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Abstract

Adversaries in cryptography have traditionally been modeled as either semi-honest or
malicious. Over the years, however, several lines of work have investigated the design of
cryptographic protocols against rational adversaries. The most well-known example are
covert adversaries in secure computation (Aumann & Lindell, TCC ’07) which are adver-
saries that wish to deviate from the protocol but without being detected. To protect against
such adversaries, protocols secure in the covert model guarantee that deviations are detected
with probability at least ¢ which is known as the deterrence factor.

In this work, we initiate the study of contracts in cryptographic protocol design. We show
how to design, use and analyze contracts between parties for the purpose of incentivizing
honest behavior from rational adversaries. We refer to such contracts as adversarial level
agreements (ALA). The framework we propose can result in more efficient protocols and
can enforce deterrence in covert protocols; meaning that one can guarantee that a given
deterrence factor will deter the adversary instead of assuming it.

We show how to apply our framework to two-party protocols, including secure two-party
computation (2PC) and proofs of storage (PoS). In the 2PC case, we integrate ALAs to
publicly-verifiable covert protocols and show, through a game-theoretic analysis, how to set
the parameters of the ALA to guarantee honest behavior. We do the same in the setting of
PoS which are two-party protocols that allow a client to efficiently verify the integrity of a
file stored in the cloud.
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1 Introduction

Adversaries in cryptographic protocols have traditionally been modeled as either semi-honest
or malicious. Semi-honest adversaries are assumed to follow the protocol while trying to learn
as much as possible whereas malicious adversaries can behave arbitrarily. In 2004, Halpern
and Teague first considered adversaries that were rational in the sense that their behavior was
governed by some utility function they sought to maximize [I4]. While Halpern and Teague
mostly focused on proving and circumventing impossibility results in secret sharing and secure
multi-party computation (MPC), followup work has shown that protocols secure against rational
adversaries can be more efficient than protocols secure against malicious adversaries. The most
well-known example is the work of Aumann and Lindell which showed how to construct secure
two-party computation (2PC) protocols secure against covert adversaries [g].

Covert adversaries. An adversary is covert if it deviates from the protocol but wishes to
do so without being detected. A protocol secure against such an adversary guarantees that if
the adversary is able to cheat then it will be detected with high enough probability. The covert
model seems to capture many real-world adversaries, for example companies that cannot afford
to be caught cheating because they have a reputation to protect. But to use a covert protocol
in practice, one needs to set its deterrence factor which is a lower bound on the probability that
cheating is detected. The idea is that if the adversary’s utility function decreases when it gets
caught and if the deterrence factor is set appropriately, then it is rational for a covert adversary
to behave honestly.

In this work, we propose a new way to design cryptographic protocols against covert adver-
saries. Instead of focusing on deterrence, we focus on punishment. That is, our approach is to
design protocols that explicitly punish adversaries when they cheat. It is well known in game
theory that, when applied appropriately, punishment can lead to good outcomes. We will show
this is the case in the setting of cryptographic protocols as well.

Contracts. In our framework, we integrate punishment into cryptographic protocols through
contracts. Contracts are not a standard cryptographic primitive but they are powerful against
rational adversaries. Furthermore, contracts are easy to design and well-understood by individu-
als and institutions. Many companies, including cloud providers, telecommunication companies
and ISPs routinely use contracts called service level agreements (SLA) to guarantee a certain
level of performance to their customers. In our setting, we use contracts to guarantee a certain
level of “adversarialness” so we refer to them as adversarial level agreements (ALA). An ALA
is a contract that specifies the damages a party has to pay if it is caught cheating.

One of the challenges in using contracts is that they require an enforcement mechanism. For
our purposes, we assume the existence of a third party called the judge, that can enforce the
damages stipulated in the ALAs. Of course, this requires our protocols to be auditable/verifiable
by the judge. Motivated by covert security, verifiable protocols have received some attention,
starting with the work of Asharov and Orlandi [5] who show how to design publicly-verifiable
secure computation protocols in the covert adversary model.

Advantages. The use of ALAs in cryptographic protocols provides several advantages. The
first is in helping to “enforce deterrence” in the covert model. In covert protocols, it is assumed
that a high deterrence factor will prevent dishonest behavior but, in practice, there is no reason
to believe this is true. For example, when faced with a rational garbler, we can set the deterrence
factor of the two-party protocol to some value but we have no way of knowing if it is high enough



to incentivize the garbler to behave honestly. Using ALAs, however, allows us to integrate
punishment which can be used to incentivize honest behavior at a given deterrence level.

The second advantage is in improving efficiency against covert adversaries in a “cost-free”
manner. Cryptographic protocols secure against deviating adversaries (i.e., either covert or
malicious) have to guarantee some form of soundness error which bounds the probability that
the adversary can cheat successfully. Interestingly, we will see that enhancing a protocol with
an ALA creates a tradeoff between the damages in the ALA and the soundness error of the
protocol: the higher we make the damages the higher the soundness error we can tolerate.
Higher soundness error, in turn, implies a smaller security parameter which implies increased
efficiency. This efficiency vs. damages tradeoff is particularly interesting because increasing
damages is “free” in the sense that it does not impose any financial or computational costs
on either party (unless cheating occurs). In other words, by using ALAs we can increase the
efficiency of a protocol by decreasing its security parameter and increasing the damages but,
for the most part, this increase in damages doesn’t cost the parties anything.

Application to two-party protocols. In this work we explore how ALAs can be integrated
into cryptographic protocols. We focus on two-party protocols and, specifically, the cases of
2PC and proofs of storage (PoS). We stress that the goal of this work is to initiate and motivate
the use of contracts/ALAs in protocol design. The specific applications to 2PC and PoS are
to illustrate how our framework can be applied to non-trivial cryptographic protocols and to
motivate further study of ALAs.

In the setting of 2PC, we will be particularly interested in publicly-verifiable covert (PVC)
protocols which were introduced by Asharov and Orlandi [5]. These protocols enhance covert
protocols by providing honest parties with evidence of cheating that can be publicly verified.
PoS, which were introduced by Juels and Kaliski [16] and by Ateniese et al. [6], are two-party
protocols that allow a client to efficiently verify the integrity of a file stored at a remote server.
Roughly speaking, the client encodes its file before outsourcing it to the server. From that point
on, it can verify the integrity of the file by sending a constant-size challenge to the server. The
server then uses the challenge and the file to compute a constant-size proof which it returns to
the client. If the proof verifies, the client is convinced the server is storing the file.

1.1 Owur Contributions

In this work, we introduce the notion of ALAs and show how to integrate them into the design
of two-party cryptographic protocols; including secure two-party computation and proof of
storage (PoS) protocols. We show that ALA-enhanced protocols are not only more efficient
than standard protocols but that they exhibit a “cost-free” tradeoff. More precisely, we make
the following contributions.

Cryptographic inspection games. The introduction of contracts and punishment into
cryptographic protocols results in new strategic interactions between the parties. We for-
malize these interactions as cryptographic inspection games (CIG) which are strategic games
played between an inspector and an inspectee which correspond to the verifier /evaluator and
prover/garbler, respectively. CIGs are a variant of inspection games which were introduced in
the 1960’s in the context of nuclear disarmament (we refer the reader to [9] for an overview).
In an inspection game the inspector’s goal is to detect deviation from some prescribed “good”
behavior whereas the inspectee’s goals are to deviate without being detected.

One difference between CIGs and traditional inspection games is that, in our setting, we are
also interested in cases where the inspector is dishonest and can itself deviate from the protocol.



This can occur in the setting of ALA-enhanced protocols because the use of ALAs introduce
an incentive for the inspector to “frame” the inspectee so that it can recover the damages. To
address this, we use a dual ALA which is a second contract; this time between the inspector
and a judge that, if required, can “inspect the inspector” to ensure that the former is honest.
In this manner, we find a desirable equilibrium for our CIGs where the parties behave honestly.

Secure two-party computation. We show how to integrate ALAs into 2PC protocols in
order to get efficiency improvements against rational adversaries. More precisely, we augment
PVC protocols [5] which guarantees accountability (i.e., deviations from the protocol can be
publicly-verified) and defamation-freeness (i.e., no party can generate evidence that an honest
party deviated) by having the garbler and evaluator first agree to an ALA that stipulates
damages if the garbler deviates from the protocol. At high level, the ALA induces a CIG where
the evaluator plays the role of inspector and the garbler plays the role of inspectee. We analyze
this game and, based on the accountability of the underlying protocol, find conditions under
which the ALA guarantees honest behavior from the garbler. Note, however, that the previous
result assumes an honest evaluator/inspector We address this by adding a dual ALA between
the inspector/evaluator and the judge that stipulates the damages the former must pay (to the
judge) if it attempts to frame the inspectee/garbler. The introduction of the dual ALA gives
rise to a more complex CIG whose analysis, in part, relies on the defamation-freeness of the
PVC protocol.

Proofs of storage. To add ALAs to a PoS we must first ensure that it is auditable by a
judge. Towards this, we introduce and formalize the notion of an auditable PoS (APoS) which
is a PoS that includes an audit algorithm that a judge can use to determine if the server has the
file or not. From a security perspective, an APoS has to satisfy the same soundness requirement
as a PoS (i.e., if the proof verifies then the server holds the file) in addition to a form of
accountability and defamation-freeness. The former guarantees that, if the server does not have
the file, then the judge will determine that it cheated; whereas the latter guarantees that, if
the server holds the file, then the judge will determine that it did not cheat. This is analogous
to the notions of accountability and defamation-freeness in the setting of 2PC [5]. With these
definitions in place, we describe a general transformation that turns any PoS into an APoS. The
transformation relies on simple and efficient building blocks: collision-resistant hash functions
and digital signatures.

We then consider how to extend an APoS with ALAs. We use an ALA between the client
and server that stipulates the damages the server must pay if the APoS verification fails. This
introduces strategic incentives which we model and analyze as a CIG. However, similar to the
2PC case, a rational client (as opposed to an honest one) now has an incentive to frame the
server in order to receive the damages. To address this we use a dual ALA between the client
and the judge. We analyze the equilibria in both of the CIGs induced by these ALAs and show
the conditions under which they guarantee that both parties will behave honestly.

