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Abstract. Asset custody is a core financial service in which the cus-
todian holds in-safekeeping assets on behalf of the client. Although tra-
ditional custody service is typically endorsed by centralized authorities,
decentralized custody scheme has become technically feasible since the
emergence of digital assets, and furthermore, it is greatly needed by new
applications such as blockchain and DeFi (Decentralized Finance).
In this work, we propose a framework of decentralized asset custody
scheme that is able to support a large number of custodians and safely
hold customer assets of multiple times the value of the total security
deposit. The proposed custody scheme distributes custodians and assets
into many custodian groups via combinatorial designs, where each group
fully controls the assigned assets. Since every custodian group is small,
the overhead cost is significantly reduced. The liveness is also improved
because even a single alive group would be able to process transactions.
The security of this custody scheme is guaranteed under the rational
adversary model, such that any adversary corrupting a bounded fraction
of custodians cannot move assets more than the security deposit paid. We
further analyze the security and performance of our constructions from
both theoretical and experimental sides and give explicit examples with
concrete numbers and figures for a better understanding of our results.

Keywords: Blockchain application · Decentralized asset custody · Ra-
tional adversary.

1 Introduction

Asset custody is a core financial service in which an institution, known as the
custodian, holds in-safekeeping assets such as stocks, bonds, precious metals,
and currency on behalf of the client. Custody service reduces the risk of clients
losing their assets or having them stolen, and in many scenarios, a third-party
custodian is required by regulation to avoid systematic risk. In general, security
is the most important reason why people use custody services and place their
assets for safekeeping in custodian institutions.

The security of traditional asset custody service is usually endorsed by the
reputation of the custodian, together with the legal and regulatory system. Such
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centralized endorsement used to be the only viable option until the emergence
of blockchain and cryptocurrencies. Cryptocurrencies enjoy two major advan-
tages over their physical counterparts: (1) they are intrinsically integrated with
information technology such as the Internet and modern cryptography, which
technically enables multiple custodians to safeguard assets collectively; (2) with
the underlying blockchain as a public ledger, the management of cryptocur-
rencies becomes transparent to everyone and hence any fraud behavior will be
discovered immediately, which makes prosecution much easier.

From a systematic point of view, asset custody service provided by a feder-
ation of multiple independent custodians has better robustness and resistance
against single-point failure, and hence achieves a higher level of security. Such
credit enhancement is especially important for the safekeeping of cryptoassets
on decentralized blockchains such as Bitcoin [19] and Ethereum [31], where the
legal and regulatory system is absent or at least way behind the development
of applications. For example, in the year 2019 alone, at least 12 cryptocurrency
exchanges claimed being hacked and loss of cryptoassets totaled to around 2.9 bil-
lion dollars [25]. However, it is difficult for customers to distinguish that whether
the claimed loss was caused by a hacker attack or internal fraud and embezzle-
ment, and therefore raises the need for decentralized asset custody.

Decentralized asset custody finds applications in many scenarios related to
blockchain and digital finance. A motivating example is the cross-chain assets
mapping service (a.k.a. cross-chain portable assets [4,32]) which maps cryptoas-
sets on one blockchain to tokens on another blockchain for inter-chain operabil-
ity. For instance, the mapping from Bitcoin to Ethereum enables usage of tokens
representing bitcoins within Ethereum ecosystem, and in the meanwhile, the
original bitcoins must be safeguarded so that the bitcoin tokens are guaranteed
redeemable for real bitcoins in full on the Bitcoin network. Nowadays the vol-
ume of cryptoassets invested into Ethereum DeFi applications is massive, and
the highest point in history almost reaches 90 billion dollars [10], among which
a significant fraction (e.g. H-Tokens [16], imBTC [28], tBTC [27], WBTC [29],
renBTC [22], etc.) is mapped from Bitcoin. Due to the reality that most of those
DeFi applications and tokens remain in a gray area of regulation, decentralized
cryptoassets custody turns out an attractive approach for better security and
credit enhancement.

In this work, we propose a framework of decentralized asset custody scheme
designed for cross-chain assets mapping (especially from blockchains with poor
programmability, e.g. Bitcoin). More specifically, custodians and assets are dis-
tributed into multiple custodian groups, where each group consists of few cus-
todians as its members and fully controls a small portion of all assets under
custody. The authentication of each custodian group requires the consent of
sufficiently many group members, which can be implemented with voting or
threshold signature. Under this framework, transactions can be processed more
efficiently within the very few group members, since the computational and com-
municational cost is significantly reduced. The liveness and robustness are also
improved since even a single alive custodian group can process transactions.
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The security of our proposed asset custody scheme is guaranteed against
a rational adversary: every custodian in this scheme must offer a fund as the
security deposit, which is kept together with the asset under custody and will be
used to compensate for any loss caused by misbehaving custodians. The system
remains secure as long as an adversary cannot steal more assets than the deposit
paid, i.e. comparing to launching an attack the adversary would be better off by
just withdrawing the security deposit of custodians controlled. Furthermore, we
prove that for an adversary who corrupts a limited fraction of custodians, our
scheme can safeguard customer assets of multiple times the value of the total
security deposit under suitable construction. This approach significantly reduces
the financing cost of a collateralized custody service.

1.1 Related Works

The prototype of decentralized asset custody scheme first appears in Bitcoin as
multisignature (multisig) [2], where the authentication requires signatures from
multiple private keys rather than a single signature from one key. For example,
an M -of-N address requires signatures by M out of totally N predetermined
private keys to move the money. This näıve scheme works well for small M and
N but can hardly scale out, because the computational and communicational
cost of authenticating and validating each transaction grows linearly in M . Both
efficiency and liveness of the scheme are compromised for large M and N , espe-
cially in the sleepy model proposed by Pass and Shi [20] where key holders do not
always respond in time. In practice, a multisignature scheme is typically used at
the wallet level rather than as a public service, since the scheme becomes costly
for large N and most Bitcoin wallets only support N ≤ 7. We remark that mul-
tisignature schemes may be coupled with advanced digital signature techniques
such as threshold signature [3,12] or aggregate signature [1,18,24] to reduce the
cost of verifying multi-signed signatures.

As for the cross-chain asset mapping service, existing solutions mainly include
the following types:

– Centralized: custody in a trusted central authority, with the endorsement
fully from that authority, e.g. H-Tokens [16], WBTC [29] and imBTC [28];

– Consortium: custody in multisignature accounts controlled by an alliance of
members, and endorsed by the reputation of alliance members, e.g. cBTC [7]
(in its current version) and Polkadot [30];

– Decentralized (with deposit/collateral): custody provided by permissionless
custodians, with security guaranteed by over-collateralized cryptoassets, e.g.
tBTC [27] and renBTC [22] (in its future plan).

The last type seems satisfiable in decentralization and security against single-
point failure and collusion. Meanwhile, existing solutions (tBTC and renBTC)
have security guaranteed in the sense that an adversary will not launch a non-
profitable attack. However, for these solutions, significant drawbacks exist as
well. The first drawback is the inefficiency caused by over-collateralization, e.g.
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tBTC requires the custodian to provide collateral worth of 150% value of cus-
tomer’s assets, and renBTC requires 300%. The second drawback is that these
solutions cannot support homogeneous collateral as the assets under custody.
Otherwise, an adversary corrupting a single group would be able to steal more
than the collateral paid, therefore breaking the safety of the custody service in
market volatility. We remark that [13] considers the dynamic adjustment of the
deposit of custodians in the long run. However, this work implicitly assumes
that the security of the system is irrelevant with the behavior of custodians
(e.g. by introducing cryptographic methods like in Bitcoin). Such assumption is
inapplicable in the game-theoretic setting we discuss here.

1.2 Our Contributions

Our contributions lie in the following six parts:

– In literature, we are the first to consider the possibility of homogeneously
keeping exterior assets and custodians’ deposit in the scenario of decentral-
ized asset custody. To model such feasibility, we formalize the concept of
custody scheme and further propose the concept of efficiency factor of a
custody scheme for any adversary power (Section 2). The latter captures
the maximal ratio of capable exterior assets to deposit that the underlying
custody scheme can safely handle against a rational adversary.

– We propose a series of evaluation criteria to specify the performance of a
custody scheme (Section 2). Combining with the previous point, we give a
complete framework for analyzing a custody scheme and comparing different
custody schemes. We point out that the underlying group assignment scheme
is the core of a custody scheme.

– We present four kinds of concrete construction of group assignment schemes.
For each of them, we theoretically give an exact value/a lower bound on the
efficiency factor of the custody scheme they induce (Section 3, Appendix A).
Some results turn out to be magnificent. For example, we show that we
can assign 24 custodians to 759 groups such that as long as the adversary
corrupts γ ≤ 1/4 fraction of all custodians, the custody scheme is capable
of safekeeping assets worthy of η > 30.62 times of total collateral.

– We prove that the random sampling trick significantly reduces the size of
group assignment scheme without losing too much in the efficiency factor
(Section 4). Therefore, random sampling resolves the problem of too many
groups inside a custody scheme. More specifically, suppose we have a custody
scheme consisting of n participants and its efficiency factor is η against some
adversary. By randomly sampling O (ηn) many groups, the newly induced
custody scheme would have efficiency factor η′ ≥

√
η + 1 − 2 against the

same adversary with high probability. An important corollary shows that we
can construct Θ(n) groups with identical size Θ(1) to obtain an efficiency
factor of Θ(1) against an adversary with constant power.

– For the complexity issue, we prove that it is NP-hard to find an optimal
corrupting strategy in general. However, given a group assignment, we show



DAC Scheme with Security against Rational Adversary 5

that within polynomial time, we can find a solution no worse than the average
case (Appendix B).

– We conduct extensive experiments to reveal the real-life performance of the
group assignment scheme designs we propose (Appendix D), also as a com-
plement to our theoretical study. We further compare these designs according
to the evaluation criteria we present. As an accessory, we expose the potential
positive correlation between the efficiency factor and the number of custo-
dian groups. Nevertheless, complicated assignments with too many groups
may be infeasible to manage in practice.

For writing smoothness, proofs of all propositions and theorems in the main
body are deferred to Appendix C.

2 Model

Our goal is to implement the decentralized custody scheme without relying on
any trusted party. More specifically, we investigate the feasibility that n custo-
dians (a.k.a. n nodes) jointly provide the custody service, such that the security
is guaranteed as long as a bounded fraction of custodians are corrupted, e.g. no
more than n/3 nodes are corrupted simultaneously. This assumption of an hon-
est majority is much milder than assuming a single party trusted by everyone,
and hence likely leads to a better security guarantee in practice.

The decentralized custody scheme is based on overlapping group assignments.
That is, custodians are assigned to overlapping groups, and each group is fully
controlled by its members and holds a fraction of the total assets under custody,
including both deposit from custodians and assets from customers. In what fol-
lows we assume that the in-safekeeping assets are evenly distributed to custodian
groups, since an uneven distribution naturally leads to degradation of security
and capital efficiency.

