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Abstract. The unbalanced oil and vinegar signature scheme (UOV) is
a multivariate signature scheme that has essentially not been broken for
over 20 years. However, it requires the use of a large public key; thus,
various methods have been proposed to reduce its size. In this paper, we
propose a new variant of UOV with a public key represented by block ma-
trices whose components correspond to an element of a quotient ring. We
discuss how it affects the security of our proposed scheme whether or not
the quotient ring is a field. Furthermore, we discuss their security against
currently known and newly possible attacks and propose parameters for
our scheme. We demonstrate that our proposed scheme can achieve a
small public key size without significantly increasing the signature size
compared with other UOV variants. For example, the public key size of
our proposed scheme is 85.8 KB for NIST’s Post-Quantum Cryptogra-
phy Project (security level 3), whereas that of compressed Rainbow is
252.3 KB, where Rainbow is a variant of UOV and is one of the third-
round finalists of the NIST PQC project.

Keywords: post-quantum cryptography, multivariate public key cryp-
tography, unbalanced oil and vinegar, quotient ring.

1 Introduction

Currently used public key cryptosystems such as RSA and ECC can be broken
in polynomial time using a quantum computer executing Shor’s algorithm [34].
Thus, there has been growing interest in post-quantum cryptography (PQC),
which is secure against quantum computing attacks. Research on PQC has thus
been accelerating, and the U.S. National Institute for Standards and Technology
(NIST) has initiated a PQC standardization project [26].

Multivariate public key cryptography (MPKC), based on the difficulty of
solving a system of multivariate quadratic polynomial equations over a finite field
(the multivariate quadratic (MQ) problem), is regarded as a strong candidate
for PQC. The MQ problem is NP-complete [20] and is thus likely to be secure
in the post-quantum era.



The unbalanced oil and vinegar signature scheme (UOV) [23], a multivariate
signature scheme proposed by Kipnis et al. at EUROCRYPT 1999, has withstood
various types of attacks for approximately 20 years. UOV is a well-established
signature scheme owing to its short signature and short execution time. Rain-
bow [13], a multilayer UOV variant, was selected as a third-round finalist in
the NIST PQC project [29]. However, both UOV and Rainbow have public keys
much larger than those of other PQC candidates, for example, lattice-based
signature schemes. Indeed, Rainbow has the largest public key among the third-
round-finalist signature schemes, and NIST’s report [29] states that Rainbow is
unsuitable as a general-purpose signature scheme owing to this problem.

The CRYSTALS-DILITHIUM [25] lattice-based signature scheme is also a
third-round finalist in the NIST PQC project. It is based on the hardness of the
module learning with errors (MLWE) problem [8]. As is well known, LWE [32]
is a confidential hard problem in cryptography, and the MLWE problem is a
generalization of it using a module comprising vectors over a ring. This illustrates
that a natural way to develop an efficient multivariate scheme with a small public
key is to improve confidential schemes such as UOV and Rainbow in MPKC by
investigating further algebraic theory.

There are three main research approaches to developing a UOV variant with
a small public key. One is to use the compression technique developed by Pet-
zoldt et al. [30]. This technique can be applied to various UOV variants and is
based on the fact that a part of a public key can be arbitrarily chosen before
determining the secret key. This indicates that a part of a public key can be
generated using a seed of a pseudo-random number generator. The version of
Rainbow using this technique and a secret key compression technique is called
“compressed Rainbow” in the third-round finalist NIST PQC project [12]. The
second approach is to use the lifted unbalanced oil and vinegar (LUOV) [6] that
uses polynomials over a small field as a public key, whereas the signature and
message spaces are defined over an extension field. This results in a small public
key. LUOV was thus selected as a candidate in the second round of the NIST
PQC project [28]. However, several of its parameters were broken using the new
attack proposed by Ding et al. [15]. The third approach is to use the block-anti-
circulant UOV (BAC-UOV) developed by Szepieniec et al. and presented at SAC
2019 [35]. Its public key is represented by block-anti-circulant matrices, where
every block is an anti-circulant matrix. As such a matrix can be constructed by
its first-row vector, BAC-UOV has a smaller public key. However, the public key
has a special structure; that is, block-anti-circulant-matrices can be transformed
into the diagonal concatenation of two smaller matrices. This enabled Furue et
al. [18] to devise a structural attack on BAC-UOV, that has less complexity than
the asserted one. The attack is based on the fact that the anti-circulant matrices
of size ℓ used in BAC-UOV can be represented using an element of the quotient
ring Fq[x]/(x

ℓ − 1), where Fq is a finite field, and xℓ − 1 is reducible.

Our Contribution In this paper, we present a new UOV variant using an arbi-
trary quotient ring called QR-UOV. In QR-UOV, a public key is represented by
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block matrices in which every component corresponds to an element of a quotient
ring Fq[x]/(f). More precisely, we use an injective ring homomorphism from the
quotient ring Fq[x]/(f) to the matrix ring Fℓ×ℓ

q , where f ∈ Fq[x] is a polynomial

with deg f = ℓ. In this study, image Φf
g of the homomorphism for g ∈ Fq[x]/(f)

is called the polynomial matrix of g. From this homomorphism, we can compress
the ℓ2 components in Φf

g to ℓ elements of Fq because the polynomial matrix Φf
g is

determined by the ℓ coefficients of g. This can be considered as a generalization
of BAC-UOV [35], which is the case for f = xℓ − 1. Utilizing the elements of
a quotient ring in block matrices is similar to the MLWE problem [8] because
the MLWE problem uses elements of a ring in vectors. Namely, we can consider
that the research undertaken to obtain from UOV to QR-UOV (including BAC-
UOV) corresponds to that obtained from LWE to MLWE. Therefore, as with
the MLWE problem, this type of research deserves more attention than passing
notice.

To construct the QR-UOV, we must consider the symmetry of the poly-
nomial matrices Φf

g . In UOV, the public key P = (p1, . . . , pm), which com-
prises quadratic polynomials pi, is obtained by composing a central map F =
(f1, . . . , fm) and a linear map S, that is, P = F ◦ S. Then, the correspond-
ing matrices P1, . . . , Pm of the public key P are given by Pi = S⊤FiS, where
F1, . . . , Fm, and S are matrices corresponding to F and S, respectively. If we
choose F1, . . . , Fm, and S as block matrices, where the components are polyno-
mial matrices Φf

g , the polynomial matrices must be stable under the transpose

operation, namely, (Φf
g )

⊤ = Φf
g′ for some g′. Otherwise, P1, . . . , Pm are not block

matrices of Φf
g , and we cannot reduce the public key size using them. Polynomial

matrices Φf
g are generally unstable under the transpose operation; therefore, we

cannot directly use polynomial matrices Φf
g to construct an efficient UOV vari-

ant. To solve this problem, we introduce the concept of an ℓ×ℓ invertible matrix
W such that WΦf

g is symmetric for any g ∈ Fq[x]/(f); that is, WΦf
g is stable

under the transpose operation. In Theorem 1, we prove that there exists such
symmetric W for any quotient ring Fq[x]/(f). Therefore, from equations

(Φf
g1)

⊤(WΦf
g2)Φ

f
g1 = (WΦf

g1)
⊤Φf

g2Φ
f
g1 = WΦf

g1g2g1 ,

we can construct a UOV variant using the quotient ring Fq[x]/(f) by choosing
F1, . . . , Fm as block matrices using WΦf

g and S as a block matrix with Φf
g .

Moreover, we should consider how the choice of f affects the security of the
QR-UOV. Furue et al. [18] broke BAC-UOV by transforming its anti-circulant
matrices into diagonal concatenations of two smaller matrices. This transfor-
mation is obtained from the decomposition xℓ − 1 = (x − 1)(xℓ−1 + · · · + 1).
Therefore, we investigate the relationship between the irreducibility of the poly-
nomial f used to generate the quotient ring Fq[x]/(f) and the existence of such
a transformation for symmetric matrices WΦf

g . In Theorem 2 herein, we show
that if f is irreducible (i.e., Fq[x]/(f) is a field), then there is no such transfor-
mation for matrices WΦf

g , indicating that such an f is resistant to Furue et al.’s
structural attack [18].
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Based on these considerations regarding the symmetry ofWΦf
g and the choice

of f , we derive the quotient-ring UOV (QR-UOV). It uses Fq[x]/(f) generated
by an irreducible polynomial f , which is resistant to Furue et al.’s structural
attack [18]. We investigated its performance against both currently known and
possible attacks. The currently known attacks include the direct attack, UOV
attack [24], reconciliation attack [14], and intersection attack [5]. Possible attacks
are derived from (1) pull-back techniques and (2) lifting techniques. In (1), the
UOV, reconciliation, and intersection attacks are executed over the quotient ring
Fq[x]/(f) by pulling WΦf

g back to g. In (2), we prove that by lifting the base field
Fq to the extension field Fqℓ , the QR-UOV public key can be transformed into
the diagonal concatenation of some smaller matrices: as is done in the structural
attack on BAC-UOV. After applying such a transformation over Fqℓ , we execute
the four currently known attacks.

