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ABSTRACT
We use biometrics like fingerprints and facial images to identify

ourselves to our mobile devices and log on to applications everyday.

Such authentication is internal-facing: we provide measurement on

the same device where the template is stored. If our personal de-

vices could participate in external-facing authentication too, where

biometric measurement is captured by a nearby external sensor,

then we could also enjoy a frictionless authentication experience

in a variety of physical spaces like grocery stores, convention cen-

ters, ATMs, etc. The open setting of a physical space brings forth

important privacy concerns though.

We design a suite of secure protocols for external-facing au-

thentication based on the cosine similarity metric which provide

privacy for both user templates stored on their devices and the

biometric measurement captured by external sensors in this open

setting. The protocols provide different levels of security, ranging

from passive security with some leakage to active security with

no leakage at all. With the help of new packing techniques and

zero-knowledge proofs for Paillier encryption—and careful protocol

design, our protocols achieve very practical performance numbers.

For templates of length 256 with elements of size 16 bits each, our

fastest protocol takes merely 0.024 seconds to compute a match,

but even the slowest one takes no more than 0.12 seconds. The

communication overhead of our protocols is very small too. The

passive and actively secure protocols (with some leakage) need to

exchange just 16.5KB and 27.8KB of data, respectively. The first

message is designed to be reusable and, if sent in advance, would

cut the overhead down to just 0.5KB and 0.8KB, respectively.

1 INTRODUCTION
Biometric authentication has become a part of our daily lives. We

use biometrics like fingerprints and facial images to identify our-

selves to our mobile devices and log into mobile applications every-

day [appb, appa, and, sam]. When we set up a device (enrollment

phase) that supports biometric authentication, we provide several

biometric measurements so that it can generate a high quality tem-

plate. After that, we authenticate by providing a fresh biometric

measurement. If the measurement matches with the stored tem-

plate, the authentication succeeds (matching phase). We could think

of such authentication as internal-facing: biometric data is collected

for matching on the same device where the template is stored.

External-facing. The ability of mobile devices to store and pro-

cess biometric data securely could be utilized for external-facing

authentication too, where a sensor placed outside of the device (i.e.
external sensor) collects biometric data for matching. Consider a

large service provider with several physical locations in a region.

A user would enroll her template with the provider through its app

on her mobile device. Then, sensors placed at the provider locations

could capture her biometric data and match it against the template

stored on her device.
1
If the match is successful, then she could get

a certain level of access, allowed to accomplish a certain task, etc.,

based on her account with the provider.

Places like amusement parks, convention centers, theaters, etc.,

could use this type of biometric matching at the entrance to quickly

and conveniently identify people who have bought tickets earlier

through their app. Grocery stores could use it to identify the right

payment credentials and enable a smooth checkout. ATM machines

could use it to identify the account to withdraw money from. Apart-

ments could use it to only allow the right people in.

A very important benefit of this approach is that the biometric

templates of the user population are not collected and stored in some

giant database, whose breach would be disastrous [bio19, cbp19].

Instead, the templates stay on the devices of the users to which

they belong.

Seamless experience. In the settings discussed above, there is

immense value in making the user experience seamless. Ideally,

users should not need to reach out for their devices and interact

with them every time the service provider tries to authenticate them

at its locations. Once a user demonstrates her trust in a provider

by explicitly connecting with it and participating in the matching

process at a location, the user device should automatically connect

with the provider any time a match is needed at that location (and

perhaps at other locations too). Google’s Nearby Connections API

[goo], for instance, could be used for this purpose. It uses both

Bluetooth and WiFi Direct to connect devices.

Privacy concerns. Though a seamless experience seems quite use-

ful and appealing, it constrains how a secure matching protocol can

be designed. Let us take the example of an amusement park where

people have lined up at the entrance. A sensor installed here would

automatically connect to several user devices in proximity (if these

devices are enrolled). If the sensor takes a biometric measurement

of Alice (e.g., by capturing her picture), it cannot just share the

1
The captured biometric data would be used to derive another template, which will

be matched against the template stored on the device. However, to avoid confusion,

we will use template to only refer to the device template. We will avoid an explicit

mention of (the derivation of) the template on the sensor-side.



measurement with all the connected devices because it does not

know which of them belongs to Alice.

Then, should the devices share their templates with the sensor?

This is undesirable for at least two reasons. First, a template may

be a lot more representative of an individual than a measurement

collected by the sensor. Second, there may be people in the vicinity

of the sensor who do not wish to enter the park but their devices are

connected. These devices have no reason to just send the template

to the sensor.

To summarize, neither the sensor should share the measurement

collected with the devices in plaintext nor the devices should share

the templates with the sensor in plaintext. Thus, we need to design

a matching protocol between sensor and devices that can work with

encrypted data and leaks as little information as possible about the

sensitive biometric information involved.

Active attacks. While preventing information leakage is certainly

important, attackers could also try to subvert the matching proto-

col. An attacker Bob could steal Alice’s device, which stores her

template, and try to trick the sensor into believing that it captured

Alice’s biometric, when the biometric is actually Bob’s. In other

words, Bob attempts to force the matching protocol to succeed

when it should not, which would enable him to impersonate Alice.

At an ATM machine, for example, he would be able to withdraw

Alice’s money.

Efficiency. Another crucial design aspect is that of efficiency,

best exemplified by places like amusement parks where hundreds

of people wait in line to enter. Any secure matching protocol for

such use-cases should be both computation and communication

efficient. The protocol should return the match outcome as quickly

as possible. Perhaps it could start before a person gets to the front

of the line, i.e., before a biometric measurement is taken. Further-

more, the protocol should involve a small amount of data exchange

because the connection could be low-bandwidth like Bluetooth or

data usage could be expensive. On the other hand, enrollment of

biometric templates could be on the slower side because it will

happen infrequently.

There exists an extensive literature on secure protocols for bio-

metric matching [KAMR04, ST07, EFG
+
09, SSW09, HMEK11, BG11,

OPJM10] for various modalities (fingerprint, iris, face, etc.) and

distance measures (Hamming distance, Euclidean distance, etc.).

However, to the best of our knowledge, all prior work is in the

semi-honest model and does not consider active attacks. They are

often motivated by the identification setting, where a measurement

must be compared with a database of templates, as opposed to the

authentication setting that we consider here (see Appendix A.1). As

a result, they try to batch process as many comparisons as possible

instead of optimizing a single comparison operation. Also, some

of the papers lack a formal security model and/or a formal proof

of the claims. A clear specification of the leakage, if any, could be

missing too.

1.1 Our contribution
In this paper, we build efficient protocols for secure external-facing

authentication from mobile devices with the help of new packing

techniques and zero-knowledge proofs. We implement the pro-

tocols and study their performance in terms of running time and

bandwidth usage. In more detail, our contributions can be described

as follows:

Formalization.We formally specify the security goals of this type

of biometric authentication with the help of a simulation-based

definition in the ideal-real paradigm. We consider three entities

in the security model: a device D, a terminal T (which has an

attached sensor) and a service providerSP. We consider two phases

in authentication: an enrollment phase where a user’s biometric

template is registered with a service provider, and a matching phase

where a device and a terminal interact with each other to compare

biometric data.

In the setting of external-facing authentication where a seamless

experience is quite important, facial recognition seems to be the

ideal choice at the moment. Lately, the cosine similarity metric

has been quite popular in this domain (e.g. CosFace [WWZ
+
18],

SphereFace [LWY
+
17], FaceNet [SKP15]) and could be used else-

where too. So we represent biometric templates as vectors and our

protocols compute the inner-product between them (in a secure

manner). We assume that devices and terminals have the proper

setup to capture facial images, process them to extract interesting

features, and derive a template in a vector form. We do not consider

this setup any further in this paper.

We treat the service provider and the terminal as semi-honest

(passive) entities, but account for the possibility that they may

collude with each other to learn more information about users’

biometric templates. In other words, we provide a simulator for

the joint view of a semi-honest SP and T . On the other hand, we

consider both semi-honest and malicious (active) devices.

Service providers could bemalicious too but attempting to change

the outcome of matching is not very useful for them (like it is for

devices). If a paying member of an organization is refused entry to

one of its locations, for instance, due to a biometric match failure,

she could just ask for a refund. If a grocery store attempts to make

the matching succeed with someone’s device who is not checking

out, the person could dispute the charge on her credit card.

Certainly, an active attack could also be used to gather more

information about user data than any passive attack would allow.

However, we do not consider active corruption of service providers

and terminal in the paper, leaving it for future work. (Active corrup-

tion of mobile devices, as pointed out before, is indeed considered.)

Packing. We use Paillier encryption scheme [Pai99] to encrypt

templates and use its homomorphic properties to operate on them.

Typically, a single Paillier ciphertext can contain 2048 or 3072 bits

of plaintext data but for biometric tasks, like the one we have here,

the size of a plaintext value is very small. We introduce a new op-

timization technique for Paillier encryption that allows to batch

encryptions of several plaintexts (of relatively small size) into one

single ciphertext thereby reducing the computation and communi-

cation overhead of the basic encryption scheme considerably. (Some

related works [EFG
+
09, BG11] rely on Damgard et al.’s [DGK07]

encryption scheme for faster encryption and smaller ciphertexts

than Paillier. However, decryption requires computing a discrete

log.)
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Wenote that our packing technique is significantly different from

prior art [HMEK11, OPJM10] due to the support for multiplying

two packed values. To get some insight, suppose we have two

vectors
−→u = (u1, . . . ,uℓ) and

−→v = (v1, . . . ,vℓ), and we pack n out

of ℓ elements into one ciphertext somehow. If we only care about

summing up these vectors component-wise, we just need to make

sure that there is some extra room or padding between the packed

elements to capture the overflow. Amount of padding certainly

depends on the number of additions we wish to perform.

However, a packing technique that supports component-wise

multiplication requires more care. Multiplying two ciphertexts

packed in a simple manner would produce terms where the de-

sired products (of the form uivi ) are mixed with cross-products

(of the form uivj , i , j); so the packing scheme needs to be more

sparse. Furthermore, the cross-products could leak extra informa-

tion when packed ciphertexts are decrypted, so they need to be

masked properly.

We design a new encoding scheme that takes care of these prob-

lems (Section 4), and lends us 8x savings in the semi-honest protocol

and 6x savings in the malicious ones.

Zero-knowledge proofs. Zero-knowledge proofs are often used

to provide security against active attacks. In our protocols, wewould

be worried about malformed ciphertexts, invalid templates, etc. We

present several efficient zero-knowledge protocols for this (Section

8). Our first protocol is a zero-knowledge proof-of-knowledge of

the plaintext values in a set of n Paillier ciphertexts. One can use

Cramer et al. [CDN01]’s Σ−protocol to prove knowledge of each

plaintext value individually, but this would make the communica-

tion complexity linear in n. We provide a new batched version of

their protocol where the prover sends the same number of messages

as the basic protocol. After applying the Fiat-Shamir heuristic, we

get a protocol with a constant communication complexity (inde-

pendent of n).
We also a need a proof for the well-formedness of templates,

represented as vectors. We need to show in zero-knowledge that

a vector has a certain L2 norm. Existing protocols [Lin17] for this

have an overhead of κn for a statistical security parameter κ, say
40. We present new techniques to reduce the overhead to (roughly)

n, thus achieving close to 40x speedup.