Furthermore, we consider the security of a custody scheme against a rational
adversary : the adversary may corrupt multiple nodes, but will not launch an
attack if the potential profit does not exceed the cost. To achieve security under
such a model, every custodian in our scheme must provide an equal amount of
deposit, which will be confiscated and used for compensation in case of mis-
behavior. Thus, if misbehavior can be detected in time, no rational adversary
would ever launch an attack as long as the deposit paid outweighs the revenue of
a successful attack. Here, we emphasize that instead of resorting to another level
of collateral custody service, the deposit from custodians is maintained as a part
of the total assets under custody, together with assets from external customers.

As a remark, we assume that attacks in the decentralized custody scheme can
be detected immediately. If the decentralized custody service is for cryptoassets
and deployed on a blockchain, then all instructions from customers and transfer
of assets are transparent to everyone, and hence any malicious transaction will
be caught immediately. Alternatively, the detection may be implemented with
the periodic examination which ensures that misbehavior is discovered before
the adversary can exit or change the set of corrupted nodes. In other scenarios,
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detecting corrupted behavior may be a non-trivial problem, but for the sake of
this study we will leave it out to avoid another layer of complication.

The incentive of agents participating in this collateralized custody scheme is
also indispensable for a full-fledged decentralized custody service. A reasonable
rate of the commission fee and/or inflation tax would be sufficient to compensate
the cost of agents providing such custody service. In the blockchain scenario, an
extra per-transaction fee is also an option. Overall we believe that the mechanism
design to incentivize custodians is essentially another topic, which is beyond the
scope of this work and should be left for future study.

A trivial but useless solution. In the most trivial solution, the asset under
custody can only be moved when approved by all custodians or at least a majority
of them. However, as n grows getting such an approval becomes expensive and
even infeasible in practice, especially when honest participants may go off-line
(as in the sleepy model [20]), which renders the trivial scheme useless.

Although the above solution is not satisfactory, it does provide enlightening
ideas for designing a better custody scheme. The threshold authorization scheme
guarantees that the adversary cannot move any assets under custody if not
a sufficient number of nodes are corrupted. More generally, this is a specific
case of security against the rational adversary, where with bounded power, the
adversary’s deposit outweighs the revenue of launching an attack. Again, as long
as this property is satisfied the custody scheme is secure in our model.

In particular, the following toy example shows the feasibility of implementing
our idea with multiple overlapping subsets of S as custodian groups. In this
example, each 3-subset of S controls a certain fraction of the total assets under
custody. Here S is the set of all custodians.

Example 1 (Toy example). Consider the case when 10 units of exterior assets
are under custody. Assume there are n = 5 custodians, each paying a deposit
of 6 units of assets, amounting to 30 units. Let each of the 10 3-subsets of S
form a custodian group, and assign all 40 units of assets equally to all groups,
i.e. each custodian group controls 4 units. If the asset controlled by each group
can be moved with approval of 2 out of 3 members in that group, then an
adversary controlling 2 nodes can corrupt exactly 3 custodian groups. However,
by controlling 3 groups the adversary can only move 4×3 = 12 units, which is no
more than the deposit of corrupted nodes (also 12 units). Thus such a custody
scheme for n = 5 is secure against adversaries controlling up to two nodes.

In what follows, we will formalize the model of a decentralized custody scheme
with assets evenly distributed among custodian groups. To start with, we intro-
duce a formal definition of the custody scheme we consider in this work.

Definition 1 (Custody scheme). A custody scheme (S,A, µ) consists of the
following three parts:

– S = {1, 2, · · · , n} denotes the set of all custodians (or simply nodes);
– A denotes a family of m k-subsets of S, such that each element in A (i.e. a
k-subset of S) represents a custodian group under the given custody scheme;
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– µ ∈ [1/2, 1) denotes a universal authentication threshold for all custodian
groups, i.e. the asset controlled by that group can be settled arbitrarily with
approval of strictly above µk group members.

We emphasize that the elements in A do not have to be disjoint. In fact, it
is imperative to use overlapping subsets in any meaningful solution. In certain
cases, there might even exist repeated elements in A.

In this work, we focus on the symmetric setting where every node provides
the same amount of deposit and every custodian group has the same fraction of
total assets in custody. At the same time, our discussion of the authentication
threshold µ mainly focuses on µ = 1/2 and µ = 2/3. 3 We let r = dµk + εe
denote the smallest integer greater than µk, and hence the authentication of
every custodian group is essentially an r-of-k threshold signature scheme.

We represent the adversary power with γ ∈ (0, 1), which refers to the fraction
of corrupted nodes in S. Specifically, we let s = bγnc denote the number of
corrupted nodes in S. 4 The adversary is allowed to adaptively select corrupted
nodes and then get all information and full control of those nodes thereafter, as
long as the number of corrupted nodes does not exceed s. In case a group in A
contains at least r corrupted nodes, we say that group is corrupted. Furthermore,
we remark that the adversary has reasonably bounded computing power, so that
cryptographic primitives such as digital signatures are not broken.

Given a custody scheme (S,A, µ), together with γ for the adversary power,
we use the function f(γ;S,A, µ) to denote the maximal number of groups that
may be corrupted. Formally,

f(γ;S,A, µ) := max
B⊆S:|B|=dγne

|{A ∈ A | |A ∩B| > µk}| . (1)

Recall that as all assets under custody are equally distributed to all cus-
todian groups, each corrupted group values equal to the adversary. Therefore,
f(γ;S,A, µ) directly resembles the maximal gain of the adversary.

We further define the efficiency factor of a custody scheme, which captures
the ability to securely holding exterior assets.

Definition 2 (Efficiency factor of a custody scheme). Given a custody
scheme (S,A, µ) and adversary power γ defined as above, the efficiency factor
of this scheme against γ-adversary, denoted by η, is defined as:

η :=
γ ·m

f(γ;S,A, µ)
− 1.

3 In a synchronous network, µ ≥ 1/2 is a sufficient condition for the existence of
expected-constant-round Byzantine agreement protocols in the authenticated setting
(i.e., with digital signature and public-key infrastructure) [17], whereas µ ≥ 2/3 is
necessary and sufficient for the existence of Byzantine agreement protocols in the
unauthenticated setting [21]. We further remark that smaller µ implies less security
but better liveness, for example, when µ → 0, even a single corrupted member can
block a custodian group. However, the discussion of liveness is beyond the scope of
this work.

4 In most parts of the paper, we slightly abuse the notation and assume that γn is
always a natural number, i.e. s = γn ∈ N.



8 Z. Chen, G. Yang

where m is the total number of custodian groups induced by A.

The efficiency factor η indeed equals the maximal ratio of capable exterior
assets to deposit that the underlying custody scheme can handle. Specifically,
suppose that u units of assets are deposited in total, and v units of exterior
assets are in custody. According to (1), by launching an attack the adversary
is able to seize the funds of f(γ;S,A, µ) custodian groups, which amounts to
(u + v) · f(γ;S,A, µ)/m units of assets, at the cost of losing deposit worthy of
value γ · u units. Recall that in our model, collateral and exterior assets are
homogeneous and kept together by the custodian groups, therefore, the custody
scheme is secure as long as f(γ;S,A, µ)/m · (u + v) ≤ γ · u, or equivalently,
v/u ≤ η according to Definition 2.

As an example for the definition, η = 1 implies that the system is secure
when the total value of exterior assets is no more than the total value of deposit.

Notice that when the efficiency factor η < 0 for some γ, the custody scheme
against that γ-adversary is always insecure, regardless of the amount of deposit.
To capture such property, we further define the reliability and safety of a custody
scheme based on the Definition 2.

Definition 3 (Reliability and safety of custody scheme). For a custody
scheme (S,A, µ) and adversary power γ, we say that the custody scheme is
γ-reliable if the efficiency factor η of the scheme is non-negative against γ-
adversary, i.e. f(γ;S,A, µ) ≤ γ ·m. Furthermore, the scheme is secure against
γ-adversary (or simply secure) if it is γ′-reliable for every γ′ ∈ (0, γ].

Putting into our formal definition, the trivial solution with only one custodian
group (i.e. k = n, m = 1) has efficiency factor η = ∞ for γ ≤ µ and η < 0 for
γ > µ; the custody scheme in Example 1 has its efficiency factor η changing
according to the adversary power γ as summarized in Table 1. In particular,
for γ = 1/5 and γ = 2/5, the scheme is reliable with η = ∞ and η = 1/3
respectively. For γ ≥ 3/5 the scheme is unreliable with η < 0.

Table 1. The efficiency factor of the custody scheme under different adversary power
in Example 1.

parameters \ adversary power (γ) 1/5 2/5 3/5 4/5

# corrupted nodes (s) 1 2 3 4

# corrupted custodian groups (f(γ;S,A, µ)) 0 3 7 10

efficiency factor (η) ∞ 1/3 −1/7 −1/5

The authentication threshold is realized as r = 2 and µ = 1/2 (in this example
equivalent to have µ ∈ [1/3, 2/3)).



DAC Scheme with Security against Rational Adversary 9

From the formalization of our decentralized custody scheme, it is clear that
the custodian group assignment A is the core of the whole custody scheme. In
particular, for a fixed n, every specific group assignment A and fixed constant µ
(say, µ ∈ {1/2, 2/3}), as the parameters m and k are already specified in A, the
maximal number of corrupted groups and the efficiency factor η are functions
solely depending on the adversary power γ.5

Therefore, in the rest of this paper, we will focus on the construction and
analysis of custodian group assignment schemes. In the meantime, we point out
that it is meaningless merely to study a single group assignment scheme. Even in
real life, the group assignment scheme should be adjusted with the joining and
leaving of custodians. Instead, we focus on the systematic construction methods
which lead to group assignment scheme families.

Definition 4 (Group assignment scheme family). We say C = {An}n∈I
is a group assignment scheme family, if

– I is an index set;

– An is a group assignment scheme with n nodes;

– all group assignment schemes in C imply an identical group size.

Evaluation criteria. In this work, we use the following evaluation criteria when
comparing two group assignment scheme families with the same group size:

1. Efficiency factor. Firstly, we consider the efficiency factor η of schemes in
two families with the same number of nodes under adversary power γ =
1/2 · µ, 2/3 · µ. We prefer the family with a higher efficiency factor of group
assignment schemes.

2. Number of groups. Secondly, we consider the size m of schemes in two families
with the same number of nodes. We prefer the family with less size of group
assignment schemes. In real life, a large amount of groups leads to a high
maintenance cost of the custody scheme.

3 Constructions of Group Assignment Schemes

In this section, we propose three types of group assignment schemes and analyze
the performance of resultant custody schemes. We also provide empirical analysis
of these schemes with concrete numbers for a better understanding. We leave
another type of group assignment scheme to Appendix A.

