
Forward and Backward Private Dynamic Searchable Symmetric
Encryption for ConjunctiveQueries

Cong Zuo

Monash University

Clayton, VIC, Australia

Data61, CSIRO

Melbourne, Australia

zuocong10@gmail.com

Shi-Feng Sun

Monash University

Clayton, VIC, Australia

shifeng.sun@monash.edu

Joseph K. Liu

Monash University

Clayton, VIC, Australia

joseph.liu@monash.edu

Jun Shao

Zhejiang Gongshang University

Hangzhou, China

chn.junshao@gmail.com

Josef Pieprzyk

Data61, CSIRO

Sydney, Australia

Polish Academy of Sciences

01-248 Warsaw, Poland

josef.pieprzyk@data61.csiro.au

Guiyi Wei

Zhejiang Gongshang University

Hangzhou, China

weigy@zjgsu.edu.cn

ABSTRACT
Recent research in Dynamic Searchable Symmetric Encryption

(DSSE) focuses on efficient search over encrypted data while al-

lowing updates. Unfortunately, as demonstrated by many attacks,

updates can be a source of information leakage that can compromise

DSSE privacy. To mitigate these attacks, forward and backward

privacy of DSSE schemes have been introduced. A concerted effort

of the research community has resulted in the publication of many

DSSE schemes. To the best of our knowledge, however, there is no

DSSE scheme supporting conjunctive queries, which achieves both

forward and backward privacy.

We give two DSSE schemes with forward and backward pri-

vacy, which support conjunctive queries, and they are suitable for

different applications. In particular, we first introduce a new data

structure termed the extended bitmap index. Then we describe our

forward and backward private DSSE schemes, which support con-

junctive queries. Our security analysis proves the claimed privacy

characteristics, and experiments show that our schemes are prac-

tical. Compared to the state-of-the-art DSSE VBTree supporting

conjunctive queries (but not backward privacy), our schemes offer

search time that is a few orders of magnitude faster. Besides, our

schemes claim better security (called Type-C backward privacy).

PVLDB Reference Format:
Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, Josef Pieprzyk, and Guiyi

Wei. Forward and Backward Private Dynamic Searchable Symmetric

Encryption for Conjunctive Queries. PVLDB, 14(1): XXX-XXX, 2021.

doi:XX.XX/XXX.XX

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

1 INTRODUCTION
There is a growing interest in cloud computing, which is instigated

by the availability of large and cheap cloud storage services that

offer access to data from everywhere anytime. Although cloud

storage is cheap and convenient, it brings new security problems

when user data are stored in the plaintext form. A trivial solution

to this problem is encryption. In particular, a user uploads the

encrypted data to the cloud. However, once encrypted, the user

cannot retrieve certain files with specific keywords or contents.

To tackle the above obstacle, Song et al. [23] introduced search-

able symmetric encryption (SSE), which enables search over en-

crypted data. Later, many research efforts have been devoted to

improving different aspects of SSE, such as efficiency, query ex-

pressiveness, multi-client services, and security, to name a few

[5, 10, 12, 21, 26]. However, SSE schemes work in the static setting

only. In other words, they do not support the update operations

of encrypted data. As user data are changing over time, this has

become a major weakness of static SSE.

To support data updates, dynamic SSE (DSSE) has been intro-

duced [20]. Unfortunately, during the update, DSSE leaks some

information, which can be exploited by adversaries [3, 31]. For

example, Zhang et al. [31] introduced file-injection attacks. Specif-

ically, the adversary can insert several carefully designed files to

comprise the privacy of user queries. To address the leakage prob-

lem, Stefanov et al. [24] informally introduced two security notions,

namely forward and backward privacy. Informally, forward pri-

vacy guarantees that the server cannot learn if newly added files

matching previously issued queries. Correspondingly, during two

same search queries, backward privacy ensures that the server

cannot learn files previously added and later deleted. Bost [1] for-

malized the forward privacy definition, and the formal definition for

backward privacy is formalized by Bost et al. [2]. Later, many for-

ward/backward DSSE schemes with different improvements have

been designed [1, 2, 8, 27, 33]. For example, Zuo et al. [33] proposed

a very efficient DSSE with forward and stronger backward privacy.

The aforementioned DSSE schemes and security definitions only

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

support single keyword queries. However, as we know, expressive

queries, such as conjunctive queries, are more desired in practice.

To support conjunctive queries in DSSE, a natïve solution is

to issue the single keyword query multiple times. This simple so-

lution, however, significantly increases communication overhead

and introduces extra leakages. To avoid these drawbacks of the

simple solution, Wu et al. [30] proposed a DSSE for conjunctive

queries with forward privacy (called VBTree), which is based on a

tree structure. To further reduce the leakages of VBTree, Wang et

al. [29] deployed the OXT framework [5] to propose a new DSSE

with forward privacy, which supports conjunctive queries. As far as

we know, there is no DSSE for conjunctive queries, which achieves

both forward and backward privacy.

Our Contributions. Aiming at the above problem, we give two

DSSE schemes with forward and backward privacy, which support

conjunctive queries. The schemes called FBDSSE-CQ and SFBDSSE-CQ
require O(|W|) and O(1) client storage, respectively. Table 1 com-

pares our results with the ones published so far. In particular, we

list the following contributions:

Table 1: Comparison of Results

Scheme Forward Backward Query Client
Privacy Privacy Type Storage

FIDES [2] ✓ Type-II Single O(|W|)
DIANAdel [2] ✓ Type-III Single O(|W|)
Janus [2] ✓ Type-III Single O(|W|)

Janus++ [27] ✓ Type-III Single O(|W|)
MONETA [2] ✓ Type-I Single O(1)

FB-DSSE [33] ✓ Type-I
−

Single O(|W|)
SDa [11] ✓ Type-II Single O(1)

VBTree [30] ✓ ✗ Conjunctive O(|W|)
FBDSSE-CQ ✓ Type-C Conjunctive O(|W|)
SFBDSSE-CQ ✓ Type-C Conjunctive O(1)

Single means single keyword queries, and Conjunctive stands for

conjunctive queries. |W| denotes the number of all distinct key-

words.

• Wedesign twoDSSE schemes supporting conjunctive queries,

which achieve both forward and backward privacy. They are

suitable for different applications. As far as we know, they are

the first in the literature to support both forward and back-

ward privacy as well as conjunctive queries simultaneously.

In particular, we revisit and improve the frameworks from

[11, 33], which support single keyword queries only. The

first scheme called FBDSSE-CQ is derived from the framework

of FB-DSSE [33], while it requires O(|W|) client storage. To
reduce the client storage, we give our second scheme called

SFBDSSE-CQ by revisiting and improving the framework of

SDa [11]. Compared with FBDSSE-CQ, SFBDSSE-CQ only re-

quires O(1) client storage, while it requires more time for

updates and search. See Section 4, 5 and 7 for more details.

• To prove the backward privacy of our schemes with con-

junctive queries, we define the Type-C backward privacy

notion for the first time. It is a little bit tricky to define the

backward privacy for conjunctive queries. This is due to

the fact that conjunctive queries are more complicated than

single keyword queries. Specifically, for a conjunctive query

q = (w1, · · · ,wd), it leaks the number of repetitions and the

update time of every keyword and the final results for the

query
1
. See Section 3 for more details.

• To handle conjunctive queries with reduced communication

cost and leakages, we introduce an extended bitmap index

data structure, which is an extension of the bitmap index

[33]. In particular, we denote the existence of a file through

several bits in the extended bitmap index instead of one

bit in the bitmap index [33]. Moreover, we believe that the

extended bitmap index can be of independent interest.

• Finally, security analysis and experimental evaluation demon-

strate that the schemes achieve claimed security goals and

are practical. Compared to VBTree [30] (which only supports
conjunctive queries with forward privacy but not backward

privacy), search for FBDSSE-CQ is about 3000 and 4000 times

faster than for Enron Email and Chicago Crime dataset, re-

spectively. Similarly, the search for SFBDSSE is also roughly

3000x and 400x faster than for VBTree [30]. The detailed

analyses are given in Section 7.

