S(K2 ⊕ S(C)) (35)

V16 = K16 ⊕ S(K9 ⊕ S(A)) (36)

V17 = K4 ⊕ S(K16) (37)

V19 = K13 ⊕ S(V18)⊕ S(K6 ⊕ S(K5 ⊕ S(V17)⊕ S(K17 ⊕ S(V16))))) (38)

B = K7 ⊕ CH1 ⊕ S(K6 ⊕ S(K5 ⊕ S(V17)⊕ S(K17 ⊕ S(V16))))⊕ S(K18 ⊕ S(V2)))
(39)

C = K1 ⊕ S(K0)⊕ S(K13 ⊕ S(V18)) (40)

A = K8 ⊕ S(K1 ⊕ S(K0) (41)

Therefore, we can compute the values of the variables V1, . . . , V19 directly
from equations 1-19. Hence, we substitute their values into the equations 20-41.
Thus, it is easy to obtain the values of K15,K3,K10,K17,K5,K12,K0,K11,K18,
A,K19, B,K14, C,K2,K9,K16,K4 one by one from equations 20-37. Next, we
guess the value of K6 and obtain the values of K13,K7,K1,K8 from equations
38-41.

C Dynamically Chosen Plaintexts of T-TWINE

Table 6 depicts an example of {Dck
k } in which X1

8 ||X1
9 [3] does not take the value

of 000000.

Table 6: An example of {Dck
k }

RK1
4 ⊕RT 1

2 D
ck
k = {X1

8 ||X1
9 [3]} X2

6 [3]

0000 00001, 00010, 00101, 00111, 01000, 01011, 01101, 01110, 10001, 10010, 10101, 10110, 11000, 11011, 11100, 11110 0

0001 00001, 00010, 00100, 00110, 01000, 01011, 01101, 01110, 10001, 10010, 10101, 10110, 11000, 11011, 11101, 11111 1

0010 00001, 00011, 00101, 00110, 01001, 01010, 01100, 01111, 10001, 10010, 10101, 10110, 11000, 11010, 11100, 11111 0

0011 00001, 00011, 00100, 00111, 01000, 01011, 01101, 01110, 10000, 10011, 10100, 10111, 11000, 11010, 11101, 11110 0

0100 00001, 00010, 00100, 00111, 01000, 01011, 01100, 01110, 10001, 10010, 10101, 10111, 11000, 11011, 11100, 11111 1

0101 00001, 00010, 00100, 00111, 01000, 01011, 01101, 01111, 10001, 10010, 10100, 10110, 11000, 11011, 11100, 11111 0

0110 00001, 00010, 00100, 00111, 01001, 01011, 01101, 01110, 10000, 10010, 10100, 10111, 11001, 11010, 11101, 11110 0

0111 00001, 00010, 00100, 00111, 01000, 01010, 01101, 01110, 10001, 10011, 10100, 10111, 11001, 11010, 11101, 11110 1

1000 00001, 00010, 00101, 00110, 01000, 01011, 01100, 01110, 10001, 10010, 10101, 10111, 11000, 11011, 11101, 11110 0

1001 00001, 00010, 00101, 00110, 01000, 01011, 01101, 01111, 10001, 10010, 10100, 10110, 11000, 11011, 11101, 11110 1

1010 00001, 00010, 00101, 00110, 01000, 01010, 01100, 01111, 10001, 10011, 10101, 10110, 11001, 11010, 11100, 11111 0

1011 00001, 00010, 00101, 00110, 01001, 01011, 01100, 01111, 10000, 10010, 10101, 10110, 11001, 11010, 11100, 11111 1

1100 00001, 00010, 00101, 00111, 01000, 01011, 01100, 01111, 10001, 10010, 10100, 10111, 11000, 11011, 11100, 11110 1

1101 00001, 00010, 00100, 00110, 01000, 01011, 01100, 01111, 10001, 10010, 10100, 10111, 11000, 11011, 11101, 11111 0

1110 00001, 00011, 00101, 00110, 01000, 01011, 01100, 01111, 10000, 10011, 10101, 10110, 11000, 11010, 11100, 11111 1

1111 00001, 00011, 00100, 00111, 01001, 01010, 01101, 01110, 10001, 10010, 10100, 10111, 11000, 11010, 11101, 11110 1

Integral Cryptanalysis of Reduced-Round Tweakable TWINE 21

References

1. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology –
CRYPTO 2016. pp. 123–153. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

2. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: CRAFT: Lightweight Tweak-
able Block Cipher with Efficient Protection Against DFA Attacks. IACR Transac-
tions on Symmetric Cryptology 2019(1), 5–45 (Mar 2019), https://tosc.iacr.org/
index.php/ToSC/article/view/7396