5 We remark that the number of custodians n is not always extractable from the
group assignment scheme A, as in some cases, especially when we consider random
sampling in Section 4), some custodians may belong to no group.
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3.1 Symmetric Design

Construction 1 (Symmetric design). Given n and k, let Asym be a family
consisting of all k-subsets of S as custodian groups, i.e. Asym is an assignment
with m =

(
n
k

)
different groups where each group has k nodes. For every authen-

tication threshold µ, a custody scheme is induced by Asym and µ.

Due to the perfect symmetry ofAsym, it immediately follows that the number
of corrupted groups in the above custody scheme only depends on the number
of corrupted nodes. For the adversary corrupts any set of γn nodes, the number
of corrupted groups can be calculated as follows:

f(γ;S,Asym, µ) =
∑
r≤t≤k

(
γn

t

)(
n− γn
k − t

)
. (2)

The efficiency factor turns out to be η = γ ·
(
n
k

)/∑k
t=r

(
γn
t

)(
n−γn
k−t

)
−1. When

µ ≥ γ,6 according to the tail bound of hypergeometric distribution [5], we have

η = γ ·
(
n

k

)/ k∑
t=r

(
γn

t

)(
n− γn
k − t

)
− 1 ≥ γ · e2(γ−µ)2k − 1, (3)

which establishes a good lower bound on the efficiency factor of the symmetric
design under appropriate γ.

In the following proposition, we demonstrate that for appropriately large k,
Asym is secure for γ close to µ. The proof is provided in Appendix C.1.

Proposition 1. For any k and n, given µ and corresponding r = dµk + εe, if√
2(r − 1) ln k−1

r−1 < min{r− 1, k− r}, then the custody scheme induced by Asym
and µ is secure against γsym-adversary, for γsym defined as follows:

γsym :=
r − 1−

√
2(r − 1) ln k−1

r−1

k − 1
.

For the special case when n is even, k is odd, n ≥ 2k and µ = 1/2, the secu-
rity threshold of custody scheme induced by symmetric design can be enhanced
to 1/2, as shown in the following proposition. The proof of the proposition is
deferred to Appendix C.2.

Proposition 2. For any odd k and even n with n ≥ 2k, the custody scheme
derived from Asym and µ = 1/2 is secure against 1/2-adversary.

6 We mention that in this work, when considering the reliability of a custody scheme,
we tacitly approve that µ ≥ γ. For a better understanding, consider the first example
with only one group consisting of all custodians. Under such group assignment, when
γ > µ, the scheme is surely γ-unreliable.
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Fig. 1. The efficiency factor η against adversary power γ for Asym as in Construction 1.
In particular, η < 0 iff the custody scheme is not secure for the corresponding γ.

Fig. 1 depicts the relation between efficiency factor η and adversary power γ,
for n ∈ {20, 60}, k ∈ {5, 7}, and µ ∈ {1/2, 2/3}. Basically, we see that with fixed
n, k and µ, the efficiency factor η of the custody scheme induced by symmetric
design decreases as γ grows. Further, for combinations of reasonably large n and
k, the efficiency factor η can be above 10 when γ is roughly 1/2 ·µ. For instance,
when n = 20, k = 5 and µ = 2/3, we have m =

(
20
5

)
= 15, 504 and the efficiency

factor η = 10.4 against adversary with power γ = 0.35.
Fig. 2 illustrates the behavior of the efficiency factor η versus the custodian

group size k, for n ∈ {20, 60}, µ ∈ {1/2, 2/3} and γ ∈ {1/3 · µ, 1/2 · µ, 2/3 · µ}.
The figure shows that in general, η increases with k for custody schemes induced
by Asym. The sawteeth appearing on the curves are due to the rounding of r
and s, i.e. the authentication threshold and the number of corrupted nodes.

Finally we remark that the construction of Asym by itself is mainly a theo-
retical result. Because the size of such group assignment m =

(
n
k

)
grows too fast

and hence n and k must be severely bounded in practice, e.g. n ∼ 20 and k ∼ 5,
in order to keep m reasonable. One solution to mitigate the above issues is by
random sampling, as exhibited in Section 4.

3.2 Polynomial Design

The following construction of group assignments relies on polynomial-based com-
binatorial designs.

Construction 2 (Polynomial design). For given k, let q ≥ k be a prime
and the number of custodians be n = kq. Let T = {(a, b) | 0 ≤ a ≤ k −
1, 0 ≤ b ≤ q − 1} be a set of size kq, therefore, there is a bijection from S
to T . (For simplicity, we use an element in T to represent the unique cor-
responding element S.) At last, let 0 < d < k be a integer. The polyno-
mial design Apoly is a family of m = qd k-subsets of S defined as Apoly :=
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Fig. 2. The efficiency factor η against group size k for Asym as in Construction 1.
Blank points on the right side refer to η = ∞ when adversary cannot corrupt even a
single custodian group.

{A(p) | p is a degree-d monic polynomial over Z/qZ}, where ∀p,A(p) := {(i, p(i))
| 0 ≤ i ≤ k − 1}. Then, for every authentication threshold µ, a custody scheme
can be induced by Apoly and µ.

It is easy to verify that Apoly consists of m distinct groups, and the in-
tersection of any two distinct groups in Apoly is strictly bounded by d by the
Fundamental Theorem of Algebra, i.e.:

∀Ap, Aq ∈ Apoly, Ap 6= Aq =⇒ |Ap ∩Aq| < d. (4)

Hence, the efficiency factor η of the custody scheme induced by polynomial
design is lower bounded as below. The proof is present in Appendix C.3.

Theorem 1. Given parameters k, q, d, n = kq, µ and corresponding r, the
efficiency factor η of the custody scheme induced by Apoly and µ against a γ-
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Fig. 3. The lower bound of efficiency factor η (by Theorem 1) against adversary power
γ for Apoly as in Construction 2. Recall that n = kq in Apoly.

adversary is lower bounded as follows:

η ≥ γ1−d ·
(
r

d

)/(
k

d

)
− 1.

Surprisingly, the lower bound of η given by Theorem 1 does not rely on the
selection of q.

From Theorem 1, we immediately obtain the following proposition:

Proposition 3. Given parameters k, q, d, n = kq, µ and corresponding r, the
custody scheme induced by Apoly and µ is secure against γpoly-adversary for γpoly
defined as:

γpoly :=

((
r

d

)/(
k

d

)) 1
d−1

.

Fig. 3 depicts the relation between the lower bound of η following Theorem 1
against the adversary power γ, for µ ∈ {1/2, 2/3} and k, q, d as shown in the
figure. Note that n = kq. It is easy to see that the lower bound of η increases
as k and d become larger with fixed corrupted fraction γ. For specific choices
we get η ≥ 9.45 against adversary with γ = 3/11, when µ = 2/3 and Apoly is
parameterized by n = 121, k = q = 11 and d = 4, with totally m = 14, 641
groups. Furthermore, we remark that under the estimation of Theorem 1, the
efficiency factor η increases rapidly as γ decreases since η ∼ γ1−d. For instance,
the lower bound for η is improved to no less than 34.29 when γ is reduced from
3/11 to 2/11 in the above example.

The polynomial design only implies a group number of kd = O(nd/2), which
is far smaller than the group number of

(
n
k

)
given by symmetric design. Our sub-

sequent experiments (see Appendix D) show that considering efficiency factor,
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polynomial design behaves a bit worse than symmetric design. Nevertheless, the
result is pleasing enough for a realization in practice.

3.3 Block Design

One may notice that the previous two constructions give custody schemes with a
rather large number of groups. For symmetric design, we have

(
n
k

)
groups; and for

polynomial design, we have kd = Θ(nd/2) groups. Now we come to constructions
which lead to a smaller number of groups. Specifically, in this section, we consider
block designs. We also study a multi-layer sharding design in Appendix A.

A block design is a particular combinatorial design consisting of a set of
elements and a family of subsets (called blocks) whose arrangements satisfy
generalized concepts of balance and symmetry.

Construction 3 (Block design, from [26], with notation revised). Let
n, k, λ and t be positive integers such that n > k ≥ t. (S,Ablck) is called a
t-(n, k, λ)-design if S is a set with |S| = n and Ablck is a family of k-subsets
of S (called blocks), such that every t-subset of S is contained in exactly λ
blocks in Ablck. One can verify that the number of blocks of a t-(n, k, λ)-design

is m = λ ·
(
n
t

)/(
k
t

)
.

In fact, block design naturally extends symmetric design (Construction 1),
in the sense that Asym is a degenerated block design with t = k and λ = 1. In
what follows, a “block” in the block design is also called a “group” in the group
assignment scheme.

The following theorem, which is proven in Appendix C.4, shows the effec-
tiveness of block designs:

Theorem 2. For every t-(n, k, λ)-design (S,Ablck), let µ ≥ (t − 1)/k (which
implies that r ≥ t), then the efficiency factor η of the custody scheme induced by
Ablck and µ against a γ-adversary (i.e., the adversary corrupting s = γn nodes)
is lower bounded as follows:

η ≥ γ ·
(
n
t

)(
k
t

) · (rt)(s
t

) − 1.

The following proposition further shows that the custody scheme induced
by block design is secure with proper γ. The proof of the proposition is in
Appendix C.5.

Proposition 4. When n ≥ 3k − 3, and µ ≥ 1/2, r ≥ max{t, 3}, the custody
scheme induced by an r-(n, k, λ)-design with µ is secure against γblck-adversary,
for γblck defined as follows:

γblck :=
1

k
· µ

1
t−1 +

t− 1

n
.
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Fig. 4. The lower bound of efficiency factor η (by Theorem 2) against adversary power
γ for Ablck as in Construction 3. All six concrete block designs shown in this figure
have explicit constructions [6, 26].

When t = 2, according to Theorem 2, we have η ≥ n−1
s−1 ·

r(r−1)
k(k−1) − 1 ≈ µ2

γ − 1,

which implies that the efficiency factor is at least Ω(1) when γ ≥ 1/2 ·µ. When k

and λ are constant, the corresponding number of groups is λ ·
(
n
2

)/(
k
2

)
= Θ(n2).

With larger t, the result given by Theorem 2 is even more inspiring.

Fig. 4 shows the lower bound of η obtained by Theorem 2 versus the adver-
sary’s power γ for different block designs with µ ∈ {1/2, 2/3}. We clearly observe
that the lower bound of η significantly increases with the value of t under fixed
corrupted fraction γ. Further, although Theorem 2 only provides a lower bound
estimation for large γ, we still achieve satisfying numerical results. For instance,
using the custody scheme induced from the 5-(24, 8, 1)-design (see [6,26] for the
construction) with m = 759 custodian groups and µ = 1/2, the efficiency factor
η is no less than 30.62 when γ ≤ 1/4.