Concrete analysis. We show how to apply our framework to concrete PVC and PoS proto-
cols. Specifically, we design concrete ALAs for the 2PC protocols of Asharov and Orlandi [5],
Kolesnikov and Mazolemoff [17] and of Hong et al [15]. and the APoS protocols that result from
applying our transformation to the PoS protocols of Juels and Kaliski [16], Ateniese et al [6]
and of Shacham and Waters [18].



2 Related Work

Secure two-party computation. 2PC was introduced by Yao [21] and the two main adver-
sarial models are the semi-honest model where the adversary follows the protocol but tries to
learn additional information and the malicious model where the adversary deviates arbitrarily.
Covert adversaries, which were introduced by Aumann and Lindell [§], wish to deviate from the
protocol as long as they are detected. While the covert model is clearly and explicitly meant
to capture rational adversaries, the strategic behavior of covert adversaries has, as far as we
know, never been studied explicitly. In other words, protocols secure against covert adversaries
guarantee that deviation is detectable with at least some probability €, but the impact of this
guarantee on a rational adversary’s strategy has not been formally studied. Our work provides
such a study and, in addition, extends the covert model to consider what happens not only
when deviations are detected but when deviations are punished.

As discussed in Section |1, ALAs require the underlying cryptographic protocol to be au-
ditable in the sense that a third party can verify whether one of the participants deviated from
the protocol. Auditability has received some attention in the setting of secure computation.
For example, Asharov and Orlandi [5] introduce publicly-verifiable covert secure computation
(PVC) which augments covert protocols with a certificate that allows honest parties to prove
their innocence. They proposed a garbled circuit-based protocol which was later improved by
Kolesnikov and Malozemoff[I7] and then by Hong et al. [I5]. Baum, Damgard and Orlandi [10]
show how to design PVC protocols whose correctness can be verified by a trusted third party
after the execution of the protocol. Cunningham, Fuller and Yakoubov [11] propose completely
identifiable auditability, which allows the third party to identify the cheating parties in the
protocol.

In work more closely related to our own, Zhu, Ding and Huang [22] design and analyze PVC
protocols with lightweight audit algorithms that can be implemented using smart contracts.
The judge is optimistic and is only invoked if a dispute arises. There are several differences be-
tween our approaches. First, our framework relies on legal contracts and not blockchains/smart
contracts—though the audits of the underlying auditable protocols could be implemented using
smart contracts. Also, the approach taken in [22] requires that the parties deposit funds up
front which is not the case with ALAs. More fundamentally, though, the framework of Zhu
et al. assumes that the strategic interaction between the parties is a zero-sum game in the
sense that the loss to the honest party is exactly the gain to the adversary. While this might
apply in some settings, it is not always the case. Furthermore, the game-theoretic analysis is
independent of blockchain transactions fees and assumes the deposits are high enough to deter
framing.

Proofs of storage. Proofs of storage were introduced by Juels and Kaliski [16] and Ateniese
et al. [6]. The former considered privately-verifiable proofs of retrievability whereas the latter
considered publicly-verifiable proofs of data possession. PoS were further studied by Shacham
and Waters [I8] who gave both privately- and publicly-verifiable constructions. Dodis, Vadhan
and Wichs then showed a connection between privately-verifiable PoS and hardness amplifi-
cation. They present the idea of PoS codes and show improved constructions[I3]. Ateniese,
Kamara and Katz described a general compiler that transforms any identification protocol into
a publicly-verifiable PoS [7]. PoS have been used in rational settings such as cryptocurrencies.
Filecoin[2] is a decentralized storage network based on PoS that allows its miners to rent out
storage to customers for tokens. In this work, we construct highly-efficient PoS against ratio-
nal adversaries. As an underlying building block, we also describe an auditable PoS against
standard malicious adversaries that may be of independent interest.



3 Preliminaries and Notation

Notation. The security parameter is denoted k£ € N. A function is negligible in k if it is
dominated by any inverse polynomial. The set of all binary strings of length n is denoted
{0,1}" and the set of all binary strings of arbitrary lengths is denoted {0,1}*. We write

2 & X to denote that z is sampled uniformly at random from a set X. When an algorithm
Alg; has oracle access to an algorithm Alg, we write Algfng(-). The output of an interactive
protocol II executed between parties P; and P, with inputs x1 and xs, respectively, is denoted
by (y1,y2) < Ilp, p,(x1,22), where y; is Pi’s output and y2 is P»’s output. We denote the
space of valid inputs to the protocol as Iy = |1 x |y where I; is the space of valid inputs
for party ¢. Similarly, we define the output space O = O x Oz. Then for the protocol
(y1,y2) < Ip, p,(x1,x2) we say that x; € |; and y; € O;. Additionally let Ty be the set of valid
transcripts of the protocol where Ty = T x To and T; is the set of all messages sent by party ¢
during the protocol. Whenever the protocol is obvious from context we drop the subscript for
convenience. We denote the expected utility (in a game-theoretic sense) to a player P due to
playing a strategy S as Up[S]. This expectation is calculated over the outcomes due to the
distribution of the other players’ strategies and any randomness in the game being played. The
expected utility of playing S when other players are playing the strategy vector S_ is denoted
as Up[S,S_]. A player’s best response is the strategy that gives maximum expected utility
given the game and the other players’ strategies.

Collision resistant hash functions. A hash function Hash = (Gen, Hash) consists of two
polynomial-time algorithms that work as follows. Gen takes as input a security parameter k
and outputs a (non-secret) key «. Hash takes as input a key o and a message m € {0,1}*
and outputs a hash h € {0,1}*. The security of a hash function family is formalized using the
following randomized experiment where A is an adversary:

o Collu(k):

1. compute a + Gen(1¥);

2. (m1,ma) + A(a);

3. if my # meo and Hash(a, m1) = Hash(a, m2) output 1 else output 0.
We say that Hash is collision-resistant if for all PPT adversaries A,

Pr[Coll4(k) = 1] < negl(k),

where the probability is over the coins of Gen and A.

Digital signatures. A digital signature scheme Sig = (Gen, Sign, Vrfy) consists of three
polynomial-time algorithms that work as follows. Gen takes as input a security parameter
k and outputs a signing key sk and a verification key vk. Sign takes as input a signing key sk
and a message m and outputs a signature o. Vrfy takes as input a verification key vk, a message
m and a signature ¢ and outputs a bit b. A signature scheme is correct if for all k£ € N, for all
(vk, sk) output by Gen(1¥), for all m € {0, 1}*, Vrfy(vk, m, Sign(sk,m)) = 1.

The security of a digital signature scheme is formalized using the following randomized
experiment:

o Forge 4(k):

1. compute (sk,vk) < Gen(1¥);



2. (m, o) « ASEGR) (vk);
3. let @ be the set of messages on which the Sign oracle was queried

4. if Vrfy(vk,m,0) = 1 and m ¢ @, output 1 else output 0.

We say that a signature scheme Sig is existentially unforgeable if for all PPT adversaries A
Pr[Forge 4 (k) = 1] < negl(k),

where the probability is over the coins of Gen and A.

PVC protocols. We assume the reader is familiar with the definitions of 2PC. Covert pro-
tocols include an additional parameter € called the deterrence factor which is a lower bound on
the probability that cheating is detected. PVC protocols further include two protocols Blame
and Judge that work as follows:

Definition 1. A publicly-verifiable covert protocol PVC = (11, Blame, Judge) consists of a covert
2PC protocol 11 and two polynomial-time algorithms Blame and Judge that work as follows:

e cert < Blame(id, view): is a deterministic algorithm that takes as input the identifier of
the cheating party id and a view of the protocol and outputs a certificate cert.

e b « Judge(cert): is deterministic algorithm that takes as input a certificate cert and
outputs 1 if the accused party is determined to have cheated and 0 otherwise.

We say that a PVC protocol is (e, i, ¢)-secure if it satisfies covert security, accountability and
defamation-freeness. Covert security guarantees that a cheating party is detected with probabil-
ity at least €. Accountability guarantees that if an honest party outputs a certificate of cheating
for a dishonest party, Judge(cert) outputs 0 with probability at most p. Defamation-freeness
guarantees that if a party outputs a certificate cert that blames an honest party, Judge(cert)
outputs 1 with probability at most ¢.

Proofs of storage. A PoS is a protocol executed between a server that stores a dataset and a
client that wishes to verify the integrity of the data. A publicly-verifiable PoS has the property
that anyone in possession of the client’s public key can run the verification of integrity. In this
section, we recall the syntax and security definitions for a publicly-verifiable PoS.

Definition 2 (Proof of storage). A publicly-verifiable proof of storage PoS = (Gen,Encode,
Chall, Prove, Vrfy) consists of five polynomial-time algorithms that work as follows:

o (sk,pk) < Gen(1¥): is a probabilistic algorithm that takes as input the security parameter
k and outputs a secret key sk and a public key pk.

e (e,st) «+ Encode(sk, f): is a probabilistic algorithm that takes as input a secret key sk and
a file f and outputs an encoded file e and a state st.

e ch « Chall(pk,st): is a probabilistic algorithm that takes as input a public-key pk and a
state st and outputs a challenge ch.

e 7 < Prove(pk,e,ch): is a deterministic algorithm that takes as input a public key pk, an
encoded file e and a challenge ch and outputs a proof m.

e b« Vrfy(pk,st,ch,7): is a deterministic algorithm that takes as input a public key pk, a
state st, a challenge ch, a proof ™ and outputs a bit b.



We say that PoS is complete if for all k € N, for all (sk,pk) output by Gen(1%), for all f €
{0,1}PoY(R)  for all (e,st) output by Encode(sk, f), for all ch output by Chall(pk,st), for all ©
output by Prove(pk,e,ch), Vrfy(pk,st, ch, ) outputs 1.