Finally, by considering these currently known and possible attacks, we can
select the appropriate parameters for the QR-UOV. We stress that the security
of major MPKCs such as UOV and Rainbow has no computational reduction to
the underlying MQ problem, and their security is usually evaluated by all known
attacks. We follow this research direction in our security analysis of the proposed
scheme, and we present the following secure parameters in accordance with the
I, III, and V security levels of the NIST PQC project [27]. These parameters
achieve a small public key, and the sizes of the public keys are approximately
30%–50% of those of compressed Rainbow [12]. For example, the public key size
is 85.8 KB for security level III, whereas that of compressed Rainbow is 252.3 KB.
The signature sizes with the proposed parameters are almost the same as those
of Rainbow, except for security level I.

Organization The remainder of this paper is organized as follows. In Section 2,
we explain the construction of multivariate signature schemes, plain UOV, BAC-
UOV, and an attack on BAC-UOV. In Section 3, we introduce the polynomial
matrices of a quotient ring as a generalization of the circulant matrices. In Sec-
tion 4, we describe the proposed signature scheme QR-UOV. In Section 5, we
analyze the security of the proposed scheme. We present our proposed parame-
ters and compare the performance of our scheme with that of Rainbow in Sec-
tion 6. We conclude the paper in Section 7 by summarizing the key points and
suggesting possible future work.

2 Preliminaries

In this section, we first explain the MQ problem and general signature schemes
based on this problem. Subsequently, we review the construction of UOV [23].
We then describe the construction of BAC-UOV [35] and finally explain Furue
et al.’s structural attack [18] on BAC-UOV.
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2.1 Multivariate Signature Schemes

Let Fq be a finite field with q elements, and let n and m be two positive integers.
For a system of quadratic polynomials P = (p1(x1, . . . , xn), . . . , pm(x1, . . . , xn))
in n variables over Fq and y ∈ Fm

q , the problem of obtaining a solution x ∈ Fn
q

to P(x) = y is called the MQ problem. Garey and Johnson [20] proved that
this problem is NP-complete if n ≈ m, and thus, it is considered to have the
potential to resist quantum computer attacks.

Next, we briefly explain the construction of the general multivariate signature
schemes. First, an easily invertible quadratic map F = (f1, . . . , fm) : Fn

q → Fm
q ,

called a central map, is generated. Next, two invertible linear maps S : Fn
q → Fn

q

and T : Fm
q → Fm

q are randomly chosen to hide the structure of F . The public
key P is then provided as a polynomial map:

P = T ◦ F ◦ S : Fn
q → Fm

q . (1)

The secret key comprises T , F , and S. The signature is generated as follows:
Given a message m ∈ Fm

q to be signed, compute m1 = T −1(m), and obtain a
solutionm2 to the equation F(x) = m1. This gives the signature s = S−1(m2) ∈
Fn
q for the message. Verification is performed by confirming whether P(s) = m.

2.2 Unbalanced Oil and Vinegar Signature Scheme

Let v be a positive integer and n = v+m. For variables x = (x1, . . . , xn) over Fq,
we call x1, . . . , xv vinegar variables and xv+1, . . . , xn oil variables. In the UOV
scheme, a central map F = (f1, . . . , fm) : Fn

q → Fm
q is designed such that each

fk (k = 1, . . . ,m) is a quadratic polynomial of the form

fk(x1, . . . , xn) =

n∑
i=1

v∑
j=1

α
(k)
i,j xixj , (2)

where α
(k)
i,j ∈ Fq. A linear map S : Fn

q → Fn
q is then randomly chosen. Next, the

public key map P : Fn
q → Fm

q is computed using P = F ◦ S. The linear map T
in equation (1) is not required because it does not help hide the structure of F .
Thus, the secret key comprises F and S.

Next, we explain the inversion of the central map F . Given y ∈ Fm
q , we first

choose random values a1, . . . , av in Fq as the vinegar variables. Then, we can ef-
ficiently obtain a solution (av+1, . . . , an) for the equation F(a1, . . . , av, xv+1, . . . ,
xn) = y because this is a linear system of m equations in m oil variables. If there
is no solution to this equation, we choose new random values a′1, . . . , a

′
v, and re-

peat the procedure. Eventually, we obtain the solution x = (a1, . . . , av, av+1, . . . ,
an) to F(x) = y. In this manner, we execute the signing process explained in
Subsection 2.1.

We assume that the characteristic of Fq is odd in the following. For each
1 ≤ i ≤ m, there exists an n×n symmetric matrix Fi such that fi(x) = x·Fi ·x⊤.
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From equation (2), Fi has the form(
∗v×v ∗v×m

∗m×v 0m×m

)
. (3)

Let Pi (i = 1, . . . ,m) be an n×n symmetric matrix Pi such that pi(x) = x·Pi·x⊤.
Then, taking the n× n matrix S such that S(x) = S · x⊤, we have

Pi = S⊤FiS, (i = 1, . . . ,m) (4)

from P = F ◦ S. We call Fi and Pi the representation matrices of fi and pi,
respectively.

2.3 Block-Anti-Circulant UOV

As mentioned above, the block-anti-circulant (BAC) UOV [35] is a variant of
UOV. The public key is shortened by representing it using block-anti-circulant
matrices. In this subsection, we describe the construction of BAC-UOV.

In a circulant matrix, each row vector is rotated by one element to the right
relative to the preceding row vector. In an anti-circulant matrix, each row vector
is rotated by one element to the left relative to the preceding row vector. A
circulant matrix X and an anti-circulant matrix Y with size ℓ take the following
forms:

X =


a0 a1 . . . aℓ−2 aℓ−1

aℓ−1 a0 . . . aℓ−3 aℓ−2

...
...
. . .

...
...

a2 a3 . . . a0 a1
a1 a2 . . . aℓ−1 a0

 , Y =


a0 a1 . . . aℓ−2 aℓ−1

a1 a2 . . . aℓ−1 a0
...

...
. . .

...
...

aℓ−2 aℓ−1 . . . aℓ−4 aℓ−3

aℓ−1 a0 . . . aℓ−3 aℓ−2

 .

In addition, a matrix is called a block-circulant matrix A or a block-anti-circulant
matrix B with block size ℓ if every ℓ× ℓ block in A or B is a circulant matrix or
an anti-circulant matrix, as follows (N ∈ N):

A =

 X11 . . . X1N

...
. . .

...
XN1 . . . XNN

 , B =

 Y11 . . . Y1N

...
. . .

...
YN1 . . . YNN

 ,

whereXij is an ℓ×ℓ circulant matrix, and Yij is an ℓ×ℓ anti-circulant matrix. For
these block matrices, it holds that products AB and BA are block-anti-circulant
matrices.

In BAC-UOV, the number of vinegar variables v and the number of equations
m are set to be divisible by block size ℓ. The representation matrices F1, . . . , Fm

for the central map F are chosen as block-anti-circulant matrices with a block
size ℓ, and the matrix S for the linear map S is chosen as a block-circulant
matrix with block size ℓ. The representation matrices P1, . . . , Pm for the public
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key P = F ◦ S are computed using Pi = S⊤FiS (i = 1, . . . ,m) and are block-
anti-circulant matrices.

Owing to the structure of block-anti-circulant matrices, the n × n matrices
P1, . . . , Pm can be represented using only the first row of each block. Therefore,
they can be represented by using only mn2/ℓ elements in the finite field Fq,
which is one ℓ-th the size of the public key of the plain UOV. That is, the public
key was smaller than that of the plain UOV.

2.4 Structural Attack on BAC-UOV

In 2020, Furue et al. proposed an attack on BAC-UOV that breaks the security
of the proposed parameter sets [18]. The attack utilizes the property of the anti-
circulant matrix, wherein the sum of the elements of one row (column) is the
same as those of the other rows (columns).

We define an ℓ × ℓ matrix Lℓ such that (Lℓ)1i = (Lℓ)i1 = 1 (1 ≤ i ≤ ℓ),
(Lℓ)ii = −1 (2 ≤ i ≤ ℓ), and the other elements are equal to 0, where for a
matrix A, (A)ij denotes the ij-component of A, namely

ℓ︷ ︸︸ ︷
Lℓ := ℓ




1 1 . . . 1
1 −1
...

. . .

1 −1

 .

Subsequently, for an ℓ× ℓ anti-circulant matrix Y , we have

L⊤
ℓ Y Lℓ =

(
∗1×1 01×(ℓ−1)

0(ℓ−1)×1 ∗(ℓ−1)×(ℓ−1)

)
. (5)

Let L
(N)
ℓ be an n × n block diagonal matrix constructed by concatenating Lℓ

diagonally N times:
N︷ ︸︸ ︷

L
(N)
ℓ := N


Lℓ

. . .