1.1 Related Work
Song et al. [23] have initiated research in searchable symmetric

encryption. However, search time in their SSE scheme is linear

with the total number of file/keyword pairs. To improve the search

efficiency, Goh [19] introduced the secure encrypted index, where

search time is linear with the total number of files. To further

improve the search efficiency, Curtmola et al. [10] gave a new SSE

by deploying the inverted index data structure, where the search

time is sublinear. Besides, they formalized the SSE security model

for the first time, and follow-up papers deployed this security model.

Later, many SSE schemes with different improvements have been

proposed (e.g., rich queries, multi-client setting, dynamism, locality,

etc.) [4–6, 10, 15, 20–22, 26, 32].

Early SSE schemes do not allow encrypted data to be updated

by a user. To support updates, researchers [4, 20] introduced the

dynamic SSE (DSSE). Unfortunately, updates of these schemes leak

extra information about data, and this information can be abused

by adversaries to compromise data privacy [3, 31]. For example, the

privacy of the user queries can be compromised by file-injection

attacks [31]. In [31], the authors also emphasized that new DSSE

schemes need to achieve forward privacy. Stefanov et al. [24] first

informally defined forward and backward privacy. Later, Bost [1]

formally defined forward privacy. Shortly, Bost et al. [2] gave three

formal backward privacy definitions (called Type-I, Type-II, and

Type-III), where Type-I is securer than Type-II and Type-II is securer

than Type-III. Moreover, they gave several schemes that achieve

different levels of backward privacy. In particular, they designed a

DSSE with Type-I backward privacy called MONETA using the ORAM
[18], which is not practical. Then they gave a Type-II backward pri-

vacy DSSE named FIDES. Their DIANAdel and Janus attain Type-III

backward privacy. To improve the efficiency of Janus, Sun et al. [27]

1
If q = w , the leakages are equal to the leakages of single keyword queries.

2

gave a new Type-III backward private DSSE called Janas++. In par-

ticular, they introduced a new symmetric puncturable encryption

(SPE) and replaced the (public-key) puncturable encryption (PE) of

Janas with SPE. Later, Zuo et al. [33] introduced a new efficient

forward and backward private DSSE scheme called FB-DSSE. In
particular, their scheme achieves Type-I

−
backward privacy, which

is defined in [33] and is somewhat
2
stronger than Type-I. These

schemes, however, only support single keyword queries.

To support richer queries, Zuo et al. [32] introduced two DSSE

schemes with forward/backward privacy (named SchemeA and

SchemeA), which support range queries. In particular, SchemeA)
achieves forward privacy, and SchemeB is backward private. Moti-

vated by SchemeA, Wang et al. [28] gave a generic forward private

DSSE, which supports range queries. Moreover, they extended the

scheme, so it achieves backward privacy by using a technique from

[2]. However, the scheme requires two roundtrips. To reduce the

roundtrips, Zuo et al. [34] introduced a new DSSE with forward and

backward private privacy (called FBDSSE-RQ), which supports range
queries. It applies the framework from FB-DSSE [33], which requires
one roundtrip only. Concurrently, Wu et al. [30] constructed a DSSE

supporting conjunctive queries (VBTree), which achieves forward

privacy. Later, Wang et al. [29] reduced the leakages of VBTree and
introduced a new DSSE with forward privacy, which also supports

conjunctive queries. It is based on the OXT [5] framework, which

leaks less information. As far as we know, there is no DSSE scheme

supporting conjunctive queries, which achieves both forward and

backward privacy.

Required client storage is an important criterion of DSSE. The

client storage ofmany existingDSSE schemeswith forward/backward

privacy depends on the keyword numbers. There are, however,

some forward/backward private DSSE schemes [2, 8] that achieve

optimal client storage by deploying the ORAM technique [18, 25].

Unfortunately, they are not efficient for large databases. To circum-

vent this obstacle, Demertzis et al. [11] introduced an efficient DSSE

with small client storage (named SDa). However, it supports single
keyword queries only.

2 PRELIMINARIES
In this section, we first present the extended bitmap index. To

securely operate the bitmaps, we further introduce the simple sym-

metric encryption with homomorphic addition. Moreover, we list

the notations at the end of this section.

2.1 Extended Bitmap Index
Recently, Zuo et al. [33] introduced an efficient DSSE scheme (named

FB-DSSE) by deploying the bitmap index data structure, which

achieves both forward and backward privacy. In particular, they

used the bit string to denote the file identifiers, where each bit

indicates the existence of a specific file. Note that their DSSE sup-

ports single keyword queries only. To support conjunctive queries,

a naïve solution is to issue single keyword queries for each keyword

in a conjunctive query. The solution, however, attracts punishing

communication overhead and leaks more information related to

the query. To circumvent the problems, we propose to apply an

2
Type-I leaks the insertion time of matching files, while Type-I

−
does not.

extended bitmap index, which uses multiple bits to indicate the

existence of a file.

0 0 0 1 0 0 0 1 0 0
f4 f3 f2 f1 f0

(a) Extended bitmap index (b) Addition

0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 1 0 0

(c) Deletion

0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 1 0 00 0 0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0
mod 210

mod 210

mod 210

210 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0

mod 210

0 0 0 1 0 0 0 1 0 0

(d) Conjunctive query

0 1 0 1 0 0 0 1 0 1

0 1 0 1 0 0 0 0 0 1w1 w3

w2

1 0 1 1 0 0 1 0 1 0mod 210

Figure 1: Illustration of operations for extended bitmap
index

Assume a dataset contains ℓ files, we initiate an all 0 bit string

bs with length aℓ, where a is the number of bits used to denote

a file
3
. The maximum number of keywords b for the conjunctive

queries is 2
a −1. The ia-th bit of bs is set to 1, if the dataset contains

file fi . In Figure 1, we demonstrate the setup, addition, deletion

and conjunctive queries for the dataset, where ℓ = 5 and a = 2.

Specifically, Figure 1(a) illustrates an extended bitmap index data

structure with two existing files f1 and f3. Figure 1(b) shows that file
f4 has been added to the dataset (the bit string 0100000000 is added

to original bit string 0001000100). Figure 1(c) displays file deletion

operation, when f3 is deleted from the database. Similarly to [33],

subtraction can be done by modular addition. The conjunctive

query for keywordw1,w2,w3 is shown in Figure 1(d). The server

first retrieves the extended bitmap indices for keywordsw1,w2,w3

and adds them together. Finally, the server sends the sum to the

client. If ia-th to (ia + 1)-th bits of the final bit string equal to

11, then it means that file fi contains keywordsw1,w2,w3, where

i ∈ {0, 1, cdots, 4}.

2.2 Simple Symmetric Encryption with
Homomorphic Addition

In the previous subsection, we introduced the extended bitmap

index. To efficiently and securely operate the bit strings, we need a

simple symmetric encryption with homomorphic addition, which

has been detailed in [33, 34]. For completeness and ease the under-

standing of this paper, we take the definition of the simple symmet-

ric encryption with homomorphic addition Π = (Setup, Enc, Dec,
Add) from Section 2.1 of [34] and put it here. Specifically,

• c ← Enc(sk,m,n): On input a message m (0 ≤ m < n), a
random secret key sk (0 ≤ sk < n) and a big integer n, it
outputs a ciphertext c = sk +m mod n, where the secret key
sk can be used only once and needs to be kept for decryption.

• m ← Dec(sk, c,n): On input the secret key sk , the ciphertext
c and the big integer n, it computes messagem = c − sk mod

n.
3
If a = 1, then the extended bitmap index is same as the bitmap index [33].

3

• ĉ ← Add(c0, c1,n): On input two ciphertexts c0, c1 and the

big integer n, it generates ĉ = c0 + c1 mod n, where c0 ←
Enc(sk0,m0,n), c1 ← Enc(sk1,m1,n) and 0 ≤ sk0, sk1 < n.