Meanwhile, our further experimental results demonstrate that block design
has a comparable performance with polynomial design (See Appendix D), which
indicates that block design finds its application in constructing custodian groups
under the scenario of decentralized asset custody in our model.
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4 Compressing Group Assignment Schemes via Random
Sampling

We notice that under symmetric design and polynomial design, a group assign-
ment scheme A may contain too many custodian groups, which renders the
induced custody scheme almost impossible to manage in practice. To mitigate
this problem, we propose a randomized sampling technique to construct compact
custody schemes with a smaller number of custodian groups sampled from A as
representatives.

Construction 4 (Random sampling). Given a group assignment scheme A
consisting of m groups, as well as a sampling rate β ∈ (0, 1), we uniformly sample
a subset of βm elements from A at random as the new assignment scheme A′,
and then construct a custody scheme based on A′. The sampling process does
not affect on the authentication threshold µ.

In what follows we analyze the efficiency of A′ comparing to A. For a
given corrupted fraction γ, let H(γ) be a function of γ defined as H(γ) :=
− (γ ln γ + (1− γ) ln(1− γ)). Then the efficiency factor of custody scheme in-
duced by A′ is lower bounded as in the following theorem, which is proven in
Appendix C.6:

Theorem 3. Let A and A′ be defined as above, and suppose the corrupted
fraction γ satisfies nγ(1 − γ) ≥ 1.7 Let η and η′ be the efficiency factor of
the custody scheme induced by respectively A and A′ together with some fixed
µ against a γ-adversary. Then, for arbitrary c ≥ 0, with probability at least
1− e

2π exp(−cnH(γ)), the following lower bound for η′ holds:

η′ ≥ γ(η + 1) ·
√
βm

γ ·
√
βm+ (η + 1) ·

√
(1 + c)nH(γ)/2

− 1.

For c = 1, Theorem 3 transforms into an easy-to-digest version as in Corol-
lary 1.

Corollary 1. Let η be the efficiency factor of the custody scheme induced by A
and some µ against a γ-adversary. Let A′ be the group assignment scheme uni-
formly sampled from A at random with m′ groups. Suppose the custody scheme
induced by A′ and µ has efficiency factor η′ against the same γ-adversary. Then,
with probability at least 1− e

2π exp(−nH(γ)),

– η′ ≥
√
η + 1− 2, with m′ = (η + 1)nH(γ)/γ2;

– η′ ≥ (η − 1)/2, with m′ = (η + 1)2nH(γ)/γ2.

To better illustrate the effect of Corollary 1, we consider the symmetric design
in Section 3.1. (3) shows that the efficiency factor of the custody scheme induced
by symmetric design reaches Θ(n) with k = Θ(log n), and Θ(1) with k = Θ(1).
Combining with Corollary 1, we further obtain the following important corollary:

7 This is trivial if n > 4 and γn ≥ 2.
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Corollary 2. For fixed γ < µ, we can uniformly choose m different k-subsets of
S at random, where |S| = n, such that with probability 1−O(exp(−nH(γ))), the
efficiency factor η of the custody scheme induced by these subsets and µ against
a γ-adversary satisfies:

– η = Ω(1), with k = Θ(1) and m = Θ(n);
– η = Ω(

√
n), with k = Θ(log n) and m = Θ(n2);

– η = Ω(n), with k = Θ(log n) and m = Θ(n3).

5 Summary and Discussion

In this work we propose a framework of decentralized asset custody schemes
based on overlapping group assignments. The custody scheme reaches high effi-
ciency, with security guaranteed against any rational adversary that corrupts a
bounded fraction of custodians.

Explicit constructions of compact assignments with much less custodian
groups, efficient approximation algorithms for estimating the actual efficiency
factor of a given custody scheme in our framework, and more rigorous analysis
of liveness guarantee as well as the trade-off between liveness and security are
of independent interest, which we left for future work.
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Appendix A Multi-layer Sharding Design

In this section, we consider a multi-layer sharding design, which is an extension
of the simple idea to partition all nodes into non-overlapping groups with an
identical size.

Construction 5 (Multi-layer sharding design). For given k, let the number
of custodians |S| = n be a multiple of k. We use sharding layer to term a partition
of S into n/k groups, each with k custodians. Let l be any positive integer. With
n, k, l, a multi-layer sharding design Amls consists of l sharding layers of S.
Notice that such a group assignment scheme may include some groups more
than once. In particular, we use Armls to specify the realization of multi-layer
sharding design such that each sharding layer is independently and uniformly
drawn from all possibilities.

We are specifically interested in analyzing the custody scheme induced by
Armls. With n, k, l given, for some adversary power γ and corresponding number
of currupted nodes, resembling Section 4, we let

H(γ) := − (γ ln γ + (1− γ) ln(1− γ)) .

also, we let
κ(γ) := Pr[H(n, s, k) ≥ r].

Further, with any δ > 0, we define

τ(γ, δ) :=
2δ2 · n2/k2 · l · κ(γ)

2

n · (s/r − s/k + 1)
2 =

l

n
· 2δ2 · κ(γ)

2

γ2 · (1/r − 1/k + 1/s)2 · k2
.

We have the following theorem:

Theorem 4. Given parameters n, k, l, µ and corresponding r, the efficiency fac-
tor η of the custody scheme induced by Armls and µ against a γ-adversary sat-
isfies

Pr

[
η ≥ γ

(1 + δ) · κ(γ)
− 1

]
≥ 1− e

2π
· 1√

nγ(1− γ)
· exp(−n · (τ(γ, δ)−H(γ))).

Proof. First, consider a fixed set P of s = γn nodes that are corrupted by the
adversary. For 1 ≤ i ≤ l, let Xi be a random variable denoting the number of
corrupted groups in the i-th sharding layer, and X = X1 + · · ·+Xl be the total
number of corrupted groups. Clearly, the following inequalities hold:

s

k
− 1 ≤ Xi ≤

s

r
, ∀1 ≤ i ≤ l.

Meanwhile, according to the definition of Armls, we know that X1, · · · , Xl

are i.i.d with
E[Xi] =

n

k
· κ(γ), ∀1 ≤ i ≤ l.
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Therefore,

E[X] = E

[
l∑
i=1

Xi

]
=

l∑
i=1

E [Xi] = l · n
k
· κ(γ).

By Hoeffding’s inequality [15], we know that for any δ > 0,

Pr[X ≥ (1 + δ)E[X] | Z] ≤ exp

(
−2δ2 · n2/k2 · l · κ(γ)

2

(s/r − s/k + 1)
2

)
= exp (−n · τ(γ, δ)) .

With regard to all
(
n
s

)
possibilities of P the corrupted set, by a union bound

and Stirling’s formula, we obtain that

Pr[f(γ;S,Armls, µ) ≥ (1 + δ)E[X]]

≤
(
n

s

)
· exp (−n · τ(γ, δ))

≤ e

2π
· 1√

nγ(1− γ)
· exp(−n · (τ(γ, δ)−H(γ))).

Finally, when f(γ;S,Armls, µ) ≥ (1 + δ)E[X] holds, we further derive that

η =
γ ·m

f(γ;S,Armls, µ)
− 1 ≥ γ

(1 + δ) · κ(γ)
− 1,

which finishes the proof. ut

It is worth noting that in Theorem 4, in order that the failure probability is
negligible in n, it is required that τ(γ, δ) = Ω(1). As per definition, τ(γ, δ) =
Θ(l/n) when k is a constant. Therefore, we demand that l = Ω(n), or the total
number of groups m = Ω(n2).

Fig. 5 shows the logarithm of failure probability to the base 10 obtained by
Theorem 2, that η is no less than 1.5 or 2.5 when µ = 1/2 or µ = 1/3 for ran-
dom multi-layer sharding designs with n = 120 and k = 5. We see that with the
accumulation of layers, the failure probability shows an exponential decrease. In
general, random multi-layer sharding designs turn out to be acceptable. Con-
cretely, when n = 120, k = 5 and l = 480, the efficiency factor of the custody
scheme induced by Armls and µ = 1/2 is no less than 1.5 with probability
1− 10−15 for adversary power γ = 1/4. When l = 60 and µ = 2/3, such failure
is enhanced to 1−10−19 for a higher threshold η ≥ 2.5. Nevertheless, our empir-
ical results reveal that random multi-layer sharding design behaves worse than
polynomial design and block design, both on efficiency factor and the number of
groups. See Appendix D for details.

Appendix B Hardness Results

In this section, we consider the hardness issue of finding the best corrupting
strategy, given a group assignment scheme and the number of corrupted nodes.
In general, we show that such problem is NP-hard, in the following theorem.
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Fig. 5. The logarithm of failure probability to the base 10 (by Theorem 4) of efficiency
factor η no less than given value against adversary power γ for Armls with n = 120
and k = 5 as in Construction 5.

Theorem 5. Suppose 1 ≤ r ≤ k are given constants, where r = dµk + εe. Let
|S| = n, and A be a group assignment scheme such that m = |A| is within
a polynomial size of n, and all groups in A have size k. Further, suppose an
adversary controlling r < s = γn < n nodes. Then, when 1 ≤ r < k, it is NP-
hard for the adversary to find the optimal attacking strategy and compute the
value f(γ;S,A, µ).

Proof. We first deal with the case when r = 1. In fact, in this case, when k = 2,
the origin problem is equivalent to MAX s-VC in common graphs, which is
known to be NP-hard [9]:

Problem 1 (MAX s-VC). Given a common graph G = (V,E), |V | = n, and
s = n, find a subset P of s vertices that maximizes the total number of edges
covered by P . We say an edge is covered by P iff at least one of its endpoints
lies in P .

When r = 1 and k > 2, the problem is equivalent to the MAX s-VC on
k-uniform hypergraph. Here, a k-uniform hypergraph is a hypergraph in which
each edge contains exactly k vertices.

Problem 2 (MAX s-VC on k-uniform hypergraph). Given a k-uniform hyper-
graph G = (V,E), |V | = n, and s = n, find a subset P of s vertices that
maximizes the total number of hyperedges covered by P . We say a hyperedge is
covered by P iff at least one of its endpoints lies in P .