Lℓ

 ,

where N := n/ℓ. Then, for an n × n block-anti-circulant matrix B with block

size ℓ, the matrix (L
(N)
ℓ )⊤BL

(N)
ℓ is a block matrix in which each block is in the

form of equation (5). Furthermore, a permutation matrix L′ exists such that:

(L
(N)
ℓ L′)⊤B(L

(N)
ℓ L′) =

 ∗N×N 0N×(ℓ−1)N

0(ℓ−1)N×N ∗(ℓ−1)N×(ℓ−1)N

 . (6)

Therefore, the representation matrices P1, . . . , Pm for the public key P of

BAC-UOV can all be transformed into the form of (6) by using L
(N)
ℓ L′. The
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UOV attack [24] can then be executed on only the upper-left N×N submatrices
of the obtained matrices with little complexity. By using the transformed public
key, we can reduce the number of variables appearing in the public equations
P(x) = m for a message m. This reduces the complexity of the attack by
approximately 20% compared with the best existing attack on UOV. This attack
can be executed only if there exists a transformation on the public key, as given
by equation (6).

3 Polynomial Matrices of Quotient Ring

In this section, we introduce polynomial matrices as a generalization of the cir-
culant and anti-circulant matrices used in BAC-UOV [35] and describe a method
for converting polynomial matrices into symmetric matrices that can be applied
to the UOV scheme. Furthermore, we discuss whether such generalized matrices
can be transformed, as shown in equation (5).

3.1 Polynomial Matrices and Their Symmetrization

Let ℓ be a positive integer and f ∈ Fq[x] with deg f = ℓ. For any element g of
the quotient ring Fq[x]/(f), we can uniquely define an ℓ × ℓ matrix Φf

g over Fq

such that (
1 x · · · xℓ−1

)
Φf
g =

(
g xg · · · xℓ−1g

)
. (7)

From this equation, we have

xj−1g =

ℓ∑
i=1

(
Φf
g

)
ij
· xi−1 (1 ≤ j ≤ ℓ),

and
(
Φf
g

)
ij

is the coefficient of xi−1 in xj−1g. We call such a matrix Φf
g the

polynomial matrix of g. The following lemma can be easily derived from this
definition:

Lemma 1. For any g1, g2 ∈ Fq[x]/(f), we have

Φf
g1 + Φf

g2 = Φf
g1+g2 , Φf

g1Φ
f
g2 = Φf

g1g2 .

That is, the map g 7→ Φf
g is an injective ring homomorphism from Fq[x]/(f) to

the matrix ring Fℓ×ℓ
q .

An ℓ × ℓ polynomial matrix Φf
g can be represented by only ℓ elements in

Fq, because Φf
g is determined by the ℓ coefficients of g ∈ Fq[x]/(f). We let the

algebra of the matrices Af :=
{
Φf
g ∈ Fℓ×ℓ

q

∣∣ g ∈ Fq[x]/(f)
}
. This is a subalgebra

in the matrix algebra Fℓ×ℓ
q from Lemma 1. Similarly, for a matrix W ∈ Fℓ×ℓ

q ,

any matrix in WAf := {WΦf
g ∈ Fℓ×ℓ

q | g ∈ Fq[x]/(f)} can also be represented
by only ℓ elements in Fq.

8



As shown in equation (4) in Subsection 2.2, the transpose appears in the
computation of the representation matrices Pi for the public key. Thus, to use
polynomial matrices Φf

g in the UOV scheme, we need WAf to be stable under
the transpose operation for someW . Thus, to construct our proposed scheme, we
need an explicit family of f and W such that WAf is stable under the transpose
operation. In the following theorem, we prove that there exists an invertible
matrix W for any f .

Theorem 1. Let f ∈ Fq[x] with deg f = ℓ. Then, there exists an invertible
matrix W ∈ Fℓ×ℓ

q such that WX is a symmetric matrix for any X ∈ Af .

Proof. Let ϕ : Fq[x]/(f) → Fq be a nonzero linear map. We define W such that
the ij-component of W is equal to ϕ(xi+j−2). Then, for any g ∈ Fq[x]/(f), we
have the following:

(WΦf
g )ij =

ℓ∑
k=1

ϕ(xi+k−2)(Φf
g )kj

= ϕ

(
ℓ∑

k=1

xi+k−2(Φf
g )kj

)

= ϕ

(
xi−1

(
ℓ∑

k=1

xk−1(Φf
g )kj

))
= ϕ(xi−1xj−1g) (∵ (7))

= ϕ(xi+j−2g)

= (WΦf
g )ji.

This equation shows that WΦf
g is symmetric.

If we define ϕ such that ϕ(a0 + a1x + · · · + aℓ−1x
ℓ−1) = aℓ−1, then W is of

the following form: 0 1
. .
.

1 ∗

 ,

and hence W is invertible. This indicates that there exists one invertible matrix
W constructed using the above method. ut

As stated in Subsection 3.2 below, from a security perspective, f must be
irreducible in our scheme. Furthermore, from the perspective of simplicity, f
should have only a few nonzero terms. As there are no irreducible binomials f
with deg f = ℓ for many ℓ, trinomials f are considered suitable for our scheme.
The following example shows that there are some trinomials f and suitable W
for symmetrization purposes.

Example 1. We assume that f = xℓ − axi − 1 (a ∈ Fq, 1 ≤ i ≤ ℓ − 1). If
W ∈ Fℓ×ℓ

q is constructed using a linear map ϕ : Fq[x]/(f) → Fq such that
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Table 1. Degree ℓ such that there exist no irreducible trinomials of the form xℓ−axi−1
among 2 ≤ ℓ ≤ 30 for Fq = F7.

Fq F7

ℓ 6, 15, 30

ϕ(a0 + a1x+ · · ·+ aℓ−1x
ℓ−1) = ai−1, then we can represent the matrix W as

W =

(
Ji

Jℓ−i

)
,

where Ji :=

(
1

.
.
.

1

)
denotes the anti-identity matrix of size i. From Theorem 1,

WX becomes a symmetric matrix for any X ∈ Af .

The polynomial f must be irreducible in our scheme; thus, we conducted
several experiments to confirm the irreducibility of xℓ − axi − 1. We treated the
finite field Fq = F7, which is used for our proposed scheme as described below,
and checked whether there exists an irreducible polynomial f ∈ Fq[x] in the form
xℓ − axi − 1 for 2 ≤ ℓ ≤ 30. We found an irreducible polynomial xℓ − axi − 1 for
sufficiently many 2 ≤ ℓ ≤ 30. Table 1 shows the degree ℓ such that there exists
no irreducible polynomials of the above form.

Finally, if we choose f = xℓ−1 and a linear map ϕ : Fq[x]/(f) → Fq such that
ϕ(a0 + a1x+ · · ·+ aℓ−1x

ℓ−1) = aℓ−1, then W = Jℓ and WΦf
g is an anti-circulant

matrix. Thus, this choice corresponds exactly to BAC-UOV [35], and Theorem 1
can be regarded as describing the generalization of anti-circulant matrices.

3.2 Effect of Irreducibility of f

In this subsection, we discuss the relation between the irreducibility of poly-
nomial f used to generate the quotient ring Fq[x]/(f) and the existence of
transformation on symmetric matrices WΦf

g into the diagonal concatenation
of smaller matrices. This is because, as stated in Subsection 2.4, the proposed
parameters of BAC-UOV were broken by using the transformation of equa-
tion (5) on anti-circulant matrices obtained from the decomposition xℓ − 1 =
(x− 1)(xℓ−1 + · · ·+ 1).

In the following theorem, we show that if f is irreducible, there does not exist
a transformation such as equation (5) on symmetric matrices WΦf

g .

Theorem 2. Let f ∈ Fq[x] be an irreducible polynomial with deg f = ℓ and W
be an invertible matrix such that every element of WAf is a symmetric matrix.
Subsequently, there is no invertible matrix L ∈ Fℓ×ℓ

q and i, j ∈ {1, . . . , ℓ} such
that for any X ∈ WAf ,

(L⊤XL)ij = 0.

10



Proof. We assume that there exists a matrix L ∈ Fℓ×ℓ
q and i, j ∈ {1, . . . , ℓ}

satisfying the above condition. Let ℓi be the i-th column vector of W⊤L, and ℓj
be the j-th column vector of L. Then, we have ℓ⊤i Φ

f
hℓj = 0 for any h ∈ Fq[x]/(f).

Now, we define a linear isomorphism V1 : Fq[x]/(f) → Fℓ
q such that

V1(a0 + a1x+ · · ·+ aℓ−1x
ℓ−1) = (a0, a1, . . . , aℓ−1)

⊤,

and V1(g) is equal to the first column vector of Φf
g . Furthermore, we define a

linear map V2 : Fq[x]/(f) → Fℓ
q such that V2(g) is equal to the first column

vector of (Φf
g )

⊤. If V2(g) = 0, then Φf
g is not invertible by the definition of V2.

Because Af is a field, Φf
g is the zero matrix, namely, g = 0. As a result, V2 is an

isomorphism.
Let gi := V −1

2 (ℓi) and gj := V −1
1 (ℓj). Clearly, (Φ

f
giΦ

f
hΦ

f
gj )11 = ℓ⊤i Φ

f
hℓj = 0

for any h ∈ Fq[x]/(f). If we take h = (gigj)
−1, then

0 = (Φf
giΦ

f
(gigj)−1Φ

f
gj )11 = I11 = 1.

