
A Novel Duplication Based Countermeasure To Statistical
Ineffective Fault Analysis

Anubhab Baksi1?, Vinay B. Y. Kumar1, Banashri Karmakar2, Shivam Bhasin1, Dhiman Saha2, and
Anupam Chattopadhyay1

1 Nanyang Technological University, Singapore
2 de.ci.phe.red Lab, Department of Electrical Engineering and Computer Science, Indian Institute of Technology,

Bhilai, Raipur, India

anubhab001@e.ntu.edu.sg, vinayby@iitbombay.org, banashrik@iitbhilai.ac.in, sbhasin@ntu.edu.sg,
dhiman@iitbhilai.ac.in, anupam@ntu.edu.sg

Abstract. The Statistical Ineffective Fault Analysis, SIFA, is a recent addition to the family of
fault based cryptanalysis techniques. SIFA based attack is shown to be formidable and is able to
bypass virtually all the conventional fault attack countermeasures. Reported countermeasures to
SIFA incur overheads of the order of at least thrice the unprotected cipher. We propose a novel
countermeasure that reduces the overhead (compared to all existing countermeasures) as we rely
on a simple duplication based technique. In essence, our countermeasure eliminates the observation
that enables the attacker to perform SIFA. The core idea we use here is to choose the encoding
for the state bits randomly. In this way, each bit of the state is free from statistical bias, which
renders SIFA unusable. Our approach protects against stuck-at faults and also does not rely on
any side channel countermeasure. We show the effectiveness of the countermeasure through an
open source gate-level fault attack simulation tool. Our approach is probably the simplest and the
most cost effective.
Keywords. fault attack, countermeasure, sifa

1 Introduction

Fault Attacks3 (FAs) have been proven to be a powerful new attack vector targeting devices performing
cryptographic operations (both as software and hardware) [3]. The rapid growth of low-end devices
together with reducing cost and barriers to mounting advanced fault attacks is being recognized as a
serious concern. This type of attack requires the attacker to force the device to perform outside its
designated condition of operation, thus producing incorrect (faulty) output from the cipher operation.
The attacker can do this by using a multitude of techniques such as shooting optical pulses, overheating,
using hardware Trojans etc. This faulty output, or even just the information whether the device actually
produced a faulty output, can be used by an attacker, to deduce information on the secret state of
the underlying cipher and ultimately the secret key. Fault attacks are shown to be powerful enough
to compromise the security of a cipher which is considered secure with respect to theoretical cipher
evaluation criteria. It is also shown in the literature that a fault attack can be carried out with cheap
equipment, thus making this type of attack a serious concern.

The earliest and probably the most common fault attack model in the symmetric key setting is the
Differential Fault Attack (DFA) [9]. In a DFA, the device is allowed to run normally (without a fault)
once. Next, the attacker injects a fault that effectively toggles a bit (or few bits) in the cipher execution.
The difference between the faulty and the non-faulty output lets the attacker learn information on the
secret key.

In contrast to DFA, the Safe Error Attack (SEA) [21,31,32] makes use of the cases where the fault
injection does not change the output from the non-faulty case. One particular case of SEA, known
as Ineffective Fault Attack (IFA) [12], is of interest here. In an IFA, the attacker injects a potential

? This work is partially supported by TUM CREATE.
3 We use the terms ‘attack’ and ‘analysis’ interchangeably.



2

disturbance, but the cases where the disturbance does not effectively change the execution of the cipher.
In another direction of fault analysis, statistical information of a variable is observed (Statistical Fault
Attack, SFA). The distribution which becomes biased as a result of fault injection can be used [24].

The recently proposed Statistical Ineffective Fault Attack (SIFA) [16] combines IFA and SFA. Like
IFA, SIFA makes use of the cases where a fault injection does not result in a change in the output. Also,
similar to SFA, the statistical distribution of bias of a variable caused by the effect of fault is used to
recover the variable.

Another class of attacks, known as the Side Channel Attacks (SCAs) [23], is also capable of finding
information on the secret key from a device running a cipher. Generally, fault attack countermeasures
are not capable of inherently protecting against SCAs, hence a separate protection is commonly needed.

On top of being a direct way to mitigate the security of the ciphers as shown in [26] and [19], SIFA is
also able to bypass duplication based countermeasures. Those duplication based countermeasures have
been proposed to counter DFA. Such countermeasures work by implementing two instances of the same
cipher execution, which we call the actual and the redundant computations, following [5]. Assuming a
fault can alter at most one of the executions; it is explicitly detected by the detective countermeasures,
whereas infective countermeasures implicitly detect the difference [5]. If a fault injection does not alter
the course of non-faulty execution of the cipher, this case is considered as if no fault is injected by the
duplication based countermeasures. Since SIFA utilizes the cases where the fault injection does not alter
the normal execution of the cipher, those countermeasures cannot (at least in the current form) protect
against SIFA.

Very recently, four countermeasures dedicated to protect against SIFA have been proposed in the
literature. In one work, Breier et al. [11] use a triplication of the circuit to correct up to 1-bit error.
Since at most one bit is assumed to subject to SIFA, the majority of the three will correct the error and
hence the attacker will receive the correct (non-faulty) output. In [13], Daemen et al. suggest to use an
error detection mechanism based on Toffoli gates which follow the reversible computing paradigm. Any
successful fault would result in a garbage output and hence will be detected. Saha et al. in [27] present a
combination of masking (which is used as a countermeasure to SCAs, [23, Section 9]) and encoding. In
the impeccable circuits II [29], an error correction facility is introduced (extending the idea of impeccable
circuits [1]) to protect against SIFA.

Given this backdrop, our approach neither does any error correction nor any other expensive technique.
Instead, we basically use duplication (and comparison) in a way that removes the bias utilized by SIFA.
Hence, our countermeasure is by far the simplest and least expensive. While it may be required to
implement the cipher almost completely from scratch in other countermeasures (which can be non-trivial),
our countermeasure can be easily implemented to protect any symmetric key cipher.