We reduce MAX s-VC in common graphs to this problem. Specifically, con-
sider a realization of the problem in the common graph G = (V,E) with m
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edges. We transfer G to a k-uniform hypergraph G′ = (V ′, E′) by adding
(k − 2)m vertices to V . Specifically, denote these vertices as v1

1 , v
2
1 , · · · , vm1 , · · · ,

v1
k−2, v

2
k−2, · · · , vmk−2. For each edge ei in G, 1 ≤ i ≤ m, we add vi1, v

i
2, · · · , vik−2

to ei and obtain an edge e′i in E′ containing k vertices.
Now consider the MAX s-VC solution in k-uniform hypergraph G′. We show

that there is an optimum that contains no vertex in V ′ \ V . In fact, we suppose
that there is an optimal solution containing some vertex v in V ′ \V . Note that v
is incident with only one hyperedge e. On one hand, if not both two vertices in e
that belong to V are selected, then we can replace v with any unselected vertex in
these two vertices, still remaining an optimal solution. On the other hand, if both
vertices in that edge that belong to V are selected, we can alternatively pick any
unselected vertex in V , still obtaining an optimal solution. We can always achieve
this, as s < n. According to such a method, we can successively substitute all
selected vertices in V ′ \ V with vertives in V , eventually achieving an optimal
solution with selected vertices all in V . Therefore, the optimal solution in the
k-uniform hypergraph immediately leads to the optimal solution in the original
problem instance in the common graph, by ignoring all vertices in V ′ \ V . Note
that the reduction runs in polynomial time since m is within a polynomial size of
n and k is a constant. Hence, MAX s-VC on k-uniform hypergraph is NP-hard
as well.

We should mention that the MAX s-VC problem in k-uniform hypergraphs
(k ≥ 2) is indeed a particular case of MAX s-Cover, with each element existing in
precisely k sets. The reduction is to deem each vertex as a set, including all edges
incident to the vertex. There is a simple (1 − e−1)-approximation polynomial-
time greedy algorithm for MAX s-Cover [8, 14]. Furthermore, it is known that
in general, for any ε > 0, there is no deterministic (1 − e−1 + ε)-approximation
for this problem in polynomial time unless P = NP [11].

When k > r > 1, the original problem is equivalent to the following problem:

Problem 3 (MAX s-Vertex r-Cover on k-uniform hypergraph). Given a k-uniform
hypergraph G = (V,E), |V | = n, and s = n, find a subset P of s vertices that
maximizes the total number of hyperedges r-covered by P . We say a hyperedge
is r-covered by P iff at least r of its endpoints lies in P .

We reduce MAX (s − r + 1)-VC in (k − r + 1)-uniform hypergraph to this
problem. Again, consider an instance G = (V,E) of MAX (s − r + 1)-VC in
(k−r+1)-uniform hypergraph. We add (r−1) vertices to V , as well as including
them in each hyperedge in E to achieve G′ = (V ′, E′), which is an instance of
Problem 3. Consider the optimal solution in this instance. We claim that there
always exists an optimal solution that includes the appended (r−1) vertices. To
show this, consider any optimal solution with some vertex v in V ′\V unselected.
Then, replacing any selected vertex in V with v also achieves optimal, as v is
contained in all hyperedges. Therefore, under such optimal solution, an edge in
G′ is covered if and only if the corresponding edge in G is covered in the origin
MAX (s− r+ 1)-VC instance in (k− r+ 1)-uniform hypergraph. Consequently,
such an optimal solution in our created instance immediately leads to an optimal
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solution in the origin problem, by ignoring all vertices in V ′ \ V . Furthermore,
such reduction runs in polynomial time of n, which leads to the NP-hardness of
Problem 3. ut

Theorem 5 shows that generally, it is hard for the computationally bounded
adversary to figure out the best attacking strategy. Nevertheless, there is a de-
terministic algorithm for the adversary to figure out a strategy which corrupts
at least an average amount of groups. Resembling Appendix A, let κ(γ) :=
Pr[H(n, s, k) ≥ r]. Apparently, κ(γ)m is the expected number of groups that
the adversary can corrupt when the γn corrupted nodes are chosen uniformly at
random. We have the following theorem:

Theorem 6. Let κ(γ) be defined as above. Suppose computing each binomial co-
efficient with size n takes time no more than T (n). Then there is a deterministic
algorithm that gives an attacking strategy which corrupts at least κ(γ)m groups,
running in time O (kmnT (n)).

Proof. Algorithm 1 shows how to find the desired strategy. Specifically, in step
1 ≤ i ≤ n (Line 2), given a temporary corrupted list P and honest list Q
(P ∪ Q = {1, 2, · · · , i − 1}), the adversary decides whether or not to corrupt
node i. To figure this out, the adversary needs to compute the expected number
of corrupted groups xi conditioning on nodes in P ∪ {i} are already corrupted
and nodes in Q are honest, and other nodes are corrupted uniformly at random
under the constraint that s nodes are corrupted in total (Line 3). In detail, the
adversary should compute the conditional probability on each group is corrupted
and take a sum over all groups to derive xi. If xi ≥ κ(γ)m, node i will be
included in P (Line 5), otherwise it will be given up by the adversary (Line 7).
The algorithm ends whenever s nodes are already chosen (Line 9) or n−s nodes
are already given up (Line 12). Algorithm 1 runs in time O (kmnT (n)) as there
are at most n steps, and in each step, one needs to compute the conditional
probability for each of m groups, and computing each conditional probability
gives the time complexity of O (kT (n)).

Clearly, Algorithm 1 is sure to end up with a size-s subset P of S. To show
that corrupting P leads to at least κ(γ)m groups controlled by the adversary,
we need the following lemma.

Lemma 1. Suppose Algorithm 1 does not end after step i. Let xi(i ≥ 0) be
the expected amount of corrupted nodes conditioning on P is corrupted, Q is
honest after step i and other nodes are corrupted uniformly at random under the
constraint that s nodes are corrupted in total, then xi ≥ xi−1. Specifically, we
have x0 = κ(γ)m.

Proof (Lemma 1). To show this lemma, let Y be a random variable denoting
the number of corrupted groups. Furthermore, let ai < s and bi < n − s be
respectively the size of P and Q after step i (denote by the state of P and Q of
that time by Pi and Qi, respectively), ai + bi = i. Then we have the following
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Algorithm 1 Corrupting at least an average amount of groups.

Input: The node set S = {1, 2, · · · , n}, the group assignment scheme A with
parameters m and k, least number of nodes to control a group r, number of
corrupted nodes s.

Output: P ⊆ S with |P | = s, such that when P is corrupted, the adversary can
at least control κ(γ)m groups, with κ(γ) defined as κ(γ) := Pr[H(n, s, k) ≥
r].

1: P ← ∅, Q← ∅
2: for i← 1 to n do
3: Compute the expected number of corrupted groups xi conditioning on

nodes in P ∪{i} are corrupted and nodes in Q are honest, and other nodes
are corrupted uniformly at random under the constraint that s nodes are
malicious in total

4: if xi ≥ κ(γ)m then
5: P ← P ∪ {i}
6: else
7: Q← Q ∪ {i}
8: end if
9: if |P | ≥ s then

10: return P
11: end if
12: if |Q| ≥ n− s then
13: return S \N
14: end if
15: end for

equality:

xi = E[Y | Pi, Qi]

=
s− ai
n− i

· E[Y | Pi ∪ {i+ 1}, Qi] +
n− s− bi
n− i

· E[Y | Pi, Qi ∪ {i+ 1}].

Here, E[Y | Pi, Qi] is for the expectation of Y conditioning on Pi malicious
and Qi honest. Hence, at least one of the E[Y | Pi ∪ {i + 1}, Qi] and E[Y |
Pi, Qi ∪ {i+ 1}] is no less than xi. According to Line 4, xi+1 ≥ xi. ut

With Lemma 1, note that x0 = κ(γ)m, the theorem is proved. ut

Appendix C Proof of Theorems and Propositions

C.1 Proof of Proposition 1

Proof. Recall that the equivalent condition for the custody scheme induced by
the symmetric design to be secure is that

f(γ;S,Asym, µ) ≤ γ ·m.
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Specifically, for symmetric design, we have m =
(
n
k

)
, and

f(γ;S,Asym, µ) =

(
n

k

)
·
k∑
t=r

(
γn
t

)(
n−γn
k−t

)(
n
k

) .

Therefore, the scheme is secure iff

γ ≥
k∑
t=r

(
γn
t

)(
n−γn
k−t

)(
n
k

) .

Let µ̄ := r/k > γ. The tail bound of hypergeometric distribution [5] shows
that

k∑
t=r

(
γn
t

)(
n−γn
k−t

)(
n
k

) ≤

((
γ

µ̄

)µ̄(
1− γ
1− µ̄

)1−µ̄
)k

.

As a result, it is sufficient for the custody scheme to be secure if

γ ≥

((
γ

µ̄

)µ̄(
1− γ
1− µ̄

)1−µ̄
)k

,

or equivalently,

(r − 1) ln γ + (k − r) ln(1− γ) ≤ r ln r + (k − r) ln(k − r)− k ln k.

Now let γ = r−1−x
k−1 , where 0 < x < min{r − 1, k − r} is a real number to be

determined. The above inequality becomes

(k − r) ln

(
1 +

x

k − r

)
+ (r − 1) ln

(
1− x

r − 1

)
≤ r ln r + (k − 1) ln(k − 1)− (r − 1) ln(r − 1)− k ln k.

Notice that for any 0 < z < 1, we have ln(1+z) ≤ z and ln(1−z) ≤ −z−z2/2.
Plugging the result into the above inequality, we derive that it is sufficient if

− x2

2(r − 1)
≤ r ln r + (k − 1) ln(k − 1)− (r − 1) ln(r − 1)− k ln k,

or
x2

2(r − 1)
≥ ln(k − 1)− ln(r − 1) + r ln

(
1− 1

r

)
− k ln

(
1− 1

k

)
.

We have r ln
(
1− 1

r

)
< k ln

(
1− 1

k

)
as r < k. Therefore, the custody scheme

induced by symmetric design is secure if

x ≥
√

2(r − 1) ln
k − 1

r − 1
,

that is,

γ ≤
r − 1−

√
2(r − 1) ln k−1

r−1

k − 1
.

ut
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C.2 Proof of Proposition 2

Proof. To prove the proposition, the following key lemma is required, which
shows that for custody scheme induced by symmetric design, the reliability of

the scheme naturally translates into security when γ ≤ min
{
r−1
k−1 + 1

n , 1−
k
n

}
.

Lemma 2. Given n and k, if the custody scheme induced by Asym and any µ is

γ-reliable and γ ≤ min
{
r−1
k−1 + 1

n , 1−
k
n

}
, then it is secure against γ-adversary.

Proof (Lemma 2). Let

ηs =
s

n

(
n
k

)∑k
t=r

(
s
t

)(
n−s
k−t
) − 1

be the efficiency factor of the custody scheme with s corrupted nodes. We will
compare ηs with ηs−1. Specifically, we compare every corresponding pair of terms
in the sum of 1/(ηs + 1) and 1/(ηs−1 + 1). For any r ≤ t ≤ k, we have

s ·
(
n
k

)(
s
t

)(
n−s
k−t
)/(s− 1) ·

(
n
k

)(
s−1
t

)(
n−s+1
k−t

)
=

(n− s− k + t)!(s− t)!
(n− s)!(s− 1)!

/
(n− s− k + t+ 1)!(s− t− 1)!

(n− s+ 1)!(s− 2)!