This is a contradiction. Therefore, Theorem 2 holds. ut

From this theorem, we choose an irreducible polynomial as the f of Af used
in our proposed variant, which is described in Section 4.

Remark 1. In this remark, we discuss the transformation of elements of WAf

with reducible f by using Theorems 4 and 5 in Appendix A. Theorem 4 shows
that if f is decomposed into distinct irreducible polynomials, WAf are trans-
formed into a concatenation of two smaller submatrices. In fact, the transforma-
tion, as in equation (5) in the structural attack on BAC-UOV, corresponds to
the transformation described in Theorem 4. If f is divisible by a squared poly-
nomial, Theorem 5 shows that the representation matrices can be transformed
by executing a change of variables into a special form wherein the lower-right
(n/ℓ)× (n/ℓ) block is a zero block, similar to the representation matrices of the
central map (equation (3)).

4 Our Proposal: Quotient-Ring UOV (QR-UOV)

In this section, we present our proposed UOV variant, QR-UOV, which is con-
structed by applying the polynomial matrices described in Subsection 3.1.

4.1 Description

Let ℓ be a positive integer and v,m be multiples of ℓ such that v > m. Set
n := v +m and N := n/ℓ.

Let f ∈ Fq[x] be an irreducible polynomial with deg f = ℓ and W be an
invertible matrix such that every element of WAf is symmetric. There exist f
and W satisfying the above condition for many ℓ, as shown by Theorem 1 and

11



the discussion in Subsection 3.1. We define subspace A
(N)
f in Fn×n

q containing
n× n matrices as  X11 . . . X1N

...
. . .

...
XN1 . . . XNN

 ,

where every Xij ∈ Fℓ×ℓ
q (i, j ∈ {1, . . . , N}) is an element of Af . Furthermore, we

define an n × n block diagonal matrix W (N) constructed by concatenating W
diagonally N times:

W (N) :=

W
. . .

W

 .

For these matrices, we obtain the following proposition:

Proposition 1. For X ∈ A
(N)
f and Y ∈ W (N)A

(N)
f , we have

X⊤Y X ∈ W (N)A
(N)
f .

Proof. We prove this proposition for N = 1. Let X := Φf
g1 and Y := WΦf

g2 .

Owing to the symmetry of WAf and W (because Φf
1 is the identity matrix),

X⊤Y X = (Φf
g1)

⊤(WΦf
g2)(Φ

f
g1)

= (Φf
g1)

⊤W⊤Φf
g2Φ

f
g1

= WΦf
g1Φ

f
g2Φ

f
g1

= WΦf
g1·g2·g1 .

For N ≥ 2, the statement is proven similarly. ut

Using this proposition, we can construct a quotient-ring UOV (QR-UOV),
which is a variant of UOV using polynomial matrices.

Key Generation

– Choose an irreducible polynomial f ∈ Fq[x] with deg f = ℓ and W ∈ Fℓ×ℓ
q

such that every element in WAf is symmetric.

– Choose Fi (i = 1, . . . ,m) from W (N)A
(N)
f such that the lower-right m ×m

submatrices are zero matrices.
– Choose an invertible matrix S from A

(N)
f randomly.

– Compute Pi = S⊤FiS (i = 1, . . . ,m).

Then, we obtain that Pi (i = 1, . . . ,m) are elements of W (N)A
(N)
f from

Proposition 1. The signing and verification processes were the same as those for
the plain UOV. In QR-UOV, the cardinality of the finite field q is set to be
odd because if q is even, then the coefficients corresponding to the non-diagonal
components of every diagonal block are zero owing to the symmetry of every
block WΦf

g .

12



Remark 2. We can apply the polynomial matrices of a quotient ring to both
UOV and Rainbow.

4.2 Improved QR-UOV

In this subsection, we explain two improved methods used in the NIST third-
round proposal of Rainbow [12]. First, the secret key S is limited to a specific
compact form, which was first proposed by Czypek et al. [11]. The second re-
places a large part of the public key with a small seed for pseudo-random number
generation (PRNG).

In the plain UOV, the matrix S of the secret linear map S can be restricted
to a special form:

S =

(
Iv×v S′

0m×v Im×m

)
, (8)

where S′ is a v ×m matrix because it does not affect the security. In QR-UOV,

S is chosen in A
(N)
f , and the identity and zero matrices are elements of Af .

Therefore, S is written as in equation (8), where S′ is a block matrix in which
every component is an element of Af . This limits the secret key to a specific
compact form.

The second method is based on Petzoldt et al.’s compression technique [30].
The version of Rainbow using this technique and a secret key compression tech-
nique is called “compressed Rainbow” in the third-round finalist NIST PQC
project [12]. The representation matrices Pi (i = 1, . . . ,m) of the public key
map are written in the form

Pi =

(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)
,

where Pi,1, Pi,2, and Pi,3 are v × v, v × m, and m × m matrices, respectively,
and Pi,1 and Pi,3 are symmetric matrices. Similarly, the representation matrices
Fi (i = 1, . . . ,m) of the central map in equation (3) are written in the form

Fi =

(
Fi,1 Fi,2

F⊤
i,2 0m×m

)
,

where Fi,1 and Fi,2 are v × v and v × m matrices, respectively, and Fi,1 is a
symmetric matrix. Then, as we have

S−1 =

(
Iv×v −S′

0m×v Io×o

)
,

the representation matrices Fi, Pi (i = 1, . . . ,m), and S hold the following equa-
tion: (

Fi,1 Fi,2

F⊤
i,2 0m×m

)
=

(
Iv×v 0v×m

−S′⊤ Io×o

)(
Pi,1 Pi,2

P⊤
i,2 Pi,3

)(
Iv×v −S′

0m×v Io×o

)
.
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By computing the right-hand side, we obtain

Fi,1 = Pi,1,

Fi,2 = −Pi,1S
′ + Pi,2,

0m×m = S′⊤Pi,1S
′ − P⊤

i,2S
′ − S′⊤Pi,2 + Pi,3. (9)

In the improved key generation step, Pi,1, Pi,2 (i = 1, . . . ,m), and S′ are first
generated from seeds spk and ssk, respectively, using PRNG. Next, Pi,3 (i =
1, . . . ,m) is computed using

Pi,3 = −S′⊤Pi,1S
′ + P⊤

i,2S
′ + S′⊤Pi,2,

from equation (9): As a result, the public key is composed of m×m matrices Pi,3

(i = 1, . . . ,m) and the seed spk for Pi,1, Pi,2 (i = 1, . . . ,m). This compression
technique significantly reduces the public key size of QR-UOV.

Finally, we compare the public key size of plain QR-UOV with that of the
improved QR-UOV. The public key of plain QR-UOV is represented by Pi,1,
Pi,2, and Pi,3 (i = 1, . . . ,m), and that of the improved QR-UOV uses a seed spk
and Pi,3 (i = 1, . . . ,m). Thus, the number of elements in Fq needed to represent
the public key of the plain QR-UOV is

mn(n+ ℓ)/2ℓ,

whereas that of the improved QR-UOV is

m2(m+ ℓ)/2ℓ.

5 Security Analysis

In this section, we first analyze the security of QR-UOV against four currently
known attacks on plain UOV. We then discuss possible attacks on the quotient
ring obtained by pulling submatricesWΦf

g back to g in the quotient ring. Finally,
we consider the execution of possible attacks obtained by lifting the base field
Fq to an extension field Fqℓ and transforming the public key system over the
extension field.

5.1 Currently Known Attacks on Plain UOV

In this subsection, we consider QR-UOV as the plain UOV described in Sub-
section 2.2 and describe the execution of four currently known attacks on UOV:
the direct attack, UOV attack [24], reconciliation attack [14], and intersection
attack [5].
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Direct Attack Given a quadratic polynomial system P = (p1, . . . , pm) in n
variables over Fq and m ∈ Fm

q , the direct attack algebraically solves the system
P(x) = m. For UOV, the number of variables n is larger than the number of
equations m; therefore, n − m variables can be specified with random values
without disturbing the existence of a solution with high probability.

One of the best-known approaches for algebraically solving the quadratic
system is the hybrid approach [4], which randomly guesses k (k = 0, . . . , n)
variables before computing a Gröbner basis [9]. The guessing process is repeated
until a solution is obtained. Well-known algorithms for computing Gröbner bases
include F4 [16], F5 [17], and XL [10]. The complexity of this approach for a
classical adversary is estimated as follows:

min
k

(
O

(
qk · 3 ·

(
m− k

2

)
·
(
dreg +m− k

dreg

)2
))

, (10)

where dreg is the so-called degree of regularity of the system. The degree of
regularity dreg for a certain class of polynomial systems called semi-regular sys-
tems [1–3] is known to be the degree of the first non-positive term in the following
series [3]: (

1− z2
)m

(1− z)
m−k

. (11)

Empirically, the public key system of UOV is considered to be a semi-regular
system. Therefore, this series (11) can be used to estimate the degree of regu-
larity.