A publicly-verifiable PoS is typically used as follows. The client runs (sk, pk) < Gen(1%) to
generate a key pair. It keeps sk secret and sends pk to the verifier (which could be the client
itself of course). The client then encodes its file by computing (e, st) < Encode(sk, f) and sends
e to the server and st to the verifier. To verify the integrity of the file, the verifier sends a
challenge ch <— Chall(pk,st) to the server who returns a proof 7w < Prove(pk,e,ch). Finally,
the verifier verifies the proof by computing b <— Vrfy(pk,st,ch, 7). The security property we
require of a PoS is that if the proof verifies then that the server must be storing the file (or
some efficiently extractable form of the file). We recall the formalization of security for PoS
given in [7] in which K is a stateful knowledge extractor that interacts with a stateful adversary
A and attempts to output the original file f:

e OutputAdv 4(k):

—_

. generate (sk, pk) < Gen(1%);

2. repeat p(k) times where p is a polynomial;
(a) the adversary computes f < A;

(b) compute (e, st) < Encode(sk, f)

the adversary computes f* < A;

compute (e*,st) < Encode(sk, f*)
compute ch < Chall(pk, st);

the adversary computes 7* < A(e*, ch);

NS o W

output (ch, 7).

o OutputExt 4 i (k):

[a—

. generate (sk, pk) < Gen(1%);
2. repeat p(k) times where p is a polynomial;
(a) the adversary computes f < A;
(b) compute (e, st) < Encode(sk, f)
3. the adversary computes f* + A;
4. compute (e*,st) < Encode(sk, f*)
5. repeat ¢q(k) times where ¢ is a polynomial;
(a) the extractor computes ch; < Chall(pk, st);
(b) the adversary computes 7; < A(e*, ch;);
6. the extractor computes ((ch®, 7€), f¢) < K(pk,st, {ch;, m;});

~

output (ch® 7¢).
e Sound 4 x(k):

1. run OutputExt 4 x(k);
2. obtain f* <+~ A and ((ch®, 7¢), f¢) + K(pk, st, {ch;, m;}) from the above run;
3. if 1 « Vrfy(pk,st,ch® 7¢) and f° # f* output 1 else output 0.



Definition 3 (Soundness). A publicly-verifiable proof of storage PoS = (Gen,Encode, Chall,
Prove, Vrfy) is e-sound if there exists an expected polynomial-time extractor K such that for all
PPT adversaries A, OutputAdv 4(k) and OutputExt 4 (k) are identically distributed and,

Pr[Sound4 (k) = 1] < e(k),

where the probabilities are over the coins of Gen, Encode, A.

4 Adversarial Level Agreements

We augment cryptographic protocols with contracts that stipulate the punishments parties must
incur if they deviate from the protocol. We call such contracts adversarial level agreements.
Note that it is arguably the avoidance of punishment rather than the evasion of detection that
is the true motivation of a covert adversary; i.e., it is the consequence of detection that makes
detection undesirable not detection on its own. As such, modeling and integrating punishment—
here through contracts—is natural. Also, in practice, many cryptographic protocols operate in
environments where there are (at least) implicit consequences for deviating.

We show that, using our framework, one can design cryptographic protocols that achieve
new tradeoffs: namely, one can achieve better efficiency effectively for free, i.e., without any loss
of security (against rational adversaries). To do so, it suffices to increase the damages in the
ALA. Note that such a tradeoff is not possible with standard covert protocols because the covert
model does not capture punishment. In the covert model, the only parameter we can tune is
the deterrence factor (i.e., the probability of being detected) and there is a tight dependency
between deterrence and efficiency.

ALAs. For a cryptographic protocol II, an adversarial level agreement ALAp (d) includes:
(1) a specification of II, defining each party’s prescribed behavior; (2) damages d due from
each party if found deviating from II, where d = (di,...,d,) is a vector that describes the
damages for each party. The inclusion of contracts and punishment in cryptographic protocols
introduces new strategic interactions between the parties. We formalize these interactions as
games we refer to as cryptographic inspection games which are a variant of inspection games.

Inspection games. An inspection game is two-player game between an inspectee who wishes
to cheat and an inspector who wishes to deter cheating. Inspection games were introduced in the
1960s in the context of nuclear disarmament and are used to design nuclear inspections under
nuclear Non-Proliferation Treaties. It is well-known that inspection games have no pure strategy
Nash equilibria [9]. Informally if the inspector always inspects, the inspectee never cheats but
then the inspector would never inspect so the inspectee would always cheat etc. Though pure
equilibria do not exist, an inspection game could have mixed equilibria but they often have a
positive probability of cheating and are therefore undesirable. To overcome this, an inspection
game is usually converted to a leadership variant by having the inspector commit to a mixed
strategy for which the inspectee’s best response is not to cheat. This is an application of the
leadership principle in game theory [19] where the first player (the leader) declares and commits
to a strategy which forces the second player (the follower) to play its the best response. The
leader then has the power to choose a favorable equilibrium in this sequential game. We refer to
[9] for a comprehensive summary of the applications of inspection games and the consequences
of inspector leadership.
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Cryptographic inspection games. A CIG is a two-party game between an inspectee that
wishes to deviate from a protocol and an inspector that wishes to enforce honest behavior. There
are two main differences between inspection games and CIGs: (1) inspection games typically
have both false-positives and false-negatives whereas CIGs have only false-negatives; and (2) in
a CIG the inspector can be dishonest. We represent CIGs as extensive form games which are
trees that represent a player’s possible actions as nodes and outcomes as leaves. Each ALA-
enhanced cryptographic protocol results in a CIG which we analyze to find ALA parameters
that will guarantee a desirable equilibrium which here is that the parties follow the protocol.

5 Augmenting Two-Party Computation With ALAs

We now show how to use ALAs in secure two-party computation. As discussed above, we start
with a PVC protocol II and have the parties sign an ALA that describes II and the damages
they must pay if they deviate.

PVC protocols. Most two-party PVC protocols have a similar structure which we now de-
scribe. The garbler G creates many garbled circuits and the evaluator E opens and checks all
but one of them. If any of the checks fail, the evaluator receives a publicly-verifiable certificate of
the garbler’s deviation. If all the checks pass, the evaluator evaluates the unopened circuit and
receives the output which it then sends to the garbler. The protocol guarantees accountability
and defamation-freeness (see Section {4 for definitions).

Adversarial settings. We consider two adversarial settings:

1. Rational garbler vs. honest evaluator: the evaluator follows the protocol but the garbler
can deviate to increase its utility;

2. Rational garbler vs. framing evaluator: when damages are introduced, a rational evaluator
has an incentive to frame an honest garbler.

For each of these settings, we first describe the CIGs that result from the strategic interactions
between the parties. We then analyze these games to find the damages that guarantee that the
dishonest parties behave honestly.

5.1 Rational Garbler vs. Honest Evaluator

When an (e, u, ¢)-secure PVC protocol is enhanced with an ALA between an honest evaluator
and a rational garbler, it results in the CIG depicted in Figure[l] The garbler has a choice be-
tween deviating which we denote Deviation and behaving honestly which we denote NoDeviation.
When the garbler behave honestly (the left sub-tree) the evaluator’s circuit checks pass, it eval-
uates the circuit and both parties receive the output and their utilities ug, and ug. On the other
hand, when the garbler deviates (the right sub-tree), the deviation is detected by the evaluator
with probability at least € (from the deterrence of IT). This is a probabilistic event which is
represented by a hollow chance node in the tree. When the deviation is detected, the Judge is
invoked and its audit gives the same output as the honest evaluator except with probability u
(from the accountability IT). If the audit outputs 1 the garbler is punished and pays dg to the
evaluator. If the audit outputs 0, which occurs with probability u, the evaluator is punished
and pays dg to the Judge.

We denote the garbler’s utility for deviating (and potentially learning information about the
evaluator’s input) as uZG and the loss to the evaluator as 6};3. If a deviation occurs, the garbler
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ALAq k(dg,dE)

NoDeviation Deviation

NoDetection (1 — ¢) Detection (g)

Conviction (1 — p)

(Uf;u (uG7 _('U‘G) (’U‘é} - dG)
ug) —lg) —Ag —dg) g +da)

Figure 1: CIG between a rational garbler and an honest evaluator.

(resp. evaluator) receives this utility (resp. loss) regardless of the judge’s decision. We are now
ready to analyze the game.

Lemma 1. Let II be an (e, p, ¢)-secure PVC protocol between a rational garbler and an honest
evaluator that is augmented with an ALA with damages dg and dg. If
i _ .0
dg > 26— Y
e(1—p)

then the dominant strategy for a rational garbler is to follow the protocol.

Proof. To find the garbler’s dominant strategy, we compare its expected utilities from the actions
available at the blue node of the game: namely, deviating from the protocol and not deviating.
Clearly, we have Ug [ NoDeviation | = ug,. Furthermore,

Ug [Deviation] = (1 — e)ug + ¢ (pug + (1 — p)(ug — dg))
= ug — (1 - p)da

. ’LLi —ul
< e — (1 — e "YU
< ug — &( M)e(l—u)
:U%}7

where the inequality holds by the condition in the Lemma. It follows then that the garbler’s
expected utility from deviating is at most its expected utility from behaving honestly from
which the Lemma follows.

5.2 Rational Garbler vs. Framing Evaluator

When an (g, i, ¢)-secure PVC protocol is enhanced with an ALA between a rational garbler
and a framing evaluator, it results in the CIG depicted in Figure 2| In this game, the evaluator
has new strategies which account for framing. The garbler’s strategies remain the same as in
the previous game. The garbler chooses to deviate or to behave honestly. If the garbler is
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ALAQ & ((da, dE))

NoDeviation Deviation

NoDetection (1 — ¢) Detection (g)

NoFrame Frame NoFrame Frame NoConviction(u) Conviction (1 — p)

(ug, ug) (ug, )

(ug,—de)  (ug —dg,dc)

Succ(¢) Fail(1 — ¢)  Succ(¢) Fail(1 — ¢)
(_dG7 (Ov (UZG —da, (ulc;y
dg) —dg) —tg tda) —fg—dr)

Figure 2: CIG between an rational garbler and a framing evaluator.

honest (the left sub-tree) then the evaluator’s checks pass. If the garbler deviates (the right
sub-tree) the evaluator’s checks pass with probability 1 —e. These two blue nodes represent an
information set. The evaluator now has a choice between framing which we denote by Frame
and not framing which we denote by NoFrame. If it chooses to frame the garbler, the audit will
output 0 except with probability ¢. This is a chance node whose probability is derived from
the defamation-freeness of II. If the audit outputs 1, the evaluator receives its utility ué If
the audit outputs 0, the evaluator is punished for attempted framing and has to pay damages
dg. The garbler’s utility for deviating is ulG and the loss to the evaluator is Kﬁ. and they remain
regardless of the judge’s decision. The evaluator’s utility for framing is ué This is equal to
the damages imposed on the garbler, dg, since the damages are paid to the evaluator. The
damages paid by the evaluator for framing is dg. We show how to set these damages so that

both parties behave honestly.