=
(s− t)(n− s+ 1)

(n− s− k + t+ 1)(s− 1)
,

and

(s− t)(n− s+ 1)

(n− s− k + t+ 1)(s− 1)
≤ 1

⇐⇒ (s− t)(n− s+ 1) ≤ (n− s− k + t+ 1)(s− 1)

⇐⇒ s(k − 1) ≤ (t− 1)n+ k − 1

⇐= s ≤ r − 1

k − 1
n+ 1.

Here, the second inequality is due to s ≤ n − k, while the fourth inequality is
due to t ≥ r.
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Therefore,

(s− t)(n− s+ 1)

(n− s− k + t+ 1)(s− 1)
≤ 1⇐⇒ s ·

(
n
k

)(
s
t

)(
n−s
k−t
) ≤ (s− 1) ·

(
n
k

)(
s−1
t

)(
n−s+1
k−t

)
⇐⇒ n

s
·
(
s
t

)(
n−s
k−t
)(

n
k

) ≥ n

s− 1
·
(
s−1
t

)(
n−s+1
k−t

)(
n
k

)
⇐⇒ n

s
·
k∑
t=r

(
s
t

)(
n−s
k−t
)(

n
k

) ≥ n

s− 1
·
k∑
t=r

(
s−1
t

)(
n−s+1
k−t

)(
n
k

)
⇐⇒ 1

ηs + 1
≥ 1

ηs−1 + 1

⇐⇒ ηs ≤ ηs−1.

always holds when s ≤ r−1
k−1n+ 1, which proves the lemma as s = γn. ut

Now for the proposition to prove, notice that under the given conditions, we
have

f(γ;S,Asym, µ) =

(
n

k

)
·
k∑
t=r

(
s
t

)(
n−s
k−t
)(

n
k

)
=

(
n

k

) k∑
t=(k+1)/2

(
n/2
t

)(
n/2
k−t
)(

n
k

)
=

1

2

(
n

k

) k∑
t=0

(
n/2
t

)(
n/2
k−t
)(

n
k

)
=

1

2

(
n

k

)
.

As m =
(
n
k

)
, the custody scheme is reliable with γ = 1/2. Further, since

1/2 ≤ min
{
r−1
k−1 + 1

n , 1−
k
n

}
, by Lemma 2, the proposition is achieved. ut

C.3 Proof of Theorem 1

Proof. We say a subset of T = {(a, b) | 0 ≤ a ≤ k − 1, 0 ≤ b ≤ q − 1} is first-
entry-unrepeated if all nodes in the subset are with different first entry. Now
that the adversary corrupts s nodes in total. Let si be the number of corrupted
nodes with first entry i. We have s = s0 + s1 + · · · sk−1. Therefore, the number
of size-d first-entry-unrepeated subsets that is totally corrupted is∑

0≤i1<i2···<id≤k−1

si1si2 · · · sid .

To give an upper bound on the above formula, we extend the problem to the
case where s0, s1, · · · , sk−1 are multiples of 1/k. (The original problem is when
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s0, s1, · · · , sk−1 are all integers.) For any two indices u, v, suppose sv−su ≥ 2/k,
note that ∑

0≤i1<i2···<id≤k−1

si1si2 · · · sid

= susv
∑

0≤i1<i2···<id−2≤k−1
{i1,i2,··· ,id−2}∩{u,v}=∅

si1si2 · · · sid−2

+ (su + sv)
∑

0≤i1<i2···<id−1≤k−1
{i1,i2,··· ,id−1}∩{u,v}=∅

si1si2 · · · sid−1

+
∑

0≤i1<i2···<id≤k−1
{i1,i2,··· ,id}∩{u,v}=∅

si1si2 · · · sid .

Hence, the sum is strictly increase by substituting su with s′u = su+1/k and
sv with s′v = sv − 1/k. Therefore, the sum reaches a maximum with s0 = s1 =
· · · = sk−1 = s/k in the generalized case, which implies that with s0, s1, · · · , sk−1

all integers, we have ∑
0≤i1<i2···<id≤k−1

si1si2 · · · sid ≤
(
k

d

)( s
k

)d
,

or that the number of size-d first-entry-unrepeated subsets that is totally con-
trolled by the adversary is upper bounded by

(
k
d

)
(s/k)d. Let P denote the set of

corrupted nodes. By (4), every size-d first-entry-unrepeated subset of P appears
in at most one corrupted group. On the other hand, every corrupted group con-
tains at least r corrupted nodes all with different first entry, and hence ≥

(
r
d

)
size-

d first-entry-unrepeated subsets. Consequently, the number of corrupted groups

f(γ;S,Apoly, µ) is upper bounded by
(k
d)s

d

(r
d)kd

, and the efficiency factor η is lower

bounded by

η =
γ ·m

f(γ;S,Apoly, µ)
− 1 ≥ γ ·

(
k

s

)d
· qd ·

(
r

d

)/(
k

d

)
− 1

= γ1−d ·
(
r

d

)/(
k

d

)
− 1.

ut

C.4 Proof of Theorem 2

Proof. We say a subset of S is completely corrupted, if all nodes in the subset
are corrupted. Notice that for any group, it is corrupted only when at least

(
r
t

)
size-t subsets of the group are completely corrupted. At the same time, when
exactly s nodes are corrupted, the adversary can completely corrupt

(
s
t

)
size-t
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subsets of S. As any size-t subset of S appears in exactly λ groups. Therefore,
we have

f(γ;S,Ablck, µ) ≤ λ ·
(
s

t

)/(
r

t

)
.

Further notice that m = λ ·
(
n
t

)/(
k
t

)
, we have

η =
γ ·m

f(γ;S,Ablck, µ)
− 1 ≥ γ ·

(
n
t

)(
k
t

) · (rt)(s
t

) − 1.

ut

C.5 Proof of Proposition 4

Proof. By Theorem 2, we have the following lower bound on the efficiency factor
of the custody scheme:

η ≥ γ ·
(
n
t

)(
k
t

) · (rt)(s
t

) − 1.

For the custody scheme to be γ-reliable, it is sufficient if we have

s

n
·
(
n
t

)(
k
t

) · (rt)(s
t

) ≥ 1.

Note that

s

n
·
(
n
t

)(
k
t

) · (rt)(s
t

) =
s

n

t−1∏
w=0

(n− w)(r − w)

(s− w)(k − w)

=

t−1∏
w=1

(n− w)(r − w)

(s− w)(k − w)
· r
k

>

t−1∏
w=1

(n− w)(r − w)

(s− w)(k − w)
· µ.

Therefore, we only require that

(n− w)(r − w)

(s− w)(k − w)
≥ µ−

1
t−1 , ∀1 ≤ w ≤ t− 1.

Let c := µ−
1

t−1 > 1, the above condition is equivalent to

c(s− w)(k − w)− (n− w)(r − w) ≤ 0, ∀1 ≤ w ≤ t− 1,

and by the property of quadratic functions, we only need to work on the case of
w = 1 and w = t− 1.
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When w = 1, the condition becomes

s− 1

n− 1
≤ r − 1

c(k − 1)
.

Note that s−1
n−1 <

s
n = γ, hence it is sufficient with γ ≤ r−1

c(k−1) . When µ ≥ 1/2,

r ≥ max{t, 3} and n ≥ 3k − 3, we have c = µ−
1

r−1 < 3/2. Therefore,

s ≤ n

c · k
+ t− 1 =⇒ γ ≤ 1

c · k
+
t− 1

n

=⇒ γ ≤ 1

c(k − 1)
+

2(r − 2)

n

=⇒ γ ≤ 1

c(k − 1)
+

2(r − 2)

3(k − 1)

=⇒ γ ≤ 1

c(k − 1)
+

r − 2

c(k − 1)

=⇒ γ ≤ r − 1

c(k − 1)
.

When w = t− 1, the condition becomes

(n− t+ 1)(r − t+ 1) ≥ c(s− t+ 1)(k − t+ 1),

or

s ≤ (n− t+ 1)(r − t+ 1)

c(k − t+ 1)
+ t− 1.

which naturally establishes when s ≤ n
ck + t−1, as n

k ≤
n−t+1
k−t+1 and t ≤ r. ut

C.6 Proof of Theorem 3

Proof. To show the result, first consider a specific set of corrupted nodes with
size precisely γn. We denote the set as P . Further we use g(P ) to denote the
number of corrupted groups with nodes P corrupted under the group assignment
scheme A. Clearly, g(P ) ≤ f(γ;S,A, µ) by definition.

Now suppose we uniformly draw βm groups from A to obtain A′, and let
X be a random variable indicating the number of corrupted groups in the new
scheme A′. By hypergeometric tail bound, we have

Pr

[
X ≥

(
f(γ;S,A, µ)

m
+ δ

)
· βm

]
= Pr

[
X ≥

[
g(P )

m
+

(
f(γ;S,A, µ)− g(P )

m
+ δ

)]
· βm

]
≤ exp

(
−2βm ·

(
f(γ;S,A, µ)− g(P )

m
+ δ

)2
)

≤ exp(−2βm · δ2).
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Here, δ > 0 is a parameter to be determined. The probability is over all possible
choices of A′. Let f(γ;S,A′, µ) denote the maximal number of corrupted groups
under a γ-adversary in the new scheme A′. By a union bound, we have

Pr [f(γ;S,A′, µ) ≥ βf(γ;S,A, µ) + δ · βm] ≤ exp(−2βm · δ2)

(
n

γn

)
.

By Stirling’s formula (see [23]),(
n

γn

)
=

n!

(γn)!(n− γn)!

≤ e

2π

nn+ 1
2

(γn)γn+ 1
2 (n− γn)n−γn+ 1

2

=
e

2π

√
1

nγ(1− γ)
·
(

1

γγ(1− γ)1−γ

)n
≤ e

2π

(
1

γγ(1− γ)1−γ

)n
.

Hence,

Pr[f(γ;S,A′, µ) ≥ βf(γ;S,A, µ) + δ · βm] ≤ exp(−2βm · δ2)

(
n

γn

)
≤ e

2π
exp(−2βm · δ2 + nH(γ)).

Let βm · δ2 =
(

1+c
2

)
· nH(γ), then w.p. no less than 1 − e

2π exp(−cnH(γ)),
we have f(γ;S,A′, µ) ≤ βf(γ;S,A, µ) + δ · βm. Under such case, the efficiency
factor η′ of the custody scheme induced by A′ and µ against a γ-adversary is
lower bounded by

η′ = γ
βm

f(γ;S,A′, µ)
− 1

≥ γ m

f(γ;S,A, µ) + δ ·m
− 1

= γ
m

γ·m
η+1 + δ ·m

− 1

= γ
η + 1

γ + δ · (η + 1)
− 1

=
γ
√
βm(η + 1)

γ
√
βm+

√
(1 + c)nH(γ)/2(η + 1)

− 1.