On the other hand, the complexity of a quantum direct attack is estimated
to be

min
k

(
O

(
qk/2 · 3 ·

(
m− k

2

)
·
(
dreg +m− k

dreg

)2
))

, (12)

by using Grover’s algorithm [21].
Thomae and Wolf [36] proposed a technique for reducing the number of

variables and equations when n > m. For the n×n representation matrices Pi of
the public key, the technique chooses a new matrix S′ such that every upper-left
m × m submatrix of S′⊤PiS

′ (i = 1, . . . , α) is diagonal, where α = b n
mc − 1.

We can then reduce the (n − m + α) variables and α equations and thereby
obtain a quadratic system with m − α variables and equations. This technique
can be fully applied only to quadratic systems that are over finite fields of even
characteristics. Furthermore, Thomae and Wolf show that the technique can
be applied to odd characteristic cases with sufficiently small α, whereas the
technique empirically makes the direct attack faster on the resulting systems in
odd characteristics cases with large α. Therefore, from a security perspective, it is
not extreme that we consider this technique to be applicable to odd characteristic
cases.

In Table 2, for a QR-UOV public key system, we compare the theoretical dreg
and experimental dreg. The theoretical dreg is the degree of regularity obtained
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Table 2. Theoretical and experimental degree of regularity of public key system of
QR-UOV obtained using the Magma algebra system [7].

(q, v,m, ℓ, k) theoretical dreg experimental dreg

(7, 24, 12, 3, 0) 13 13

(7, 24, 12, 3, 1) 7 7

(7, 24, 12, 3, 2) 6 6

(7, 30, 15, 3, 0) 16 16

(7, 30, 15, 3, 1) 8 9

(7, 30, 15, 3, 2) 7 7

by equation (11), assuming that the system is semi-regular. The experimental
dreg is the highest degree among the step degrees, where nonzero polynomials
are generated in experiments of the direct attack using the Magma algebra sys-
tem [7]. In our experiment, m was set to sufficiently large values so that our
computation for one parameter was performed within one day, and v is set equal
to 2m, while q and ℓ are set to the values given in Subsection 6.1. For the public
key of the QR-UOV with (v + m) variables and m equations, we fix the last
v variables and execute the hybrid approach by fixing k variables additionally.
That is, the direct attack is executed on the system of m equations in m − k
variables. These results demonstrate that the degrees of regularity obtained ex-
perimentally were the same as those obtained theoretically.

Remark 3. In the case of (q, v,m, ℓ, k) = (7, 30, 15, 3, 1) in Table 2, the experi-
mental dreg is larger than the theoretical dreg. However, our experiment shows
that the experimental dreg of the same size randomized quadratic system of m
equations in (m − k) variables over F7 is not different from our experimental
dreg of (q, v,m, ℓ, k) = (7, 30, 15, 3, 1).

UOV Attack The UOV attack [24] obtains a linear map S ′ : Fn
q → Fn

q such
that every component of F ′ := P ◦ S ′ has the form of equation (2). This S ′ is
called the equivalent key. The UOV attack obtains the subspace S−1(O) of Fn

q ,
where O is the oil subspace defined as

O :=
{
(0, . . . , 0, α1, . . . , αm)⊤

∣∣ αi ∈ Fq

}
.

This subspace S−1(O) can induce an equivalent key. To obtain S−1(O), the UOV
attack chooses two invertible matricesWi,Wj from the set of linear combinations
of P1, . . . , Pm. Then, it probabilistically recovers a part of the subspace S−1(O)
by computing the invariant subspace of W−1

i Wj . The complexity of the UOV
attack is estimated to be

O
(
qv−m−1 ·m4

)
.

Grover’s algorithm can be used to reduce the complexity for a quantum adversary
to

O
(
q

v−m−1
2 ·m4

)
.
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Reconciliation Attack The reconciliation attack [14] also obtains, similar to
the UOV attack, an equivalent key S ′. The reconciliation attack treats every
component of the matrix S′ as a variable and solves the quadratic system of
equations obtained using (S′⊤PiS

′)[v + 1 : n, v + 1 : n] = 0m×m (i = 1, . . . ,m),
where X[a : b, c : d] denotes a (b − a + 1) × (d − c + 1) submatrix of X,
where the upper-left component has index (a, b). This attack can be decomposed
into a series of steps; in the first step, a system of m quadratic equations in v
variables is solved. In the case of the plain UOV, where v > m, the complexity
is greater than that of solving a quadratic system of v equations in v variables.
Therefore, we estimate the complexity of the reconciliation attack as that of the
direct attack on a quadratic system with v variables and v equations, which is
obtained by equations (10) and (12) as m = v. If v ≤ m, then the complexity
of the reconciliation attack is the same as that of solving a quadratic system
of m equations in v variables. As a result, we estimate the complexity of the
reconciliation attack as the direct attack on the quadratic system with v variables
and max{m, v} equations.

Intersection Attack In [5], Beullens proposed a new attack against UOV,
called the intersection attack.

The intersection attack attempts to obtain an equivalent key by recovering
the subspace S−1(O) of Fn

q . The intersection attack solves the following equations
for y ∈ Fn

q :  (Wiy)
⊤Pk(Wiy) = 0

(Wjy)
⊤Pk(Wjy) = 0

(Wiy)
⊤Pk(Wjy) = 0

(13)

where Wi,Wj are two invertible matrices chosen from a set of linear combina-
tions of the public key P1, . . . , Pm. In the case where n < 3m, the solution space
obtained from equations (13) is of the (3m−n) dimensions. Thus, its complexity
is equivalent to that of solving the quadratic system with n−(3m−n) = 2n−3m
variables and (3m − 2) equations. In contrast, in the case where n ≥ 3m, the
intersection attack becomes a probabilistic algorithm for solving the system (13)
with n variables and (3m − 2) equations with a probability of approximately
q−n+3m−1. Therefore, its complexity is estimated by qn−3m+1 times the com-
plexity of solving the quadratic system with n variables and (3m−2) equations.

Remark 4. In [5], Beullens proposed a new attack against Rainbow, called a
rectangular MinRank attack. This attack uses non-full-rank property of Rainbow
and thus does not affect the security of our proposed scheme.

5.2 Pull-back Attacks over Quotient Ring

In this subsection, we explain a technique for executing four currently known at-
tacks on QR-UOV by utilizing the block structure derived from the quotient ring.
For every block submatrix WΦf

g of the representation matrices of the public key,
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we can execute the UOV attack [24], reconciliation attack [14], and intersection
attack [5] in the quotient ring Fq[x]/(f) by replacing WΦf

g with g.

We define a map G1 : W (N)A
(N)
f → (Fq[x]/(f))

N×N such that given X ∈
W (N)A

(N)
f , (G1(X))ij is equal to g ∈ Fq[x]/(f) if the ij-block of X is WΦf

g .

Furthermore, we define G2 : A
(N)
f → (Fq[x]/(f))

N×N such that G2(X) =

G1(W
(N) ·X) for X ∈ A

(N)
f . In the following, we consider the execution of the

four currently known attacks described in Subsection 5.1 onG1(P1), . . . , G1(Pm),
which is called the pull-back technique.

First, we consider the complexity of the pull-back UOV attack, which is the
UOV attack on the transformed representation matrices G1(P1), . . . , G1(Pm). If
we obtain an equivalent key S′ for the transformed matrices by executing the
UOV attack over Fq[x]/(f), then G−1

2 (S′) ∈ Fn×n
q is an equivalent key over

Fq. The complexities of the pull-back UOV attack for a classical and quantum
attacker are

O
(
qv−m−ℓ · (m/ℓ)4

)
, O

(
q

v−m−ℓ
2 · (m/ℓ)4

)
,

which are approximately the same values as for the plain UOV attack.
Second, the pull-back reconciliation attack is the reconciliation attack on

UOV with v/ℓ vinegar variables andm equations. As we stated in Subsection 5.1,
the complexity is estimated to be that of the direct attack on a quadratic system
with v/ℓ variables and max{m, v/ℓ} equations over Fq[x]/(f).

Third, we discuss applying the pull-back technique to the intersection attack.
The pull-back intersection attack can also be seen as the intersection attack
on UOV with v/ℓ vinegar variables and m equations in Fq[x]/(f). From the
discussion in Subsection 5.1, when n < 3m, the complexity of the pull-back
intersection attack is equivalent to that of solving the quadratic system with
(2n−3m)/ℓ variables and (3m−2) equations in Fq[x]/(f). In contrast, in the case
where n ≥ 3m, the complexity of the pull-back intersection attack is estimated by
qn−3m+ℓ times the complexity of solving the quadratic system with n/ℓ variables
and (3m− 2) equations.

Finally, for the direct attack, as vectors x and m of P(x) = m cannot be
represented over the quotient ring Fq[x]/(f), the direct attack cannot be executed
on G1(P1), . . . , G1(Pm).