Protocols. We exploit the new packing and proof techniques to

build a suite of efficient protocols for biometric matching based on

the cosine similarity metric with trade-offs between security and

efficiency (Section 5, 6, 7):

• Protocol I provides security against semi-honest attacks, and

leaks inner product to the device.

• Protocol II provides security against malicious devices and

semi-honest service-provider/terminal, and leaks inner prod-

uct to the terminal.

• Protocol III provides security in the same setting as the above

but leaks no information whatsoever.

Each of the protocols consists of an enrollment phase and a

matching phase. In the enrollment phase, a provider signs an en-
crypted template provided by a device. The device hides the tem-

plate but convinces the provider that it is well-formed using the

zero-knowledge proofs discussed above.

The signed encrypted template is the first message sent by the

device in amatching phase with a terminal. The signature convinces

the terminal that the template is well-formed without having to

engage in another proof session. Since an encrypted template leaks

no information whatsoever to the terminal, the first message of the

matching protocol could be sent even before the terminal had a

chance to record a measurement.

Protocol I, II and III have three, four and five rounds of commu-

nication, respectively, in the matching phase. A round consists of a

message sent from the device to the terminal or vice versa. If the

first message is sent early on, then the matching phase in all the

three protocols would have one fewer round.

Apart from zero-knowledge proofs, we use cryptographic tools

like message authentication codes, oblivious transfer and garbled

circuits to achieve security under active attacks in the second and

third protocols. The first protocol only relies on the security of

Paillier encryption.

Implementation & evaluation. We implement the three proto-

cols above and evaluate them on a single commodity laptop. We

use 3072-bit Paillier, estimated to have 112 bits of computational

security, and a statistical security parameter of 40 bits. We consider

various template lengths ℓ ∈ {128, 256, 512, 1024} combined with

different bit lengthsm ∈ {8, 16, 24} for each template element. We

discuss here some performance numbers for ℓ = 256 andm = 16.

Please refer to Section 9 for full details.

For Protocol I, enrollment takes 0.6 seconds while the matching

phase requires just 0.024 seconds. This can be explained by the

fact that Paillier encryption requires a large exponentiation while

decryption and homomorphic operations are relatively efficient.

The first message of matching phase (encrypted template) is only

16KB as opposed to 128KB, thanks to packing. Thus, packing helps

us achieve an improvement of 8x here. Rest of the protocol only re-

quires the terminal to communicate 516 bytes. As a result, Protocol

I has very low communication overhead.

Despite considering malicious devices, Protocol II and III require

only 5 seconds for enrollment, due to our efficient zero-knowledge

proofs. The matching phase of Protocol II, which is the one that will

be run again and again, takes just 0.05 seconds. The first message

here is of size 27KB as opposed to 162KB, a saving of 6x due to

packing. Rest of the protocol consumes only 0.8KB.

The most secure protocol, Protocol III, is also quite fast. It takes

only 0.12 seconds to compute a match. The communication over-

head is on the higher side though: a total of 142KB is exchanged as

opposed to 28KB for Protocol II, due to the use of garbled circuits.

With some assistance from the service provider in a preprocessing

phase, this can be brought down to as little as 20KB. See Section 9

for details.

One can also use LWE-based additive homomorphic encryption

schemes instead of Pailler encryption in our protocols. We discuss

this alternative in some detail in Appendix A.3.

1.2 Related Work
Numerous works have considered the problem of biometric authen-

tication. Some are based on the idea of deriving a cryptographic key

from noisy biometric measurements [DRS04, Boy04, KSvdV
+
05,

CRC
+
19]. One shortcoming of this approach is the difficulty in
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deriving a consistent key despite potential errors in the biomet-

ric measurement. Another line of work uses techniques from se-

cure multi-party computation to evaluate the traditional matching

algorithms on encrypted data [KAMR04, ST07, EFG
+
09, SSW09,

HMEK11, BG11, OPJM10]. Our work lies in this second category.

To the best of our knowledge, all prior work is in the semi-

honest model and does not consider active attacks. Most of them

are motivated by the identification setting where a measurement

must be compared with a database of templates [EFG
+
09, SSW09,

HMEK11, BG11, OPJM10, ASD
+
16], and only a few earlier ones

directly consider an authentication-like setting [KAMR04, ST07].

Due to this, the emphasis is generally on optimizations that help

improve the efficiency of several simultaneous comparisons, as

opposed to a single one.

We could have several simultaneous authentication attempts

from different users in our setting too, but the number of such

attempts would generally be small. Moreover, we cannot afford

to increase the latency of a single comparison for a better overall

throughput because in our use-cases, users expect to learn outcomes

as soon as possible.

We refer to Appendix A for a discussion of authentication versus

identification as well as a detailed look at the papers above.

2 PRELIMINARIES
Notation. We denote the security parameter by λ. We represent

biometric values using vectors: the device’s biometric template

is represented as a vector
−→u = (u1, . . . ,uℓ) and the terminal’s

biometric template is represented as a vector
−→w = (w1, . . . ,wℓ).

Here, for all i ∈ [ℓ], ui ,wi ∈ Z2m (i.e., ui ,wi arem-bit numbers).

We use ⟦x⟧ to denote an encryption of x . Sometimes, we use ⟦x ; r⟧
to denote that message x is encrypted using randomness r .

Definition 1. (Cosine Similarity) For vectors −→u ,−→w , the Cosine
Similarity between them is a value between 0 and 1 defined as follows:

CS.Dist(−→u ,−→w ) =
⟨
−→u ,−→w ⟩

| |
−→u | | · | |−→w | |

.

Note that if the L2-norm of both vectors | |−→u | |, | |−→w | | is ζ ,CS.Dist(−→u ,−→w )
= ⟨−→u ,−→w ⟩/ζ 2. To check if CS.Dist(−→u ,−→w ) ≥ T ′ for some T ′ ∈ [0, 1],
it is sufficient to check that ⟨−→u ,−→w ⟩ ≥ T where T = T ′ · ζ 2.

We formally define zero knowledge proofs, digital signatures,

oblivious transfer and garbled circuits in Appendix B.

2.1 Paillier Encryption
The additively homomorphic encryption scheme by Paillier [Pai99]

(Plr.Setup, Plr.Enc, Plr.Add, Plr.Dec) is as follows:

• Plr.Setup(λ) =: (epk, esk): Choose random primes p and q
of length λ. Set N = pq,д = (N + 1),d = lcm(p − 1,q − 1).
Compute µ = L(дd mod N 2)−1 mod N where L(·) is defined
as L(x) = x−1

N . Output public key epk = (N ,д) and secret

key esk = (d, µ).
• Plr.Enc(λ, x, epk) =: ⟦x ; r⟧: Given plaintext x ∈ ZN , out-

put ciphertext ⟦x ; r⟧ = дmrN mod N 2
where r is chosen

randomly in Z∗N .

• Plr.Add(λ, ⟦x⟧, ⟦y⟧) =: ⟦x + y⟧: Given ciphertexts ⟦x⟧ and
⟦y⟧, output ciphertext ⟦x + y⟧ = ⟦x⟧ · ⟦y⟧ mod N 2

.

• Plr.Dec(λ, c, esk) =: x : Given ciphertext c and secret key esk,
output x = L(cd mod N 2) · µ mod N .

We describe the correctness and security properties satisfied by

this scheme in Appendix B.

3 BIOMETRIC AUTHENTICATION
In this section, we formally define secure biometric authentication.

We use the ideal-real world paradigm to capture the security goals.

Ideal functionality. The ideal functionality F for biometric au-

thentication is shown in Figure 1. It has two query types. The first

allows a user to register a biometric template
−→u via her device D

with a service provide SP in an ‘enrollment’ phase. Subsequently,

the device can engage in a ‘matching’ session with a terminal T us-

ing her registered template. The terminal provides a measurement

−→w . If
−→u and

−→w are close enough, then F reports that there was a

match.

In addition, the functionality explicitly allows a pair of leakage

functions to be defined. We require these because some of our pro-

tocols reveal more information than just the predicate of whether

there was a match or not. Looking forward, some of our protocols

will reveal the inner product between
−→w and

−→u to one of the parties.

Parameters: The functionality F is parameterized by values ℓ,m ∈ N,
ζ ∈ Z

2
2m ℓ , a distance functionCS.Dist : Z

ℓ
2
m ×Z

ℓ
2
m → [0, 1], a threshold

T ∈ [0, ζ 2], and leakage functions Ldev, Lterm both mapping Zℓm × Z
ℓ
m to

Z. It interacts with three parties D, SP and T via the following queries.

Queries:
• On receiving a query of the form (“Enrollment”, sid, −→u , SP)
from D: Only if sid is unmarked, check if ∥

−→u ∥ = ζ . If the check
succeeds, send (“Enrolled”, sid, D) to SP and D, store (sid, −→u ,

D, SP), and mark sid as “Enrolled”. Otherwise, send (“Failed”,
sid, D) to SP and D, and mark sid as “Failed”.
• On receiving a query of the form (“Match”, sid, ssid, T) from
D: Check whether sid is marked and there exists a record of the

form (sid, −→u , D, SP). If the check fails, send (“Failed”, sid, ssid,
D) to T and D. Else:

(1) send (sid, ssid, D) to T;

(2) receive (sid, ssid, −→w , D) from T where ∥
−→w ∥ = ζ ;

(3) if ⟨
−→u , −→w ⟩ ≥ T , (i.e., CS.Dist(−→u , −→w ) ≥ T /ζ 2

) send (sid, ssid, 1)
to D and T, else send (sid, ssid, 0) to them. Also send

Ldev(
−→u , −→w ) to D and Lterm(−→u , −→w ) to T .

Figure 1: Ideal Functionality F

Real world. A protocol π for biometric authentication consists

of two phases: an enrollment phase and a matching phase. The

enrollment phase is between a deviceD and a service provider SP.

Once D is enrolled, it can participate in a matching session with a

terminal T . Typically, the enrollment phase will be run once for a

device, while the matching phase will be run many times, possibly

with different terminals.

Threat model. We consider semi-honest (honest-but-curious) ser-

vice providers and terminals in this paper, but account for the real

possibility that they may collude with each other to learn more

information about the biometric templates of users (beyond the fact
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that there was a match or not, and any leakage). In other words, we

provide a simulator for the joint view of a semi-honest SP and T .

On the other hand, we consider both semi-honest and malicious

devices. A semi-honest device would try to learn more information

about the measurements than it is supposed to. A malicious device

would go further: it could try to enroll an invalid template (∥
−→u ∥ ,

1), make the matching succeed even when the measurement is not

close (⟨
−→u ,−→w ⟩ < T ), etc.

Security. We say that a protocol π is secure if for every adversary

A in the real world (of the type described above), there exists a

simulator S in the ideal world such that the joint distribution of

the output of honest parties and view of A in the real world is

computationally indistinguishable from the joint distribution of the

output of honest parties and S in the ideal world.

4 PACKING
Recall that Paillier is an additively homomorphic encryption scheme

with a plaintext space Zpq where p,q are large primes. Typical sizes

of p,q is 1024 bits each which means that a single Paillier ciphertext

can contain 2048 bits of plaintext data. The security level would

then be similar to RSA with a 2048 bit key. However, in several

applications, the size of a plaintext value is very small. In our case,

for instance, it is only 8 or 16 bits. We cannot make the ciphertext

smaller due to security constraints, so encrypting each plaintext

value separately results in a huge communication overhead.