Homomorphic Addition. We claim that Π supports homomor-

phic addition, because anyone can compute ĉ = c0 + c1 mod n
with the knowledge of the two ciphertexts c0 = m0 + sk0 mod n

and c1 = m1 + sk1 mod n. In addition, one needs to know
ˆsk =

sk0 + sk1 mod n to decrypt ĉ . Its correctness can be checked by the

following equation:

Dec(ˆsk, ĉ,n) = ĉ − ˆsk mod n =m0 +m1 mod n,

where
ˆsk = sk0 + sk1 mod n.

It is easy to find that Π is perfectly secure if we use secret keys

only once. This is true because, for every message, Π chooses a new

secret key to encrypt the message, which is similar to the one-time

pad (OTP). The formal definition is given below.

Perfect Security [7]. We say Π is perfectly secure if for any adver-

sary A, its advantage

AdvPSΠ,A (λ) = | Pr[A(Enc(sk,m0,n)) = 1]−

Pr[A(Enc(sk,m1,n)) = 1]|

is negligible, where n is a big integer, the secret key sk (0 ≤ sk < n)
is kept secret and A choosesm0,m1 s.t. 0 ≤ m0,m1 < n.

2.3 Notations
To simplify the reading of this paper, in Table 2, we list the notations

used throughout this paper.

Table 2: Notations

Notation Description

λ Security parameter

| | Concatenation of strings

a Number of bits used to denote a file

b Maximum number of keywords for conjunctive

queries, where b = 2
a − 1

ℓ Maximum number of files for a database

n Big integer, which is determined by the underlying

scheme

fi i-th file

DB Database

W Set of all distinct keywords for DB
EDB Encrypted database

bs Bit string for the extended bitmap index, where ia-th
bit is set to 1, if DB contains file fi

aℓ Length of bs
e Encrypted bit string

q Conjunctive query, where q = (w1, · · · ,wd)

F Secure PRF

дc The global counter, which is the position of a map

GC Set of global counters

sk Secret key of Π, which can be used once only

3 DSSE AND SECURITY DEFINITIONS
In this section, we give the necessary model and security defini-

tions, which formalizes the security goals of our DSSE schemes. In

addition, we give the forward and backward privacy definitions for

our conjunctive queries. Again, for the completeness of this paper,

we take the DSSE definition, its security model, and the forward

privacy definition from Section 3 and 4.1 of [34]. Note that we give a

new backward privacy definition (named Type-C), which is suitable

for our conjunctive queries.

We define a database DB = (fi ,Wi)
y−1
i=0 , where fi is the file

identifier, Wi is the set of keywords and y is all files in DB (0 <

y ≤ ℓ). W = ∪y−1i=0Wi denotes all distinct keywords in DB, and its

number is denoted by |W|. DB(q) stands for the matching files of a

conjunctive query q.
In this paper, we parse the database DB into the extended bitmap

index. Then a conjunctive query and update query are denoted

by q = (w1, · · · ,wd) and u = (op, (w,bs)), respectively. Similar to

other works [2, 5, 10], we mainly focus on the update and search

of the indexes. Hence, search and update of metadata involve ma-

nipulation of bit strings representing file identifiers.

3.1 DSSE Definition
Generally speaking, a DSSE scheme usually consists of one Setup
algorithm and two interactive protocols between a client and a

server (Search and Update). Formally,

• (EDB, σ)← Setup(1λ , DB): On input the security parameter

λ and DB, it returns a state σ and an encrypted database

EDB. The state σ is secretly kept by the client, and the EDB is

publicly stored by the server.

• (I, ⊥)← Search(q, σ ; EDB): On input the state σ , a query
q, the client produces the search token and sends it to the

server. Then the server retrieves EDB with the search token.

Finally, the server returns nothing, and the client outputs

the matching file identifiers I.

• (σ ′, EDB′)← Update(σ , op, in; EDB): On input the operation

op ∈ {add,del}, the stateσ and a list of file-identifier/keyword-

set pairs in = (f ,w), the client generates the update token
and sends it to the server. Then the server updates EDB with

the update token. Finally, the server outputs an updated en-

crypted database EDB′, and the client gets an updated state

σ ′.

Remark. There are two models for handling query results by the

server in SSE literature. For the first model (e.g., [5]), the server

outputs the encrypted file identifiers to the client. Finally, the client

will decrypt the encrypted file identifiers. For the second model

(e.g., [1]), the client gets the file identifiers (plaintext) from the

server directly. In this work, we deploy the first model. In particular,

the server outputs the encrypted file identifiers to the client.

3.2 Security Model
To formalize the security goal of DSSE schemes, we give the secu-

rity model for DSSE schemes. Security of DSSE is modeled by two

worlds named REAL and IDEAL, respectively. The REALword is equal
to the original DSSE scheme, and the IDEAL world is simulated by

a simulatorS with the leakages of the original scheme. The leakages

4

are formally defined by a functionL = (LSetup ,LSearch ,LUpdate),

which contains the leakages leaked during the Setup, Search, and
Update phase. If the advantage of A distinguishing REAL from

IDEAL is negligible, we can conclude that there is no other leakage

except the leakages defined in L.

Assume A interacts with a single world that can be either REAL
or IDEAL. The goal of A is to guess the world. If its guess is REAL,
A returns 0. Otherwise, it outputs 1. Formally, the security game is

defined as follows:

• REALA (λ): A selects a database DB. On input the security

parameter λ and the database DB, it returns the encrypted
database EDB toA by running the Setup(λ, DB).A can inter-

act with this world by issuing queries (either search queriesq
or update queries (op, in)). Finally, A returns a bit z, where
z ∈ {0, 1}.
• IDEALA,S(λ): For this world, the encrypted database EDB
is simulated by the simulator S with the setup leakages

LSetup (λ, DB)). To response the queries (either search queries
q or update queries (op, in)) issued by A, the simulator S

needs to use the leakages (either search leakagesLSearch (q)

or update leakages LUpdate (op, in)) to simulate the corre-

sponding replies. Finally, A returns a bit z, where z ∈ {0, 1}.

Definition 3.1. We say a DSSE scheme is L-adaptively-secure if

for every probabilistic polynomial time (PPT) adversary A, there

exists an efficient simulator S (with the input L) such that,

| Pr[REALA (λ) = 1] − Pr[IDEALA,S(λ) = 1]| ≤ neдl(λ).

Leakage Function. In SSE literature [10], there are two common

leakages, named result pattern and search pattern. Search pattern

sp leaks the repetition of search keywords, and result pattern rp
leaks the final result for a search query. They are formally defined

as follows:

sp(q) = {t : {t ,w}w ∈q }q∈Q ,

where t is the timestamp, Q is a collection of conjunctive queries.

rp(q) = {bs}q∈Q ,

where bs is the final result, which denotes the files that matching

the conjunctive query q. Similar to [33], we implicitly assume that

the final result bs is revealed to the server
4
.

3.3 Forward Privacy
In practice, the interactions between the client and the server may

be consecutively observed by the an adversaryA. Forward privacy

requires that the server (or the adversaryA) cannot match the new

update operation to the previously issued search queries. Formally,

Definition 3.2. (see [1]) An L-adaptively-secure DSSE scheme

is forward private if an update leakage function LUpdate
can be

written as

LUpdate (op, in) = L′(op, {(fi , µi)}),

where fi is the file identifier, µi is the number of modified keywords

in file fi and L
′
is stateless.

4
The client will decrypt the final bit string and retrieve the corresponding file identifiers

denoted by bs . Hence, the final bit string is revealed to the server.

Note that, for our conjunctive queries, the leakage function will be

LUpdate (op,w,bs) = L′(op,bs),

where L′ is stateless.

3.4 Backward Privacy
Informally, backward privacy guarantees that the server (or the

adversary A) cannot learn the files previously added and later

deleted
5
. Previous backward privacy definition supports single

keyword queries only, which is not suitable for our conjunctive

queries. Then we introduce a new backward privacy definition

named Type-C, which supports conjunctive queries.