5.3 Lifting Attacks over Extension Field

As stated in Theorem 2, there does not exist a transformation on the representa-
tion matrices P1, . . . , Pm of QR-UOV into the diagonal concatenation of smaller
matrices, such as the form of equation (6) used in the structural attack on BAC-
UOV by executing a change of variables over Fq. However, as we prove below,
such a transformation exists in the public key of QR-UOV over the extension
field Fqℓ . In this subsection, we explain a technique for transforming the public
key over Fqℓ and how this affects the four currently known attacks on UOV.
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Theorem 3. With the same notation as in Theorem 2,

(i) There exists an invertible matrix L ∈ Fℓ×ℓ
qℓ

such that L−1Φf
gL is diagonal for

any g ∈ Fq[x]/(f).
(ii) The matrix L described in (i) satisfies the condition that L⊤XL is diagonal

for any X ∈ WAf .
(iii) If there exists y ∈ Fℓ

qℓ such that y⊤Xy = 0 for any X ∈ WAf , then y = 0.

(The proof is provided in the appendix.)
First, Theorem 3 shows that the polynomial matrix can be diagonalized over

Fqℓ . Subsequently, it indicates that P1, . . . , Pm of QR-UOV can be transformed
into block diagonal matrices for which the block size is N × N by executing
a change of variables over Fqℓ . Let L(N) be an n × n block diagonal matrix
with block size ℓ (n = ℓ · N), for which the N diagonal blocks are L. Then,
(L(N))⊤PiL

(N) (i = 1, . . . ,m) become block matrices wherein every component
is in a diagonal form. Furthermore, there exists a permutation matrix L′ such
that (L(N)L′)⊤Pi(L

(N)L′) is a block diagonal matrix with block size N , and let
L̄ := L(N)L′. Finally, this theorem states that there does not exist a change in
variables over Fqℓ such that it directly recovers the structure of the central map
of UOV.

Next, we consider the complexities of the lifting UOV, reconciliation, and
intersection attacks which are the UOV attack [24], reconciliation attack [14],
and intersection attack [5] on L̄⊤PiL̄ (i = 1, . . . ,m). The transformed matrices
L̄⊤PiL̄ can be represented by (L̄−1SL̄)⊤(L̄⊤FiL̄) (L̄

−1SL̄). Then, L̄⊤FiL̄ is the
diagonal concatenation of ℓ smaller matrices, similar to L̄⊤PiL̄. Furthermore,
L̄−1SL̄ is also the diagonal concatenation of ℓ smaller matrices from (i) in The-
orem 3. Then, owing to the structure of Fi, every diagonal block of L̄⊤FiL̄ has
an m/ℓ×m/ℓ zero block, similar to Fi. Therefore, each diagonal block of L̄⊤PiL̄
has the same form as the matrix representing the public key of UOV with v/ℓ
vinegar variables and m/ℓ oil variables over Fqℓ . The lifting technique executes
currently known attacks on one of such diagonal blocks. Consequently, the com-
plexity of the lifting UOV attack on each block over Fqℓ is O(qv−m−ℓ · (m/ℓ)4),
and the complexity of the lifting reconciliation attack on each block is estimated
to be that of the direct attack on a quadratic system with v/ℓ variables and
max{m, v/ℓ} equations over Fqℓ . Furthermore, we can apply the lifting tech-
nique to the intersection attack. In the case where n < 3m, the complexity of
the lifting intersection attack on each block over Fqℓ is estimated to be the com-
plexity of solving the quadratic system with (2n− 3m)/ℓ variables and (3m− 2)
equations over Fqℓ . In contrast, in the case where n ≥ 3m, the complexity is es-
timated by qn−3m+ℓ times the complexity of solving the quadratic system with
n/ℓ variables and (3m− 2) equations over Fqℓ .

Note that the complexities of the lifting UOV, reconciliation, and intersec-
tion attacks in this subsection are the same as those of the pull-back UOV,
reconciliation, and intersection attacks in Subsection 5.2, respectively.

Next, we consider the direct attack on L̄⊤PiL̄ (i = 1, . . . ,m). Although in
Subsection 5.1, we use the technique proposed by Thomae and Wolf [36] in the
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Table 3. Theoretical and experimental degree of regularity obtained by executing the
lifting direct attack using the Magma algebra system [7].

(q, v,m, ℓ, k) theoretical dreg experimental dreg

(7, 24, 12, 3, 0) 13 13

(7, 24, 12, 3, 1) 7 7

(7, 24, 12, 3, 2) 6 5

(7, 30, 15, 3, 0) 16 15

(7, 30, 15, 3, 1) 8 8

(7, 30, 15, 3, 2) 7 7

plain direct attack, we cannot use this technique in the lifting direct attack. If
we use this technique before the linear transformation using L̄ over Fqℓ , the rep-
resentation matrices cannot be diagonalized because the linear transformation
executed in this technique breaks the block structure of QR-UOV. We thus use
the technique after block-diagonalizing over Fqℓ . If n > m, the cardinality of the
solution is generally Fv

q . However, because the system is solved over Fqℓ , the car-
dinality of the obtained solution changes to Fv

qℓ . Therefore, the probability that
the obtained solution is in Fn

q is very low; therefore, this technique is inefficient.

In conclusion, there is no effective way to execute the direct attack on L̄⊤PiL̄
using Thomae and Wolf’s technique.

Therefore, we consider the lifting direct attack without using Thomae and
Wolf’s technique, in which we fix the v values before block-diagonalizing over Fqℓ .
We then obtain a solution in Fn

q because the solution is uniquely determined with
high probability. This means that we can execute the direct attack on a block-
diagonalized system without reducing the probability of obtaining a solution in
Fn
q . Table 3 summarizes the results of experiments investigating the degree of

regularity of the block-diagonalized public key system of QR-UOV using the
Magma algebra system [7]. In our experiment, v is set to be equal to 2m. For
the representation matrices P1, . . . , Pm of the public key of the QR-UOV with
(v +m) variables and m equations, after transforming the system like L̄⊤PiL̄,
we fix the last v variables and execute the hybrid approach by fixing k variables
additionally. That is, the direct attack is executed on the system of m equations
in m − k variables. In Table 3, the theoretical dreg is the degree of regularity
obtained by equation (11), assuming that the system is semi-regular, and the
experimental dreg is the highest degree among the step degrees, where non-zero
polynomials are generated in experiments of the direct attack using the Magma
algebra system [7]. The results show that the experimental dreg was smaller than
the theoretical dreg by at most one. Therefore, we estimate the complexity of
the lifting direct attack by replacing q and dreg in equations (10) and (12) with
qℓ and dreg−1, respectively. In this estimation, the degree of regularity becomes
one degree smaller, but the base field Fq is lifted to the extension field Fqℓ .
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6 Proposed Parameters and Comparison

In this section, we propose specific parameters for three security levels of the
NIST PQC project [27] and compare the performance of the improved QR-UOV
with that of compressed Rainbow [12].

6.1 Proposed Parameters

In this subsection, we describe the parameters selected for the improved QR-
UOV described in Subsection 4.2. Our proposed parameters are set to satisfy
the security levels I, III, and V of the NIST PQC project [27] to enable compar-
ison with the performance of compressed Rainbow [12]. The parameters for the
improved QR-UOV are the order of finite fields q, number of vinegar variables v,
number of oil variables (equations) m, block size of the representation matrices
ℓ, and polynomial used to generate the quotient ring f . We set q as odd from
a security perspective. The integer v is mainly determined by the complexity of
the pull-back and lifting reconciliation attacks described in Subsections 5.2 and
5.3, and m is determined by that of the plain direct attack. We use ℓ = 3 because
a large ℓ increases the signature and execution time. From Theorem 2, we choose
irreducible polynomials f in the form of xℓ − axi − 1 described in Example 1. In
summary, we propose the following parameters for improved QR-UOV:

QR-UOV I : (q, v,m, ℓ, f) = (7, 189, 72, 3, x3 − 3x− 1),

QR-UOV III : (q, v,m, ℓ, f) = (7, 291, 111, 3, x3 − 3x− 1),

QR-UOV V : (q, v,m, ℓ, f) = (7, 411, 162, 3, x3 − 3x− 1).

Next, we show that these parameters of QR-UOV I, III, and V satisfy the
security levels I, III, and V of the NIST PQC project, respectively. Here, security
levels I, III, and V indicate that a classical attacker needs more than 2143, 2207,
and 2272 classical gates to break the parameters, whereas a quantum attacker
needs more than 274, 2137, and 2202 quantum gates, respectively [27]. The number
of gates required for an attack against the NIST third-round proposal version of
Rainbow [12] can be computed using

#gates = #fieldmultiplication · (2 · (log2q)2 + log2q).