In this section, we introduce a packing technique for Paillier en-

cryption that allows one to batch encryptions of several plaintexts

(of relatively small size) into one single ciphertext, thereby reduc-

ing the communication overhead of the basic encryption scheme.

We design new encoding, decoding, addition and multiplication

algorithms to effectively achieve this task. Each of these algorithms

are applied to plaintext data.

Notation. Letm denote the size in bits of each plaintext value we

wish to encrypt. Let n be the number of plaintext values we want to

encode together into one ciphertext. Let L denote the size in bits of

each ciphertext (which is 2048 in the case of Paillier). Let d denote

the length in bits of the padding applied to each plaintext value. We

elaborate more on d later in the section. We also consider two levels

for the encodings. At level-1, we have plaintext encodings where

no multiplication operation has been performed. We can multiply

two level-1 encodings to produce a level-2 encoding. We also refer

to a level-2 encoding as a hyper-encoding. Two level-2 encodings

cannot be multiplied together but can be added. This emulates the

linear homomorphism of Paillier encryption.

4.1 Algorithms, Properties & Use
We now describe the algorithms for packing and their properties.

Definition 2 (Packing Scheme). An (m,n, L,d) packing scheme
consists of the following algorithms. (λ is always an implicit input.)
• Encoding & Decoding. There are two ways to encode/decode
denoted by (Encode1,Decode1) and (Encode2,Decode2). En-
code algorithms, Encode1 and Encode2, take m-bit strings
u1, . . . ,un as input. Encode1 outputs a level-1 encoding u∗,
while Encode2 outputs a level-2 encoding ũ (hyper-encoded
value). The encodings are L-bit strings. Decode algorithms,

Decode1 and Decode2, take an L-bit string as input and out-
put n number ofm-bit strings.
• Addition. There are two addition algorithms, one for each type
of encoding. Add1 adds two level-1 encoded values u∗,v∗ to
produce another (level-1) valuew∗.Add2 is similar but operates
on level-2 encodings.
• Multiplication. There is only one multiplication algorithm
Mult. It takes two level-1 encodings u∗,v∗ and outputs a level-
2 encoding w̃ .
• Masking. There is only one randomized algorithm Mask. It
transforms one level-2 encoding into another.

Correctness. Informally, correctness requires that decoding an

encoded value at either level must produce the same output as per-

forming the corresponding (component-wise) addition and multipli-

cation operations on the underlying vector of plaintext values. For

the mask procedure, we require the following: for any ũ,Mask(ũ),
Decode2(ũ) = Decode2(Mask(ũ)).

Security. Informally, we require that the distribution produced by

the output of themasking algorithm is statistically indistinguishable

from one produced by a simulator that is given only the decoding

of this output. Formally, for all λ, there exist a PPT algorithm Sim
such that for all hyper-encoding w̃ , the following two ensembles

are statistically indistinguishable:

{Mask(w̃)} and
{
Sim

(
Decode2(Mask(w̃))

)}
.

Using packing in Paillier. We will use the packing scheme to

“pack” a number of plaintexts together into one ciphertext. In par-

ticular, we will pack n plaintexts u1, . . . ,un together. We will use

Encode1 to generate a level-1 encodingu∗ first. Then we encryptu∗

to produce a Paillier ciphertext ⟦u∗⟧. If addition is the only opera-

tion performed on the ciphertext, the underlying encoding remains

at level-1. Say, after one addition of two ciphertexts ⟦u∗⟧ and ⟦v∗⟧,
we obtain ⟦w∗⟧. From correctness, we have thatDecode1(w∗) =:

−→w
wherewi = ui +vi for all i ∈ [n].

For multiplication with a known value, the product will pro-

duce a level-2 encoding. In particular, to multiply ⟦u∗⟧ by plaintext

−→v , one needs to first encode
−→v into v∗ (i.e. v∗ := Encode1(

−→v ))
and then use Paillier scalar multiplication to produce ⟦w̃⟧ such

that Decode2(w̃) = u1v1 + . . .unvn . Furthermore, we need to use

the masking algorithm after each multiplication for security rea-

sons to produce ⟦̃z⟧ where z̃ ← Mask(w̃), and so Decode2 (̃z) =
Decode2(w̃). As guaranteed by the security property, a masked

value does not have any additional information beyond its decoding,

so it is now “safe” to decrypt ⟦̃z⟧ before decoding.
Linear procedures. We note that certain operations are performed

on the ciphertexts homomorphically. Since Paillier encryption sup-

ports only additive homomorphism we need to guarantee that

those procedures are linear, in that only addition of ciphertexts and

multiplying a ciphertext with a plaintext are required to homomor-

phically perform the operations. Looking ahead, our construction

ensures that all procedures Add1,Add2,Mult,Mask2 are linear and
can be supported over Paillier ciphertexts.

2
The masking algorithm requires sampling random coins. However, this does not need

the ciphertext. We only need to add the random coins to the encoding that is encrypted

which can be done using additive homomorphism.

5



Algorithms:
• Encode1(u1, . . . , un ) : Given u1, . . . , un ∈ Z2m , output u∗ =∑n

i=1 2
k ·(2i−1−1)ui ∈ Z

2
k2n .

• Add1(u∗, v∗) : Output w∗ = u∗ + v∗ .
• Decode1(u∗) : Write u∗ as u∗ =

∑n
i=1 2

k ·(2i−1−1)ui , where ui ∈
Z
2
k , and output (u1, . . . , un ).

• Mult(u∗, v∗) : Output w̃ = u∗ · v∗ .
• Encode2(u1, . . . , un ) : Given u1, . . . , un ∈ Z2m , output ũ =∑n

i=1 2
k ·2·(2i−1−1)ui ∈ Z

2
k2n .

• Add2(ũ , ṽ) : Output w̃ = ũ + ṽ .

• Mask(w̃ ) : Output z̃ =
(
w̃+

∑
j∈I 2

j ·k ρ j
)
where I = {0, 2, 6, (2n−

2)} and the ρ j ’s are picked randomly in Z
2
k .

• Decode2(ũ) : Write ũ as

( ∑
i∈I 2

i ·kui
)
+
( ∑

j∈I 2
j ·k ρ j

)
where

ui , ρ j ∈ Z
2
k and I = {0, 2, . . . , (2n − 2)}. Output {ui }i∈I .

Here, k = (m + d + λ) and L = (k · 2n ).

Correctness. Correctness follows easily by inspection.

Security. Given a tuple (w1, . . . ,wn ) computed as Decode2(Mask(w̃ )),
the simulator outputs a hyper-encoding z̃ as follows:

• Let I = {0, 2, . . . , (2n − 2)}. Set {zi }i∈I = (w1, . . . ,wn ).

• z̃ =
( ∑

i∈I 2
i ·k zi

)
+
( ∑

j∈I 2
j ·k ρ j

)
where each ρ j is picked uni-

formly at random.

It is easy to observe that {Mask(w̃ )} and {Sim(w1, . . . ,wn )} are identi-

cally distributed and hence statistically indistinguishable.

Figure 2: Packing Scheme

4.2 Construction
Our construction is described in Figure 2. Below, we give a detailed

overview of our techniques.

Level-1 Encoding. Consider n plaintexts u1, . . . ,un ∈ Z2m that

we wish to encode together and later encrypt into one cipher-

text. The naive way to encode would be to create a plaintext u∗ =∑n
i=1 2

(i−1)(m+d )ui ∈ Z2n(m+d ) where there are d empty padding

bits between every consecutive pair of values that are encoded. Let

k denote the size of each block in the encoding, i.e., k = (m + d).

Level-1 Addition. It is easy to see that given two such encoded

values u∗,v∗, adding them directly gives the encoded version of

their sum. That is,

u∗ +v∗ =
n∑
i=1

2
(i−1)(m+d )(ui +vi ) ∈ Z2n(m+d )

as long as d is large enough to prevent overflows. The d padding

bits are present to ensure that if (ui +vi ) ≥ 2
m
, this overflow will

still be stored in the same block (within the padding bits) and not

spill into the block used for storing (ui+1 +vi+1). In the case of just

one addition, d = 1 will suffice. Similarly, multiplyingu∗ by a single
value x ∈ Z2m also works directly. That is,

xu∗ =
n∑
i=1

2
(i−1)(m+d )(xui ).

Once again, we need to ensure that d is large enough so that x ·ui ≤

(2k −1). In this case, d =m suffices. More generally, d must be large

enough to prevent overflows when performing a combination of

these operations. We will elaborate on the choice of d later.

Multiplication. Multiplying two level-1 encodings component

wise does not work directly as in the above operations. Consider a

scenario where you generate an encoding u∗ of −→u and then wish

to multiply its components with the corresponding components

of an encoding v∗ of −→v . Looking ahead, this scenario arises when

one party encrypts u∗ and sends it to another party who wishes to

perform multiplications homomorphically between the vectors
−→u

and
−→v . For example, if we have n = 2 then

v∗u∗ = 2
0·k · v1u1 + 2

1·k · (v1u2 +v2u1) + 2
2·kv2u2.

So, we do not get 2
0·kv1u1 + 2

1·kv2u2 as desired. However, observe
that the values of interest (v1u1,v2u2) are stored in the result, just

with v2u2 at a different block position than in the input encoding.

It is easy to verify that for any n,

v∗u∗ = v1u1 + 2
k (...) + 22·k (...) + ... + 2(2n−2)·kvnun .

v1u1 and vnun can still be recovered from the first and last blocks.

However, the other (...) blocks will not be pure, i.e., they will be

mixed with products of the form uivj for i , j.
We now show a new encoding strategy which allows us to re-

cover all of the products viui from various positions of v∗u∗. For
n = 3, we now encode u1,u2,u3 as

u∗ = u1 + 2
ku2 + 2

3·ku3

Note that the block at position 2 (the term 2
2·k

) is set to zero. If we

then multiply two encodings v∗ and u∗, we obtain:

v1u1 + 2
k (v1u2 +v2u1) + 2

2·kv2u2 + 2
3·k (v1u3 +v3u1)+

2
4·k (v2u3 +v3u2) + 2

5·k (0) + 26·kv3u3.

Observe that the desired products can now be recovered from block

positions 0, 2 and 6. Generalizing this to any arbitrary n, the crucial
idea is to inductively place each ui ,vi at a block position such

that the product term uivi gets placed in a block that does not

have any other products. This is achieved by encoding ui at block
position (2i−1 − 1). To be more clear, we now encode u1,u2, . . . ,un
as u∗ = u1 + 2

ku2 + . . . + 2
k ·(2n−1−1)un That is,

Encode1(u1, . . . ,un ) = u∗ =
n∑
i=1

2
k ·(2i−1−1)ui ∈ Z2k2n

If we multiply two such encodings, the blocks at positions 0, 2, 6,

. . ., (2n − 2) will have the desired component-wise product terms.

Here, k denotes the size of each block, i.e. k = (m + d). We must

pick a large enough d to ensure that none of the blocks overflow.

Each block contains a sum of at most n terms each of which is a

product of twom bit values. Therefore, d =m+ logn+1 to perform
one such component-wise multiplication.

Also, observe that u∗ is technically contained within Z
2
k2n−1 .