• Type-C: During two same consecutive conjunctive queries

q, Type-C leaks files that currently matching q, the total

number of updates for eachw and the corresponding update

times, wherew ∈ q.

To formalize the notion, we need to introduce a new leakage func-

tion Time(q). In particular, for a conjunctive query q, it shows up-
date times t for eachw , wherew ∈ q. In particular, it contains the

update times for each keyword Time(w). Formally,

Time(q) = {t : {t ,op, (w,bs)}w ∈q }.

Definition 3.3. An L-adaptively-secure DSSE scheme is Type-C

backward private if the leakage functions LSearch and LUpdate

can be written as:

LUpdate (op,w,bs) = L′(op,bs),

LSearch (q) = L′′(sp(q), rp(q), Time(q)),

where L′ and L′′ are stateless.

4 FORWARD AND BACKWARD PRIVATE
DSSE FOR CONJUNCTIVE QUERIES

In this section, we introduce our first DSSE scheme for conjunctive

queries (called FBDSSE-CQ), which supports both forward and back-

ward privacy. In particular, it is based on the framework of FB-DSSE
from [33]. In addition, FBDSSE-CQ deploys theΠ = (Setup, Enc, Dec,
Add) as well as the extended bitmap index, and it is described in

Algorithm 1. From a bird’s-eye view, the scheme works as follows.

For a conjunctive query q, a client issues single keyword queries

for each keywordw in the conjunctive query q, which is similar to

FB-DSSE [33]. Then a server adds all the results together and sends

a final result to the client. The details are described below.

• (EDB,σ = (n,K ,CT)) ← Setup(1λ): On input the security

parameter λ, the client outputs a random secret key K for

keyed hash function F and a big integer n, where n = 2
aℓ
. In

particular, a is the number of bits used to denote a file, which

means this scheme can support the maximum of b = 2
a − 1

conjunctive keyword. ℓ denotes the maximum number of

files that this scheme can support. Furthermore, he/she ini-

tializes two maps CT andM. Specifically, CT is used to store

the newest search token and the corresponding number of

updates c for every keywordw in the database, andM holds

the encrypted database EDB. Eventually, the client returns

5
Note that the files are added and deleted during two same conjunctive queries q .

5

Algorithm 1 FBDSSE-CQ

Setup(1λ)
Client:

1: K
$

←− {0, 1}λ , n ← big integer

2: CT, M← empty map

3: return (EDB = M,σ = (n,K ,CT))
Update(w,bs,σ ; EDB)
Client:
1: Kw | |K

′
w ← FK (w), (STc , c) ← CT[w]

2: if (STc , c) =⊥ then
3: c ← −1, STc ← {0, 1}

λ

4: end if
5: STc+1 ← {0, 1}

λ
, CT[w] ← (STc+1, c + 1)

6: UTc+1 ← H1(Kw , STc+1), CSTc ← H2(Kw , STc+1) ⊕ STc
7: skc+1 ← H3(K

′
w , c + 1), ec+1 ← Enc(skc+1,bs,n)

8: Send (UTc+1, (ec+1,CSTc)) to the server.

Server:
9: Upon receiving (UTc+1, (ec+1,CSTc))
10: Set M[UTc+1] ← (ec+1,CSTc)
Search(q,σ ; EDB)
Client:
1: forw ∈ q do
2: Kw | |K

′
w ← FK (w), (STc , c) ← CT[w]

3: if (STc , c) =⊥ then
4: return ⊥
5: end if

6: end for
7: Send {(Kw , STc , c)}w ∈q to the server.

Server:
8: Sum ← 0

9: for each (Kw , STc , c) do
10: Sume ← 0

11: for i = c to 0 do
12: UTi ← H1(Kw , STi), (ei ,CSTi−1) ← M[UTi]
13: Sume ← Add(Sume , ei ,n), RemoveM[UTi]
14: if CSTi−1 =⊥ then
15: Break
16: end if
17: STi−1 ← H2(Kw , STi) ⊕ CSTi−1
18: end for
19: M[UTc] ← (Sume ,⊥), Sum ← Add(Sum, Sume ,n)
20: end for
21: Send Sum to the client.

Client:
22: Sumsk ← 0

23: forw ∈ q do
24: for i = c to 0 do
25: ski ← H3(K

′
w , i), Sumsk ← Sumsk + ski mod n

26: end for
27: end for
28: bs ← Dec(Sumsk , Sum,n)
29: return bs

the state σ = (n,K ,CT) and the encrypted database EDB.
Note that the client needs to keep (K ,CT) private.
• (σ ′, EDB′) ← Update(w,bs,σ ; EDB): On input a keywordw ,

a bit string bs6 and the state σ , the client first generates

the secret key Kw and K ′w corresponding to w by using

the key K and retrieves the current search token STc and

the correspond counter c . After that, he/she chooses a new
random search token STc+1 and increases the counter. To

get a new state σ ′, he/she updates CT. Moreover, he/she

generates the update tokenUTc+1 through the hash function
H1 and the ciphertext of previous search tokenCSTc by using
the hash function H2. To save client storage, he/she uses H3

to generate the one time secret key skc+1 with the input of

the counter c +1. With the secret key, he/she can use the Enc
of Π to encrypt the bit string bs and outputs the ciphertext

e . Eventually, he/she sends the update token UTc+1, e and
CSTc to the server, and the server will update the encrypted

database to output EDB′.
• bs ← Search(q,σ ; EDB): On input a conjunctive query q,
the state σ , the client retrieves CT to get the current search

token STc as well as the counter c and generates Kw and

K ′w for each keyword w in the conjunctive query q. Then
the client sends these search tokens to the server. Next, for

6
Note that the bit string bs can denote many files. In other words, we can update

many files during a single update.

each search token (or keywordw), the server searches EDB
to get the ciphertexts e (the searched entries will be removed

by the server to reduce the server storage). After that, the

server adds these ciphertexts together by using Add of Π,
and the final result Sum is sent to the client. Eventually, the

final result c can be decrypted by the client to get the final

bit string bs , which denotes the matching file identifiers.

FBDSSE-CQ supports conjunctive queries and achieves both for-

ward and backward privacy, which is more secure and expressive for

practical use. However, the client storage of FBDSSE-CQ is O(|W|),
where |W| is the number of distinct keywords in a database. If

a database has a large number of distinct keywords, the client re-

quires large storage. Then we need a DSSE scheme supporting small

client storage without sacrificing the aforementioned properties.

5 SMALL CLIENT STORAGE
As mentioned before, the client storage of FBDSSE-CQ grows lin-

early with the number of keywords. In this section, we give a

new DSSE with small client storage (called SFBDSSE-CQ), which
achieves both forward and backward privacy and supports con-

junctive queries. In particular, we deploy the technique of SDa from

[11], where the authors use the static SSE from [4] that supports

single keyword queries only. In Algorithm 2, we describe a static

SSE that supports conjunctive queries (named SSE-CQ) based on

6

Algorithm 2 SSE-CQ

Setup(1λ , DB,n)
Client:

1: K
$

←− {0, 1}λ ,M← empty map, дc ← 0

2: forw ∈W do
3: c ← 0, Kw ← FK (w)
4: for bs ∈ DB(w) do
5: Kдc ← FK (дc), l ← H1(Kw , c), e ← Enc(Kдc ,bs | |w,n)
6: GC← empty set, GC← GC ∪ дc
7: Put M[l] = (e,GC) to the дc-th position of M
8: c ← c + 1, дc ← дc + 1
9: end for
10: end for
11: return (M,K)
Search(q,K ;M)

Client:
1: forw ∈ q do
2: Kw ← FK (w)
3: end for
4: Send {Kw }w ∈q to the server.