3. Chu, Z., Chen, H., Wang, X., Li, L., Dong, X., Ding, Y., Hao, Y.: Improved integral
attacks without full codebook. IET Information Security 12(6), 513–520 (2018)

4. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher Square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer (1997)

5. ElSheikh, M., Tolba, M., Youssef, A.M.: Integral Attacks on Round-Reduced Bel-
T-256. In: Cid, C., Jacobson Jr., M.J. (eds.) Selected Areas in Cryptography –
SAC 2018. LNCS, vol. 11349, pp. 73–91. Springer International Publishing, Cham
(2019)

6. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Goos, G., Hartmanis, J., van Leeuwen,
J., Schneier, B. (eds.) Fast Software Encryption. LNCS, vol. 1978, pp. 213–230.
Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

7. Gurobi Optimization, L.: Gurobi Optimizer Reference Manual (2020), http://www.
gurobi.com

8. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submitted to CAESAR
Competition (2016), https://competitions.cr.yp.to/round3/deoxysv141.pdf

9. Knudsen, L., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)
FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer (2002)

10. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) Fast Software Encryption – FSE2011. LNCS, vol. 6733,
pp. 306–327 (2011)

11. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. Journal of cryptol-
ogy 24(3), 588–613 (2011)

12. Peyrin, T., Seurin, Y.: Counter-in-Tweak: Authenticated Encryption Modes for
Tweakable Block Ciphers. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology
– CRYPTO 2016. LNCS, vol. 9814, pp. 33–63 (2016)

13. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In: Lee, P.J. (ed.) Advances in Cryptology - ASIACRYPT
2004. pp. 16–31. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

14. Sakamoto, K., Minematsu, K., Shibata, N., Shigeri, M., Kubo, H., Funabiki, Y.,
Bogdanov, A., Morioka, S., Isobe, T.: Tweakable TWINE: Building a Tweakable
Block Cipher on Generalized Feistel Structure. In: Attrapadung, N., Yagi, T. (eds.)
Advances in Information and Computer Security. pp. 129–145. Springer Interna-
tional Publishing, Cham (2019)

15. Sasaki, Y., Wang, L.: Meet-in-the-Middle Technique for Integral Attacks against
Feistel Ciphers. In: Knudsen, L.R., Wu, H. (eds.) Selected Areas in Cryptography.
LNCS, vol. 10624, pp. 234–251. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013)

16. Sun, L., Wang, W., Wang, M.: MILP-Aided Bit-Based Division Property for Prim-
itives with Non-Bit-Permutation Linear Layers. Cryptology ePrint Archive, Report
2016/811 (2016), https://eprint.iacr.org/2016/811

https://tosc.iacr.org/index.php/ToSC/article/view/7396
https://tosc.iacr.org/index.php/ToSC/article/view/7396
http://www.gurobi.com
http://www.gurobi.com
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://eprint.iacr.org/2016/811

22 M. ElSheikh et al.

17. Sun, L., Wang, W., Wang, M.: Automatic Search of Bit-Based Division Property
for ARX Ciphers and Word-Based Division Property. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer (2017)

18. Suzaki, T., Minematsu, K.: Improving the Generalized Feistel. In: Hong, S., Iwata,
T. (eds.) Fast Software Encryption – FSE 2010. LNCS, vol. 6147, pp. 19–39 (2010)

19. Suzaki, T., Minematsu, K., Morioka, S., , Kobayashi, E.: TWINE: A Lightweight,
Versatile Block Cipher. In: ECRYPT Workshop on Lightweight Cryptography. pp.
28–29. Belgium (2011)

20. Todo, Y., Morii, M.: Bit-based division property and application to simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer (2016)

21. Tolba, M., ElSheikh, M., Youssef, A.M.: Impossible Differential Cryptanalysis of
Reduced-Round Tweakable TWINE. In: Nitaj, A., Youssef, A. (eds.) Progress in
Cryptology - AFRICACRYPT 2020. LNCS, vol. 12174, pp. 91–113. Springer In-
ternational Publishing, Cham (2020)

22. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP Method to Searching Inte-
gral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer (2016)

23. Zhang, H., Wu, W.: Structural Evaluation for Generalized Feistel Structures and
Applications to LBlock and TWINE. In: Biryukov, A., Goyal, V. (eds.) Progress
in Cryptology – INDOCRYPT 2015. LNCS, vol. 9462, pp. 218–237. Springer In-
ternational Publishing, Cham (2015)

	Integral Cryptanalysis of Reduced-Round Tweakable TWINE