It has been argued [16] that the duplication based countermeasures do not protect against SIFA.
Indeed this argument is valid with respect to the countermeasures proposed till date, such as [22]. This
also extends to DFA countermeasures proposed even after SIFA is published, e.g., [7] or [5]. On the
other hand, the SIFA countermeasures [11,13,27,29] rely on some form of triplication (including error
correcting codes) of the cipher execution possibly with masking. The cost for any such countermeasure
is more than thrice the cost of the unprotected cipher. Hence the community seems to accept the norm
that it is not possible to have a SIFA countermeasure with cost less than thrice the cost of the basic
(unprotected) implementation of the cipher. Our detailed analysis reveals that while triplication can
protect against SIFA, a sophisticated version of duplication can also do the same. The idea of our
protection stems from the existing duplication based DFA countermeasures [5].

Contribution

We extend the idea of duplication to accommodate randomized encoding to destroy statistical bias
(which is exploited by SIFA). This is done by choosing an encoding based on a 1-bit random parameter
λ. If λ = 0, both the actual and redundant computations are done as is, and this is referred to as actual
logic. When λ = 1, we encode ∀x bits of the state as (x ⊕ 1) for both the actual and the redundant
computations, we refer to this as inverted logic. In other words, we invert the bits (0 is encoded as



3

1, and 1 is encoded as 0) when λ = 1. This removes the statistical bias (since λ
$← {0, 1} and is kept

hidden from the attacker), thereby forestalling SIFA. This idea can be used atop the duplication based
countermeasures, namely detective and infective ones [5], depending on the security warranted. The
proper output from the cipher is given only if there is no difference between the computations of the
actual logic and the inverted logic (i.e., the fault is ineffective/no fault is injected). In such a situation,
reverse encoding is performed on the actual execution (if λ = 1), or (if λ = 0) the output is returned as
is. Otherwise (i.e., the fault is effective), necessary steps are taken, such as a random output is produced
or the output is suppressed.

Hence, unlike the existing SIFA countermeasures, our solution does not rely on (any form of) error
correction. Instead, it simply blocks the attacker to get information on the statistical bias. The attacker
is able to see the cases of ineffective faults in our proposed solution, however, this does not help the
attacker to gain any extra information as we explore later on.

The proposed simple and low-cost idea can be applied to any symmetric key cipher with minimal
changes to the implementation. We do not claim any inherent SCA protection, though, SCA counter-
measures can be applied easily. Our approach also has advantages when put in perspective to existing
countermeasures. For example, our approach does not increase side channel leakage, which is the case
for [11].

We describe further details in Section 4 with Figure 2 showing a visual representation of our idea. The
security evaluation of it is done by an open-source tool used by the authors of [29], with the PRESENT-80

cipher (similar to [27]) in Section 4.3. We subsequently present benchmarking results in Section 4.4.

2 Fault Attack Preliminaries

2.1 Differential Fault Attack (DFA)

As mentioned already, DFA is likely the most commonly used FA technique in the symmetric key
community. It has been successfully applied against most, if not all, symmetric key ciphers. First it lets
the cipher run as it is (without any fault). It then injects faults at some later round of the cipher. Then
it uses the difference of the faulty and non-faulty outputs that works as a variant of the Differential
Attack [8].

2.2 General Countermeasures against Fault Attacks

In general, the countermeasures against the fault attacks can be classified into three broad categories [5],
as we discuss here.

1. To use a specialized device. This device is separate from the cipher design and dedicated for protection
against such attack. Examples include a sensor that detects a potential fault [20].

2. To use redundancy. Commonly, this class of countermeasures duplicates (can be fully or partially)
the circuit. After this, a recovery procedure (which dictates what to do in case a fault is sensed)
takes place. Based on the recovery procedure, two types of countermeasures exist [5]. First, in the
detection based countermeasures, the XOR of the non-faulty and faulty is explicitly computed. If
this results in zero, the output from one of the computations (the so-called actual computation [5]) is
directly made available, otherwise the output is suppressed/a garbage or random output is given. In
the second category, the infective countermeasures do not explicitly compute the difference. Instead,
such countermeasures implicitly sense the presence of a fault. By using a sophisticated mechanism
(infection [5]), either the non-faulty output (in case no fault is sensed) or a random output is given
(otherwise).

3. To use the communication protocol in such a way that the conditions required for a successful fault
to happen with low probability [4,17]. For example, in order to utilize DFA, the inputs to the cipher
have to be unchanged; the probability of which can be reduced by using a suitable protocol.



4

3 Statistical Ineffective Fault Attack (SIFA)

As mentioned earlier, SIFA [16] is a new type of fault attack which combines the concept of ineffective
and statistical faults. In SIFA, the attacker exploits the bias (which is caused by the fault injection)
of one/more state bits. Unlike DFA, SIFA does not need the non-faulty output, but at the same time
requires more fault injections compared to DFA.

Here we present an example of SIFA for better clarity, more information on SIFA can be found in [16].
Suppose a device is more prone to bit reset (1→ 0) than bit set (0→ 1) due to a fault injection. This
can be achieved by, for example, by fixing a particular intensity of the optical fault injection set-up. This
results in the bias of bit flip. In other words, the probability that the output will be changed depends on
whether the target bit is actually 0 (high probability) or 1 (low probability). This bias where fault does
not change the output (i.e., ineffective) can be observed by the attacker statistically. When such a state
bit is known, the procedure can be repeated to get information on the other state bits and finally the
secret key can be recovered. In one extreme, the probability of bit reset (respectively, set) can be 1, in
which case the fault model is known as stuck-at 0 (respectively, stuck-at 1).

3.1 Duplication Based Countermeasures and Need for Specialization

From the types of fault protection given in Section 2.2, the duplication based countermeasures are the
closest to cipher design and hence are of particular interest.