Lemma 2. Let II be an (e, p, ¢)-secure PVC protocol between a rational garbler and a framing
evaluator that is augmented with an ALA with damages dg and dg. If,

¢da
dp > —2
E_lfgb’

then the dominant strategy for a framing evaluator is to follow the protocol.

Proof. We now examine the evaluator’s expected utility of framing the garbler given that its
checks passed (the choice at the information set denoted by the blue nodes in Figure . Let
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the probability of deviation given none was detected be ¢ and the probability of no deviation
given none was detected be (1 — ¢). We then have,

Ug [NoFrame] = —qff + (1 — q)u;
Furthermore, we have
Ug [Frame] = ¢ [¢(—(g + da)(1 — ¢)(—lg — dr)] + (1 — ¢) (¢da — (1 — ¢)dE)
<a(~th+oda— (11— )+ (1- ) (sde - (1- )25 )

1-¢ 1-¢
:_q€Z7

where the inequality follows from the conditions of the Lemma. But since ug > 0, Ug [Frame] <
Ug [ NoFrame] from which the Lemma follows.

Notice that when we set the damages to rule out the evaluator’s framing strategy, the game
reduces to the CIG of Figure [1| and the garbler has the choice to deviate or not. But if we also
set the damages according to the conditions of Lemma [I} then we know that the garbler will
not deviate in this game. So by setting damages according both Lemmas, we can ensure that
both the garbler and the evaluator will behave honestly.

5.3 Concrete Improvements

In this section, we apply our framework to three concrete PVC protocols to achieve two kinds
of improvements: (1) setting concrete deterrence factors; and (2) improving efficiency.

The Hong et al. protocol [15]. The most efficient PVC protocol is by Hong et al. [15]. Its
deterrence factor is e = 1 — (1/)\), where A is the number of garbled circuits generated by the
garbler so the smallest deterrence factor that can be achieved is 1/2 (with two circuits). Also,
it achieves negligible accountability p and defamation-freeness ¢. For concreteness, we assume
that the security parameter k is set such that u and ¢ are at most 1/64 qnd that uZG < $100,
ug > $50 and uf < $100. By Lemmas 1] and [2, we can incentivize honest behavior by using an
ALA with damages

i .0
do> "6 7Y _g10160 and  dg > 2% _g161,
e(l—p) 1—¢

The Koleznikov and Malozemoff protocol [17]. Another PVC protocol was proposed by
Koleznikov and Malozemoff (KM). Its deterrence factor is

e=(1-1/N)(1 -2,

where A is the number of garbled circuits and 7 is the XOR-tree replication factor. The smallest
deterrence factor possible is 1/4 with A = 2 and 1 = 2 but Kolesnikov and Malozemoff set ¢ to
1/2. Using ALAs, we can guarantee honest behavior even with the minimal deterrence factor
e = 1/4. As above, we assume the security parameter is set so that p and ¢ are at most 1/64
and that u’G < $100, ug > $50 and ug < $100. Again, by Lemmas |1| and [2, we can incentivize
honest behavior by using an ALA with damages

i __ .0 d
de > "G 7Y _g20390  and  dg > 2% _g3.00,

T e(l-p) “1-¢
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The same analysis holds for the protocol Asharov and Orlandi (AO) since the deterrence factor
is the same.

Notice, however, that our use of ALAs also improves the computation and communication
complexity of the protocols since we can use the minimal deterrence factor. These protocols
have several parameters which include the bit-length of their underlying field 7, the length of
the inputs n, and the size of their commitments x, the number of replicated circuits A, and the
XOR-tree replication factor v. In addition, for the KM protocol let ¢ be the number of OTs
and assume that 3k > 7. Based on the analysis of [I7], the communication complexity of the
KM protocol when using signed OTs is,

(7t + 11) + 2\kt

+ Ak(2n + 1)

+7(13X —4) + AM(26(X — 1) + nk)
+ log(A)

+ 2k|Ge|,

where |G| is the number of non-XOR gates in the circuit. The communication cost of the AO
protocol with signed OTs is,

7(7Tvn + 11) + 2Akvn
+ A(2k|Gel+7)
+2n\(k+T)
+ 7(13X - 8)
+A:(2(n+vn)(A—1) +2n(A — 1) +n).

For k =128, 7 = 256 and A = v = 3, which leads to € = 1/2, the KM protocol needs 3.47Mbit
to compute a 128-bit AES circuit with 9100 non-XOR gates. For these same parameters, the
AOQO protocol requires 9.3Mbit. Using the ALA described above, however, we can set A = v = 2
which leads to the minimal deterrence factor of 1/4 and a communication complexity of 3.03Mbit
for the KM protocol and 5.75Mbit for the AO protocol.

6 Auditable Proofs of Storage

In this section we show how to apply ALAs to PoS. We begin by presenting a transformation
that converts any PoS into an APoS using simple cryptographic primitives. We then define and
analyze the CIGs that result from applying ALAs to APoS protocols to design ALAs that lead
to concrete efficiency improvements for several concrete protocols.

6.1 Definitions

We now introduce and formalize the notion of an auditable proof of storage which is a PoS whose
execution can be audited by a trusted third party called the Judge. In addition to soundness,
an APoS has to satisfy two properties: (1) accountability which, roughly speaking, guarantees
that the Judge will correctly detect when the file has been tampered with; and (2) defamation-
freeness which, roughly speaking, guarantees that the Judge cannot be fooled (by the client)
into believing that the file has been tampered with if it has not.

Definition 4 (Auditable PoS). An auditable proof of storage APoS = (Gen,II, Chall, Prove,
Vrfy, Audit) is composed of five polynomial-time algorithms and one two-party protocol. Gen,

15



Chall, Prove and Vrfy are as in a standard PoS (Deﬁm’tz’on@) and I1, Receipt and Audit work
as follows:

o (sty,clk,srk) < Gen(1¥): is a probabilistic algorithm that takes as input the security
parameter k and outputs a state st, a client key clk = (clpk,clsk) and a server key
srk = (srpk, srsk) where clpk, srpk are public keys for the client and the server respectively.

o ((stc,rec);e) < Ilgs((clk, f);srk): is a two-party protocol executed between the client and
the server. The client inputs a client key clk and a file f, and the server inputs a server
key srk. The client receives as output a state st and a receipt rec whereas the server
receives an encoded file e.

e b« Audit(sty, rec*,e*): is a deterministic algorithm that takes as input a state st, a receipt
rec* from the client. It also receives an encoded file e* from the server—which may not be
the original file and could possibly be empty if the server doesn’t respond. It outputs a bit
b which is 1 if the server is found guilty and 0 otherwise

We say that APoS is complete if for all k € N, for all (sty,clk,srk) « Gen(1¥), for all
f € {0,1}PE)  for all ((stc, rec);e) e s((clk, f);srk), for all ch output by Chall(clpk, stc),
for all  output by Prove(srk,e,ch), Vrfy(clk, stc, ch, 7) outputs 1.

An auditable PoS is used as follows. The judge runs Gen to generate a state sty, a client
key clk and a server key srk. We note here that this step could be replaced by an interactive
protocol that generates the keys—we only require that the judge be able to trust the keys. The
client and server then execute the II protocol on a file f. From this, the client receives a receipt
rec and the server receives an encoded file e. Chall, Prove and Vrfy are used as in a standard
publicly-verifiable PoS. If at any time, the client claims the server is not storing the file, the
judge runs b < Audit(sty, rec*, e*) where rec* is the receipt provided by the client and e* is the
encoded file provided by the server.

Soundness. The notion of soundness of auditable PoS is similar to that of standard PoS. We
formalize this with the following randomized experiments where K is a stateful extractor which
interacts with the stateful adversary A and attempts to output the original file f:

e OutputAdv 4(k):

1. generate (stj, clk,srk) < Gen(1%);

2. repeat p(k) times where p is a polynomial;

(a) the adversary computes f < A;

(b) compute ((stc,rec);e) < IIc a((clk, f);srk)
the adversary computes f* < A;

compute ((stc,rec);e*) < IIc a((clk, f*);srk)
compute ch < Chall(clpk, stc);

the adversary computes 7* < A(e*, ch);

N o

output (ch, 7).
o OutputExt 4 i (k):
1. generate (stj, clk, srk) < Gen(1%);

2. repeat p(k) times where p is a polynomial;
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(a) the adversary computes f < A;
(b) compute ((stc, rec);e) < IIc a((clk, f);srk)
3. the adversary computes f* < A;
4. compute ((stc, rec);e*) < IIc a((clk, f*);srk)
5. repeat ¢q(k) times where ¢ is a polynomial;
(a) the extractor computes ch; <— Chall(clpk, stc);
(b) the adversary computes m; < A(e*, ch;);
6. the extractor computes ((ch®, 7€), f¢) < KC(clk, stc, rec, {ch;, m;});

7. output (ch®, 7).
e Sound 4 x(k):

1. run OutputExt 4 x(k);
2. obtain f* < A and ((ch® 7°), f°) < K(clk, stg, rec*, {ch;, m;}) from the above run;
3. if 1 « Vrfy(clk,stc, ch®, 7€) and f€ # f* output 1 else output 0.

Definition 5 (Soundness). An auditable proof of storage APoS = (Gen,II, Chall, Prove, Vrfy,
Audit) is e-sound if there exists an expected polynomial-time extractor K such that for all PPT
adversaries A, OutputAdv 4(k) and OutputExt 4 (k) are identically distributed and,

Pr[Soundsx(k) =1] <e¢,

where the probabilities are over the coins of Gen, 11, A.

Accountability. As discussed above, accountability guarantees that the Judge will correctly
determine if the file has been tampered with. Note that since standard publicly-verifiable PoS
allow for a third party to verify the integrity of the file, they naturally achieve accountability if
we simply let the Judge run the verification algorithm using the client’s public key and state.
We formalize accountability with the following randomized experiment where A is a stateful
adversary, f is a file and APoS = (Gen, IT, Chall, Prove, Vrfy, Audit) is an auditable PoS:

o Accnt g g(k):

1. generate (stj, clk, srk) < Gen(1%);

2. compute ((stc, rec);e) < IIc a((clk, f);srk)

3. the adversary computes e* < A;

4. if Audit(sty,rec,e*) = 0 and e* # e output 1 else output 0.