Server:
5: Sum ← 0

6: for each Kw do
7: c ← 0, Sume ← 0, GCw ← empty set

8: (e,GC) ← M[H1(Kw , c)]
9: while (e,GC) ,⊥ do
10: Sume ← Add(Sume , e,n), GCw ← GCw ∪ GC
11: RemoveM[H1(Kw , c)]
12: c ← c + 1, (e,GC) ← M[H1(Kw , c)]
13: end while
14: Put M[H1(Kw , 0)] = (Sume ,GCw) to the smallest empty

slot of M, Sum ← Add(Sum, Sume ,n)

15: end for
16: Send (Sum, {GCw }w ∈{Kw }) to the client.

Client:
17: Sumsk,w ← 0

18: forw ∈ q do
19: for дc ∈ GCw do
20: Kдc ← FK (дc), SumK,w ← SumK,w + Kдc +w mod n
21: end for
22: end for
23: bs | |0s ← Dec(SumK,w , Sum,n)
24: return bs

Decrypt(K ,M)

Client:
1: R← empty set

2: for c = 0 to |M| do
3: Get the c-th non-empty element (e,GC) ofM
4: if GC has one element дc then
5: Kдc ← FK (дc), bs | |w ← Dec(Kдc , e,n)
6: R← R ∪ bs | |w
7: else
8: SumK,w ← 0

9: for each дc ∈ GCw do
10: Kдc ← FK (дc)
11: SumK,w ← SumK,w + Kдc +w mod n
12: end for
13: bs | |0s ← Dec(SumK,w , e,n)
14: R← R ∪ bs | |w ▷ Note that, if GCw has more than one

element, it means that the keyword has been searched before.

Hence, the client knew the corresponding keyword.

15: end if
16: end for
17: return R

the scheme from [4]. In [11], the authors added a new algorithm

to the static SSE named Decrypt, which is operated by the client

with the secret key. This new algorithm is used to instantiate the

update operation.

For each bit string bs , we additionally append the keywordw to

the end of the bit string. Then the client can decrypt all encrypted bit

strings and re-encrypt them along with the corresponding keyword

w for new updates. Details are given below.

• (M,K) ← Setup(1λ , DB,n): On input the security parameter

λ, a big integern (it is the output of the Setup of SFBDSSE-CQ,
which will be explained later) and a database DB7, the client
chooses a random secret key K and uses it to encrypt the

keyword/bit string pairs. Moreover, he/she sets an empty

mapM, which stores the encrypted bit strings. Eventually,

the client outputsM and the client keeps K secret.

• bs ← Search(q,K ;M): On input a conjunctive query q and

the secret key K , the client produces the search token Kw for

7DB is a database with keyword/bit string pairs.

each keyword w in the conjunctive query q and sends the

tokens to the server. Then the server searchesM to get the

results e and adds them together by using Add of Π. The final
result Sum and the global counters GC are sent to the client.

In addition, to save server storage, the server removes the

searched entries and stores the final result Sume and global

counters GCw to the smallest empty slot ofM. Eventually,

the client decrypts Sum to get the final result bs .
• R ← Decrypt(K ,M): On inputs the secret key K and the

encrypted bit stringsM, the client first generates one time

secret key Kдc by applying the secret key K and the global

counters GC. Now he/she can decrypt each encrypted bit

string e by applying the corresponding one time secret key

to Dec of Π. Eventually, the client outputsR, which is a set of
bit strings concatenated with the corresponding keywords.

Now, we are ready to introduce SFBDSSE-CQ in Algorithm 3. Details

are as follows:

7

Algorithm 3 SFBDSSE-CQ

Setup(1λ)
Client:
1: A set of keys K0, · · · ,Ks−1 ←⊥
2: n ← big integer

3: A set of Map M0, · · ·Ms−1, the size ofMi = 2
i
, where

i ∈ {0, · · · , s − 1}.
4: Mi ← empty map, i ∈ {0, 1, · · · , s − 1}
5: return (EDB = {Mi },σ = (n, {Ki }))

Update(w,bs,σ ; EDB)
Server:
1: Find the minimum j such thatMj = ∅ orMj is not full.

2: if Mj = ∅ then
3: SendM0, · · · ,Mj−1 to the client, and set them to the

empty at the server.

4: else
5: SendMj to the client.

6: end if
Client:
7: Set R← empty set

8: if Mj is not full then
9: R← SSE-CQ · Decrypt(Kj ,Mj) ∪ bs | |w
10: else

11: for i = 0 to j − 1 do
12: R← R∪

SSE-CQ · Decrypt(Ki ,Mi)

13: end for
14: R← R ∪ bs | |w
15: end if
16: Parse R into DB.
17: (M′j ,K

′
j) ←

SSE-CQ · Setup(1λ , DB,n)
18: Update Kj with the new key K ′j , and sendM′j to the server.

Server:
19: Set Mj ← M′j
Search(q,σ ; EDB)
Client and Server:
1: bs ← 0

2: for all i such thatMi , ∅ do
3: bsi | |0s ←

SSE-CQ · Search(q,Ki ;Mi)

4: bs ← bs + bsi mod n
5: end for
6: return bs

• (EDB = {Mi },σ = (n, {Ki })) ← Setup(1λ): On input the

security parameter λ, the client outputs a set of random

secret keys {Ki } and a set of empty maps {Mi }, where i ∈
{0, · · · , s − 1} and s is the number of maps. The number of

maps s means that this scheme can support the maximum

of 2
s − 1 updates. Moreover, he/she outputs an integer n,

where n = 2
aℓ+ |w |

, a and ℓ are the same as the values in

Algorithm 1 and |w | is the length of the fixed length keyword
w8

. Eventually, the client outputs EDB = {Mi } and the state

σ = (n, {Ki }). The client keeps the set of keys {Ki } secret.
• (σ ′, EDB′) ← Update(w,bs,σ ; EDB): On input a keywordw ,

a bit string bs and the state σ , the client first retrieves certain
maps from the server according to the technique of SDa . Then
he/she decrypts the maps by using Decrypt of SSE-CQ with
the secret keys, parse them and the new keyword/bit string

to DB. Next he/she chooses new secret keys and re-encrypts

DB using Setup of SSE-CQ. Eventually, the client gets a new
state σ ′ and keeps it secret. The server gets a new encrypted

database EDB′.
• bs ← Search(q,σ ; EDB): On input a conjunctive query q
and the state σ , the client and server execute Search of

SSE-CQ and gets the result bit string bsi for each non-empty

mapMi ∈ EDB. Eventually, the client adds these bit strings
together to get the final result, which denotes all matching

files.

8
We can use any hash functions to get the fixed length keyword.

6 SECURITY ANALYSIS
This section gives the proofs for our proposed schemes in the DSSE

security model, which is defined in Section 3.2.

Theorem 6.1. (Adaptive forward and Type-C backward privacy
of FBDSSE-CQ). Let Π = (Setup, Enc, Dec, Add) be a perfectly se-
cure simple symmetric encryption with homomorphic addition, F
be a secure PRF and H1, H2 and H3 be random oracles. We define
LFBDSSE-CQ = (L

Search
FBDSSE-CQ,L

Update
FBDSSE-CQ), where L

Search
FBDSSE-CQ(q) =

(sp(q), rp(q), Time(q)) and LUpdate
FBDSSE-CQ(op,w,bs) =⊥. FBDSSE-CQ is

LFBDSSE-CQ-adaptively forward and Type-C backward private.

Proof. As mentioned before, FBDSSE-CQ is based on the frame-

work of FB-DSSE [33]. Then we follow a similar method of security

proof from [33]. As a result, we take some parts of the security

proof from [33] for the completeness of the proof. At a high level,

we set a series of games from REAL to IDEAL and prove the indis-

tinguishability of every two consecutive games. In particular, REAL
is exactly the same as the original scheme, and IDEAL is simulated

with the defined leakages.

Game G0: It is equal to the original scheme (see Algorithm 1).

Then we have

Pr[REALFBDSSE-CQ
A

(λ) = 1] = Pr[G0 = 1].