The third line is due to the definition of η:

η = γ · m

f(γ;S,A, µ)
− 1.

ut
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Appendix D Experimental Results

As we have already shown in Theorem 5, given a group assignment scheme
and the number of corrupted nodes s, it is generally computationally involved
to figure out the optimal subset to corrupt and the efficiency factor for the
corresponding custody scheme. In Section 3 and Appendix A, we analyze four
types of concrete design, and for those three types except symmetric design, we
successfully propose lower bounds on the efficiency factor theoretically. In this
section, we give an estimation of the performance of these custody schemes from
an experimental view.

Settings. Given a custody scheme induced by A and µ, to estimate the value
f(γ;S,A, µ) given adversary power γ, we uniformly pick a subset P consisting of
s = γn nodes as the corrupted node set, and calculate the number of corrupted
groups. We independently repeat such process for 500, 000 times, and record the
maximal number of corrupted groups in all these trials. We deem such value as
the estimation of the real value f(γ;S,A, µ), and correspondingly compute the
efficiency factor η.

Our estimation of η is certainly an upper bound on the real value, since
the maximal number of corrupted sets we can find never exceeds f(γ;S,A, µ).
However, we can expect that our estimation is close to the real value due to our
large number of attempts. When the number of custodians n is rather small, we
can even guarantee that the optimal corrupting strategy is reached with high
probability, therefore we come up with the accurate η value.

D.1 Polynomial Design

We first show the result for the polynomial design. Concretely, we consider 24
groups of parameters, in which the k value is confined to 5, 7, 11, and q and d are
limited, for the sake of practice. The estimation values on efficiency factor η for
the custody scheme induced by these group assignment schemes in conjunction
with µ = 1/2, 2/3 under adversary power γ ∈ {1/2 · µ, 2/3 · µ} are listed in
Table 2.

In general, we observe that the estimation of η decreases with the increase
of γ. Meanwhile, for a custody scheme induced by polynomial design, a larger
degree d of polynomials leads to better resistance against a rational adversary
when other parameters are fixed. These two results may also suit the real value
of η.

In Theorem 1, the lower bound value of η is irrelevant with the value of q.
However, this is not the case in reality. When k = 7, 11 and d ≤ 4, the estimation
of η increases with a larger value q. However, such a phenomenon does not occur
with k = 5, for which the reason is intriguing.

D.2 Block Design

For the block design, we consider 33 different constructions with k = 5, 6, 7, 8, 11, 12,
which can all be found in [6]. For two designs with multiple relationships, i.e.
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Table 2. Estimation on efficiency factor η of custody schemes induced by different
polynomial designs Apoly and µ ∈ {1/2, 2/3} against adversary with power γ ∈ {1/2 ·
µ, 2/3 · µ}.

parameters estimation of η

(k, q, d) k n m
µ = 1/2 µ = 2/3

γ = 1/2 · µ γ = 2/3 · µ γ = 1/2 · µ γ = 2/3 · µ
(5, 5, 2) 5 25 25 0.500000 0.142857 3.000000 1.200000
(5, 5, 3) 5 25 125 1.307692 0.379310 5.666667 1.894737
(5, 5, 4) 5 25 625 1.542373 0.612903 6.142857 2.125000
(5, 7, 2) 5 35 49 0.400000 0.100000 1.566667 1.333333
(5, 7, 3) 5 35 343 1.240000 0.437333 5.341176 2.062500
(5, 7, 4) 5 35 2,401 1.744000 0.585294 5.987037 2.166154
(5, 11, 2) 5 55 121 0.682353 0.164706 2.600000 1.514286
(5, 11, 3) 5 55 1,331 1.231206 0.491781 5.405882 2.244693
(5, 11, 4) 5 55 14,641 1.535238 0.537741 5.729775 2.427468
(7, 7, 2) 7 49 49 1.000000 0.230769 2.200000 0.909091
(7, 7, 3) 7 49 343 1.709677 0.600000 4.333333 1.672727
(7, 7, 4) 7 49 2,401 2.418605 0.912195 5.533333 2.099398
(7, 11, 2) 7 77 121 1.132653 0.403061 2.928571 1.054945
(7, 11, 3) 7 77 1,331 2.041005 0.815726 5.449893 1.746328
(7, 11, 4) 7 77 14,641 2.552325 0.983961 6.521474 2.039425
(7, 13, 2) 7 91 169 1.269841 0.428571 2.714286 1.122449
(7, 13, 3) 7 91 2,197 2.299024 0.801706 5.525097 1.815494
(11, 11, 2) 11 121 121 2.333333 0.818182 7.000000 3.076923
(11, 11, 3) 11 121 1,331 2.000000 0.379310 11.941176 2.491018
(11, 11, 4) 11 121 14,641 2.175853 0.368778 13.069767 2.658300
(11, 13, 2) 11 143 169 2.446970 0.851515 6.935065 3.379679
(11, 13, 3) 11 143 2,197 2.004063 0.413094 12.886364 2.611601
(11, 17, 2) 11 187 289 2.949495 1.038685 9.646465 3.933566
(11, 17, 3) 11 143 4,913 2.443149 0.462216 13.543831 2.893994

with the same value of t, n, k but one with λ value a multiple of the other one,
the larger design is obtained by repeating the smaller one but with random per-
mutation on all custodians in each copy. The corresponding estimation of η for
µ = 1/2, 2/3 and adversary power γ ∈ {1/2 · µ, 2/3 · µ} are shown in Table 3.

Similarly, the estimation of η decreases with the increase of γ. A key point is
that given a block design, the strategy that repeating the groups with a random
permutation on custodians leads to a significant enhancement on the perfor-
mance of efficiency factor. An easy-to-digest account is that a satisfying cor-
rupting effect on one set of groups may lead to a poor effect on another copy if
different corrupting choices vary largely on their effectiveness for each copy.
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Table 3. Estimation on efficiency factor η of custody schemes induced by different block
designs Ablck and µ ∈ {1/2, 2/3} against adversary with power γ ∈ {1/2 · µ, 2/3 · µ}.

parameters estimation of η

t-(n, k, λ) k n m
µ = 1/2 µ = 2/3

γ = 1/2 · µ γ = 2/3 · µ γ = 1/2 · µ γ = 2/3 · µ
2-(25, 5, 1) 5 25 30 0.800000 0.371429 3.800000 1.640000
2-(25, 5, 2) 5 25 60 0.800000 0.371429 3.800000 1.640000
2-(25, 5, 3) 5 25 90 0.800000 0.371429 3.800000 1.640000
2-(35, 5, 2) 5 35 119 0.942857 0.289655 3.155556 1.684211
2-(35, 5, 4) 5 35 238 1.176000 0.411321 3.986667 2.000000
2-(35, 5, 6) 5 35 357 1.266667 0.476316 4.610000 2.187500
2-(55, 5, 2) 5 55 297 1.064706 0.350000 3.628571 1.880000
2-(55, 5, 4) 5 55 594 1.301639 0.418978 4.717647 2.200000
2-(55, 5, 6) 5 55 891 1.366292 0.487755 5.075000 2.380870
2-(125, 5, 1) 5 125 775 1.044681 0.412222 4.408511 2.072072
2-(125, 5, 2) 5 125 1,550 1.171751 0.469364 4.981176 2.216981
2-(125, 5, 3) 5 125 2,325 1.209195 0.507115 5.408403 2.332248
2-(49, 7, 1) 7 49 56 0.959184 0.306122 2.047619 1.000000
2-(49, 7, 2) 7 49 112 1.285714 0.462857 3.063492 1.400000
2-(49, 7, 3) 7 49 168 1.571429 0.567347 3.571429 1.571429
2-(77, 7, 3) 7 77 418 1.714286 0.675485 4.219780 1.528376
2-(77, 7, 6) 7 77 836 2.033613 0.762523 4.775076 1.674948
2-(77, 7, 9) 7 77 1,254 2.257143 0.833977 5.076759 1.796537
2-(91, 7, 1) 7 91 195 1.481203 0.495017 3.017857 1.380952
2-(91, 7, 2) 7 91 390 1.857143 0.607143 3.945055 1.484472
2-(91, 7, 3) 7 91 585 2.009119 0.634383 4.075188 1.650957

2-(121, 11, 1) 11 121 132 2.636364 0.897233 6.272727 3.447552
2-(121, 11, 2) 11 121 264 3.090909 1.128603 9.909091 4.256198
2-(121, 11, 3) 11 121 396 3.675325 1.218798 12.090909 4.595308
3-(26, 6, 1) 6 26 130 9.000000 2.333333 19.000000 6.857143
3-(26, 6, 2) 6 26 260 9.000000 2.333333 19.000000 6.857143
3-(26, 6, 3) 6 26 390 9.000000 2.750000 19.000000 6.857143
3-(50, 8, 1) 8 50 350 7.400000 2.733333 11.444444 3.812500
3-(50, 8, 2) 8 50 700 8.333333 2.929825 15.000000 4.310345
3-(50, 8, 3) 8 50 1,050 9.500000 3.253165 16.684211 4.566265

3-(122, 12, 1) 12 122 1,342 13.347826 3.835165 43.000000 10.880000
3-(122, 12, 2) 12 122 2,684 15.500000 4.146199 54.000000 12.200000
3-(122, 12, 3) 12 122 4,026 17.000000 4.387755 61.857143 12.921875

Further, we remark that in practice, 3-designs (block designs with t = 3)
behave way better than 2-designs (block designs with t = 2) from the aspect
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Table 4. Estimation on efficiency factor η of custody schemes induced by different
random multi-layer sharding designs Armls and µ ∈ {1/2, 2/3} against adversary with
power γ ∈ {1/2 · µ, 2/3 · µ}.

parameters estimation of η

(n, k, l) k n m
µ = 1/2 µ = 2/3

γ = 1/2 · µ γ = 2/3 · µ γ = 1/2 · µ γ = 2/3 · µ

(60, 5, 30) 5 60 360
0.638530 0.303921 3.228022 1.602892
±0.059583 ±0.037254 ±0.156593 ±0.086763

(60, 5, 60) 5 60 720
0.856459 0.416641 4.069170 1.902890
±0.038278 ±0.026397 ±0.112648 ±0.040505

(60, 5, 120) 5 60 1,440
1.006833 0.515100 5.042120 2.184005
±0.050310 ±0.015101 ±0.120042 ±0.032490

(120, 5, 60) 5 120 1,440
0.961867 0.429171 4.412032 1.965180
±0.005346 ±0.015273 ±0.093850 ±0.020736

(120, 5, 120) 5 120 2,880
1.096430 0.501281 5.022343 2.156405
±0.027464 ±0.010835 ±0.135552 ±0.015665

(120, 5, 240) 5 120 5,760
1.208610 0.547134 5.686482 2.304035
±0.006775 ±0.006393 ±0.071641 ±0.021454

(70, 7, 35) 7 70 350
0.547501 0.204222 2.709677 1.369865
±0.056273 ±0.006304 ±0.000000 ±0.090453

(70, 7, 70) 7 70 700
0.839182 0.303377 3.601841 1.589808
±0.049708 ±0.018461 ±0.092037 ±0.129490

(70, 7, 140) 7 70 1,400
1.029869 0.394054 4.476967 1.904762
±0.006059 ±0.012673 ±0.065202 ±0.047619

(140, 7, 70) 7 140 1,400
0.872997 0.383612 4.143678 1.870924
±0.050080 ±0.014564 ±0.143678 ±0.039874

(140, 7, 140) 7 140 2,800
1.035038 0.449983 4.699272 2.065555
±0.017748 ±0.005713 ±0.123513 ±0.011368

(140, 7, 280) 7 140 5,600
1.162266 0.507011 5.358080 2.225164
±0.015028 ±0.008640 ±0.120792 ±0.025164

(110, 11, 55) 11 110 550
0.646586 0.229027 3.090909 1.540323
±0.020081 ±0.020973 ±0.000000 ±0.040323

(110, 11, 110) 11 110 1,100
0.837075 0.333406 3.872874 1.816436
±0.024994 ±0.009877 ±0.197549 ±0.057815

(110, 11, 220) 11 110 2,200
1.012352 0.417328 4.691789 2.014730
±0.048716 ±0.002790 ±0.022498 ±0.042595
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of efficiency factor. Such result matches with the discussion we present in Sec-
tion 3.3.