Definition 6 (Accountability). An auditable proof of storage APoS = (Gen,II, Chall, Prove,
Vrfy, Audit) is a-accountable if for all PPT adversaries A, for all files f,

Pr[Acentyf(k) =1] <«

where the probabilities are over the coins of Gen, II, A.
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Defamation-freeness. The third security property we require of an APoS is defamation-
freeness which guarantees that the Judge cannot be fooled into believing that the file has been
tampered with when it has not. We formalize defamation-freeness with the following randomized
experiment where A is a stateful adversary, f is a file and APoS = (Gen, IT, Chall, Prove, Vrfy, Audit)
is an auditable PoS:

o Defame-Free 4 f(k):

1. generate (stj, clk, srk) < Gen(1%);
2. compute ((stc,rec);e) < I14 s((clk, f);srk)
3. the adversary computes rec* < A;

4. if Audit(sty,rec*,e) = 1 output 1 else output 0.

Definition 7 (Defamation-freeness). An auditable proof of storage APoS = (Gen, IT, Chall, Prove,
Vrfy, Audit) is d-defamation-free if for all PPT adversaries A, for all files f,

Pr [ Defame-Free 4 s(k) =1] <6

where the probabilities are over the coins of Gen, II, A.

Notation. Throughout this work, we will refer to an APoS that is e-sound, a-accountable
and J-defamation-free simply as being (g, «, §)-secure.

6.2 A PoS-to-APoS Transformation

In this section we present a transformation that converts any PoS to an auditable PoS. Our
transformation makes use of a hash function family Hash = (Gen,Hash) and of a signature
scheme Sig = (Gen, Sign, Vrfy). We assume authenticated channels between all the parties.

Overview. The transformation is detailed in Figure [3| and works as follows. The Gen algo-
rithm creates a public/private key pair for the underlying PoS, a key w for the hash function
family, and two signing/verification key pairs: one for the client and one for the server. The
two-party protocol I is executed between the client C and the server S. The client encodes the
file f and signs its hash h. It then sends the encoded file e, its hash h and its signature oc on
the hash to the server. The server checks if h is indeed the hash of the encoded file e and if so
signs it as well. It then returns the hash h, the signature oo and its own signature og on the
hash. Finally, the client verifies that og is indeed a signature on h. The receipt rec consists of
the hash h and the two signatures oc and og. The Chall, Prove and Vrfy algorithms are the same
as the Chall and Prove and Vrfy algorithms of the underlying PoS. The Audit algorithm takes as
input a receipt rec = (h,o¢c,0g) from the client and some encoded file e* from the server. The
judge first checks whether oc and og are indeed signatures over h. If not, it determines that
the client is dishonest. If both signatures are valid and if the encoded file e* hashes to the hash
h, then the server is considered honest. On the other hand, if the two signatures are valid but
e* does not hash to h then the server is considered dishonest since e* could not be the original
encoded file e.

Theorem 1. If PoS is sound, Sig is existentially unforgeable and Hash is collision-resistant
with security parameter k, then APoS as described in Figure@ is (e, a, §)-secure where €, a, and
0 are negligible in k.
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Proof. The soundness of APoS follows directly from the soundness of PoS so we focus here on
auditability.
To show accountability, we show that if there exists a PPT adversary A and a file f such
that
Pr[Acentqs(k) = 1] = e(k),

for a non-negligible function €(k), then there exists a PPT adversary F such that Pr[Forger (k)] =
e1(k) or Pr[Collz(k)] = e2(k), where 1 and e are non-negligible in k.

Given hash key w and access to a signing oracle Sign(sk, -), F starts by computing (sk, pk) «
PoS.Gen(1%), (skg,vkg) < Sig.Gen(1¥) and setting sty = vkg, srk = (pk,skg,vk,w). It then
simulates A and executes ((stc,rec),e) < II4s((clk, f);srk) playing the role of the client C.
During this execution, F generates the signature og by querying its Sign oracle on h. It then
sends 7 = (h,o¢) to A and records (h,oc) as a pair queried to the Sign oracle. A sends back
rec* = (h*,0&,04§), then F aborts unless h* = Hash(w, e) and the signatures verify. If the client
signature verifies but (h*, o0&) has not been queried to the oracle, F produces this as a forgery
and terminates the experiment. Notice that A’s view up to this point when simulated by F is
distributed exactly as its view during an Accnt 4 ¢(k) experiment.

If the experiment has not been terminated by F, then A’s view is still consistent and the
receipt rec = (h, o¢, 0g) is produced honestly. Then by our initial assumption and the definition
of the Accnt experiment, this implies that

Pr[Audit(sty,rec,e™) = 0Ae #e*] > (k).

But note that Audit(sty, rec, e*) outputs 0 if and only if & is a valid hash of e*. Then F produces
(e,e*) as the hash collision. Since the total probability of A winning is non-negligible it follows
that it either produces a forged signature in the receipt rec with some e1(k) or an e* with the
same hash value as e with e9(k) where €1, 2 are non-negligible in k. But since Sig is existentially
unforgeable and Hash is collision-resistant we have a contradiction. Hence we know that

Pr[Acent g f(k) = 1] < a(k),

where a(k) is negligible. Towards showing defamation-freeness, we show that if there exists a
PPT adversary A and a file f such that

Pr [ Defame-Free 4 (k) = 1| = (k),

for a non-negligible function €(k), then there exists a PPT adversary F such that Pr[Forger (k)] =
e(k).

Given vk and access to a signing oracle Sign(sk,-), F starts by computing (sk,pk) <«
PoS.Gen(1¥), w < Hash.Gen(1%) and (skc,vkc) < Sig.Gen(1¥) and setting sty = vk and
clk = (sk, pk, skc, vkc, w). It then simulates A and executes ((stc,rec),e) < I1 4 s((clk, f);srk)
playing the role of the server S. During this execution, F generates the signature og by querying
its Sign oracle on h. When the execution finishes and A outputs rec* = (h*, 0§, 0§), F outputs
the pair (h*,0§) as its forgery. Notice that A’s view when simulated by F is distributed ex-
actly as its view during an Defame-Free 4 (k) experiment. By our initial assumption and the
definition of the Defame-Free experiment, this implies that

Pr[Audit(sty,rec*,e) = 1] > (k).
But note that Audit(sty,rec*,e) outputs 1 if and only if 0§ is a valid signature on A* and if

Hash(w,e) # h*. Since F only queries its Sign oracle on Hash(w, e) (if h # Hash(w, e) it aborts),
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it follows that (h*,0§) is a new and valid message/signature pair. This is a contradiction to the
existential unforgeability of Sig. Therefore we have

Pr [ Defame-Free 4 s (k) = 1] < é(k),

where d(k) is negligible.

7 Augmenting Proofs of Storage with ALAs

We now show how our techniques are applicable to PoS protocols. In this setting, the client
C and the server S agree on the ALA. We assume an out-of-band “traditional” contract that
specifies the hash of the file and the damages the server will pay to the client if the file has been
tampered with. To enhance an APoS with an ALA, the ALA has to be signed by both parties
after they agree on the file. We denote by ALA(ds) an adversarial level agreement with server
damages dg. The strategic interaction between a rational server and client in an ALA-enhanced
APoS protocol can be viewed as a CIG where the client plays the role of the inspector and the
server plays the role of the inspectee.

Overview of CIG. The client’s actions are the set of possible soundness error parameters for
the underlying APoS and the server’s actions are to either keep the file or lose the file. Here,
the client “inspects” the server by using the APoS. If the inspection fails then the client invokes
the judge and the server is punished by having to compensate the client for losing the file. The
client’s strategies can then be viewed as a mixed strategy over the actions “inspection passes”
which we denote Pass and “inspection fails” which we denote Fail, where the former is played
with probability 1 — e and the latter is played with probability e. More precisely, the client
picks a soundness error € which gives it a probabilistic payoff when the server tampers with the
file. When the server does not tamper with the file, however, the client will always have the
same deterministic payoff (which is the cost of the APoS or the “inspection”). We model these
payoffs as mixing over two strategies “pass” and “fail” which: (1) have different payoffs when
the server tampers with the file; and (2) the same payoffs when the server does not tamper with
the file. In other words, when the server tampers with the file, the APoS can “pass” or “fail”
and the client gets the appropriate payoffs but when the server does not tamper, the actions
“pass” and “fail” are strategically equivalent and give the same deterministic payoff.

Given solely this choice, a client would want to pick a low €, or even € = 0 in order to increase
the probability of the inspection passing. However, the technical difficulty is that all practical
constructions of proofs of storage protocols have non-zero soundness error. Additionally, in
order to reduce the soundness error, the security parameter of these schemes must be increased.
With a greater security parameter comes greater computation costs both for the server and the
client. These costs can also depend on other factors, such as the cost of computation or storage.
In order to simplify the model, we assume that these costs of computation for both the server
and the client are fixed constant values. On the other hand, the server strategies are mixed
strategies over the set of actions “tamper with file” which we denote Tamp and “do not tamper
with file” which we denote NoTamp, where the former is played with probability tg and the
latter is played with probability 1 — tg. Similar to the 2PC case, the client has an incentive to
frame the honest server in order to receive compensation.

In all the games that follow, the judge runs the Audit algorithm to identify the guilty
party. If the Audit finds the server guilty the judge enforces the damages dg to the server and
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Let PoS = (Gen,Encode, Chall, Prove, Vrfy) be a publicly-verifiable proof of storage, Sig =
(Gen, Sign, Vrfy) be a signature scheme and Hash = (Gen, Hash) be a hash function family. Consider
the auditable proof of storage APoS = (Gen, II, Chall, Prove, Vrfy, Audit) defined as follows:
e Gen(1%):
1. compute (sk, pk) < PoS.Gen(1%);

2. compute w & Hash.Gen(1%);
3. compute (skc,vkc) ¢ Sig.Gen(1%) and (sks, vks) < Sig.Gen(1%);
4. output st; = vkg, clk = (clpk,clsk) = ((pk, vkc,w), (sk,skc)) and srk = (srpk,srsk) =
((pk, vks), (sks, w))
o II((clk, f);srk):

1. the client:
(a) computes (e, st) «+ PoS.Encode(sk, f);
(b) computes h < Hash(w,e);
(¢) computes oc + Sign(skc, h);
(d) sends e and 7 = (h,0¢) to the server;
2. the server:
(a) if h = Hash(w,e)
i. computes og « Sign(sks, h);
ii. sends rec = (h,o0¢c,0s) to the client
(b) else outputs L and aborts;
3. the client:
(a) if Vrfy(vks, h,0s) = 1 outputs rec otherwise outputs L;

Chall(clpk, st): output ch < PoS.Chall(pk, st);

Prove(srk, e, ch): output m < PoS.Prove(pk, e, ch);

Vrfy(clk, st, ch, ): output b +— PoS.Vrfy(pk, st, ch, 7);

Audit(sts, rec*,e*):

parse rec* as (recy, reca, recs) i.e. (h,oc,0s);
compute by « Sig.Vrfy(vke, h, recy);
compute by + Sig.Vrfy(vks, h, recs);

if h = Hash(w, e*) set b3 = 1 else set b3 = 0;
if by =1 A by =1 A bz =1 output 0

if by =1 A by =1Absg =0 output 1

NS e WD

otherwise output 0.