Instead, we refer to an encoding as contained inZ
2
k2n because when

we multiply two level-1 encodings, the resulting product (a level-2

encoding) is contained in Z
2
k2n now. To maintain consistency in

notation between the ranges of both encodings, we use the same

term Z
2
k2n for both.
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Masking. In the above multiplication computation, the resultant

level-2 encoding w̃ = Mult(u∗,v∗) also has cross-product terms

such as u1v2, v2u1, etc. (or a sum of such terms) in the clear which

would be revealed during decoding, thereby leaking more informa-

tion than just component-wise multiplication. We overcome this

issue by the use of algorithm Mask which takes a hyper-encoding

w̃ as input and adds a uniformly random value of size (m + d + λ)
bits to each of the blocks that may have cross-product terms. Before

we describe the exact details of how this is done, the first thing to

note is that to account for this, when computing a level-1 encoding

(which is later multiplied to produce this hyper-encoding w̃), we

now increase the size of each block by λ bits. That is, we now set k
to bem + d + λ.

Let I denote the set of block positions in w̃ which have the values

we care about. From the previous multiplication scenario, these

would correspond to the actual component wise products in w̃ . For

example, I = {0, 2, 6, . . . , (2n − 2)}. (We note that more compact

packings are possible but it is difficult to succinctly describe them.)

The algorithmMask adds a random value of length k =m+d +λ to
each block not in I . Concretely, given a hyper-encoding w̃ ,Mask(·)
does the following: Compute

z̃ = w̃ +
∑
j ∈I

2
j ·kρ j

where ρ j is a uniformly random value in Z
2
k .

To ensure that adding a ρi term in a block does not corrupt the

value in other blocks, we require that the addition does not overflow

the (m + d + λ) bits of the given block. Recall we guarantee that

(m +d) is large enough to hold the sum of the terms. Therefore, the

probability of an overflow is at most the probability that the most

significant λ bits of ρi are all ones, which is negligible.

Observe that in a sequence of operations that involve, for exam-

ple, a multiplication of two level-1 encodings followed by additions

with other hyper-encodings, it is sufficient to perform the masking

only once over the final hyper-encoding before decoding it.

Level-2 Encoding & Addition. From the above overview, the level-

2 encoding and addition follow naturally:

ũ = Encode2(u1, . . . ,un ) =
n∑
i=1

2
k ·2·(2i−1−1)ui ∈ Z2k2n ,

Add2(ũ, ṽ) = (ũ + ṽ) =
n∑
i=1

2
k ·2·(2i−1−1)(ũi + ṽi ) ∈ Z2k2n .

Choice of Parameters. Givem and L (the size of each value and

that of overall encoding, respectively), we need to set the values

of n and d (number of elements that can be packed together and

the length of padding, respectively) by ensuring that (k · 2n ) ≤ L
where k = (m + d + λ). The choice of d depends on the operations

performed.

Remark. In the rest of the paper, for ease of exposition, we invoke

algorithms Add1,Add2,Mult on encodings, using regular “+”, “·”

symbols. We will always refer to level-1 encodings with an asterisk

in the superscript (as in u∗) and a hyper-encoding with a tilde (as

in ũ).

5 ALL PARTIES SEMI-HONEST
In this section, we build a secure biometric authentication protocol

with a three round matching phase
3
based on the additively homo-

morphic encryption scheme by Paillier [Pai99], which is based on

the decisional composite residuosity assumption. Our construction

is secure against a semi-honest adversary that either corrupts a

device or jointly corrupts the service provider and the terminal.

At the end of the matching phase, the inner product between the

device and terminal vectors is leaked to the device. Formally, in

Appendix C we prove the following theorem:

Theorem 1. Assuming the security of Paillier encryption, Π1 in
Figure 3 is a three round biometric authentication protocol that is
secure against any semi-honest adversary with Ldev(

−→u ,−→w ) = ⟨−→u ,−→w ⟩
and Lterm(−→u ,−→w ) = ⊥.

5.1 Construction
Let (Plr.Setup, Plr.Enc, Plr.Add, Plr.Dec) denote the Paillier en-

cryption scheme and (Encode1, Encode2, Add1,Add2,Mult,Mask,
Decode1,Decode2) denote the (m,n, L,d) packing scheme described

in Section 4. We describe the construction of our three round secure

protocol in Figure 3.

Overview. In the enrollment phase, the deviceD encodes its input

vector
−→u = (u1, . . . ,uℓ) to produce t = ⌈

ℓ
n ⌉ encodings (u

∗
1
, . . . ,u∗t ).

It encrypts these encodings using the Paillier encryption scheme

and sends the ciphertexts {⟦u∗i ⟧}i ∈[t ] to the service provider SP.

Since we only consider a semi-honest adversary, SP is guaranteed

that ⟦u∗⟧ indeed well formed and has L2-norm of ζ .
The matching phase begins withD sending the same ciphertexts

{⟦u∗i ⟧}i ∈[t ] to terminal T . T encodes its input vector
−→w to produce

encodings (w∗
1
, . . . ,w∗t ). Then, for each i ∈ [t], T homomorphically

multiplies encodings (u∗i ,w
∗
i ) to produce a level-2 encoding of the

product. It then homomorphically adds all these ciphertexts to pro-

duce an encryption ⟦̃z⟧ of the level-2 encoding of the inner product
IP = ⟨−→u ,−→w ⟩. To ensure that the level-2 encoding z̃ doesn’t leak
any additional information, we rely on the security of the masking

algorithm: T homomorphically masks z̃ and sends ⟦Mask(̃z)⟧. Note
that the masking procedure can be performed homomorphically:

the underlying randomness is sampled externally and can then be

added homomorphically. D can then decrypt this ciphertext and

decode the resulting hyper-encoding to learn IP. It then checks if

IP > T to learn the output which is shared with T . Observe that

this protocol leaks IP to D.

There is a subtle issue in the above protocol. Recall that while

the security of the masking scheme prevents the decoding from

leaking information about cross-product terms, D still ends up

learning each component-wise term (ui ·wi ) of IP rather than just

the inner product on performing the decoding. To prevent this,

T adds a secret sharing of 0, i.e., adds a random value ρi to each

component in such a way that

∑
i ∈[n] ρi = 0. Therefore, each term

of the decoded still looks uniformly random while they sum up to

IP. We defer a formal proof to Appendix C.

Parameter Selection. We now briefly discuss the choice of the

parameters used for packing. Recall from Section 4 that we need

3
From now, when we mention rounds, we refer to the number of rounds in just the

matching phase.
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Enrollment Phase: The device D has an input vector
−→u = (u1, . . . , uℓ ) such that ∥

−→u ∥ = ζ . The enrollment phase proceeds as follows.

• Device D does the following:

(1) Compute u∗
1
, . . . , u∗t as the encoding of

−→u . That is, u∗
1
= Encode1(u1, . . . , un ), . . . , u∗t = Encode1(uℓ−n+1, . . . , uℓ ) where t = ⌈ ℓn ⌉.

(2) Compute (esk, epk) ← Plr.Setup(1λ ). For all i ∈ [t ], compute ⟦u∗i ⟧ = Plr.Enc(epk, u∗i ).
(3) Send (epk, {⟦u∗i ⟧}i∈[t ]) to SP.
• Service provider SP responds back with a message “Enrolled”.

Matching Phase: The terminal T has an input vector
−→w = (w1, . . . ,wℓ ) such that ∥

−→w ∥ = ζ . The matching phase proceeds as follows.

• Round 1: (D → T) Device D sends (epk, {⟦u∗i ⟧}i∈[t ]) to T .
• Round 2: (T → D) T does the following:

(1) Compute (w∗
1
, . . . ,w∗t ) = Encode1(

−→w ).
(2) Compute ⟦̃z⟧ = ⟦∑t

i=1
(
u∗i ·w

∗
i
)⟧ using the algorithm Plr.Add(·). Note that z̃ is now a level-2 encoding.

(3) Pick n random k-bit strings ρ1, . . . , ρn such that (ρ1 + . . . + ρn ) = 0. Let ρ̃ = Encode2(ρ1, . . . , ρn ).
(4) Compute and send ⟦ĨP⟧ = ⟦Mask(̃z + ρ̃)⟧ to D.

• Round 3: (D → T) D does the following:

(1) Compute (IP1, . . . , IPn ) = Decode2(Plr.Dec(esk, ⟦ĨP⟧)). Set IP = ∑n
i=1 IPi .

(2) If IP ≥ T , D sends 1 to T . Else, sends 0.

• Output Computation. Both parties output the bit sent in the last round.

Figure 3: Protocol Π1

to pick the number of values n to encode based on the constraint

that k · 2n ≤ L, where L is the length of one Paillier ciphertext,

k = (m + d + λ), and m is the length of each feature ui ,wi that

are initially encoded. In this protocol, using any encoding u∗i or

w∗i , we perform one multiplication with another encoding followed

by (t − 1) additions with such encodings. So, d should be (m +
logn + log t + 2). Therefore, we need to satisfy the constraint that

2
n · (2m + logn + log⌈ℓ/n⌉ + λ + 2) ≤ L to determine how many

elements n to pack together. This depends on the specific values

of (λ,m, L, ℓ) that we consider and we refer to Section 9 for more

details on our choice and implementation results.

6 MALICIOUS DEVICE
In this section, we build a secure biometric authentication proto-

col with a four round matching phase. Our protocol is based on

digital signatures, Paillier encryption [Pai99] and honest-verifier

zero knowledge proofs. We need proofs for three specific languages

related to the encryption scheme in the enrollment phase (i) Prov-

ing that the public key was correctly generated (ii) batch proving

knowledge of plaintexts given a set of ciphertexts and (iii) proving

knowledge of the L2-norm of a vector given a set of ciphertexts

encrypting it. We describe these zero knowledge proofs in Section 8.

They are based on the security of the Paillier encryption scheme.

At the end of the matching phase, the inner product between the

device and terminal vectors is leaked to the terminal. Formally, we

prove the following theorem:

Theorem 2. Assuming the security of Paillier encryption and digi-
tal signatures, Π2 in Figure 4 is a four round biometric authentication
protocol that is secure against any adversary that can maliciously cor-
rupt the device or jointly corrupt the terminal and authority in a semi-
honest manner with Ldev(

−→u ,−→w ) = ⊥ and Lterm(−→u ,−→w ) = ⟨−→u ,−→w ⟩.

Paillier encryption is based on the decisional composite resid-

uosity (DCR) assumption while digital signatures can be based

on any one way function (which is implied by DCR). We refer to

Appendix D for the formal security proof of Theorem 2.

6.1 Construction
Let (Gen, Sign,Verify) be a signature scheme. Let IPMax = 2

2mℓ

denote the maximum possible value of the inner product ⟨
−→u ,−→w ⟩

where
−→u ,−→w are the biometric input vectors of the device and ter-

minal, respectively, with norm ζ .

Overview. Unlike the previous protocol, here, a corrupt D can

behave maliciously. In the enrollment phase, D sends encryptions

(⟦u1⟧, ..., ⟦uℓ⟧) of its input vector −→u without encoding them. Using

the zero knowledge protocols, D also proves that these cipher-

texts were honestly generated and the L2-norm of
−→u is ζ . If the

proofs verify successfully, SP now converts these into encryp-

tions ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧ of encodings and sends it to D along with a

signature on them.