Game G1: We replace the hash function F with a truly random

function. For a new keyword, we choose a random keywith uniform

probability for the keyword w and store the key as well as the

corresponding keywordw in table Key for consistency. For a queried
keyword, we retrieve the key from table Key. Then we can establish

8

Algorithm 4 Simulator S

Setup(1λ)
1: n ← big integer, CT,M← empty map

2: return (EDB = M,CT,n)
Update()
Client:
1: sk[t] ← {0, 1}λ

2: e[t] ← Enc(sk[t], 0s,n)
3: C[t] ← {0, 1}λ

4: UT[t] ← {0, 1}λ

5: Send (UT[t], (e[t], C[t])) to the server.

6: t ← t + 1

Search(sp(q), rp(q), Time(q))
Client:
1: q̂ ← min sp(q)
2: Parse rp(q̂) into bs .
3: forw ∈ q̂ do
4: Kw | |K

′
w ← Key(w)

5: (STc , c) ← CT[w]
6: Parse Time(w) into (t0, · · · , tc) ▷ Time(w) ∈ Time(q̂)
7: if (STc , c) =⊥ then
8: return ⊥
9: end if
10: for i = c to 0 do
11: STi−1 ← {0, 1}

λ

12: Program H1(Kw , STi) ← UT[ti]
13: Program H2(Kw , STi) ← C[ti] ⊕ STi−1
14: if w is the last keyword in q̂ & i = c then
15: Program H3(K

′
w , i) ← sk[ti] − bs

16: else
17: Program H3(K

′
w , i) ← sk[ti]

18: end if
19: end for
20: end for
21: Send {(Kw , STc , c)}w ∈q̂ to the server.

an adversary B1 to distinguish F from a truly random function if

an adversary A can distinguish G0 from G1. Formally,

Pr[G0 = 1] − Pr[G1 = 1] ≤ AdvprfF ,B1
(λ).

GameG2: We replace the hash functionH1 with a random oracle.

In particular, we pick a random value for every new update token

UT . Moreover, we store it in table UT for the Update. To make

it consistent with the Search, we generate the random tokens

through the random oracle H1 such that H1(Kw , STc) = UT[w, c].
In addition, we store (Kw , STc) in table H1 for future queries. If

an adversary already queried the c + 1-th entry, then H1 stores

(Kw , STc+1), which means we cannot choose a random token that

is equal to an existing value (namely H1(Kw , STc+1) = UT[w, c + 1]).
Hence, the game terminates, which is negligible. If an adversary

wants to queried the c + 1-th entry, the adversary needs to guess

the c + 1-th search token STc+1, and the probability is 1/2λ due to

the fact that every search token ST is randomly chosen. Assuming

the adversary makes p(λ) (polynomial number) queries, then

Pr[G1 = 1] − Pr[G2 = 1] ≤ p(λ)/2λ .

Game G3: We replace H2 with a random oracle, which is sim-

ilar to G2. Then assuming the adversary makes p(λ) (polynomial

number) queries, then

Pr[G2 = 1] − Pr[G3 = 1] ≤ p(λ)/2λ .

Game G4: We replace H2 with a random oracle. Similarly, the

adversary needs to guess the keyK ′w , and the probability of success-

fully guess the key is 1/2λ (assume the length ofK ′w is λ). Assuming

the adversary makes p(λ) (polynomial number) queries, then

Pr[G3 = 1] − Pr[G4 = 1] ≤ p(λ)/2λ .

GameG5: We replace bs with all zeros bit string. IfA can distin-

guish G5 fromG4, then we can establish an adversary B2 to break

the perfect security of Π. Then we have

Pr[G4 = 1] − Pr[G5 = 1] ≤ AdvPSΠ,B2 (λ).

Simulator In this game, we simulate the IDEALwith the defined

leakages in Algorithm 4. Specifically, we first replace the conjunc-

tive query q with sp(q) inG5 and remove some parts of the original

algorithm, which does not influence the adversary view. Note that,

for the conjunctive query q, we use the timestamp when it queried

for the first time (namely q̂ ← min sp(q)).
Now, we are ready to show that G5 and Simulator are indistin-

guishable. We first can easily find that the Update of these two

games is indistinguishable since the values are randomly chosen

for every update operation in both games. To simulate the Search,
the simulator S needs to embed the previous search token to the

current ciphertext C . Hence, S first chooses two search tokens.

One is for the latest search token STc , and the other one is for its

previous search token STc−1, which is embedded into the current

ciphertext C via H2. This operation is consecutively executed until

the first search token ST0. In addition, S embeds the final result bs
into the encrypted bit string corresponding to the latest STc of the

last keyword in q and all zero bit strings into encrypted bit strings

corresponding to the remaining search tokens via H3, respectively.

After that, the pairs (w, i) are mapped to the global update count t ,
which helps us to map the values randomly chosen in the Update
to the corresponding values in the Search. So we have,

Pr[G5 = 1] = Pr[IDEALFBDSSE-CQ
A,S

(λ) = 1].

Finally,

Pr[REALFBDSSE-CQ
A

(λ) = 1] − Pr[IDEALFBDSSE-CQ
A,S

(λ) = 1]

≤ AdvprfF ,B1
(λ) + AdvPSΠ,B2 (λ) + 3p(λ)/2

λ .

□

9

Before proving the forward and Type-C backward privacy of

SFBDSSE-CQ, we need to prove the adaptive security of SSE-CQ,
since SFBDSSE-CQ is based on the static scheme SSE-CQ.

Theorem 6.2. (Adaptive security of SSE-CQ). LetΠ = (Setup, Enc,
Dec, Add) be a perfectly secure simple symmetric encryption with ho-
momorphic addition, F be a secure PRF and H1 be a random oracle.
Given LSSE-CQ = (L

Setup
SSE-CQ,L

Search
SSE-CQ), where L

Setup
SSE-CQ(DB,n) = |DB|,

and LSearchSSE-CQ (q) = (sp(q), rp(q), Time(q)). Then SSE-CQ is LSSE-CQ-
adaptively private.

Proof. Similarly, we set a series of games from REAL to IDEAL
and prove that every two consecutive games are indistinguishable.

Game G0: This game is equal to the original scheme, which is

described in Algorithm 2. Then

Pr[REALSSE-CQ
A

(λ) = 1] = Pr[G0 = 1].

Game G1: We replace the function F by choosing random keys.

Similarly, if an adversary A can distinguish between G0 and G1,

then we can establish an adversary B1 to distinguish F from a truly

random function. Formally,

Pr[G0 = 1] − Pr[G1 = 1] ≤ AdvprfF ,B1
(λ).

Game G2: We model H1 as a random oracle same as above. So

we have

Pr[G1 = 1] − Pr[G2 = 1] ≤ p(λ)/2λ .

Game G3: We encrypt all zeros bit string instead of the actual

bit string. If the adversary A can distinguish between G3 and G2,

then we can establish an adversary B2 to break the perfect security

of Π. Then

Pr[G2 = 1] − Pr[G3 = 1] ≤ AdvPSΠ,B2 (λ).

SimulatorWe can build a simulator by replacing the conjunctive

query q with sp(q) in G3, which is similar to Algorithm 4. Setup
is similar to Update. With the input |DB|, we can simulate the

encrypted database. Note that, Time(q) denotes the insertion order

of the setup phase. With the search leakages, we can simulate the

Search protocol, which is similar to Algorithm 4. Hence,

Pr[G3 = 1] = Pr[IDEALSSE-CQ
A,S

(λ) = 1].

Finally,

Pr[REALSSE-CQ
A

(λ) = 1] − Pr[IDEALSSE-CQ
A,S

(λ) = 1]

≤ AdvprfF ,B1
(λ) + AdvPSΠ,B2 (λ) + p(λ)/2

λ .

□

Corollary 6.3. (Adaptive forward and Type-C backward pri-
vacy of SFBDSSE-CQ). Given SFBDSSE-CQ with a leakage function
LSFBDSSE-CQ = (L

Search
SFBDSSE-CQ,L

Update
SFBDSSE-CQ), whereL

Search
SFBDSSE-CQ(q) =

(sp(q), rp(q), Time(q)) and LUpdate
SFBDSSE-CQ(op,w,bs) =⊥. Then

SFBDSSE-CQ is forward and Type-C backward private.