Figure 3: A PoS-to-APoS transformation.

21




compensates the client. On the other hand, if the audit finds the server innocent the judge
enforces the damages d¢ to the client for attempting to frame the honest server.

Adversarial settings. We consider two adversarial settings:

1. Rational server vs. honest client: the client follows the protocol but the server can deviate
if it increases its utility.

2. Rational server vs. framing client: the server is rational (and may even choose not to
participate) and the client is rational and may try to frame the server.

7.1 Rational Server vs. Honest Client

In this section, we describe how to enhance an APoS with an ALA and, specifically, how to set
the damages in the ALA as a function of the parameters of underlying APoS. Here, we focus
on the case of an honest client and a rational server and our goal is to show that if the damages
in the ALA are set appropriately, a rational server will never tamper with the file.

APoS for honest clients. The simplest APoS for the setting of honest clients works as
follows. Given a standard PoS, one simply defines the Audit algorithm to always output 1.
Note that since the client is honest, Audit will only be invoked when PoS verification fails. This
simple construction is (g,0,1)-secure, where ¢ is the soundness error of the underlying PoS,
« = 0 because Audit never outputs 0 and 6 = 1. Note that the defamation-freeness of this APoS
is the worst possible but this does not matter because an honest client will never invoke the

Judge when PoS verification succeeds. We now describe the corresponding PoS game as shown
in Figure

ALAApos, 1 (ds)

NoTamp (1 — tg) Tamp (ts)

Chance

(—cs, (9s —cs, (g9s —ds —cs,
—cg) —{c —cc) ds—{Lc —cc)

Figure 4: CIG between a rational server and an honest client.

Game tree. When an (g,0,1)-secure APoS is enhanced with an ALA between a rational
server and an honest client, it results in the CIG in Figure |4l The server has a choice between
Tamp and NoTamp. When the server chooses not to tamper with the file, the client’s check
always passes. Since the client is constrained to honest actions, it does nothing. The utilities to
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both the server and the client are just the costs of running the check cg, cc. On the other hand,
when the server tampers with the file (right sub-tree) it is detected by the client with probability
(1 —¢). This probabilistic event is denoted by the hollow chance node. When the tampering is
detected, the client invokes the (trivial) judge, who always punishes the server. The damages
are paid as compensation to the client. The gain to the server from tampering with the file is
denoted as gg and the corresponding loss to the client as . If the server tampers with the file,
this loss to the client and the gain to the server is part of their utilities — even if the tampering
is not detected by the client.

Theorem 2. LetII be an (g,0, 1)-secure APoS protocol between a rational server and an honest
client that is augmented with an ALA with damages dg. If,

gs
(1-¢)’

where gs is the server’s gain when tampering with the file, then the dominant strategy for a
rational server is to not tamper.

ds >

Proof. To compute the server’s dominant strategy, we compare the expected utilities of the two
strategies available at the blue node in Figure |4} tampering with the file, and not tampering.
Clearly, we have Ug [NoTamp| = —cs. Furthermore,

Us[Tamp] = (1 —¢)(g9s — ds — cs) +(gs — cs)
=—(1—¢)ds +gs —cs

—cs

v

where the inequality holds from the condition in the Theorem. So the server’s expected utility
from tampering is at most that of not tampering from which the Theorem follows.

7.2 Rational Server vs. Framing Client

We now consider dishonest clients and, specifically, clients that may want to frame the server.
As in the 2PC case, this is an important setting because the use of an ALA introduces an
incentive for the client to frame the server. As before, we handle framing clients with a dual
ALA between the client and the judge that specifies the damages payable to the judge if the
client is caught deviating. In addition, however, we also include a server fee ¢ that the client
pays to the server when a proof verifies. Now, the ALA, the dual ALA and the server fee
together specify a contract parameterized by (ds, dc, ¢).

Equilibrium conditions. In this setting, we have no guarantee on client behavior. In par-
ticular, the client might invoke the Judge even when the APoS verification passes. This, in
turn, affects the game from the previous section since the server is no longer sure of the client’s
behavior. In fact, a rational server may not even want to participate in the protocol. Our first
challenge then is to prove that, even in this setting, there exists an equilibrium where the client
invokes the Judge if and only if the APoS fails to verify and the server participates in the
protocol (in the sense that it responds to the challenges issued by the client). Notice how this
equilibrium behavior is identical to the honest client setting. At this equilibrium, we can then
derive the soundness error ¢ that will force the server to play NoTamp. We prove the existence
of the equilibrium in Lemma [3| and Lemma [4] and show the final result about soundness error
in Theorem |3 We start by proving that an equilibrium exists where both the server and the
client behave as in the honest client setting.
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Server fee. In order to have a rational server respond to a challenge—even to a possibly
framing client—we need to include a server fee so that it has some utility for completing a
proof. Note that in the context of PoS the server fees occur naturally; that is, most cloud
services would charge a fee to store a client’s file. Given that the honest server always receives
o for completing a proof, the honest server will always respond to a challenge. Then if the
client does not receive a response to its challenge it assumes that the server has played Tamp
and invokes the judge. This forces the server to respond to all challenges even if it has tampered
with the file. This may seem surprising but the intuition is as follows. If the server doesn’t
respond to the challenge, then the client will invoke the Judge which increases its cost due to
the damages it has to pay. On the other hand, if the server always responds the soundness
error of the APoS creates the possibility that the verification might succeed even if the file was
tampered with. Then we have the first part of the equilibrium condition: If the client invokes
the Judge only when the APoS verification fails (or) when it does not receive a response, then
the server will always respond to challenges. We describe this game for the server in Figure [f] .

Game tree. The game and the payoffs for the server are shown in Figure|sl After the server
chooses whether to play Tamp or NoTamp, the server can choose whether to “respond to the
APoS challenge” which we denote Resp or “not to respond” which we denote NoResp. Since
the client actions are fixed in this game, the client invokes the judge only when either receiving
no response from the server (or) when the APoS verification fails. For visual clarity, in Figure
the outcomes that occur when the Judge is invoked are compressed into a single outcome
and marked with the server’s expected utility as follows: (1) if the server plays NoTamp and
responds to the challenge, the Judge is never invoked; (2) if the server plays Tamp and responds,
the Judge is invoked when the proof fails (with probability 1 — €); (3) If the server does not
respond, the client’s view is the same in both the left and the right sub-tree— it does not know
if the server has played Tamp or NoTamp first, it only knows that NoResp was played second.
Then the green nodes from the game tree are in the same information set and the actions that
are played from either must be identical. Since the action available to the client is to invoke
or not invoke the judge, the probability of the Judge being invoked (p) is the same at both the
green nodes. If the server gets away with tampering, it receives the gain gs and if the server
is found guilty of tampering (even in error) it pays the damages dg. We now prove Lemma
about the server response to a challenge using the server’s expected payoffs.

Lemma 3. Let IT be an (g, «, d)-secure APoS protocol between a rational server and a framing
client augmented with an ALA with damages dg and dc and a fee p. If,

¢
>3
5

where cg is the server’s cost of participation, and if the client invokes the judge only if APoS
verification fails or the server does not respond, then the dominant strategy for a rational server
1s to always respond to a challenge.

Proof. Since the client strategy is fixed to always invoke the judge if either the APoS verification
fails (or) if the server does not respond — we fix p = 1 at the green nodes in the tree. Then an
honest server playing NoTamp will always respond to a challenge. This follows since

Ug [NoTamp;Resp| = ¢ — cg
>0
> —dds
= Ug [NoTamp; NoResp]|,

24



chooses k, e, a, d

NoTamp (1 —tg)

Figure 5: Server responses in PoS game.

where the first inequality follows from the fact that ¢ > cg/e with ¢ < 1 and the second
inequality follows from the fact that p = 1 and d,dg > 0. Then we also show that for a server
playing Tamp, responding to a challenge still has better expected payoff than not responding as
follows:

Ug [Tamp;Resp| =e(¢p +gs) — (1 —¢)(1 — a)ds — cs
—(1—-¢)(1 —a)ds

—(1 —a)ds

= Ug [ Tamp; NoResp ]

>
>

where the first inequality is since ¢ > c¢g/e with egg > 0, the second inequality is because ¢ < 1.
From the two cases above, we have that fixing the client strategy and the conditions of the
lemma, the server will always respond to the challenges; even if it tampered with the file.

We have now shown the first part of the equilibrium condition: If the client invokes the
Judge only when the APoS verification fails (or) when the server does not respond then the
server will always respond to challenges. It only remains to show that if the server always
responds to challenges then the client invokes the Judge only when the APoS verification fails.
Fixing the server’s strategies, we have the client’s game tree as shown in Figure [6]

Game tree. If the server responds to all challenges then we have the game described in
Figure [6] where the leaves correspond to the client payoffs. The server makes a choice to play
Tamp or NoTamp. The client receives the server response to its challenge. If the server plays
NoTamp the verification always passes. However, if the server plays Tamp, the verification passes
with the probability € — the soundness of the APoS. In both these outcomes the client has the
same information and this is represented by the blue nodes. After the verification, the client has
a choice to invoke (I) or not invoke (NI) the judge. If the verification fails, the judge awards the
server damages to the client except with probability «. If the verification passes, the Judge’s
audit depends on if the server is playing Tamp or NoTamp. If the server is honest, the client
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pays damages to the Judge else the server pays damages to the client. The following lemma
then completes the proof that an equilibrium exists where the server responds to all challenges
and the client only invokes the Judge if the verification fails:

Lemma 4. Let II be an (e, a,d)-secure APoS between a rational server and a framing client
that is augmented with an ALA with damages ds and dc. If the server always responds to the

APoS challenges and if
dc

S
< j<—=
“= s +do ~ ds+dc
—(dds — (1 —d)dc)
—(dds — (1 = 6)dc) +e((1 — a)ds — adc)
where tg is the probability that the server tampers with the file, then the dominant strategy for
a rational client is to invoke the judge if and only if the server’s proof does not verify.

and ts <

Proof. We have to show that the client will invoke the Judge if and only if the proof fails. To
do this, we show that the client has greater expected utility if either: (1) it invokes the judge
when the proof fails to verify; or (2) it does not invoke the judge if the proof verifies. In the
following, let Pass be the event that the proof passes verification and let Fail be the event that
the proof fails verification.