D initiates the matching phase by sending these ciphertexts

⟦u∗
1
⟧, . . . , ⟦u∗t ⟧ alongwith the signature in the first round.T verifies

the signature to ensure that the underlying vector
−→u was indeed

enrolled earlier. As before, T encodes its input vector
−→w to produce

encodings (w∗
1
, . . . ,w∗t ). Unlike the previous protocol, since we do

not want to leak the inner product IP = ⟨−→u ,−→w ⟩ to D, T does not

compute ⟦̃z⟧where z̃ is a level-2 encoding of IP. Instead, z̃ is now an

encoding of (a · IP+b) where a and b are random values. As before,

T adds random ρi values before masking and sends ⟦Mask(̃z + ρ̃)⟧
in the second round. D can recover (a · IP + b) which is sent back

to T in the third round. This allows T to learn IP as it knows (a,b).
It then checks if IP > T to learn the output which is shared with D

in the last round. Observe that this protocol leaks IP to D.

We now discuss how to prevent a malicious D from cheating

in the third round. Suppose it sends X ′ , (aIP + b). We modify

T ’s strategy as follows: let IP′ = X ′−b
a . Output ⊥ if IP′ is larger

than the maximum possible value IPMax of the inner product (for

any two norm-ζ vectors
−→u ,−→w ). Since (a,b) are uniformly random,

with overwhelming probability, a cheatingD will be unable to pick

X ′ , (aIP+b)with both of the following conditions: (i) IP′ < IPMax
(ii) (a) IP ≤ T and IP′ > T (OR) (ii) (b) IP′ ≤ T and IP > T .
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Enrollment Phase: The device D has an input vector
−→u = (u1, . . . , uℓ ) such that ∥

−→u ∥ = ζ . The enrollment phase proceeds as follows.

• Device D computes (esk, epk) ← Plr.Setup(1λ ) and sends (epk, ⟦u1; ρ1⟧, ..., ⟦uℓ ; ρℓ⟧) to SP.
• Run ZK protocols Πepk, Πptxt-knwldg and Πzk-L2 (with y = ζ ) from Section 8 with D as prover and SP as verifier. For the first proof, the statement

is epk and witness is the underlying primes (p, q). For the next two proofs, statement is (epk, ⟦u1; ρ1⟧, ..., ⟦uℓ ; ρℓ⟧) and witness is {ui , ρi }ℓi=1.
• If either proof fails, SP sends the message “Failed” to D.

• Else, SP does the following:

(1) Generate (sk, vk) ← Gen(1λ ).
(2) Compute (⟦u∗

1
⟧, . . . , ⟦u∗t ⟧) using algorithm Plr.Add(·) where u∗

1
, . . . , u∗t is the encoding of

−→u . That is, u∗
1
= Encode1(u1, . . . , un ), . . . , u∗t =

Encode1(uℓ−n+1, . . . , uℓ ) where t = ⌈ ℓn ⌉.
(3) Send σ = Sign(sk, (epk, ⟦u∗

1
⟧, . . . , ⟦u∗t ⟧)) to D and store vk at the terminal T .

Matching Phase: The terminal T has an input vector
−→w = (w1, . . . ,wℓ ) such that ∥

−→w ∥ = ζ . The matching phase proceeds as follows.

• Round 1: (D → T) Device D sends (σ , epk, {⟦u∗i ⟧}i∈[t ]) to T .
• Round 2: (T → D) T does the following:

(1) Output ⊥ if Verify(vk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧), σ ) , 1.

(2) Compute (w∗
1
, . . . ,w∗t ) = Encode(−→w ). Pick strings a ∈ Zλ , b ∈ Z(λ ·log IPMax+λ) uniformly at random. Let b̃ = Encode2(b).

(3) Compute ⟦̃z⟧ = ⟦∑t
i=1

(
u∗i · (a ·w

∗
i )
)
+ b̃⟧ using the algorithm Plr.Add(·).

(4) Pick random k-bit strings ρ1, . . . , ρn such that

∑
i∈[n] ρi = 0. Let ρ̃ = Encode2(ρ1, . . . , ρn ).

(5) Compute and send ⟦X̃ ⟧ = ⟦Mask(̃z + ρ̃)⟧ to D.

• Round 3: (D → T) D computes (X1, . . . , Xn ) = Decode2(Plr.Dec(esk, ⟦X̃ ⟧)), sets X = ∑n
i=1 Xi , and sends X to T .

• Round 4: (T → D) T does the following:

(1) Set IP = X−b
a . If IPMax < IP, output ⊥ (indicates that the device cheated).

(2) If T ≤ IP ≤ IPMax, send 1 to D. Else, send 0.

• Output Computation. Both parties output the bit sent in the last round.

Figure 4: Protocol Π2

Parameter Selection. Using any encoding u∗i orw
∗
i , we first per-

form one multiplication with another encoding, a multiplication

with a constant a of length λ, followed by (t − 1) additions of such
encodings and then adding it to a level-2 encoding of b. So, d should

be (m + logn + log t + λ + 3). Therefore, we need to satisfy the con-

straint that 2
n · (2m + logn + log⌈ℓ/n⌉ + 2λ + 3) ≤ L to determine

how many elements n to pack together.

7 MALICIOUS DEVICE AND NO LEAKAGE
In this section, we build a secure biometric authentication proto-

col with a five round matching phase. Our protocol is based on

digital signatures, garbled circuits, two-message oblivious transfer

(OT), Paillier encryption [Pai99] and honest-verifier zero knowl-

edge proofs. We need proofs for specific languages related to the

encryption scheme as in Section 6. The protocol leaks no extra in-

formation to any party. Formally, we prove the following theorem:

Theorem 3. Assuming the security of Paillier encryption, digital
signatures, garbled circuits and two message oblivious transfer, Π3

in Figure 5 is a five round biometric authentication protocol that is
secure against any adversary that can maliciously corrupt the device
or jointly corrupt the terminal and authority in a semi-honest manner
with no leakage to any party.

Paillier encryption and twomessage OT (either in CRS or random

oracle model) can be instantiated based on the DCR assumption

while digital signatures and garbled circuits can be based on any one

way function (which is implied by DCR). We refer to Appendix E

for the formal security proof.

7.1 Construction
Let (Garble, Eval) denote a garbling scheme for circuits and let

(OT.Round1, OT.Round2, OT.Output) be a two-message oblivious

transfer protocol. We describe our five round protocol in Figure 5.

Overview.We build on the previous protocol to additionally ensure

that the inner product IP is not leaked to the terminal T . Recall

from the previous protocol that the valueX = (a ·IP+b)was directly
sent byD to T which allowed T to recover IP and compare it with

the threshold. Here, instead, we perform this comparison inside

a garbled circuit. One way to do so would be for T to generate

a garbled circuit that D can evaluate using input X . The circuit
would internally compute IP = (X − b)/a. However, performing

a division inside a garbled circuit is not very efficient. To build a

more efficient protocol, we could do the following: in the second

round, T sends encryptions of (hyper-encodings of) X = IP and

Y = (a · IP+b).D can recover and feed both as inputs to the garbled

circuit so that it only performs one multiplication to check that

Y = (a · X + b).
While the random choice of (a,b) once again ensures that a

malicious D can’t cheat by providing wrong inputs (X ,Y ) to the

circuit, notice that we now leak X = IP toD! To solve this problem,

T encrypts IP via a one-time pad to generate X = (IP + pad),
thereby hiding IP from D. That is, D now receives encryptions of

hyper-encodings of X = (IP + pad) and Y = (a · IP + b), and labels

corresponding to inputs (pad,a,b). The circuit first removes the

one-time pad to recover IP and then checks that Y = (a · IP + b) as
before. We use oblivious transfer (OT) to enable D to obtain the

labels to evaluate the garbled circuit. The enrollment phase is same

9



Enrollment Phase: Same as the enrollment phase in Figure 4 in Section 6.

Matching Phase: The terminal T has an input vector
−→w = (w1, . . . ,wℓ ) such that ∥

−→w ∥ = ζ . The matching phase proceeds as follows.

• Round 1: (D → T) Device D sends (σ , epk, {⟦u∗i ⟧}i∈[t ]) to T .
• Round 2: (T → D) T does the following:

(1) Output ⊥ if Verify(vk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧), σ ) , 1.

(2) Compute (w∗
1
, . . . ,w∗t ) = Encode(−→w ). Pick random strings a ∈ Zλ , b ∈ Z(λ ·log IPMax+λ), pad ∈ Zlog IPMax+λ . Let p̃ad = Encode2(pad) and

b̃ = Encode2(b).
(3) Compute ⟦̃z0⟧ = ⟦∑t

i=1
(
u∗i ·w

∗
i
)
+ p̃ad⟧ and ⟦̃z1⟧ = ⟦∑t

i=1
(
u∗i · (a ·w

∗
i )
)
+ b̃⟧ using algorithm Plr.Add(·).

(4) Pick 2n random k-bit strings ρ1, . . . , ρ2n such that (ρ1 + . . . + ρn ) = 0, (ρn+1 + . . . + ρ2n ) = 0. Let ρ̃0 = Encode2(ρ1, . . . , ρn ) and
ρ̃1 = Encode2(ρn+1, . . . , ρ2n ).

(5) Compute and send (⟦X̃ ⟧, ⟦Ỹ ⟧) to D where ⟦X̃ ⟧ = ⟦Mask(̃z0 + ρ̃0)⟧ and ⟦Ỹ ⟧ = ⟦Mask(̃z1 + ρ̃1)⟧.
• Round 3: (D → T) D does the following:

(1) Compute (X1, . . . , Xn ) = Decode2(Plr.Dec(esk, ⟦X̃ ⟧)), (Y1, . . . , Yn ) = Decode2(Plr.Dec(esk, ⟦Ỹ ⟧)).
(2) Set X =

∑n
i=1 Xi and Y =

∑n
i=1 Yi .

(3) Generate and send otrec ← OT.Round1((X , Y ); ρot) to T.
• Round 4: (T → D) T does the following:

(1) Compute (C̃, lab) = Garble(C) for circuit C described in Figure 6. Let (labpad, laba , labb ) denote the labels for inputs (pad, a, b).
(2) Let {lab0X ,Y , lab

1

X ,Y } denote the set of labels for inputs (X , Y ). Generate otsen = OT.Round2( (lab0X ,Y , lab
1

X ,Y ), ot
rec).

(3) Send (C̃, labpad, laba , labb , otsen) to D.

• Round 5: (D → T) D does the following:

(1) compute lab = OT.Output(otsen, otrec, ρot).
(2) Run Eval(C̃, lab, labpad, laba , labb ) to learn output bit y and label laby. Send laby to T.
• Output Computation. D outputs the bit y. T decrypts laby and outputs the value.

Figure 5: Protocol Π3

Inputs: (X , Y , pad, a, b).
Computation:

• Compute IP = (X − pad). If (a · IP + b) , Y , output ⊥.
• If T ≤ IP, output 1. Else, output 0.

Figure 6: Circuit C to be garbled.

as the previous protocol with the only addition being SP also runs

the setup of the OT protocol.

Parameter Selection. The analysis of the choice of parameters

used for packing is almost identical to that in Section 6.

8 ZERO KNOWLEDGE PROOFS
In this section, we describe the two honest-verifier zero knowl-

edge proofs for the Paillier encryption scheme that are used in our

protocols. Recall that a Paillier ciphertext ⟦x⟧ is given by дx rN

mod N 2
, where the public parameters are N = pq and д = N + 1,

and private randomness is r ∈ Z∗N . Sometimes, we use notation

⟦x ; r⟧ to explicitly denote that randomness r is used to generate

the ciphertext.