As noted earlier, such countermeasures can be classified into detective and infective [5]. The schematic
for the two types is shown in Figure 1. Figure 1(a) shows the detection based or detective countermeasure.
Here the XOR difference of the actual computation (C from E1

K) and the redundant computation (C ′

from E2
K), denoted by ∆, is explicitly computed (here P is the input and K is the secret key, both

are common to both of the computations). If ∆ = 0, then no fault is detected and C is given as
output. Otherwise a garbage output (could be random or a predetermined constant) is given or the
output is suppressed. Figure 1(b) shows the infection mechanism used in infection based or infective
countermeasure. Here the XOR difference ∆ of C ⊕ C ′ is computed. However, instead of taking the
if–then decision, ∆ is implicitly used to compute τR(∆) such that τR(0) = 0 but τR(d) = R′ 6= 0
for d 6= 0 where R is randomly generated and hence R′ is also random (it is possible that R′ = R).
Thereafter C⊕ τR(∆) is given as output. Hence, when fault is sensed, ∆ is non-zero and the attacker gets
a random output. Otherwise (in case of no fault), the actual output C is returned. The XOR difference
can be computed at the end of the cipher execution (such as [22]), or after each round (the basic idea is
introduced in [18]); depending on which, a further classification of infective countermeasures as discussed
in [5].

C

C ′

∆

Yes

No

E1
K

P
⊕

∆ = 0?
C (Output)

E2
K

Garbage/Suppressed
Output

(a) Detective

C

C ′

∆ τR(∆) C ⊕ τR(∆)

E1
K

P
⊕

τ
⊕

E2
K R

(b) Infective

Fig. 1: Schematic for detective and infective countermeasures

Both the detective and the infective countermeasures are suitable to protect against DFA, except
for one specific type of DFA. This type is named double fault [5] and is shown practical in [28]. In this
case, both the actual and the redundant computations are injected with the identical faults. As a result,
the XOR difference is 0 and the countermeasure in place senses it as a case of no fault. Impeccable



5

circuits [1] attempts to solve the problem by employing different encodings for the two computations
and finally with an error detection mechanism. This idea is later extended to a block cipher named
CRAFT [7]. Employing such technique can increase the cost (depending on the error detecting code used).
For example, protecting against single bit faults at the output has 2.45× overhead for CRAFT [7].

However, it may be noted that none of these duplication based countermeasures is able to protect
against SIFA. SIFA only makes use of the cases where the fault injection does not alter the regular flow
of the cipher. All the countermeasures, including impeccable circuits/CRAFT, treat such a case as no
fault. This underlies the need for specialized countermeasures for SIFA, which is described next.

3.2 Existing SIFA Countermeasures

To the best of our knowledge, four specialized countermeasures aiming at protecting against SIFA have
been proposed in the literature. We describe those here for better clarity.

Repetition Code Breier et al. propose an error correction based on binary repetition code [11] and
taking majority. Assuming the fault injection can alter at most one bit, the error correction will fix
it back to its original content. Hence, the attacker will not get any information whether the fault has
occurred or not. This actually blocks the attacker’s ability to mount SIFA.

Masking and Repetition Code Saha et al. [27] propose a two phase countermeasure. The first type
(called, transform) is based on masking that aims at protecting faults induced into the state of the
cipher. Further, under a stronger attack model where the attacker can inject fault with high precision
within the computation of individual sub-operations like SBox, [27] proposes an encoding which allows
error correction. The countermeasure was tested with a LASER based fault injection experiments and
shown to be sound in a practical setting. Depending on the attacker’s capability, the overhead limits
to just that of a masking or error correction with masking. As an additional benefit, the implemented
masking protects the design against side channel attacks as well.

Error Detection through Toffoli Gate and Masking Daemen et al. [13] propose an error detection
mechanism based on Toffoli gates. This countermeasure acts as a combined SCA and a SIFA that targets
at most one bit. The non-linear components are designed using Toffoli gates in such a way that a single
bit flip would result in a garbage output. On top, the entire circuit is masked. It may be mentioned that
the concept relies on non-standard gates.

Error Correction Shahmirzadi et al. [29] extend the idea of [1] to incorporate error correction, and
verifies with the open-source tool VerFI presented in [2]4. The error correction is done through an error
correcting code as the authors note shortcoming of repetition with majority voting.

From the discussions, a few basic characteristics of the existing SIFA countermeasures can be noted.
Except [13], the rest (namely, [11, 27, 29]) depend on some form of error correction, thus making the
cost of such countermeasure at least triple of the unprotected cipher. Error correction also suffers from
the coverage of the underlying error correcting code being used. The concepts of [13] and [27] require
masking, which is a costly operation. The scheme in [13] uses detection, but relies on non-standard
Toffoli gates. As elaborated in Section 4, our proposed approach relies on simple duplication. Hence, no
customized gate such as Toffoli or costly operation such as masking would be required. This makes our
proposal the least expensive in the category.

4 Available at https://github.com/emsec/VerFI.

https://github.com/emsec/VerFI


6

4 Our Proposed Solution

Here we describe our proposed approach in more detail. As mentioned, the basic idea of our approach is
to use duplication in such a way that the attacker does not get any useful information.

As we noted in Section 3.1, the basic duplication based countermeasures fail to protect against SIFA.
Using an error detecting mechanism is said not to have protection against the same [7]. Therefore, we
use a novel idea that changes the encoding of the bits to its inversion with probability 1

2 , so that the
statistical bias is removed. A basic pictorial and algorithmic descriptions are given in Figure 2 and
Algorithm 1. Figure 2 shows a form of quadruplication, though both the branches for λ = 0 and λ = 1
are not taken at the same time.