When the proof does not verify. Towards showing the first claim, observe if the proof fails then
the file was tampered with (the APoS has no false negatives). In other words, when Fail occurs
the server played Tamp. So the expected utility of the client if it invokes the Judge when the
proof fails is:

Uc [ Tamp; Inv|Fail] = (1 — a)ds — a(dc) — bc — cc
> —lc —cc
= Uc [ Tamp; Nolnv|Fail |

where Inv|Fail denotes the action to invoke the Judge when the proof failed and Nolnv|Fail
denotes the action to not invoke the Judge when the proof failed. Here, the first inequality
follows from the fact that dg — a(ds + dc) > 0. From this, it follows that the client would
invoke the Judge if the proof fails.

When the proof verifies. We now turn to the second claim. Due to the soundness error of the
APoS, it is possible that Pass occurs even when the server plays Tamp. In this case, the client is
at the information set marked in blue in Figure @] and must decide whether to play Inv|Pass or
Nolnv|Pass (which are defined analogously to Inv|Fail and Nolnv|Fail). Since the expected utility
for either action depends on whether the server played Tamp or NoTamp, we can calculate the
expected utility of the client from the game tree. If the server did play Tamp, the client receives
damages with some probability depending on the completeness of the Judge’s audit. If the
server played NoTamp, the client has to pay damages with some probability depending on the
soundness of the Judge’s audit. Then the expected utility for the client to invoke the judge when
the proof passes depends on if the server played Tamp or NoTamp and the combined expected
utility can be written as follows:

Uc [Inv|Pass| = Pr[NoTamp|Pass]- Uc [ NoTamp; Inv|Pass |+ Pr[Tamp|Pass|- U [ Tamp; Inv|Pass |

In order to compute this combined expected utility we first compute the expected utility for
invoking the judge when the server plays NoTamp. This corresponds to the situation where the
client is trying to frame an honest server. From Figure[6] if the client is caught trying to frame
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the server (probability J) the client has to pay damages. On the other hand, if the client is not
caught, it is awarded the server’s damages. Then the client’s expected utility for invoking the
judge when the server plays NoTamp and the verification passes is:

Uc [NoTamp;Inv|Pass| = ddg — (1 — d)dc — cc — ¢
=A- cc — ¢,

where A = ddg — (1 — 6)dc. However, when the server plays Tamp but the verification passes
due to soundness error, the client is at the same information set. The client only knows that
the verification passed but not what the server has played. When the server has played Tamp,
invoking the judge would not be framing. Then from the tree, the client would receive damages
except with probability «, from the completeness of the audit. Then we have:

Uc [Tamp;Inv|Pass] = (1 — a)ds — adc — bc —cc — ¢
=B—{lc—cc—p,

where B = (1 — a)ds — adc. Combining both the above subcases, we have the total expected
utility of invoking the judge when the verification passes as follows:

Uc [Inv|Pass]| = Pr[NoTamp | Pass] - A + Pr[Tamp | Pass] - (B — ¢c) — cc — . (1)

Similarly from the game tree, we can compute the expected utility of not invoking the Judge
when the verification passes. If the server is playing Tamp, the client makes a loss and if the
server is playing NoTamp the client only pays the cost of the verification. Now the expected
utility for the client to not invoke the judge when the proof passes depends on if the server
played Tamp or NoTamp. The combined expression for the client’s expected utility is as follows:

Uc [Nolnv|Pass| = Pr[NoTamp|Pass| - Uc [NoTamp; Nolnv|Pass | + Pr[Tamp|Pass| - Uc [ Tamp; Nolnv|Pass |

In the first subcase, the server has not tampered with the file and the client does not invoke
the judge. Then the client only pays the fixed costs: the cost of the proof verification and the
server fee.

Uc [NoTamp; Nolnv|Pass| = —cc — ¢

In the second subcase, the server plays Tamp but the verification passes (again due to soundness
error) and the client does not invoke the judge. In this case, the client loses the file, and pays
the fixed costs:

Uc [ Tamp; Nolnv|Pass] = —lc —cc — ¢

Then the expected utility of not invoking the judge when the verification passes can be written
by combining the two subcases above as follows:

Uc [Nolnv|Pass] = Pr[NoTamp | Pass| - (—cc — ¢) + Pr[Tamp | Pass| - (—{c — cc — ¢)
= Pr[Tamp | Pass| - (—{c) — cc — ¢, (2)

where we combine the fixed cost terms for the second equality. We now recall Equation (1) for
the expected utility of invoking the Judge when the verification passes:

Uc [Inv|Pass| =Pr[NoTamp | Pass| - A 4+ Pr[Tamp | Pass| - B + Pr[Tamp | Pass] - (—{c) — cc — .
=Pr[NoTamp | Pass] - A + Pr[Tamp | Pass] - B + Uc [Nolnv|Pass], (3)

where the second equality results from using Equation (2) for the expected utility of not in-
voking the Judge when the verification passes. In order to determine the relationship between
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the expected utilities of the client’s actions, we must compute the conditional probabilities:
Pr[NoTamp|Pass| and Pr[Tamp|Pass|]. Given the server’s probability of tampering as ts, and
from the properties of the APoS, Pr[Pass|Tamp] < ¢ and Pr[Pass|NoTamp] = 1, we can use
Bayes’ Theorem to compute the conditional probability that the server tampered with the file
given verification passed:

Pr[NoTamp | Pass] Pr[Pass | NoTamp] - Pr[NoTamp]
Pr[Pass | NoTamp] - Pr[NoTamp] + Pr[Pass | Tamp] - Pr[Tamp]
1—tg
(1 —tg) +ets

Similarly, the conditional probability that the server did not tamper with the file given that the
verification passed is as follows:

ets

Pr[Tamp | PaSS] = m

Now, given the conditional probabilities and the relationship between the expected utilities in
Equation (3) we have the following expression:

(1 —tg)A+ctgB
(1 —tg) +ets

Uc [Inv|Pass| = + Uc [Nolnv|Pass]|

Now, under the conditions of the lemma, we know A < 0,B > 0 and tg < ﬁ ie. (1-—

ts)A + etgB < 0. Then, since we know that (1 — tg) + etg > 0 it follows % < 0 and
therefore:
Uc [Inv|Pass] < Ug [ Nolnv|Pass |

Then, if the conditions of the lemma hold, the client will not invoke the judge when the server’s
proof verifies. Given the proof for our claims (1) and (2) we have that if the server responds to
challenges, the client will invoke the judge if and only if the server’s proof does not verify.

It follows from Lemmas [3| and [4] that there exists an equilibrium where a rational client will
honestly execute an (g, a, §)-secure APoS and a rational server will always respond to challenges
with a proof. This behavior is now the same as that of the client and the server in the game
with the honest client in Section Then under the conditions for Lemmas [3] and [4] we can
use the insight from the honest client game and derive the values of the parameters ¢, a;, and §
such that the server will not deviate from the protocol. Then, our final theorem concerns this
choice of parameters that the client needs to declare so as to incentivize a rational server to not
tamper with the file.

Theorem 3. Let IT be an (e, o, §)-secure APoS between between a rational server and an honest
client that is augmented with an ALA with damages dg and dc and fee p. If,

ds dc

> < — < =

v 2 s/ a_ds+dc’ 5_ds+dc’
—(0ds — (1 —0)dc)

5((1 — a)ds — Oédc) — (5ds — (1 — 5)dc)’

then the dominant strategy for a rational server is not to tamper with the file.

p+ (1 —-a)ds > gs/(1—¢)

and tg <

28



chooses k, ¢,0,
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—) —) —cc — ) —cc — ) —cc) —cc)

Figure 6: Rational Client actions in APoS

Proof. Under the conditions of the theorem, we know that there exists an equilibrium where the
client and server execute the auditable proof of storage as intended. Then the game simplifies
as shown in Figure[7] where the Judge nodes are compressed. The expected utility of the server
depends on if it chooses to play NoTamp or Tamp given that the client is running APoS and
will invoke the Judge only if the proof does not verify. Then from the game tree, the expected
utilities for the server are:

Us[Tamp]| =¢e(p +gs) + (1 —¢)(gs — (1 — a)ds) — cs

=ep+gs—(1—¢)(1—a)ds —cs
<@ —cg=Ug[NoTamp]

where the inequality follows from p+(1—a)dg > gs/(1—¢) and last equality from Ug [NoTamp | =
 — cg in the game tree. Then the server’s expected utility is always greater if it plays NoTamp
under the conditions of the theorem.

7.3 Concrete Instantiations

In this section, we present concrete examples of the application of our framework to the PoS
protocols of Juels and Kaliski [16], Ateniese et al [6] and of Shacham and Waters [1§].
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Figure 7: Server-Client Game Tree

7.3.1 The Juels-Kaliski PoS.

In this section, we apply our framework to the proof of storage proposed by Juels and Kaliski.
In the paper they analyze a concrete example for their proof of storage - the file to be stored
is encoded such that it can be retrieved for upto 6 = 0.01 fraction of corruption with high
probability. Sentinel blocks are then inserted such that a corruption rate of § = 0.005 can be
detected with probability at least 0.71 [I6]. The guarantee provided by their scheme is that of
high enough detection of deviation i.e. corruption of the file. We then show how to augment
this scheme with an appropriate ALA and damages in order to guarantee that a rational server
will not deviate. We show that we need fewer sentinel blocks in order to provide this stronger
guarantee due to the presence of the ALA and the damages which come ‘for free’.