8.1 Public key well-formedness
Hazay et al. [HMRT12, HMR

+
19] construct an honest-verifier zero

knowledge protocol to show that a public key epk of the Paillier

scheme was correctly generated. We denote this protocol by Πepk
and refer to section 3.3 in the full version of [HMR

+
19] for the

construction and proof.

8.2 Knowledge of Plaintexts
In this section, we present a honest-verifier zero knowledge proto-

col to prove knowledge of the plaintexts and randomness under-

lying n Paillier ciphertexts ⟦x1⟧ . . ., ⟦xn⟧. Cramer et al. [CDN01]

designed a Σ−protocol for proving knowledge of both the message

and randomness for a single ciphertext ⟦x ; r⟧. Here we provide

a new batched version of their protocol that allows us to simul-

taneously prove the knowledge of n message-randomness pairs

(x1, r1), . . . , (xn, rn ) given n ciphertexts ⟦x1; r1⟧, . . ., ⟦xn ; rn⟧while
only requiring the same amount of communication from the prover.

We achieve this generalization by leveraging the linear structure

of their protocol. At a very high level, in the first round of their

protocol, the prover sends ⟦s;u⟧ for a random s . Given a random

challenge e , the prover has to respond back withw = (s + ex) mod

N and z = uдt re where t satisfies some linear equation with respect

to (s,w, e, x). The verifier then checks that the ciphertext ⟦w ; z⟧
obtained by encrypting messagew with randomness z is equal to
the product of ⟦s;u⟧ and ⟦x ; r⟧e . The linearity (over the exponent)

in these operations allows us to aggregate together n proofs by just

having the verifier now send n random challenges and the prover

responding with just a single (w, z) as before that internally adds

up the respective ei , xi terms.

Our protocol is described in Figure 9 in Appendix F (Cramer et

al.’s protocol [CDN01] is a special case). We also prove the following

lemma for the protocol there:

Lemma 1. Let c1, . . . , cn be Paillier ciphertexts under a public
key pk. Assuming the security of Paillier encryption, the protocol
Πptxt-knwldg in Figure 9 is an honest-verifier zero knowledge proof-of-
knowledge of {(xi , ri )}i ∈[n] s.t. ci = Plr.Enc(pk, xi ; ri ) for all i .
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8.3 L2-Norm
Finally, we present a honest-verifier zero knowledge protocol which,

given n Paillier ciphertexts ⟦x1⟧, ...⟦xn⟧, proves that the L2 norm
of vector

−→x := (x1, . . . xn ) is equal to some public value y over the
integers. The protocol is presented in Figure 10.

We use two key techniques. The first is a ZK proof that the L2
norm equals y modulo N (note that this not over integers, other-

wise we would be done). This combines the use of a semi-honest

multiplication protocol and an algebraic MAC to prevent a mali-

cious prover from cheating in the following way (all operations in

this protocol happens in ZN ): First, the verifier masks and MACs

each ciphertext ⟦xi⟧ as ⟦wi⟧ ← ⟦xi⟧α + Plr.Enc(pk, ρi ) where
α, ρi (uniformly random in ZN ) are the MAC key and mask re-

spectively. This is then revealed to the prover who can compute

w2

i = (x
2

i α
2 + 2αρixi + ρ

2

i ). Observe that this contains the desired

value x2i . We can isolate this value by requiring the verifier to also

send ⟦vi⟧ ← ∑
i (−2αρi⟦xi⟧ − ρ2i ) + Plr.Enc(pk, β) for a mask β

(uniformly random in ZN ). The prover can then obtain a MACed

version of the L2 norm as follows:

z =
∑
i
(x2i α

2 + 2αρixi + ρ
2

i ) +
∑
i
(−2αρi⟦xi⟧ − ρ2i + β)

=
∑
i
x2i α

2 + β

Finally, the prover can simply send z to the verifier who checks

that

∑
i x

2

i = y by checking that z = yα2 + β .
The technique above proved that the L2-norm is equal to y over

ZN . However, we desire this equality to hold over the integers. We

achieve this by adding a second instance of this protocol except

that we will now logically perform the check modulo N ′ where
y ≪ N ′ ≪ N and chosen by V after the xi are fixed.

If these two checks pass, it implies that∑
i
x2i = y mod N =⇒ ∃t ∈ Z∗,

∑
i
x2i = y + Nt∑

i
x2i = y mod N ′ =⇒ ∃s ∈ Z∗,

∑
i
x2i = y + N

′s

Rewriting the implication we obtain Nt = N ′s . This means the

prover must choose t to be a multiple of N ′. However, since N ′ is
prime and chosen after all the xi are fixed, the prover can only do

this with negligible probability.

Our protocol is formally described in Figure 10 in Appendix F.

We also prove the following lemma for the protocol there:

Lemma 2. Let c1 = ⟦x1⟧, . . . , cn = ⟦xn⟧ be Paillier ciphertexts
under a public key pk and y be a positive integer. Assuming the
security of Paillier encryption, Πzk-L2 in Figure 10 is a honest-verifier
zero knowledge protocol to show thaty =

∑
i ∈[n] x

2

i (over the integers).

Consider a more generic proof strategy where we instead prove

each xi is small therefore

∑
i x

2

i can not be more than N . Even when

using the optimized approximate range check of Lindell [Lin17],

this strategy would require sending O(nλ) Paillier ciphertexts. In
contrast, our optimized approach only involves O(n) ciphertexts.
In practice this results in a speed up of at least 40 times.

9 IMPLEMENTATION
We implement our protocols and report on their performance. The

implementation was written in C++ and utilizes the GMP library

for Paillier operations and the oblivious transfer implementation

of Chou and Orlandi [CO15].

All evaluations were performed on a single commodity laptop

with an i5-8365U processor and 16GB ofmemory. All network traffic

was routed over local host with a measured latency of 0.2 millisec-

onds on a 10Gbps network card. To account for network latency

and bandwidth restrictions, additional running time would need

to be added. The Paillier scheme is implemented using a security

level analogous to 3072 bit RSA, which is estimated to achieve 112

bits of computational security. Where relevant, we use a statistical

security parameter of 40 bits.

We consider various template lengths ℓ ∈ {128, 256, 512, 1024}

combined with different bit lengthsm ∈ {8, 16, 24} for each tem-

plate element, i.e. templates are elements in Zℓ
2
m . We note that this

bit length is of the input size while the inner product itself can

be of bit length 2m + log
2
ℓ. We consider the three protocols Π1

(Figure 3), Π2 (Figure 4), Π3 (Figure 5) as presented above where

the enrollment phase for Π2,Π3 is separated as Πen.

Π1-Enc in Figure 8 denotes the time for D to locally generate

an encryption of a template for Π1 (enrollment phase), a one-time

operation. Π1 in the next column denotes the time to perform the

matching phase of Π1. We assume that the terminal T possesses

the measurement in template form. As can be seen, this phase is

significantly faster than the one-time enrollment phase. For ex-

ample, encrypting a template with ℓ = 256,m = 16 requires 0.6

seconds while the matching phase requires 0.024 seconds. This is

because Paillier encryption requires computing a large exponen-

tiation rN mod N 2
where N is 3072 bits in our case. In contrast,

decryption and homomorphic operations are relatively efficient.

When designing our protocols this is one of the reasons why D

always encrypts their long term template as opposed to having

T encrypting each measurement with its own Paillier key. More-

over, we found that simply generating the plaintext template using

SphereFace [LWY
+
17] required more time than Π1.

As seen in Figure 7, Π1 has very low communication overhead.

Them1 column of Π1 denotes the size in bytes of the first message

whichD sends to the terminal. For example, this message is of size

16KB for ℓ = 256,m = 16. For this set of parameters we achieve a

packing factor of 8×. That is, without our packing technique the

encrypted template would be 128KB. An important property of our

protocols is that this message can be reused in the case that several

comparisons with the sameD are performed. After T receives this

first message, each subsequent Π1 sessions only requires T sending

516 bytes, regardless of ℓ,m.

Next we consider the overhead for a possibly malicious D to

enroll a new template (common for Π2 and Π3). We report the

running time of this protocol in two parts. Πen-Enc is the time for

D to locally encrypt their template and Πenis the time required

to run the (rest of) enrollment protocols which contains several

zero knowledge proofs that the template is well formed. As can

be seen in Figure 8, simply encrypting the template (with one

element per ciphertext) requires about half the time as the rest of the

enrollment protocol. This demonstrates that our custom designed
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m ℓ
Π1 Π2 Π3 Πen

m1 T → D m1 D → T T → D m1 D → T T → D D → SP SP → D

8

128 8,464 516 11,536 260 516 11,536 2,944 66,809 124,007 66,082

256 16,656 516 22,288 260 516 22,288 2,944 69,561 189,543 131,618

512 33,040 516 44,304 260 516 44,304 3,071 72,313 320,615 262,690

1024 65,808 516 87,824 260 516 87,824 3,076 75,065 582,760 524,834

16

128 8,464 516 13,584 260 516 13,584 4,000 110,841 124,007 66,082

256 16,656 516 26,896 260 516 26,896 4,000 113,593 189,543 131,618

512 33,040 516 53,008 260 516 53,008 4,132 116,313 320,615 262,690

1024 65,808 516 105,232 260 516 105,232 4,132 119,033 582,760 524,834

24

128 10,000 516 16,656 260 516 16,656 5,056 154,393 124,007 66,082

256 19,216 516 33,040 260 516 33,040 5,056 157,113 189,543 131,618

512 38,160 516 65,808 260 516 65,808 5,188 159,833 320,615 262,690

1024 75,536 516 131,344 260 516 131,344 5,188 162,553 582,760 524,834

Figure 7: Communication overhead in bytes for various protocols.m denotes the bit count of the template elements. ℓ denotes
the number of elements in the template. m1 denotes the size of the first message of the protocol which is reusable. D → T
denote the remaining communication from D to T . T → D denote the total communication from T to D.

m ℓ Π1-Enc Π1 Πen-Enc Πen Π2 Π3

8

128 318 12 1,110 2,914 25 71

256 626 19 2,198 5,018 44 102

512 1,118 40 4,389 9,249 74 171

1,024 2,263 72 8,809 17,704 138 289

16

128 457 15 1,082 2,927 33 87

256 630 24 2,200 5,008 49 119

512 1,131 45 4,367 9,439 89 195

1,024 2,316 88 8,855 17,849 170 357

24

128 384 19 1,094 2,892 28 74

256 742 32 2,204 5,053 43 105

512 1,298 64 4,373 9,242 73 164

1,024 2,541 118 8,772 17,822 123 266

Figure 8: Running times inmilliseconds of various protocols
with element bit countm and vector length ℓ.

zero knowledge protocols are quite efficient. For example, with

ℓ = 256,m = 16 encrypting the template requires 2.2 seconds while

the protocol requires 5.0 seconds. We note that this protocol can

trivially be parallelized but we did not consider this optimization.

While the enrollment protocol requires a non-negligible amount of

time, this protocol only has to be performed once during a setup

phase and therefore is extremely practical. The communication

overhead of this protocol is shown in Figure 7 and requires between

0.2 and 1 MB of total communication depending on ℓ,m.

For the matching phase of Π2, we observe very practical per-

formance. The running time of Π2 with ℓ = 256,m = 16 is just

0.05 seconds. The protocol consists of three messages where D

sends the first which can be reused. For ℓ = 256,m = 16, this first

message is of size 27KB while the next per session messages are

of size 516 and 260 bytes respectively. For these parameters we

achieve a packing factor of 6×, reducing the first message size from

162KB. Moreover, when we consider the amortized setting where

the first message is reused, this protocol requires only 0.8KB per

authentication.