Here we choose a random bit λ (λ
$← {0, 1}). It is regenerated at each invocation and is kept secret

from the attacker.
As a part of duplication, we run two instances of the cipher, namely the actual (denoted by E1

K)
and the redundant (denoted by E2

K) where E denotes the cipher and K is the secret key, and the
corresponding outputs are denoted by C and C ′. However, depending on λ we either choose the logic
as is (if λ = 0), or the inverted logic where 0 is encoded as 1 and 1 is encoded as 0 (if λ = 1). So, the
input to E, denoted by P is passed as is if λ = 0; but as its inversion P otherwise. The actual and
the redundant computations for the inverted logic are denoted respectively by E1

K and E2
K , and the

corresponding outputs by C and C ′.
After this, a recovery mechanism is applied. Here we adopt detection for the purpose of illustration.

Instead of detection, infection could be used if the attacker is powerful enough to flip the 1-bit judgement
condition, together with another DFA-type fault at the cipher instance (more details in this regard can
be found in [5]). We choose detection as DFA protection is not the focus of this work. In some sense, we
also refute the claim made in [16] that duplication based countermeasures like detection or infection
cannot protect against SIFA.

As a part of the detection mechanism, the XOR difference (∆ for the actual logic and ∆ in case of
the inverted logic) is computed at the end of the cipher execution. For the actual logic, the output C
is given if ∆ = 0, otherwise a garbage output is given or the output is suppressed. Similarly, for the
inverted logic, if ∆ = 0 the actual output C is computed by inverting logic of C and given, otherwise a
garbage output is given/no output is given.

Hence, the encoding of the actual and the redundant computations are same and is determined
by the random bit λ. We assume the attacker can target at most one of the computations. Under our
countermeasure, the encoding of that computation changes uniformly. More precisely, the probabilities
of bit set and bit reset for one particular bit are both equal. As λ is kept secret, the encoding used is
not known to the attacker. Suppose, the probability for bit set and that of bit reset for an (unprotected)
cipher are p0 and p1, respectively. Because of the random encoding, both the probabilities are now
(p0 + p1)/2. This destroys the statistical property utilized by SIFA, thus rendering it useless.

Algorithm 1 SIFA Countermeasure (Ours)

Input: P ;K
Output: C if no fault (SIFA); suppress output, otherwise

1: λ
$← {0, 1} . λ is unknown to the attacker

2: if λ = 0 then . Actual logic
3: ∆ = E1

K(P )⊕ E2
K(P )

4: if ∆ = 0 then
5: return C = E1

K(P )

6: else . Inverted logic
7: Compute P from P
8: ∆ = E1

K(P )⊕ E2
K(P )

9: if ∆ = 0 then
10: C = E1

K(P )
11: Compute C from C
12: return C



7

0 1

C C ′ C C ′

∆ ∆

Garbage/Suppressed
Output

No No

Yes

Yes

Inverted LogicActual Logic

λ

E1
K P E2

K E1
K P E2

K⊕ ⊕

∆ = 0? ∆ = 0?

C

C
(Output)

Fig. 2: Schematic for our SIFA protection (with detection mechanism)

Security of λ. It may be noted that λ plays a vital role in the overall security of the countermeasure. In
this context, we note the following points:

– The attacker can recover λ by SCA, if left unprotected. We believe, protecting λ against SCA will
incur minimal overhead as it is only one bit.

– The attacker can inject a bit flip (as in the case for DFA) to λ. However, this will only flip the value
of λ but will not affect the security of the countermeasure.

– The attacker can also inject a biased fault. This may lead to biased distribution of λ, and can
compromise the security. However, we would like to note that this would result in a second order
SIFA. We do not consider this model within the scope as it is not yet proposed in the literature, to
the best of our knowledge.

Stuck-at Fault Protection. For simplicity, consider stuck-at 0 fault only. Regardless of the attacker’s
ability, half of the time a particular bit will be encoded 0 and rest half of the time as 1. If the attacker is
able to inject a stuck-at 0 fault, then half of the times it will result in changed output (the cases where
that bit is encoded as 1) and hence be detected (by detective mechanism). Therefore, such cases are not
useful to SIFA (as SIFA only makes use of ineffective faults). Rest half of the time, the attacker will
know that the fault injection resulted in a stuck-at fault. However, since it is assumed the attacker does
not know whether it is stuck-at 0 or stuck-at 1, such information will not be useful. We thus conclude
our proposal can resist against stuck-at based SIFA.

4.1 Adopting Inverted Logic to Symmetric Key Ciphers

In order to see how the inverted logic works, first we show the inverted XOR (XOR) and inverted AND
(AND) operations in Table 1. With this, it is now possible to convert an SBox to its inversion.

Now we discuss how to implement any symmetric key cipher in the inverted logic. If the circuit is
already described in terms of XOR and AND gates (typical for stream ciphers), implementing it in
inverted logic should be straightforward. For a typical block cipher, the circuit is described in terms of a
linear layer and non-linear layer (such the SBoxes).

Adopting to Linear Layer Overall, the linear layer can be classified into three categories – bit
permutation as in PRESENT [10], binary non-singular matrix as in MIDORI [6], and non-singular matrix
over higher order finite field such as AES. However, at a closer look, all the three categories can be



8

Table 1: XOR and AND operations in inverted logic
(a) y = XOR(x0, x1)

x0 x1 x0 x1 y y

0 0 1 1 0 1
0 1 1 0 1 0
1 0 0 1 1 0
1 1 0 0 0 1

(b) y = AND(x0, x1)

x0 x1 x0 x1 y y

0 0 1 1 0 1
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 1 0

described as a multiplication by binary non-singular matrices. In particular, bit permutation corresponds
to binary permutation matrices.