Ezample from Juels and Kaliski [16]. We consider a 2GB file f with 128-bit block size and
a (255,223, 32) Reed Solomon code over GF[2'?8]. This results in a 227 blocks before erasure
encoding and 153,477,870 blocks after erasure encoding. Adding s = 1,000,000 sentinels,
the file now has 154,477,870 blocks which amounts to about 2.3GB. Extending the analysis,
consider a corruption rate of § = 0.01 the adversary will corrupt the file beyond retrievability
with probability at most 0.089. To detect a corruption rate of § = 0.005, they use 1000 sentinels
per challenge which guarantees detection with probability at least 0.71. Keeping the storage
constant we show that we can enhance the Juels-Kaliski PoS with an ALA and guarantee that
the rational server will not corrupt the file above § = 0.005 using only 200 sentinels per challenge.
Although the detection probability is now lower (~ 0.23) we can adjust the damages to get this
result. We now show how to calculate the appropriate parameters for this ALA.

Estimating server costs. First we estimate the cost incurred by the server to execute the
protocol. During the encode protocol II, the server needs to compute a hash, verify a signature
and sign a hash. SHA-256 is estimated to consume 100uwH per MB[12] so the energy to hash a
2.3GB file is 2.355 x 10~4kwH. The cost of verifying plus signing a 32-bit SHA-256 hash using
RSA-1024 is about 350mJ =~ 10~ "kWh[20]. The average energy cost in in Seattle is 12 cents
per month per kWh[4] so the cost of the hash, the signature and the verification amount to
30 x 10™% cents. To answer a challenge, the server needs to return 200 blocks to the client. This
amounts to sending 200 x 128bits which is 25.6kB back to the client. The AWS egress prices
(i.e., the cost to move data out of a cloud AWS) is 0.09% per GBI[I], so sending the proof will
cost about 21.6 x 107> cents. So the total cost for the server is ~ 32 x 10~ cents.
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Setting the parameters of the ALA. From this analysis, we should set the server fee to ¢ >
cs/e = 32 x 107%/0.77 =~ 0.004 cents. Next, we have to ensure that

gs

o+ (1—a)ds > 1

where « is the upper bound on the accountability of the APoS, dg are the damages the server
must pay if caught cheating and gg is the gain the server incurs by losing the file. To estimate
gs we use the price of storing 2.3GB for a year on Amazon S3 which is $0.6348 =~ $0.7[3]. Using
RSA-1024 and SHA-256 implies that § and « are approximately 0. So if we set the server
damages in the ALA to be ds = $4 then the condition above is satisfied. For the equilibrium
to exist, we also need the server’s probability of violation to be bounded above as

—(dds — (1 —0)dc) dc

~

: (1 - a)ds — adg) — (6ds — (1 — )dc)  eds + dc

ts

To get the guarantee for tg < 0.75 we need the client damages in the dual ALA to be d¢ = $10.

We can always adjust the bound for tg to be arbitrarily close to 1 by increasing the client’s
damages. Finally we need both o < dg/(ds +dc) = 2/7, and § < dc/(ds + dc) = 5/7 which is
also satisfied. Then by using an ALA with damages of $4 and a dual ALA with damages of $10,
we can guarantee that a rational server and a framing client will behave honestly using only 200
sentinels per challenge as opposed to the 1000 sentinels per challenge needed originally. This
will also allow us to run five times as many challenges in the proof. We also note that we could
trade off storage or the parameters of the error-correcting code similarly, as long as we ensure
that the conditions for Theorem [3] hold.

7.3.2 The Ateniese et al. PoS.

We now apply our framework to the publicly-verifiable proofs of data possession S-PDP by
Ateniese et al [6]. In their paper they show that for a file of n blocks where the server corrupts ¢
of them and the client asks for ¢ blocks per challenge then the probability that the client detects
this corruption p is given by:

C C
1_(n t) Spgl—(n c+1 t>
n n—c+1

They then say that when ¢t = 1% of n the client must ask for ¢ = 460, ¢ = 300 blocks in order
to achieve p of 99% and 95% respectively [6]. In our setting the above relationship implies for
the soundness error € which is 1 — p:

<n—t>c (n—c—i—l—t)c

>e> | —mmm
n - n—c+1
Now we show that we can provide the guarantee that the rational server will not deviate with
¢ = 50 blocks and dg, dc equal to $2, 37 respectively. In order to calculate the parameters we
choose a 2GB file and assume that with tags it expands to at most 2.5GB. Let each block be
4KB as per the optimal size in the paper. Then n = 524288, ¢ = 5243 and from the above we
have: 0.60499 > ¢ > 0.60497
Estimating server costs. First we estimate the cost incurred by the server to execute the protocol.
During the encode protocol II, the server needs to compute a hash, verify a signature and sign a
hash. SHA-256 is estimated to consume 100uwH per MB[I2] so the energy to hash a 2.5GB file
is 2.56 x 10~4kwH. The cost of verifying plus signing a 32-bit SHA-256 hash using RSA-1024 is
about 350mJ ~ 10~ "kWh[20]. The average energy cost in in Seattle is 12 cents per month per
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kWh[4] so the cost of the hash, the signature and the verification amount to 30.7 x 10~ cents.
To answer a challenge in the publicly-verifiable scheme, the server needs to return ~ 1 block
to the client. This amounts to sending at most 5kB back to the client. The AWS egress prices
(i.e., the cost to move data out of a cloud AWS) is 0.09% per GBI[I], so sending the proof will
cost about 4.29 x 107 cents. So the total cost for the server is ~ 32 x 10~ cents.

Setting the parameters of the ALA. From this analysis, we should set the server fee to ¢ >
cs/e = 32 x 107%/0.61 =~ 0.005 cents. Next, we have to ensure that

gs
1—¢

v+ (1—a)ds >

where « is the upper bound on the accountability of the APoS, dg are the damages the server
must pay if caught cheating and gg is the gain the server incurs by losing the file. To estimate
gs we use the price of storing 2.5GB for a year on Amazon S3 which is $0.69 ~ $0.7[3]. Using
RSA-1024 and SHA-256 implies that 6 and « are approximately 0. So if we set the server
damages in the ALA to be ds = $2 then the condition above is satisfied. For the equilibrium
to exist, we also need the server’s probability of violation to be bounded above as

—(0ds — (1 = 6)dc) dc

tg < ~
8= 2((1 - a)ds — adc) — (6ds — (1 — 0)dc)  eds + dc

To get the guarantee for tg < 0.85 we need the client damages in the dual ALA to be dc = $7.

We can always adjust the bound for tg to be arbitrarily close to 1 by increasing the client’s
damages. Finally we need both o < dg/(ds + dc) = 2/9, and 0 < d¢/(ds + dc) = 7/9
which is also satisfied. We then see that by using an ALA with damages of $2 and a dual
ALA with damages of $7, we guarantee that a rational server and a framing client will behave
honestly using only 50 blocks per challenge as opposed to the ~ 300 blocks needed to guarantee
a reasonable chance of detection. We have hence reduced the overall computation required for
the server and have shown a stronger guarantee by adding the ALA. We could also explore
additional trade-offs as long as the conditions for Theorem [3| hold.

7.3.3 The Shacham-Waters PoS.

For the scheme of Shacham and Waters, we consider the example parameterization mentioned
in the paper [I8]. They take the security parameter & = 80 in order to have a small enough
soundness error €. We assume their (negligible) soundness error is 1/ 2"ﬂ With our framework
we can assume a much smaller security parameter while guaranteeing that the rational server
will not cheat. Let the security parameter & = 10. Then by our simplification the soundness
e =1/1024 ~ 0.001. We assume a 2.5GB file as in the previous example. The communication
costs in this scheme are similar. From the above analysis the server’s cost of participation is
~ 32 x 10~ cents.

Setting the parameters of the ALA. From this analysis, we should set the server fee to ¢ >
cs/e = 32 x 107%/0.001 ~ 3.2 cents. Next, we have to ensure that

gs
1—¢’

o+ (1—-a)ds >

where « is the upper bound on the accountability of the APoS, dg are the damages the server
must pay if caught cheating and gg is the gain the server incurs by losing the file. To estimate
gs we use the price of storing 2.5GB for a year on Amazon S3 which is $0.69 ~ $0.7[3]. Using

1We note that this is in order to have a concrete value for the example, and any other negligible (or even
non-negligible) function can be used similarly.
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RSA-1024 and SHA-256 implies that 6 and « are approximately 0. So if we set the server
damages in the ALA to be ds = $1 then the condition above is satisfied. For the equilibrium
to exist, we also need that the server’s probability of violation is bounded as

—(0ds — (1 = 6)dc) dc

ts < S
S = 8((1 — a)ds — Oédc) — (0dg — (1 —d)dc) eds + dc

which is tg < 0.999 for the client damages in the dual ALA dc = $1. Finally we need both
a <dg/(ds +dc) =1/2, and 6 < dc/(ds + dc) = 1/2 which is also satisfied. Then by using
an ALA and a dual ALA with damages of $1, we can guarantee that a rational server and a
framing client will behave honestly using only k& = 10. From the paper this now implies that
the prime p is 20 bits (down from 160), the challenge space is B = {0,1}'Y since the challenge
length is only 10 elements as opposed to 80 in their example parameterization. In the paper,
they attempt to reduce this challenge size by sending a pseudoranodom seed instead to the
server. The server evaluates the pseudorandom function at specific points (usually a counter)
to generate the challenge. It then creates the proof for this challenge. However, even with the
modification; our framework reduces the amount of computation overall for both the server and
the client while providing a stronger guarantee with the addition of the ALA. We could also
explore additional trade-offs as long as the conditions for Theorem [3] hold.

8 Conclusions and Future Work

We introduced the notion of an ALA and showed how to apply it to non-trivial two-party
protocols including 2PC and PoS. We showed that ALA-enhanced protocols can both enforce
deterrence and be more efficient than previous protocols. Our work motivates several new and
interesting directions for future exploration.

The most immediate is to design ALAs for other two-party protocols like zero-knowledge
proofs and verifiable computation. Also, extending our framework to multi-party protocols,
including to secure multi-party computation, would be interesting and non-trivial since the
resulting CIGs would be substantially more complex to define and analyze. ALAs might also
provide a way to achieve fairness by adding damages against a party that withholds the output.
Another interesting direction would be to design and study new and more complex kinds of
ALAs, for example, using techniques from financial engineering (i.e., stocks, derivatives etc.)
and microeconomics (e.g., contract theory).
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