Finally, we consider the protocol Π3 which strengthens Π2 so

that the inner product is not revealed to T . This is achieved with

the addition of more Paillier operations along with a small garbled

circuit evaluation. In terms of running time, we observe that the

protocol requires 0.12 seconds for ℓ = 256,m = 16 where the major-

ity of that is spent doing Paillier operations. The main overhead of

Π3 compared to Π2 is the added communication overhead incurred

by sending the garbled circuit. For ℓ = 256,m = 16, we observe

a total communication of 142KB compared to 28KB for Π2. This

difference becomes more stark in the amortized setting where the

first message is reused many times. In this case Π3 requires 116KB

compared to 0.8KB for Π2. However, given that 142KB is a very

small amount communication for modern devices we argue that

Π3 achieves very practical overheads. For example, 4G wireless net-

works can send up to 100Mbps while the new 5G networks will be

able to send up to 10Gbps. Alternatively, locally area networks such

as Android Nearby are able to provide comparable high throughput

communication channels.

In cases when the bandwidth of D is extremely constrained, we

observe that a large majority of the communication overhead can

be preprocessed with the assistance of SP. In particular, using well

known techniques SP can generate the garbled circuit and send it

to D along with performing OT (extension) protocol on random

inputs. During the online phase, D can instruct SP to send T

the garbled circuit seed and OT messages from the preprocessing.

SP can also send the encrypted template of D. Then, D and T

can derandomize the OTs and complete the protocol. This would

result in Π3 requiring approximately 2(2m + log
2
n + λ)κ bits of

communication between T and D. For ℓ = 256,m = 16, this would

result in approximately 20KB of online communication. Applying

the sample idea to Π1 and Π2 results in removing the need for D

to send the first message because SP would send it on her behalf.

It is easy to show that this achieves the same level of security

since we already assume that SP and T can collude and are both

semi-honest.
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A RELATEDWORK
A.1 Authentication vs. Identification
Biometrics can be used to authenticate or identify individuals. Au-

thentication is a 1 : 1 type of task where ameasurement is compared

against a template to determine if they belong to the same person.

Identification, on the other hand, is a 1 : N type of task where a mea-

surement is matched against a potentially large set of N templates

to determine who the measurement belongs to. The use of biomet-

rics on mobile devices like smartphones falls into the first category,

whereas their use for law enforcement, civil identity, border control,

etc. generally falls into the second category.
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Identification tasks require large biometric databases which

become very attractive targets for hackers, leading to massive

breaches [bio19, cbp19]. Consumers are also very concerned about

their privacy [jet19]. Authentication onmobile devices, as discussed

before, is local in nature. Biometric readings and the derived tem-

plates never leave the user device [appb, appa, and, sam].

The kind of external-facing authentication discussed here is es-

sentially an authentication task, but communication with an ex-

ternal sensor could leak sensitive information (which we intend

to prevent). One may observe some similarities with identification

too because a measurement taken by the external sensor could be

matched against several devices to find the right person. However,

this should be seen as multiple instances of authentication rather

than an instance of identification.

A.2 Detailed Look
The first paper to consider comparing biometric data within MPC

is that of Kerschbaum et al. [KAMR04]. This protocol first extracts

the locations of so-called minutia points
4
from each biometric mea-

surement and then use an MPC protocol to determine if they have

more than a threshold number of minutia points in common. This

is achieved by dividing the minutia space into a grid. Each bio-

metric is mapped to a n bit vector v where vi = 1 if and only if

there is a minutia point in grid square i . Using additive homomor-

phic encryption, the number of matches can then computed as

n − HD(v,v ′)/2, where HD denotes Hamming distance, which is

compared with some threshold t . Schoenmakers and Tuyls [ST07]

perform a similar computation but where an iris scan is the biomet-

ric measurement.

Erkin et al. [EFG
+
09] considered a setting where a client has

a photo P of their face and a server has a database of photos

I = (I1, . . . , Im ). This work uses the Eigenface framework [TP91]

where the server generates a model M using the dataset I . They
consider this model to be the private input of the server. Using

an additive homomorphic encryption of P , the parties compute

the linear circuit ⟦Ω⟧ := Embed(⟦P⟧,M) ∈ Zn . Given this, the

distance metric between P, Ii can then be computed as the L2-norm
⟦di⟧ := | |⟦Ω⟧, Embed(Ii ,M)| |. Finally, using an interactive proto-

col, the i with the minimum distance di which is less than some

threshold t is revealed to the client. If no such i exists, a special
value is revealed.

Sadeghi et al. [SSW09] gave several improvements to this proto-

col. First, they replace the final phase where the minimum distance

is computed with a garbled circuit protocol. They show that this ap-

proach is significantly faster due to Paillier additive homomorphic

encryption being poorly suited for binary circuits. Secondly, they

show that them computations of the L2-norms can be improved

using a technique known as batching. For security reasons Pail-

lier ciphertext must have a large plaintext space with more than

1024-bits while the values encrypted in the Erkin et al. protocol

[EFG
+
09] can be 32-bits or less. As such, Sadeghi et al. showed that

many Embed(Ii ,M) vectors can be batched together into the same

set of ciphertexts. In this way, several distance functions can be

computed for each L2-norm computation applied to ⟦Ω⟧.
4
An example of a minutia point is the location on a figure print where two ridges

merger together.

Haung et al. [HMEK11] further optimize this protocol in various

ways. First they assume that the model M is public which allows

the client to encrypt ⟦Ω⟧. This greatly reduces the number of ho-

momorphic operations. Secondly, they optimized for the amortized

setting where the client wants to authenticate many measurements

with the server. In addition, they further optimize the computation

of the minimum distance (i,di ) by first computing di and then a

separate protocol to retrieve the index i and any associated value.

Osadchy et al. [OPJM10] present the SCiFI protocol which in-

troduces a new facial recognition algorithm intended to be more

efficient to compute when performed with MPC. First their system

has some party generate a model M from some dataset D. This
model is then revealed to all parties. The model contains many

sets of cropped images. Each set Ci of images is centered at some

location Li on the face, e.g., the left eye. The images in each set Ci
have a similar look where this is determined using some distance

metric. To compare two images P1, P2, each is turned into a set of

indices S1, S2 where Sj contains index i if the cropped region of Pj
centered at Li looks similar to the images in Ci . If the size of the
intersection between S1, S2 is larger than some threshold t , then it

is considered a match. This size is computed in the same way as

Kerschbaum et al. [KAMR04] which is to turn each set into a vector

v,v ′ and compute n − HD(v,v ′)/2 using additive homomorphic

encryption.

A.3 Comparison with LWE-based AHE
One could also consider implementing our protocol using LWE-

based additive homomorphic encryption. These schemes typically

support the packing of several values into a ciphertext such that

the ciphertext can be operated on as a vector of elements. However,

our choice of Paillier results in less communication which is a key

performance metric. LWE ciphertexts typically have to be large

due to security consideration. For example, with a vector length

of n = 256 andm = 16-bit features the resulting communication

for protocol Π1 is about 17KB while this implemented using LWE

results in 96KB. However, we do note that the running time of

the LWE solution is faster at just 10 milliseconds compared to our

protocol requiring 45milliseconds. The LWE parameters in question

also supports up to n = 2048 length vectors with no added overhead.

This means that if the input vectors are of sufficient length then the

LWE approach could give better communication and running time.

The final advantage of our approach is that Paillier more easily

translates to the malicious setting. ZK-proofs of LWE ciphertexts

add additional overhead which could impact the practicality of

Π2,Π3. We leave a more detailed comparison of LWE and Paillier

in the context of our protocols for future work.

B PRELIMINARIES
In this section, we formally define some of the primitives we use.

B.1 Paillier Encryption
The additively homomorphic encryption scheme by Paillier [Pai99]

(Plr.Setup, Plr.Enc, Plr.Add, Plr.Dec) satisfies the following correct-
ness and security properties. We refer to [Pai99] for the proofs.

• Correctness. For any (epk, esk) ← Plr.Setup(λ):
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(1) For any message x, we have with overwhelmingly large

probability

Plr.Dec(esk, Plr.Enc(epk, x)) = x.

(2) For any twomessages x0 and x1 with ⟦xb⟧ = Plr.Enc(epk, xb )
for b ∈ {0, 1}, we have

Plr.Dec(esk, Plr.Add(⟦x0⟧, ⟦x1⟧)) = x0 + x1.

• Semantic Security. For all PPT algorithms A and any two

messages x0 and x1, we have

|Pr [A (epk, (x0, x1), ⟦x0⟧) = 1] −

Pr [A (epk, (x0, x1), ⟦x1⟧) = 1]| ≤ neдl(λ),

where (epk, esk) = Plr.Setup(λ) and ⟦xb⟧ = Plr.Enc(epk, xb )
for b ∈ {0, 1}.
• Circuit Privacy. Informally, circuit privacy requires that the

ciphertext generated by a set of homomorphic operations

does not reveal anything about the (linear) circuit that it

evaluates, beyond the output value of that circuit, even to an

adversary who generated the public and secret keys.We refer

to [CO17] for a formal definition and note that this property

is easily achieved by the Paillier encryption scheme.

B.2 Zero Knowledge Proofs
An interactive protocol between a prover P and a verifier V for

deciding a language L is an honest-verifier zero-knowledge proof

of knowledge protocol if it satisfies the following properties. Below,

we define ⟨P(·),V (·)⟩ to be the output of V (·) at the end of the

protocol execution.

• Completeness. For every security parameter λ ∈ N, and
any (x,w) ∈ RL ,

Pr[⟨P(x,w),V (x)⟩ = 1] = 1 − neдl(λ).

where the probability is over the randomness of P and V .

• Soundness. For any PPT cheating prover P∗, it holds that if
x∗ < L then

Pr[⟨P∗(x∗),V (x∗)⟩ = 1] = neдl(λ).

where the probability is over the random coins of V .

• Proof of Knowledge. For any PPT cheating prover P∗,
there exists a PPT extractor ZK.Ext such that for all x :

Pr[⟨P∗(x∗),V (x∗)⟩ = 1 ∧ (w ← ZK.ExtP
∗

(x∗) s.t (x∗,w∗) <
RL)] = neдl(λ). where the probability is over the random

coins of V and ZK.Ext.
• Zero Knowledge. For any (semi-) honest verifier V ∗, there
exists a PPT simulator Sim such that for all x ∈ L: the view of

V ∗ when interacting with an honest prover P on input (x,w)
is computationally indistinguishable from its view when

interacting with Sim on input x alone.

B.3 Digital Signatures
A digital signature scheme consists of the following three algo-

rithms (Gen, Sign, Verify).

– Gen(1λ) → (sk, vk). A randomized algorithm that takes the

security parameter λ as input, and generates a verification-

key vk and a signing key sk.

– Sign(sk,m) =: σ . A randomized algorithm that takes amesage

m and signing key sk as input and outputs a signature σ .
– Verify(vk, (m,σ )) =: 1/0. A deterministic algorithm that

takes a verification key vk and a candidatemessage-signature

pair (m,σ ) as input, and outputs 1 for a valid signature and

0 otherwise.

The following correctness and security properties should be

satisfied:

• Correctness. For all λ ∈ N, all (vk, sk) ← Gen(1λ), any
messagem, Verify(vk,m, Sign(sk,m)) = 1.