Since bit permutation does not have any impact on the inverted logic implementation, we only consider
the case with binary matrices. Suppose, we want to implement the matrix M = (mi,j) for i, j = 1 · · ·n.
Considering the system of affine equations, ~y> = M~x> where ~y = (y1, . . . yn) and ~x = (x1, . . . , xn), we
can equivalently write, yk = mk,1x1 ⊕mk,2x2 ⊕ · · · ⊕mk,nxn for each k = 1 · · ·n. Since in the inverted
logic each variable xi will be inverted as well as the entire result will inverted, we deduce,

yk = mk,1x1 ⊕mk,2x2 ⊕ · · · ⊕mk,nxn

= mk,1x1 ⊕mk,2x2 ⊕ · · · ⊕mk,nxn ⊕ 1

= mk,1(x1 ⊕ 1)⊕mk,2(x2 ⊕ 1)⊕ · · · ⊕mk,n(xn ⊕ 1)⊕ 1

= mk,1x1 ⊕mk,2x2 ⊕ · · · ⊕mk,nxn︸ ︷︷ ︸⊕mk,1 ⊕mk,2 ⊕ · · · ⊕mk,n︸ ︷︷ ︸⊕1

= yk ⊕ (parity of kth row of M)⊕ 1

Hence, converting a binary matrix to its inversion is straightforward. For example, the AES MixColumn
is a 32× 32 binary matrix. The parity for each row is 1. Therefore, for AES MixColumn, the same source
code/hardware description will work for both the original logic and the inverted logic.

Adopting to Non-linear Layer To begin with, consider the Boolean function, y = x1 ⊕ x1x2. The
inverted function, y is given by y = x1 ⊕ x1x2 = (1⊕ x1)⊕ (1⊕ x1)(1⊕ x2)⊕ 1 = x2 ⊕ x1x2 ⊕ 1.

With this example, now consider the PRESENT SBox, C56B90AD3EF84712 [10], which is represented
by the following coordinate functions (in ANF):

y0 = x0 ⊕ x2 ⊕ x1x2 ⊕ x3,
y1 = x1 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3,
y2 = 1⊕ x0x1 ⊕ x2 ⊕ x3 ⊕ x0x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x0x2x3,
y3 = 1⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3.

Now the inverted SBox is given by the coordinate functions (in ANF) by (these are obtained by inverting
each variable):

y0 = 1⊕ x0 ⊕ x1 ⊕ x1x2 ⊕ x3,
y1 = x0 ⊕ x2 ⊕ x1x2 ⊕ x0x1x2 ⊕ x3 ⊕ x0x1x3 ⊕ x0x2x3,
y2 = 1⊕ x1 ⊕ x0x2 ⊕ x3 ⊕ x0x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3,
y3 = 1⊕ x2 ⊕ x0x1x2 ⊕ x3 ⊕ x1x3 ⊕ x0x1x3 ⊕ x2x3 ⊕ x0x2x3.

This leads us to the SBox DE8B701C25F649A3. The Algorithm 2 shows the implementation of PRESENT-80
cipher in the inverted logic (which we call PRESENT-80).

It may be noted that the the SBox in the inverted logic is not same as its inverse, in general.
For example, the inverse of the PRESENT SBox is 5EF8C12DB463079A. If an SBox with this property
exists, it could be beneficial to reduced cost for a combined encryption and decryption circuits if our
countermeasure is adopted. We leave this problem open for future research.



9

Effect on the Key Schedule The key schedule algorithm will not change in the inverted logic. Hence,
no extra cost/protection would be necessary. The round key addition operations are done by XOR.

Adopting to PRESENT-80 Now both the linear and the non-linear layers are adopted to the inverted
logic, we explain how the overall design would be adopted for PRESENT-80. The key schedule, the round
key additions (including the final round key addition at the end) and the bit permutation layer would
remain unchanged. The state is inverted before and after the encryption function. Also the SBox is
changed in PRESENT-80 as DE8B701C25F649A3. Figure 3 gives visual representation for PRESENT-80 in
both the actual and the inverted logic.

Plaintext Key

⊕

SBoxLayer

(C56B90AD3EF84712)

PermutationLayer Key Schedule

⊕ AddRoundKey

(for each round)

Ciphertext

31 rounds

(a) Actual logic (PRESENT-80)

Plaintext Key

⊕

SBoxLayer

(DE8B701C25F649A3)

PermutationLayer Key Schedule

⊕ AddRoundKey

(for each round)

Ciphertext

Invert

31 rounds

Invert

(b) Inverted logic (PRESENT-80)

Fig. 3: Overview of PRESENT-80 in actual and inverted logic

Algorithm 2 Convert PRESENT-80 to inverted logic (PRESENT-80)

Input: P ;K
Output: C
1: Run Key Schedule . No change (from PRESENT-80)
2: Compute P . Invert the bits of P
3: St = P . State is initialized
4: for i← 1; i ≤ 31; i← i+ 1 do
5: St ← AddRoundKeyi(St) . Add the corresponding round key; No change
6: St ← SBoxLayer(St) . Use SBox DE8B701C25F649A3

7: St ← PermutationLayer(St) . No change

8: St ← AddRoundKey32(St) . Add the last round key; No change
9: C ← St . Ciphertext is the inverted state

4.2 Benchmarks

Evaluation of the proposed countermeasure is presented in terms of PRESENT-80 [10] cipher (similar
to [27]). Table 2 reports the area overheads of the countermeasure targeting the 45nm NangateOpenCell-
Library PDK v13 v2010125 in terms of NAND2 equivalents. Similar to [5], we do not consider the cost
for generating randomness.

As for the software benchmark, we note that the inverted implementation can be done with only a
little change to the actual cipher implementation. Thus the code size will only be marginally increased.
The time taken would also be basically the same as the number of rounds for the cipher is invariant over
actual or inverted implementation.

5 An open-source research cell library, available at https://www.silvaco.com/products/nangate/FreePDK45_

Open_Cell_Library/.

https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/
https://www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/


10

Table 2: Area overhead of the proposed countermeasure
PRESENT-80

Cipher Implementation
Gate Equivalent (45nm Technology)

Combinational Non-combinational Total

Unprotected 1620.00 844.32 2464.32 (1.00×)

Proposed Countermeasure 3570.99 2264.66 5835.65 (2.37×)

4.3 Evaluation

The evaluation of the proposed countermeasure is done through fault attack simulation on the gate-level
netlist of the protected PRESENT-80 cipher, using VerFI [2] (the same tool used in [29])6. It may be
noted that the FA simulation through VerFI considers much finer level granularity, not just the state
bits, thereby conforming to the SIFA-2 model used in [27].