Next, we consider the complexity of each attack described in Section 5 on the
proposed parameters. Table 4 shows the complexity of the plain direct, UOV,
reconciliation, and intersection attacks described in Subsection 5.1, the pull-
back UOV, reconciliation, and intersection attacks described in Subsection 5.2,
and the lifting direct, UOV, reconciliation, and intersection attacks described
in Subsection 5.3. (See each subsection for a concrete method of estimating the
complexity of each attack). This table does not include the complexity of “the
pull-back direct attack” because we cannot execute the direct attack on the
pulled back public key system, as stated in Subsection 5.2. For each parameter
set, the upper entry shows the number of classical gates, whereas the lower entry
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Table 4. The complexity of the plain attacks in Subsection 5.1, the pull-back attacks
in Subsection 5.2, and lifting attacks in Subsection 5.3 on the proposed parameters of
QR-UOV in Subsection 6.1. Here, “dir”, “UOV”, “rec”, and “int” denote the direct
attack, UOV attack, reconciliation attack, and intersection attack, respectively. The
bold font indicates the lowest complexity among all attacks at the same security level.

parameter
(q, v,m, ℓ)

attack
model

log2(#gates)
plain pull-back lifting

dir UOV rec int UOV rec int dir UOV rec int

QR-UOV I
(7,189,72,3)

classical 152 355 373 679 346 149 242 210 346 149 242
quantum 91 192 252 411 186 148 175 182 186 148 175

QR-UOV III
(7,291,111,3)

classical 224 534 555 1022 525 214 351 311 525 214 351
quantum 140 283 371 616 277 213 250 267 277 213 250

QR-UOV V
(7,411,162,3)

classical 317 730 768 1394 721 279 446 440 721 279 446
quantum 205 382 511 844 376 275 316 376 376 275 316

shows the number of quantum gates. For example, the complexity of the direct
attack for level I is 155 classical gates and 106 quantum gates. Furthermore, the
values in bold indicate the complexity of the best attack against each param-
eter set. The lowest complexity among all attacks is the pull-back and lifting
reconciliation attacks in the classical case, whereas that is the direct attack in
the quantum case. As a result, this table shows that the proposed parameters
satisfy the requirements for each security level.

Remark 5. Similar to the proposed parameters for Rainbow [12], our proposed
parameters for security levels I, III, and V also satisfy security levels II, IV, and
VI of the NIST PQC project [27].

Remark 6. In [19], Furue et al. improved Thomae and Wolf’s technique for solv-
ing the MQ problem in the case where n > m. Furthermore, Hashimoto made
the method more efficient in [22]. By using these results, the complexities of the
plain direct attack on QR-UOV I, III, and V are reduced from 2155, 2227, and
2320 to 2152, 2224, and 2317 in the classical case and from 2106, 2155, and 2216

to 291, 2140, and 2205 in the quantum case, respectively. In Table 4, we take the
above reduced values.

6.2 Comparison with Rainbow

In Table 5, we compare the public key and signature size for our proposed im-
proved QR-UOV parameters with those for compressed Rainbow [12] for security
levels I, III, and V. As for compressed Rainbow in the third-round proposal [12],
the public key includes a 256-bit seed spk, and the signature includes a 128 bit
salt, which is a random binary vector for EUF-CMA security [33]. The secret key
can be generated from two 256-bit seeds, ssk and spk. For example, the public key
size of the improved QR-UOV for level I is 23.8 KB, which is approximately half
that of compressed Rainbow. As a result, the public key size of the improved
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Table 5. Comparison of public key and signature size of compressed Rainbow with
those of QR-UOV. We use parameters for compressed Rainbow in [12], and parameters
for the improved QR-UOV in Subsection 4.2. The unit of the public key size is kilobyte
(KB) but that of the signature size is byte (B).

security
level

scheme parameters
public key
size (KB)

signature
size (B)

I
Compressed Rainbow I

(q, v1, o1, o2) =
(16, 36, 32, 32)

57.4 66.0

QR-UOV I
(q, v,m, ℓ) =
(7, 189, 72, 3)

23.8 113.9

III
Compressed Rainbow III

(q, v1, o1, o2) =
(256, 68, 32, 48)

252.3 164.0

QR-UOV III
(q, v,m, ℓ) =
(7, 291, 111, 3)

85.8 166.8

V
Compressed Rainbow V

(q, v1, o1, o2) =
(256, 96, 36, 64)

511.2 212.0

QR-UOV V
(q, v,m, ℓ) =
(7, 411, 162, 3)

264.3 230.9

QR-UOV can be reduced by approximately 50%–70% compared with that of
compressed Rainbow at the cost of a small increase in signature size. We stress
that the Rainbow team [31] did not update the parameters of the compressed
Rainbow by considering the intersection attack and the rectangular MinRank
attack proposed by Beullens [5].

Although the public key size could be further reduced by setting the block
size ℓ larger, enlarging the block size would likely increase the signature size and
increase the execution time.

7 Conclusion

We proposed a new variant of UOV, which is a well-established multivariate
signature scheme that has not been broken for over 20 years. Our proposed QR-
UOV scheme uses a quotient ring (Fq[x]/(f)) to reduce the public key size.
Although multivariate signature schemes are promising candidates for post-
quantum cryptography, and a UOV variant called Rainbow was selected as a
third-round finalist in the NIST post-quantum cryptography (PQC) project, a
disadvantage of UOV variants, including Rainbow, is that they have a large
public key. Research on reducing the size of the UOV public key is important
for post-quantum cryptography. In this paper, we present a new approach for
achieving such a reduction.

Our proposed QR-UOV scheme features a small public key and a reasonable
signature size. In particular, using the proposed parameters, the public key size of
the improved QR-UOV can be reduced approximately 50%–70% compared with
that of compressed Rainbow, a third-round finalist in the NIST PQC project,
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without significantly increasing the signature size. To construct QR-UOV, we
defined polynomial matrices Φf

g (g ∈ Fq[x]/(f)) and introduced the concept of a

matrix W such that WΦf
g is symmetric. QR-UOV utilizes polynomial matrices

Φf
g in block matrices. Moreover, we proved that if the polynomial f used to

generate the quotient ring is irreducible, then QR-UOV is resistant to attacks
that can break the block-anti-circulant UOV. We also analyzed the security
of QR-UOV against four currently known attacks on plain UOV and possible
attacks on the quotient ring. We stress that utilizing the elements of a quotient
ring in block matrices is similar to the MLWE problem: a generalization of the
LWE using a module comprising vectors over a ring.

Improving the efficiency of QR-UOV is an important problem. The Rainbow
UOV variant has a multilayer structure and is efficient and secure. Extending
QR-UOV to a comparable, efficient, and secure multilayer version of the QR-
Rainbow will be a challenging task. We need to carefully analyze the security of
the QR-Rainbow against various attacks by considering its multilayer structure.
Another possible way to improve the efficiency is to exploit a better choice of
the polynomial f . In this study, we simply used a simple trinomial for the first
construction of QR-UOV; we expect to obtain another family of polynomials
that can produce more efficient operations.
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Appendix A: Transformation on Polynomial Matrix from
a Reducible Polynomial

First, we discuss the case in which f is reducible and decomposed into distinct
irreducible polynomials.

Theorem 4. Let f ∈ Fq[x] be a reducible polynomial with deg f = ℓ and W be
an invertible matrix such that every element of WAf is a symmetric matrix. If
f = f1 · · · fk (k ∈ N), where f1, . . . , fk are distinct and irreducible, and deg f1 ≤
· · · ≤ deg fk, then there exists an invertible matrix L ∈ Fℓ×ℓ

q and i ∈ {1, . . . , ℓ−1}
such that for any X ∈ WAf ,

L⊤XL =

(
∗i×i 0i×(ℓ−i)

0(ℓ−i)×i ∗(ℓ−i)×(ℓ−i)

)
. (14)

Proof. We first prove that every element of AfW
−1 is symmetric. For any g ∈

Fq[x]/(f),

(Φf
gW

−1)⊤ = W−⊤(Φf
g )

⊤

= W−⊤(Φf
g )

⊤WW−1

= W−⊤(WΦf
g )

⊤W−1 (∵ W is symmetric.)

= W−⊤WΦf
gW

−1

= Φf
gW

−1.

Therefore, every element of AfW
−1 is symmetric.
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As f is reducible, there exists a, b ∈ Fq[x]/(f) such that a · b = 0. Then, for
any g ∈ Fq[x]/(f),

(Φf
aW

−1)⊤(WΦf
g )(Φ

f
bW

−1) = Φf
a·g·bW

−1

= Φf
0W

−1 = 0ℓ×ℓ.

We assume that L ∈ Fℓ×ℓ
q is designed such that the first i column vectors of

L are chosen from the column vector space of Φf
aW

−1, and the other (ℓ − i)

column vectors of L are chosen from the column vector space of Φf
bW

−1. Then,
equation (14) explicitly holds from the above equation.

We next show that there exists an invertible such an invertible matrix L. We
take a = f1 and b = f2 · · · fk (here, f1, . . . , fk are seen as elements of Fq[x]/(f).)

and prove that rankΦf
a = deg b (rankΦf

b = deg a). We use the bijective map V1

used in the proof of Theorem 2. From equation (7), for any c ∈ Fq[x]/(f),

a · c = 0 ⇔ Φf
a · V1(c) = 0.