We can infer that SFBDSSE-CQ achieves forward and Type-C

backward privacy from Theorem 6.2, w. The leakage function

LUpdate
of SFBDSSE-CQ does not leak any information, which

is similar to the leakage function LSetup of SSE-CQ9. This is due to

9LSetup leaks update numbers. Note that it is also leaked in FBDSSE-CQ.

the fact that, for every update, the client chooses a new secret key

and re-encrypts all the entries. The leakage function LSearch of

SFBDSSE-CQ is the same as the search leakage function of SSE-CQ,
except that SFBDSSE-CQ has multiple SSE-CQ instances. Hence,

SFBDSSE-CQ is forward and Type-C backward private.

7 EXPERIMENTAL ANALYSIS
This section gives the experimental analysis of our schemes and

VBTree [30]. As we know, VBTree [30] is the most efficient and

secure DSSE supporting conjunctive queries. Hence, we evaluate

the performance of VBTree [30] and compare it to the performance

of our schemes. Experiments are executed using two datasets (that

are introduced later). We deploy a distributed computing platform

(hadoop-2.7.1 [16]) together with a distributed database (hbase-

1.4.13 [17]). We use ten machines (called node0 to node9) to instan-

tiate the hadoop and hbase platforms. In particular, node0 serves

as the master node, which is used to distribute tasks to other nodes

and monitor their status. The hardware and software specification

of these machines is listed in Table 3.

Datasets. Following [13], we also consider the same two different

real datasets, which have a different number of files and keywords.

The first one is Enron Email Dataset [9] (Enron), which consists of

517401 different files. We parse it into the inverted index, where we

extract 1900576 different keywords. For our schemes, we set the

maximum number of files ℓ to 517408.

The second dataset is Chicago crime dataset [14] (Crime), which

consists of reported crime incidents in Chicago. In particular, it

has 7120931 tuples with 22 attributes. To get a dataset with fewer

keywords, we choose the location description attribute, which has

228 keywords. So, we set the maximum number of files ℓ to 7120936.

Experimental Evaluation. We evaluate the update and search

time of the schemes for the aforementioned two datasets. In partic-

ular, we first focus on the time required to update a dataset for the

three schemes. The results of experiments are presented in Figure

2 and 3 for the Enron and Crime datasets, respectively. Then the

search time of the three schemes for the Enron and Crime datasets

is demonstrated in Figure 4 and 5, respectively. Finally, we give a

short conclusion about our experimental analysis.

The file identifiers are denoted by the extended bitmap index, so

we convert bit strings to their “BigInteger” equivalents throughout

the experiments
10
. Update time includes the client token generation

and server update time. We set the parameter a to 3. Then the bit

length of bs is chosen to be 1552224 and 21362808 bits for Enron

and Crime, respectively. For SFBDSSE-CQ, we need to concatenate

a keyword to a bit string. We use SHA-1 to produce a fixed length

keyword
11
. In addition, we need to get a positive number when

we convert the hashed keyword to an integer. Then we add one

more byte to a hashed keyword. As a result, the bit length of bs is
1552392 and 21362976 bits for Enron and Crime, respectively.

Figure 2 shows update time with the different number of up-

dates for the three schemes when the Enron dataset is used. We

can see that update times of VBTree and FBDSSE-CQ are linear

10
The retrieval of the actual files that denoted by bit strings is not crucial and ignored

in the paper

11
The output length of SHA-1 is 20 bytes.

10

Table 3: Machines

Name RAM CPU Model Operation System

node0 64G Intel(R) Xeon(R) CPU E5-2609 v4 @ 1.70GHz Ubuntu 20.04 LTS

node1 4G Intel(R) Xeon(R) CPU E3-1220 V2 @ 3.10GHz Ubuntu 20.04 LTS

node2 16G Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz Ubuntu 16.04.3 LTS

node3 16G Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz Ubuntu 20.04 LTS

node4 56G AMD Opteron(TM) Processor 6276 Ubuntu 20.04 LTS

node5 16G Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz Ubuntu 16.04.6 LTS

node6 32G Intel(R) Xeon(R) CPU E5-2609 v4 @ 1.70GHz Ubuntu 20.04 LTS

node7 32G Intel(R) Xeon(R) CPU E5-2609 v4 @ 1.70GHz Ubuntu 20.04 LTS

node8 32G Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz Ubuntu 20.04 LTS

node9 16G Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz Ubuntu 18.04.3 LTS

with the number of updates, and the update time of VBTree is

larger than the time needed by FBDSSE-CQ. In contrast, the update

time of SFBDSSE-CQ increases dramatically. This is because, for

SFBDSSE-CQ, the client needs to retrieve all encrypted bit strings

from the server and decrypt them at certain updates. Similar behav-

ior can be observed for experiments based on the Crime dataset –

see Figure 3. Note that update time for FBDSSE-CQ is larger than the

time needed for VBTree. This can be explained by the fact that the

modular addition takes more and more time when binary strings

grow. Although the update of our schemes is not as efficient as the

update for VBTree, search time for our schemes is much shorter

than the search time for VBTree. This aspect is discussed next.

Moreover, our schemes achieve better privacy (Type-C backward

privacy) than the privacy provided by VBTree.

10 20 30 40 50
Number of updates

103

104

T
im

e(
m

s)

 699.7

1519.6

2125.4 2162
2759.4

 580.5

 927.4

1316.9

1804.4
2177.2

 1700.6

 4377.1

 6031.5

10814.5
14002.4

VBTree
FBDSSE-CQ
SFBDSSE-CQ

Figure 2: Update time for the Enron dataset

In Figure 4 and 5, we evaluate search time for our schemes with

different number of keywords for the two datasets. For encryption

of the two datasets, we use the aforementioned distributed comput-

ing platform. As before, we set the parameter a to 3, which means

10 20 30 40 50
Number of updates

103

104

105

T
im

e(
m

s)

 724.2

1638.3
2124.6

2744.9 2961.1

 4914.3

 9455.5
13871.3

17874.7 21479.9 22003.8

 57500.9
 80816.2

141169.7 169253.3

VBTree
FBDSSE-CQ
SFBDSSE-CQ

Figure 3: Update time for the Crime dataset

that we can support the maximum ofb = 2
3−1 = 7 conjunctive key-

words. In fact, we test the search for a maximum of 5 conjunctive

keywords. This is due to the fact that five keywords are sufficient in

practice
12
. Search time for our schemes includes the time necessary

to generate a token, to search, and finally to decrypt. From Figure

4 and 5, it can be seen that search for a larger number of keywords

results in a longer search time with some exceptions. When using

the Crime dataset, search time for VBTree decreases if the number

of keywords increases from 1 to 2 and from 3 to 5 keywords. This is

due to the fact that fewer files satisfy a search query with a bigger

number of keywords. In other words, the search would stop at a

certain depth of the tree and consequently saving time. From Figure

4, we can observe that our schemes share a similar search time. In

contrast, search time for VBTree is much longer. Search time for

our schemes is approximately 3000 times shorter than for VBTree.
In a similar vein, as shown in Figure 5, search time for FBDSSE-CQ
is roughly 10 times shorter than for SFBDSSE-CQ. Search times for

12
In [30], the authors only tested three conjunctive keywords search.

11

FBDSSE-CQ and SFBDSSE-CQ are around 4000 times and 400 times

shorter than for VBTree, respectively.

1 2 3 4 5
Number of keywords

101

102

103

104

105

106

107

T
im

e(
m

s)

 542956 739917.1 909562.9 1093156 1140222.6

 72.7
142.6 212.7 288.4 358.8 96.4
168.4 245.2 315 385.7

VBTree
FBDSSE-CQ
SFBDSSE-CQ

Figure 4: Search time for the Enron dataset

1 2 3 4 5
Number of keywords

101

102

103

104

105

106

107

T
im

e(
m

s)

4934591.1
1683525.9 2236187.3 1859816.7 1750156

 83.3
155.6 217.4 297 374.8 752.7

1504.8 2241.6 2994 3732.1

VBTree
FBDSSE-CQ
SFBDSSE-CQ

Figure 5: Search time for the Crime dataset

According to our experimental results, we conclude that our

schemes perform better than the VBTree scheme, except for the

update. Although updates for our scheme require a slightly longer

time, search for our schemes is more efficient than for VBTree. In
addition, our schemes achieve Type-C backward privacy, while

VBTree does not.