We show in Figure 4 an evaluation of our countermeasure through the simulation tool VerFI when
biased faults are applied at random locations at the 30th round. The data shown in both Figure 4(a)
(unprotected) and Figure 4(b) (protected by our countermeasure) are collected over a simulation of 120000
runs for PRESENT-80, for the cases where the fault is ineffective (therefore a usual duplication based
countermeasure would treat those cases as no fault). When the countermeasure is applied, significant
biases (that are caused by the fault) are removed, as seen in Figure 4(b). Thus, we conclude our
countermeasure is capable of removing the statistical bias.

4.4 Comparison with Existing Countermeasures

The hardware cost of protecting the 3× 3 SBox χ of XOODOO [14] by the SIFA countermeasures proposed
in [11, 13, 27, 29] using two 65nm technologies, namely UMC (uk65lscllmvbbh 120c25 t) and Faraday
(fse0k d generic core ss1p08v125c) are given in Table 3. The authors in [29] use [7, 4, 3]2 and [11, 4, 5]2
codes. Since χ is of three bits, we use a [6, 3, 3]2 code with the generator matrix:


0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1


 .

All in all, we conclude that our solution has the least overhead compared to the rest of the
countermeasures. Further, the evaluation is done through gate-level simulation and hence is comparable
to SIFA-2 of [27] (which is a stronger SIFA model).

Table 3: Comparison of cost of protecting χ (of XOODOO) by SIFA countermeasures

Design
Gate Equivalent

Method
UMC (65nm) Faraday (65nm)

χ (unprotected) [14] 14.58 (1.0×) 14.06 (1.0×) –

Breier et al. [11] 45.14 (3.1×) 42.97 (3.1×) Error correction

Daemen et al. [13] No standard cell library exists Reversible computing

Saha et al. [27] > 45.14 (> 3.1×) > 42.97 (> 3.1×) Masking, Error correction

Shahmirzadi et al. [29] 71.53 (4.9×) 68.75 (4.9×) Error correction

Ours 27.77 (1.9×) 25.78 (1.8×) Remove bias by duplication

Here we note few other points. The proposal of [13] inherently requires masking (thus also protects
against SCA), similar is the case for [27]. From a different angle, only [13] relies on error detection,
while the rest rely on some form of error correction (hence the cost is at least tripled). Also, [13] needs

6 Our source code can be found at https://github.com/vinayby/VerFI.

https://github.com/vinayby/VerFI


11

0.000000

0.016707

0.033414

0.050121

0.066828

0.083535

0.100242

0.116949

P
ro

b
a
b

il
it

y
→

SBox : 0 SBox : 1 SBox : 2 SBox : 3

0.000000

0.016707

0.033414

0.050121

0.066828

0.083535

0.100242

0.116949

P
ro

b
a
b

il
it

y
→

SBox : 4 SBox : 5 SBox : 6 SBox : 7

0.000000

0.016707

0.033414

0.050121

0.066828

0.083535

0.100242

0.116949

P
ro

b
a
b

il
it

y
→

SBox : 8 SBox : 9 SBox : 10 SBox : 11

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

0.000000

0.016707

0.033414

0.050121

0.066828

0.083535

0.100242

0.116949

P
ro

b
a
b

il
it

y
→

SBox : 12

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

SBox : 13

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

SBox : 14

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

SBox : 15

(a) Without our countermeasure (näıve duplication)

0.000000

0.016659

0.033319

0.049978

0.066638

P
ro

b
a
b

il
it

y
→

SBox : 0 SBox : 1 SBox : 2 SBox : 3

0.000000

0.016659

0.033319

0.049978

0.066638

P
ro

b
a
b

il
it

y
→

SBox : 4 SBox : 5 SBox : 6 SBox : 7

0.000000

0.016659

0.033319

0.049978

0.066638

P
ro

b
a
b

il
it

y
→

SBox : 8 SBox : 9 SBox : 10 SBox : 11

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

0.000000

0.016659

0.033319

0.049978

0.066638

P
ro

b
a
b

il
it

y
→

SBox : 12

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

SBox : 13

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

SBox : 14

0 1 2 3 4 5 6 7 8 9 a b c d e f

← Nibble value→

SBox : 15

(b) With our countermeasure

Fig. 4: Evaluation of our countermeasure through VerFI simulation



12

Toffoli gates which is not available in the standard gate libraries, to the best of our knowledge. For this
reason, we do not provide any benchmark for the protection proposed in [13]. The cost for applying [27]
protection is at least that of [11]. In comparison, our proposal simply depends on duplication with
randomized bit encoding. It does not require masking or specialized gate, nor it is restricted by the error
coverage of the underlying code. In essence, the inverted logic based cipher can be thought of as a cipher
(which could also share components with the actual logic based cipher). Also, our countermeasure works
at the cipher design level (thus it has an edge when adopting to any symmetric key cipher), whereas
other countermeasures work at the implementation level.

4.5 Connection with Side Channel Countermeasures

Our proposal does not have any inherent side channel protection. We mention that side channel
countermeasures can be easily adopted as essentially the inverted logic based implementation works like
a cipher. Hence, no special technique would be necessary.

As already mentioned, the randomly generated bit λ is needed to be protected from a side channel
attacker, aside from the usual protection for the actual and redundant computations. We believe, this
would add minimal cost since λ is only of 1-bit.

It is to be mentioned that our proposal does not inherently increase side channel leakage (which
typically happens for [11]). In fact, the basic concept used here is somewhat similar to that of the
Masked Dual-Rail Pre-charge Logic which is proposed as a countermeasure to the side channel attacks in
2005 [25]. However, this method is shown not secure in [15,30].