As there is no c ∈ Fq[x]/(f) such that a · c = 0 and deg c < deg b, the first
deg b column vectors are linearly independent. Furthermore, as Φf

a · V1(b) = 0,
Φf
a · V1(xb) = 0, . . . , Φf

a · V1(x
deg a−1b) = 0, we have rankΦf

a = deg b. Similarly,

it is proved that rankΦf
b = deg a.

Next, we design L ∈ Fℓ×ℓ
q such that the first deg b column vectors of L are

bases of the column vector space of Φf
aW

−1 and the other (ℓ− deg b) (= deg a)

column vectors of L are bases of the column vector space of Φf
bW

−1.

Finally, we prove that the column vector spaces of Φf
aW

−1 and Φf
bW

−1 have

no intersection, that is, the column vector spaces of Φf
a and Φf

b have no intersec-
tion. If this statement holds, then L constructed using this approach is invertible.
We assume that the column vector spaces of Φf

a and Φf
b have an intersection.

Then, there exist two vectors x,y ∈ Fℓ
q such that the last (ℓ−deg b) elements of x

and the last (ℓ− deg a) elements of y are zero, and Φf
ax = Φf

by because the first

deg b (deg a) vectors of Φf
a (Φf

b ) are linearly independent. From the definition
of Φf

g , aV
−1
1 (x) = bV −1

1 (y), deg (V −1
1 (x)) < deg b, and deg (V −1

1 (y)) < deg a.
However, this contradicts that f1, . . . , fk are distinct and irreducible. Therefore,
the column vector spaces of Φf

a and Φf
b have no intersections. ut

Next, we discuss another case where f is reducible.

Theorem 5. With the same notation as in Theorem 4, if there exists f ′ ∈ Fq[x]

such that f ′2 | f , there exists an invertible matrix L ∈ Fℓ×ℓ
q such that, for any

X ∈ WAf ,
(L⊤XL)ℓℓ = 0.

Proof. From this assumption, there exists a ∈ Fq[x]/(f) such that a2 = 0. There-
fore, for any g ∈ Fq[x]/(f),

(Φf
aW

−1)⊤(WΦf
g )(Φ

f
aW

−1) = Φf
a·g·aW

−1

= 0ℓ×ℓ,
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and Φf
aW

−1 is symmetric. We suppose that L ∈ Fℓ×ℓ
q is an invertible matrix,

wherein the ℓ-th column vector is chosen from the column vectors of Φf
aW

−1.
From the above equation, the (ℓ, ℓ) component of L⊤(WΦf

g )L is zero for any
g ∈ Fq[x]/(f). ut

Appendix B: Proof of Theorem 3 in Subsection 5.3

Theorem 3. With the same notation as in Theorem 2,

(i) There exists an invertible matrix L ∈ Fℓ×ℓ
qℓ

such that L−1Φf
gL is diagonal for

any g ∈ Fq[x]/(f).
(ii) The matrix L described in (i) satisfies the condition that L⊤XL is diagonal

for any X ∈ WAf .
(iii) If there exists y ∈ Fℓ

qℓ such that y⊤Xy = 0 for any X ∈ WAf , then y = 0.

Proof. First, we prove statement 1. The characteristic polynomial of Φf
x is equal

to f for x ∈ Fq[x]/(f). As f is irreducible over Fq[x], f is separable, and its
roots are distinct in Fqℓ [x]. Therefore, the eigenvalues of Φf

x are distinct in Fqℓ ,

and there exists L ∈ Fℓ×ℓ
qℓ

such that L−1Φf
xL is diagonal. Furthermore, Φf

1 is the

identity matrix, and Φf
xi (i = 2, . . . , ℓ− 1) can be diagonalized using L:

L−1Φf
xiL = L−1(Φf

x · · ·Φf
x)L

= (L−1Φf
xL) · · · (L−1Φf

xL).

Then, for any g ∈ Fq[x]/(f), L
−1Φf

gL becomes diagonal because Af is spanned

by {Φf
1 , Φ

f
x, . . . , Φ

f
xℓ−1} over Fq.

Next, we prove statement 2 by using the following lemma.

Lemma 2. With the same notation as in Theorem 2, for L ∈ Fℓ×ℓ
qℓ

described in

Theorem 3, L⊤WL is diagonal.

Proof. Since WΦf
g is symmetric,

WΦf
g = (WΦf

g )
⊤ = (Φf

g )
⊤W⊤.

Furthermore, because W is symmetric, we have

(Φf
g )

⊤ = WΦf
gW

−1. (15)

As L−1Φf
gL is symmetric,

L−1Φf
gL = L⊤(Φf

g )
⊤L−⊤

= L⊤WΦf
gW

−1L−⊤ (∵ (15))

= (L⊤WL)(L−1Φf
gL)(L

⊤WL)−1.

Then, L⊤WL and L−1Φf
gL are commutative. As L−1Φf

gL is diagonal, and the

diagonal components are distinct, L⊤WL is diagonal. ut
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For any g ∈ Fq[x]/(f), we can transform L⊤WΦf
gL:

L⊤WΦf
gL = (L⊤WL)(L−1Φf

gL).

From statement 1 and Lemma 2, L⊤WΦf
gL are diagonal.

Finally, we prove statement 3. Let y := L−1x; then,

x⊤WΦf
gx = (Ly)⊤WΦf

g (Ly)

= y⊤(L⊤WL)(L−1Φf
gL)y.

If we define the diagonal components of L−1Φf
xL as θ1, . . . , θℓ (the roots of f

in Fqℓ), the diagonal components of L−1Φf
gL are equal to g(θ1), . . . , g(θℓ). If

y′ :=
(
y21 . . . y2ℓ

)⊤
,

y⊤(L⊤WL)(L−1Φf
gL)y = 0

⇔
(
g(θ1) · · · g(θℓ)

)
(L⊤WL)y′ = 0 (16)

since L⊤WL is diagonal.
Let g1, . . . , gℓ be the basis of Fq[x]/(f) over Fq, then, satisfying equation (16)

for any g ∈ Fq[x]/(f) is equivalent tog1(θ1) . . . g1(θℓ),
...

. . .
...

gℓ(θ1) . . . gℓ(θℓ)

 (L⊤WL)y′ = 0. (17)

In addition, g1, . . . , gℓ form the basis of Fqℓ [x]/(f) over Fqℓ , and

Fqℓ [x]/(f) ∼= Fqℓ [x]/(x− θ1)⊕ Fqℓ [x]/(x− θ2)⊕ · · · ⊕ Fqℓ [x]/(x− θℓ),

∼= Fℓ
qℓ .

Therefore, (gi(θ1) · · · gi(θℓ)) (i = 1, . . . , ℓ) are linearly independent, and

(17) ⇔ y′ = 0

⇔ y = 0

⇔ x = 0.

ut

Appendix C: Performance in Magma

Here, we present the execution times for key generation, signature generation,
and verification of the improved QR-UOV in Subsection 4.2. All experiments
were performed on a MacBook Pro with a 2.4-GHz quad-core, Intel Core i5 CPU,
and the Magma algebra system (V2.24-82) [7]. Table 6 shows the average times
for 100 runs using the improved QR-UOV scheme described in Subsection 4.2

29



Table 6. Performance of the improved QR-UOV in Subsection 4.2 in Magma algebra
system [7].

parameter (q, v,m, ℓ)
key

generation
signature
generation

verification

QR-UOV I (7, 189, 72, 3) 0.06 s 0.04 s 0.01 s

QR-UOV III (7, 291, 111, 3) 0.17 s 0.13 s 0.05 s

QR-UOV V (7, 411, 162, 3) 0.45 s 0.33 s 0.11 s

and our proposed parameters for levels I, III, and V of the NIST PQC project.
All timings are in second. These are not optimized implementations.

In the key generation step, we first generate two 32-bit seeds (ssk and spk) by
using the Magma Random command. We then use the Magma SetSeed command
as a pseudo-random number generator to generate part of the public and secret
keys. (In Subsection 6.2, we stated that the size of the two seeds is 256 bits;
however, we use two 32-bit seeds because the size of the input for SetSeed is
at most 32 bits.) Next, we generate a secret key using the method described in
Subsection 4.2. In the signature generation step, we recover the public and secret
keys from the two seeds and perform the procedure explained in Subsection 2.2.
The signature is generated in the same manner as a signature is generated in
the compressed Rainbow [12]. In the verification step, we generate the public
key from the spk seed and follow the procedure explained in Subsection 2.1. In
the signature generation and verification steps, we need to compute the product
of a vector and matrices WΦf

g or Φf
g , which is made more efficient using the

structure of the polynomial matrix.
For example, in Table 6, the execution times of the key generation, signature

generation, and verification steps of QR-UOV for level I are 0.06 s, 0.04 s, and
0.01 s, respectively. In most cases, our performance is approximately one order of
magnitude slower than that of compressed Rainbow [12]. It should be noted that
their implementation is in C, and ours is in Magma, and the signing and verifica-
tion times of compressed Rainbow are dominated by the use of a cryptographic
hash function which is not used in the implementation of QR-UOV.
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