D.3 Multi-Layer Sharding Design

At last, we come to the performance of the multi-layer sharding design we dis-
cussed in Appendix A. In particular, we continue to focus on random multi-layer
sharding designs. Specifically, we consider typical cases for k = 5, 7, 11. For each
choice of parameter tuple, we uniformly generate 5 concrete group assignment
schemes at random and evaluate the efficiency factor. The results are present in
Table 4.

Again, the estimation of η decreases with the increase of γ. An interesting
finding is that the efficiency factor of the custody scheme induced by random
multi-layer sharding design slightly changes with the increase or decrease of
the number of custodians n against a fixed adversary power. However, as a
supplement to Theorem 4, the value of η considerably increases when the custody
scheme owns more sharding layers or a higher value of l. Such behavior is similar
to the observation we discussed in the last section for block designs, in that a
larger λ implies better performance. Correspondingly, our explanation naturally
suits this case, if we view the multi-layer sharding design as a special block
design with t = 1. In brief, a corrupting strategy hardly works well on all several
identical group assignment schemes only with the order of custodians randomly
permuted.

D.4 Comparison of Different Designs

At last, we compare four designs we discussed acccording to the evaluation cri-
teria we proposed in Section 2. For a better view, we compare the behavior of
custody schemes induced by different designs with identical number of custodi-
ans n and group size k in Table 5, 6, 7.

We have three major conclusions:

– Considering the efficiency factor, symmetric design as a benchmark outper-
forms the other three designs (polynomial design, block design, and random
multi-layer sharding design). In fact, in almost all cases that we study, with
identical n and k, custody schemes induced by symmetric design and fixed µ
owns a higher efficiency factor comparing with other designs under the same
adversary power γ. However, with a massive number of groups, symmet-
ric design is unacceptable in practice. Nevertheless, the other designs own
advantage in the number of groups. Such a result implicates the possible
positive correlation between the number of groups and the efficiency factor
of a custody scheme. We also wonder that whether the efficiency factor given
by symmetric design can be beaten by any other possible designs. Further,
an interesting observation is that the difference in efficiency factor between
the symmetric design and other three designs diminishes with the increase
of adversary power γ.
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– The polynomial design and the block design are comparable in practice, while
random multi-layer sharding designs perform worse than these two. However,
it remains open that whether some other multi-layer sharding strategies
(probably deterministic) may behave better.

– Numerically, we achieve some good results. Specifically, with polynomial de-
sign and block design, we can obtain an efficiency factor of no less than 5
with 50-100 custodians and 500-2, 000 custodian groups. This result is realiz-
able in practice, and further strongly proves that the idea of a decentralized
asset custody scheme indeed owns a bright future.
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Table 5. Comparison of estimation of efficiency factor η of custody schemes induced
by different designs with k = 5 and µ ∈ {1/2, 2/3} against adversary with power
γ ∈ {1/2 · µ, 2/3 · µ}.

parameters estimation of η

n k design type m
µ = 1/2 µ = 2/3

γ = 1/2 · µ γ = 2/3 · µ γ = 1/2 · µ γ = 2/3 · µ

25 5

sym 53,130 1.476923 0.564948 7.929412 2.528767

poly
25 0.500000 0.142857 3.000000 1.200000
125 1.307692 0.379310 5.666667 1.894737
625 1.542373 0.612903 6.142857 2.125000

blck
30 0.800000 0.371429 3.800000 1.640000
60 0.800000 0.371429 3.800000 1.640000
90 0.800000 0.371429 3.800000 1.640000

rmls

60
0.168831 -0.037594 1.266666 0.767857
±0.140260 ±0.048120 ±0.133333 ±0.117857

125
0.441647 0.143791 2.333333 1.245833
±0.137299 ±0.032680 ±0.000000 ±0.045833

250
0.819853 0.311828 3.458204 1.591464
±0.055147 ±0.021505 ±0.247678 ±0.091464

35 5

sym 324,632 1.718937 0.640733 8.140379 2.810291

poly
49 0.400000 0.100000 1.566667 1.333333
343 1.240000 0.437333 5.341176 2.062500

2,401 1.744000 0.585294 5.987037 2.166154

blck
119 0.942857 0.289655 3.155556 1.684211
238 1.176000 0.411321 3.986667 2.000000
357 1.266667 0.476316 4.610000 2.187500

rmls

85
0.395790 0.116667 1.996795 1.082500
±0.035790 ±0.016667 ±0.119872 ±0.042500

245
0.723485 0.263653 2.776316 1.533430
±0.026515 ±0.041431 ±0.276316 ±0.091570

490
1.037037 0.400463 4.083334 1.938356
±0.037037 ±0.025463 ±0.416667 ±0.061644

55 5

sym 3.48× 106 1.592806 0.577863 6.950000 2.654982

poly
121 0.682353 0.164706 2.600000 1.514286

1,331 1.231206 0.491781 5.405882 2.244693
14,641 1.535238 0.537741 5.729775 2.427468

blck
297 1.064706 0.350000 3.628571 1.880000
594 1.301639 0.418978 4.717647 2.200000
891 1.366292 0.487755 5.075000 2.380870

rmls

297
0.712195 0.231169 2.744000 1.448770
±0.000000 ±0.031169 ±0.144000 ±0.092406

605
0.920241 0.347500 3.664634 1.809782
±0.038662 ±0.027500 ±0.164634 ±0.059782

1,210
1.151470 0.443011 4.540900 2.106312
±0.048530 ±0.023656 ±0.116242 ±0.036545
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Table 6. Comparison of estimation of efficiency factor η of custody schemes induced
by different designs with k = 7 and µ ∈ {1/2, 2/3} against adversary with power
γ ∈ {1/2 · µ, 2/3 · µ}.

parameters estimation of η

n k design type m
µ = 1/2 µ = 2/3

γ = 1/2 · µ γ = 2/3 · µ γ = 1/2 · µ γ = 2/3 · µ

49 7

sym 8.59× 107 2.811410 0.949193 7.552244 2.374737

poly
49 1.000000 0.230769 2.200000 0.909091
343 1.709677 0.600000 4.333333 1.672727

2,401 2.418605 0.912195 5.533333 2.099398

blck
56 0.959184 0.306122 2.047619 1.000000
112 1.285714 0.462857 3.063492 1.400000
168 1.571429 0.567347 3.571429 1.571429

rmls

168
0.328572 0.047273 1.984874 1.149733
±0.042857 ±0.049870 ±0.242017 ±0.032085

343
0.573530 0.217967 2.931034 1.537500
±0.073530 ±0.026478 ±0.068966 ±0.087500

686
0.847046 0.314699 3.928433 1.913461
±0.040594 ±0.034699 ±0.162476 ±0.086538

77 7

sym 2.40× 109 2.700478 0.992168 7.434833 2.084306

poly
121 1.132653 0.403061 2.928571 1.054945

1,331 2.041005 0.815726 5.449893 1.746328
14,641 2.552325 0.983961 6.521474 2.039425

blck
418 1.714286 0.675485 4.219780 1.528376
836 2.033613 0.762523 4.775076 1.674948

1,254 2.257143 0.833977 5.076759 1.796537

rmls

418
0.625204 0.234684 3.005456 1.461390
±0.038390 ±0.033673 ±0.235615 ±0.032818

847
0.850137 0.341750 3.958577 1.781630
±0.032746 ±0.019636 ±0.134016 ±0.051703

1,694
1.015874 0.443818 4.672515 1.980837
±0.053433 ±0.018948 ±0.116959 ±0.047504

91 7

sym 8.09× 109 2.877880 0.935919 6.933541 2.129408

poly
169 1.269841 0.428571 2.714286 1.122449

2,197 2.299024 0.801706 5.525097 1.815494

blck
195 1.481203 0.495017 3.017857 1.380952
390 1.857143 0.607143 3.945055 1.484472
585 2.009119 0.634383 4.075188 1.650957

rmls

585
0.758573 0.273109 3.338799 1.625000
±0.054614 ±0.012605 ±0.146252 ±0.053571

1,183
0.972507 0.359298 4.068354 1.873279
±0.013603 ±0.023681 ±0.131646 ±0.031749

2,366
1.098645 0.435289 4.758418 2.100188
±0.084561 ±0.014524 ±0.106244 ±0.032342
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Table 7. Comparison of estimation of efficiency factor η of custody schemes induced
by different designs with k = 6, 8, 12 and µ ∈ {1/2, 2/3} against adversary with power
γ ∈ {1/2 · µ, 2/3 · µ}.

parameters estimation of η

n k design type m
µ = 1/2 µ = 2/3

γ = 1/2 · µ γ = 2/3 · µ γ = 1/2 · µ γ = 2/3 · µ

26 6

sym 230,230 8.698795 3.116052 34.801887 7.846154

blck
130 9.000000 2.333333 19.000000 6.857143
260 9.000000 2.333333 19.000000 6.857143
390 9.000000 2.750000 19.000000 6.857143

50 8

sym 5.37× 108 11.454775 3.456257 24.350413 4.805192

blck
350 7.400000 2.733333 11.444444 3.812500
700 8.333333 2.929825 15.000000 4.310345

1,050 9.500000 3.253165 16.684211 4.566265

122 12

sym 1.30× 1016 21.589420 4.674237 128.107816 14.492206

blck
1,342 13.347826 3.835165 43.000000 10.880000
2,684 15.500000 4.146199 54.000000 12.200000
4,026 17.000000 4.387755 61.857143 12.921875
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