Since the countermeasure uses two different SBoxes (actual and inverted logic), each SBox can depict
minor differences in their side channel leakage (for example, operating in two memory locations may
result in distinct time signatures). If such a model is considered within scope, we propose to combine
the two SBoxes (say, n× n) to one combined (n× 2n) SBox. For example, the combined SBox in case
of PRESENT-80 would be the 4× 8 SBox: CD, 5E, 68, BB, 97, 00, A1, DC, 32, E5, FF, 86, 44, 79, 1A, 23. Once
this SBox has been fetched from memory, either the most significant n bits or the least significant n bits
are obtained by masking the unnecessary part.

One idea to perform SCA is to check if there is any inversion of state at either the beginning or the
end (since this operation is done only for the inverted logic). To prevent that, we propose to compute
dummy inversion of the state both at the beginning and at the end regardless of the value of λ, but
then choose the inverted state only when λ = 1.

5 Conclusion

In this work, we present a duplication based SIFA countermeasure. The basic idea is to use randomized
encoding for the state bits. This removes the statistical bias caused by ineffective faults. Consequently,
the attacker cannot mount SIFA. Our countermeasure by far is the least expensive. More precisely, ours
is the only one in the category to have the overhead cost of less than thrice that of an unprotected
cipher. The verification is done through a gate-level SIFA simulation tool. Our countermeasure, being at
the cipher design level, is almost readily adoptable to any symmetric key cipher (even when some other
countermeasure, such as side channel, is needed).

In the future scope, one may consider a combined SIFA and SCA countermeasure atop our design.
Also, our design does not protect against double fault (Section 3.1) since both the actual and redundant
computations are using the same encoding. Hence, one may think of extending our work to protect
against double fault. Another interesting problem could be to search for an SBox whose inverse (in
actual logic) is same as itself in inverted logic.

References

1. Aghaie, A., Moradi, A., Rasoolzadeh, S., Shahmirzadi, A.R., Schellenberg, F., Schneider, T.: Impeccable
circuits. Cryptology ePrint Archive, Report 2018/203 (2018), https://eprint.iacr.org/2018/203 2, 5

https://eprint.iacr.org/2018/203


13

2. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis using verfi. IACR Cryptology
ePrint Archive 2019, 1312 (2019), https://eprint.iacr.org/2019/1312 5, 10

3. Baksi, A., Bhasin, S., Breier, J., Jap, D., Saha, D.: Fault attacks in symmetric key cryptosystems. Cryptology
ePrint Archive, Report 2020/1267 (2020), https://eprint.iacr.org/2020/1267 1

4. Baksi, A., Bhasin, S., Breier, J., Khairallah, M., Peyrin, T.: Protecting block ciphers against differential
fault attacks without re-keying. In: 2018 IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2018, Washington, DC, USA, April 30 - May 4, 2018. pp. 191–194 (2018), https:

//doi.org/10.1109/HST.2018.8383913 3

5. Baksi, A., Saha, D., Sarkar, S.: To infect or not to infect: A critical analysis of infective countermeasures in
fault attacks. IACR Cryptology ePrint Archive 2019, 355 (2019), https://eprint.iacr.org/2019/355 2, 3,
4, 6, 9

6. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T., Regazzoni, F.: Midori:
A block cipher for low energy. In: Advances in Cryptology - ASIACRYPT 2015 - 21st International
Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand,
November 29 - December 3, 2015, Proceedings, Part II. pp. 411–436 (2015), https://doi.org/10.1007/
978-3-662-48800-3_17 7

7. Beierle, C., Leander, G., Moradi, A., Rasoolzadeh, S.: Craft: Lightweight tweakable block cipher with efficient
protection against dfa attacks. IACR Transactions on Symmetric Cryptology 2019(1), 5–45 (Mar 2019),
https://tosc.iacr.org/index.php/ToSC/article/view/7396 2, 5, 6

8. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Advances in Cryptology -
CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Barbara, California, USA, August
11-15, 1990, Proceedings. pp. 2–21 (1990), https://doi.org/10.1007/3-540-38424-3_1 3

9. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems. In: Kaliski, BurtonS., J.
(ed.) Advances in Cryptology - CRYPTO ’97, Lecture Notes in Computer Science, vol. 1294, pp. 513–525.
Springer Berlin Heidelberg (1997), http://dx.doi.org/10.1007/BFb0052259 1

10. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe,
C.: PRESENT: An ultra-lightweight block cipher. In: CHES. vol. 4727, pp. 450–466. Springer (2007) 7, 8, 9

11. Breier, J., Khairallah, M., Hou, X., Liu, Y.: A countermeasure against statistical ineffective fault analysis.
Cryptology ePrint Archive, Report 2019/515 (2019), https://eprint.iacr.org/2019/515 2, 3, 5, 10, 12

12. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In: Cryptographic Hardware
and Embedded Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings. pp. 181–194 (2007), https://doi.org/10.1007/978-3-540-74735-2_13 1

13. Daemen, J., Dobraunig, C., Eichlseder, M., Gross, H., Mendel, F., Primas, R.: Protecting against statistical
ineffective fault attacks. Cryptology ePrint Archive, Report 2019/536 (2019), https://eprint.iacr.org/
2019/536 2, 5, 10, 12

14. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Xoodoo cookbook. Cryptology ePrint Archive,
Report 2018/767 (2018), https://eprint.iacr.org/2018/767 10

15. De Mulder, E., Gierlichs, B., Preneel, B., Verbauwhede, I.: Practical dpa attacks on mdpl. In: 2009 First
IEEE International Workshop on Information Forensics and Security (WIFS). pp. 191–195 (Dec 2009) 12

16. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: exploiting ineffective
fault inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572
(2018), https://doi.org/10.13154/tches.v2018.i3.547-572 2, 4, 6