Consider our schemes only. They both support conjunctive

queries and achieve forward and Type-C backward privacy. Update

and search for FBDSSE-CQ perform better than for SFBDSSE-CQ.
Note, however, that SFBDSSE-CQ requires smaller client storage.

This means that if the update operations of a dataset are frequent or

the number of keywords is small, then FBDSSE-CQ is a better option.
On the other hand, if a dataset has a large number of keywords and

update operation is not frequent, then SFBDSSE-CQ offers a better
solution.

8 CONCLUSIONS
To make DSSE more secure and support more expressive queries

(conjunctive queries), we proposed two DSSE schemes support-

ing conjunctive queries named FBDSSE-CQ and SFBDSSE-CQ, which
achieve both forward and backward privacy, and they are suitable

for different applications. The FBDSSE-CQ scheme is suitable for

applications with frequent updates or/and a small number of key-

words. The SFBDSSE-CQ scheme offers better client storage for ap-

plications with a large number of keywords and infrequent updates.

Besides, the existing backward privacy definition is not suitable for

conjunctive queries. To circumvent this obstacle, we introduced

a new backward privacy definition for conjunctive queries, called

Type-C backward privacy, and gave the security proofs for our

schemes. In addition, the performance of our schemes was eval-

uated, and we compared them to the VBTree scheme. Although

update time for our schemes is slightly longer than for VBTree,
our schemes achieve better security (Type-C backward privacy)

and much faster search time. As to future research, we aim to up-

grade our schemes so they are able to support a collection of richer

queries.

REFERENCES
[1] Raphael Bost. 2016. Σoφoς : Forward Secure Searchable Encryption. In CCS 2016.

ACM, 1143–1154.

[2] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and backward

private searchable encryption from constrained cryptographic primitives. In CCS
2017. ACM, 1465–1482.

[3] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In CCS 2015. ACM, 668–679.

[4] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption

in Very-Large Databases: Data Structures and Implementation.. In NDSS 2014.
The Internet Society.

[5] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin

Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-

tion with support for boolean queries. In CRYPTO 2013. Springer, 353–373.
[6] David Cash and Stefano Tessaro. 2014. The locality of searchable symmetric

encryption. In EUROCRYPT 2014. Springer, 351–368.
[7] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. 2005. Efficient aggrega-

tion of encrypted data in wireless sensor networks. In MobiQuitous 2005. IEEE
Computer Society, 109–117.

[8] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,

and Rasool Jalili. 2018. New Constructions for Forward and Backward Private

Symmetric Searchable Encryption. In CCS 2018. ACM, 1038–1055.

[9] WilliamW. Cohen. 2020. Enron Email Dataset. https://www.cs.cmu.edu/~./enron/

(Accessed Aug 23, 2020).

[10] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Searchable

symmetric encryption: improved definitions and efficient constructions. In CCS
2006. ACM, 79–88.

[11] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client

Storage. In NDSS 2020. The Internet Society.
[12] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, Minos Garofalakis, and Charalampos Papamanthou. 2018. Practical

private range search in depth. ACM TODS 43, 1 (2018), 2:1–2:52.
[13] Ioannis Demertzis, Charalampos Papamanthou, and Rajdeep Talapatra. 2018.

Efficient Searchable Encryption Through Compression. Proc. VLDB Endow. 11,
11 (2018), 1729–1741.

[14] Chicago Police Department. 2020. Crimes - 2001 to Present. https:

//data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2 (Ac-

cessed May 25, 2020).

[15] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and

Michael Steiner. 2015. Rich queries on encrypted data: Beyond exact matches. In

ESORICS 2015. Springer, 123–145.
[16] The Apache Software Foundation. 2020. Apache Hadoop. https://hadoop.apache.

org/ (Accessed Aug 22, 2020).

[17] The Apache Software Foundation. 2020. Apache HBase. https://hbase.apache.org/

(Accessed Aug 22, 2020).

12

https://www.cs.cmu.edu/~./enron/
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-Present/ijzp-q8t2
https://hadoop.apache.org/
https://hadoop.apache.org/
https://hbase.apache.org/

[18] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.

TWORAM: Efficient oblivious RAM in two rounds with applications to searchable

encryption. In CRYPTO 2016. Springer, 563–592.
[19] Eu-Jin Goh. 2003. Secure Indexes. Cryptology ePrint Archive, Report 2003/216.

http://eprint.iacr.org/2003/216/.

[20] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic

searchable symmetric encryption. In CCS 2012. ACM, 965–976.

[21] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopad-

hyay, Ron Steinfeld, Shifeng Sun, Dongxi Liu, and Cong Zuo. 2018. Result Pattern

Hiding Searchable Encryption for Conjunctive Queries. In CCS 2018. ACM, 745–

762.

[22] Ian Miers and Payman Mohassel. 2017. IO-DSSE: Scaling Dynamic Searchable

Encryption to Millions of Indexes By Improving Locality. In NDSS 2017. The
Internet Society.

[23] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. 2000. Practical tech-

niques for searches on encrypted data. In S&P 2000. IEEE, 44–55.
[24] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-

namic Searchable Encryption with Small Leakage. In NDSS 2014, Vol. 71. The
Internet Society.

[25] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple

oblivious RAM protocol. In CCS 2013. ACM, 299–310.

[26] Shi-Feng Sun, Joseph K. Liu, Amin Sakzad, Ron Steinfeld, and Tsz Hon Yuen. 2016.

An efficient non-interactive multi-client searchable encryption with support for

boolean queries. In ESORICS 2016. Springer, 154–172.
[27] Shi-Feng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet

Vo, and Surya Nepal. 2018. Practical Backward-Secure Searchable Encryption

from Symmetric Puncturable Encryption. In CCS 2018. ACM, 763–780.

[28] Jiafan Wang and Sherman S. M. Chow. 2019. Forward and Backward-Secure

Range-Searchable Symmetric Encryption. IACR ePrint 2019 (2019), 497. https:

//eprint.iacr.org/2019/497

[29] Yunling Wang, Jianfeng Wang, Shifeng Sun, Meixia Miao, and Xiaofeng Chen.

2019. Toward Forward Secure SSE Supporting Conjunctive Keyword Search.

IEEE Access 7 (2019), 142762–142772.
[30] Zhiqiang Wu and Kenli Li. 2019. VBTree: forward secure conjunctive queries

over encrypted data for cloud computing. VLDB J. 28, 1 (2019), 25–46.
[31] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your

Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable

Encryption.. In USENIX-Security 2016. 707–720.
[32] Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. 2019.

Dynamic Searchable Symmetric Encryption Schemes Supporting Range Queries

with Forward/Backward Privacy. CoRR abs/1905.08561 (2019).

[33] Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. 2019.

Dynamic Searchable Symmetric Encryptionwith Forward and Stronger Backward

Privacy. In ESORICS 2019. Springer, 283–303.
[34] Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, Josef Pieprzyk, and Lei Xu.

2020. Forward and Backward Private DSSE for Range Queries. IEEE TDSC, Early
Access.

13

http://eprint.iacr.org/2003/216/
https://eprint.iacr.org/2019/497
https://eprint.iacr.org/2019/497

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Extended Bitmap Index
	2.2 Simple Symmetric Encryption with Homomorphic Addition
	2.3 Notations

	3 DSSE and Security definitions
	3.1 DSSE Definition
	3.2 Security Model
	3.3 Forward Privacy
	3.4 Backward Privacy

	4 Forward and Backward Private DSSE for Conjunctive Queries
	5 Small Client Storage
	6 Security Analysis
	7 Experimental Analysis
	8 Conclusions
	References