17. Dobraunig, C., Koeune, F., Mangard, S., Mendel, F., Standaert, F.: Towards fresh and hybrid re-keying
schemes with beyond birthday security. In: Smart Card Research and Advanced Applications - 14th
International Conference, CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers.
pp. 225–241 (2015), https://doi.org/10.1007/978-3-319-31271-2_14 3

18. Gierlichs, B., Schmidt, J., Tunstall, M.: Infective computation and dummy rounds: Fault protection for block
ciphers without check-before-output. In: Progress in Cryptology - LATINCRYPT 2012 - 2nd International
Conference on Cryptology and Information Security in Latin America, Santiago, Chile, October 7-10, 2012.
Proceedings. pp. 305–321 (2012), https://doi.org/10.1007/978-3-642-33481-8_17 4

19. Gruber, M., Probst, M., Tempelmeier, M.: Statistical ineffective fault analysis of GIMLI. CoRR
abs/1911.03212 (2019), http://arxiv.org/abs/1911.03212 2

20. He, W., Breier, J., Bhasin, S.: Cheap and cheerful: A low-cost digital sensor for detecting laser fault injection
attacks. In: Security, Privacy, and Applied Cryptography Engineering - 6th International Conference, SPACE
2016, Hyderabad, India, December 14-18, 2016, Proceedings. pp. 27–46 (2016), https://doi.org/10.1007/
978-3-319-49445-6_2 3

https://eprint.iacr.org/2019/1312
https://eprint.iacr.org/2020/1267
https://doi.org/10.1109/HST.2018.8383913
https://doi.org/10.1109/HST.2018.8383913
https://eprint.iacr.org/2019/355
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-662-48800-3_17
https://tosc.iacr.org/index.php/ToSC/article/view/7396
https://doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/10.1007/BFb0052259
https://eprint.iacr.org/2019/515
https://doi.org/10.1007/978-3-540-74735-2_13
https://eprint.iacr.org/2019/536
https://eprint.iacr.org/2019/536
https://eprint.iacr.org/2018/767
https://doi.org/10.13154/tches.v2018.i3.547-572
https://doi.org/10.1007/978-3-319-31271-2_14
https://doi.org/10.1007/978-3-642-33481-8_17
http://arxiv.org/abs/1911.03212
https://doi.org/10.1007/978-3-319-49445-6_2
https://doi.org/10.1007/978-3-319-49445-6_2


14

21. Joye, M., Quisquater, J., Yen, S., Yung, M.: Observability analysis - detecting when improved cryptosystems
fail. In: Topics in Cryptology - CT-RSA 2002, The Cryptographer’s Track at the RSA Conference, 2002,
San Jose, CA, USA, February 18-22, 2002, Proceedings. pp. 17–29 (2002), https://doi.org/10.1007/

3-540-45760-7_2 1
22. Lomné, V., Roche, T., Thillard, A.: On the need of randomness in fault attack countermeasures - application

to AES. In: 2012 Workshop on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium, September
9, 2012. pp. 85–94 (2012), https://doi.org/10.1109/FDTC.2012.19 2, 4

23. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets of smart cards. Springer
(2007) 2

24. Nahid Farhady Ghalaty, Bilgiday Yuce, P.S.: Analyzing the efficiency of biased-fault based attacks. Cryptology
ePrint Archive, Report 2015/663 (2015), https://eprint.iacr.org/2015/663 2

25. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: Dpa-resistance without routing constraints. In:
Rao, J.R., Sunar, B. (eds.) Cryptographic Hardware and Embedded Systems – CHES 2005. pp. 172–186.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005) 12

26. Ramezanpour, K., Ampadu, P., Diehl, W.: A statistical fault analysis methodology for the ascon authenticated
cipher. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2019, McLean,
VA, USA, May 5-10, 2019. pp. 41–50 (2019), https://doi.org/10.1109/HST.2019.8741029 2

27. Saha, S., Jap, D., Roy, D.B., Chakraborty, A., Bhasin, S., Mukhopadhyay, D.: A framework to counter
statistical ineffective fault analysis of block ciphers using domain transformation and error correction. IEEE
Trans. Information Forensics and Security 15, 1905–1919 (2020), https://doi.org/10.1109/TIFS.2019.
2952262 2, 3, 5, 9, 10, 12

28. Selmke, B., Heyszl, J., Sigl, G.: Attack on a dfa protected aes by simultaneous laser fault injections. In: 2016
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 36–46 (Aug 2016) 4

29. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits ii. Cryptology ePrint Archive, Report
2019/1369 (2019), https://eprint.iacr.org/2019/1369 2, 3, 5, 10

30. Suzuki, D., Saeki, M.: Security evaluation of dpa countermeasures using dual-rail pre-charge logic style. In:
Goubin, L., Matsui, M. (eds.) Cryptographic Hardware and Embedded Systems - CHES 2006. pp. 255–269.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006) 12

31. Yen, S., Joye, M.: Checking before output may not be enough against fault-based cryptanalysis. IEEE Trans.
Computers 49(9), 967–970 (2000), https://doi.org/10.1109/12.869328 1

32. Yen, S., Kim, S., Lim, S., Moon, S.: A countermeasure against one physical cryptanalysis may benefit another
attack. In: Information Security and Cryptology - ICISC 2001, 4th International Conference Seoul, Korea,
December 6-7, 2001, Proceedings. pp. 414–427 (2001), https://doi.org/10.1007/3-540-45861-1_31 1

https://doi.org/10.1007/3-540-45760-7_2
https://doi.org/10.1007/3-540-45760-7_2
https://doi.org/10.1109/FDTC.2012.19
https://eprint.iacr.org/2015/663
https://doi.org/10.1109/HST.2019.8741029
https://doi.org/10.1109/TIFS.2019.2952262
https://doi.org/10.1109/TIFS.2019.2952262
https://eprint.iacr.org/2019/1369
https://doi.org/10.1109/12.869328
https://doi.org/10.1007/3-540-45861-1_31

	A Novel Duplication Based Countermeasure To Statistical Ineffective Fault Analysis