• Unforgeability A signature scheme is unforgeable if for

any PPT adversary A, the following game outputs 1 with

negligible probability (in security parameter).

– Initialize. Run (vk, sk) ← Gen(1λ). Give vk to A. Initiate

a list L := ∅.

– Signing queries. On querym, return σ ← Sign(sk,m). Run
this step as many times as A desires. Then, insertm into

the list L.
– Output. Receive output (m⋆,σ⋆) from A. Return 1 if and

only if Verify(vk, (m⋆,σ⋆)) = 1 andm⋆ < L, and 0 other-

wise.

B.4 Two-Message Oblivious Transfer
A two-message oblivious transfer (OT) protocol is a tuple (OT.Round1,
OT.Round2, OT.Output) defined as follows:

• OT.Round1(β): A PPT algorithm that, given a bit β ∈ {0, 1},
outputs a message m1 and a secret state st.
• OT.Round2((µ0, µ1),m1): A PPT algorithm that, given a pair

of strings (µ0, µ1) ∈ {0, 1}
2λ

and a message m1, outputs a

message m2.

• OT.Output(st, β,m2): A deterministic algorithm that, given

a secret state st, a bit β ∈ {0, 1} and a message m2, outputs

a string µ ′ ∈ {0, 1}λ .

The following correctness and security properties should be

satisfied:

• Correctness. For any λ ∈ N, any bit β ∈ {0, 1}, any pair

of strings (µ0, µ1) ∈ {0, 1}
2λ
: let (m1, st) = OT.Round1(β),

m2 = OT.Round2((µ0, µ1),msg
1
), µ ′ = OT.Output(st, β,m2).

We have µ ′ = µβ with overwhelmingly large probability in

λ.
• Receiver Privacy. For any λ ∈ N, for any PPT adversary

A: we have Pr[A(OT.Round1(0)) = 0]−Pr[A(,OT.Round1
(1) = 0] ≤ neдl(λ), where the probability is defined over the

random coins of OT.Round1 algorithm.

• Sender Privacy. For any λ ∈ N, any β ∈ {0, 1}, any (µ0, µ1) ∈
{0, 1}2λ , any PPT adversary A, there exists a PPT simulator

OT.Round2.Sim such that the following holds: Let m1 ←

A(β). Then,

|Pr[A(β,m2) = 0] − Pr[A(β, m̂2) = 0]| ≤ neдl(λ),

where m2 = OT.Round2((µ0, µ1),m1),

m̂2 = OT.Round2.Sim(µβ ,m1).

The protocol can be in the CRS model (in which case we would

also have an algorithm OT.Setup(·) to generate the CRS) or in the

Random oracle model.
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B.5 Garbled Circuits
A garbling scheme for a class of circuits C with n-bit inputs consists
of the following polynomial-time algorithms:

• Garble(C ∈ C): A probabilistic algorithm that takes a circuit

C ∈ C as input and outputs a garbled circuit C̃ and a set of

labels

−→
ℓ = {ℓj ,0, ℓj ,1}j ∈[n].

• Eval((x1, . . . , xn ) ∈ {0, 1}n, {ℓj ,x j }j ∈[n], C̃): A deterministic

algorithm that takes as input a string (x1, . . . , xn ) ∈ {0, 1}
n
, a

set of labels {ℓj ,x j }j ∈[n] and a garbled circuit C̃, and outputs

a bit y ∈ {0, 1}.

The following correctness and security properties should be

satisfied:

• Correctness. For any circuit C ∈ C, any string (x1, . . . , xn )

∈ {0, 1}n , let (C̃, {ℓj ,0, ℓj ,1}j ∈[n]) = Garble(C). We have

Eval((x1, . . . , xn ), {ℓj ,x j }j ∈[n], C̃) = C(x1, . . . , xn ).

• Security. There exists a PPT algorithm Garble.Sim(·) such
that for any circuit C ∈ C, any string (x1, . . . , xn ) ∈ {0, 1}

n
,

the ensembles

(C̃, {ℓj ,x j }j ∈[n]) and Garble.Sim(1λ, C(x))

are computationally indistinguishablewhere (C̃, {ℓj ,x j }j ∈[n])

← Garble(C).

C PROTOCOL 1: PROOF
C.1 Corrupt Device
Consider a semi-honest adversary A that corrupts the device D.

We now describe the simulator Sim. Let Mask.Sim denote the sim-

ulator for the packing scheme.

Enrollment Phase. Before the phase begins, Sim gets as input

−→u = (u1, . . . ,uℓ) - the input vector of the adversarial device. Upon
receiving (epk, esk, {⟦u∗i ⟧}i ∈[t ]) from A, Sim sends message “En-

rolled”.

Matching Phase: Before the phase begins, Sim gets the output bit

y and the leakage Ldev(·) = IP from the ideal functionality. Sim
does the following:

• Round 1: Receive (epk, {⟦u∗i ⟧}i ∈[t ]) from A.

• Round 2:
(1) Pick n random strings IP1, . . . , IPn such that (IP1 + . . . +

IPn ) = IP.
(2) Compute and send ⟦ĨP⟧ = ⟦Mask.Sim(IP1, . . . , IPn )⟧ to

A.

We show that the above simulation strategy is successful via

a series of computationally indistinguishable hybrids where the

first hybrid Hyb
0
corresponds to the real world and the last hybrid

Hyb
2
corresponds to the ideal world.

(1) Hyb
0
: Realworld. In this hybrid, consider a simulator SimHyb

that plays the role of the honest service provider and termi-

nal as in the real world.

(2) Hyb
1
: Switch Ciphertexts. In this hybrid, SimHyb runs the

matching phase as follows:

• Pick n random strings IP1, . . . , IPn such that (IP1 + . . . +
IPn ) = IP.

• Compute ⟦̃z⟧ using the algorithmPlr.Encwhere z̃= Encode2
(IP1, . . ., IPn ).
• Pickn random strings ρ1, . . . , ρn such that (ρ1+. . .+ρn ) =
0 and ∀i, ρi ∈ Z2k . Let ρ̃ = Encode2(ρ1, . . . , ρn ).
• Compute and send ⟦ĨP⟧ = ⟦Mask(̃z + ρ̃)⟧ to D.

(3) Hyb
2
: Masking Simulator. In this hybrid, SimHyb runs the

simulatorMask.Sim of the packing scheme to compute ⟦ĨP⟧
in round 2 instead of running the honest masking algorithm.

This hybrid corresponds to the ideal world.

We now show that every pair of successive hybrids is computa-

tionally indistinguishable.

Lemma 3. Assuming the circuit privacy of Paillier encryption,
Hyb

0
is computationally indistinguishable from Hyb

1
.

Proof. The only difference between the adversary’s view in

both worlds is the way the ciphertext ⟦̃z⟧ is computed. In the real

world, T computes ⟦̃z⟧ by performing the homomorphic opera-

tions using its input vector
−→w while in the ideal world, Sim uses

random (IP1, . . . , IPn ) such that (IP1 + . . . + IPn ) = IP and sets

z̃ = Encode2(IP1, . . . , IPn ). Since the ρi values all add up to 0, ob-

serve that in both cases, Decode(Plr.Dec(esk, ⟦IP∗⟧) produces a
tuple (IP1, . . . , IPn ) such that

∑n
i=1 IPi = IP. Therefore, if there

exists an adversaryA that can distinguish between the two worlds

with non-negligible probability, we can design a reduction APlr
that can break the circuit privacy of the Paillier encryption scheme

which is a contradiction. □

Lemma 4. Assuming the security of the packing scheme, Hyb
1
is

statistically indistinguishable from Hyb
2
.

Proof. The only difference between the two hybrids is that

in Hyb
1
, SimHyb computes the ciphertext ⟦ĨP⟧ by homomorphi-

cally evaluating the honest masking algorithmMaskwhile inHyb
2
,

SimHyb homomorphically computes the encoding output by the

simulatorMask.Sim. From the description of the simulatorMask.Sim
in Section 4.2, we crucially note that the operations (after sampling

the randomness) can be performed homomorphically using Paillier

encryption. Thus, from the security property of the packing scheme,

the two hybrids are statistically indistinguishable. □

C.2 Corrupt Provider, Terminal
Consider a semi-honest adversary A that jointly corrupts the ser-

vice provider SP and terminal T . We now describe the simulator

Sim.

Enrollment Phase. Sim sets vector
−→u = (u1, . . . ,uℓ) uniformly

at random and interacts with A in the Enrollment phase as done

by D in the real world. That is:

(1) Compute u∗
1
, . . . ,u∗t as the encoding of

−→u .

(2) Compute (esk, epk) ← Plr.Setup(1λ). ∀i ∈ [t], compute

⟦u∗i ⟧ = Plr.Enc(epk,u∗i ).
(3) Send (epk, {⟦u∗i ⟧}i ∈[t ]) to A.

Matching Phase: Before the phase begins, Sim gets input (
−→w , ρ,y)

where
−→w isA’s input, ρ isA’s randomness, y is the output bit. Sim

does the following:

• Round 1: Send (epk, {⟦u∗i ⟧}i ∈[t ]) to A.
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• Round 2: Receive ⟦IP∗⟧ from A.

• Round 3: Send bit y to A.

We now show that the above simulation strategy is successful.

Lemma 5. Assuming the semantic security of Paillier encryption,
the real world is computationally indistinguishable from the ideal
world.

Proof. Observe that the only difference between the two worlds

is the way the ciphertexts {⟦u∗i ⟧}i ∈[t ] are computed. In the real

world,D computes them using its input vector
−→u while in the ideal

world Sim computes them as an encryption of a uniformly random

vector. The adversary A only gets the public key epk and does not

learn the secret key esk of the encryption scheme. Therefore, if

there exists an adversary A that can distinguish between the two

worlds with non-negligible probability, we can design a reduction

APlr that can break the semantic security of the Paillier encryption

scheme which is a contradiction. □

D PROTOCOL 2: PROOF
D.1 Corrupt Device
Consider a malicious adversary A that corrupts the device D. We

now describe the simulator Sim. Let ZK.Ext denote the extractor
for the zero knowledge protocol Πptxt-knwldg. LetMask.Sim denote

the simulator for the packing scheme.

Enrollment Phase. Sim does the following.

• Receive (epk, ⟦u1⟧, ..., ⟦uℓ⟧) from A.

• Run zero knowledge protocols Πepk,Πptxt-knwldg and Πzk-L2
as the verifier with A as the prover with statement epk for

the first proof and statement (epk, ⟦u1⟧, ..., ⟦uℓ⟧) for the
next two proofs. Also, run the extractor ZK.Ext on protocol

Πptxt-knwldg to extract witness {ui , ρi }
ℓ
i=1.

• If either of the proofs fail or the extractor ZK.Ext fails, send
the message “Failed” toA and query the ideal functionality

F as part of enrollment with a vector of norm larger than

ζ , thereby instructing it to deliver the message “Failed” to
the honest service provider.

• Else, do the following:

(1) Generate (sk, vk) ← Gen(1λ).
(2) Compute (⟦u∗

1
⟧, . . . , ⟦u∗t ⟧) usingPlr.Add(·)whereu∗1, . . . ,u∗t

is the level-1 encoding of
−→u = (u1, . . . ,uℓ).

(3) Send σ = Sign(sk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧)) to A.

(4) Query the ideal functionality F as part of enrollment with

vector
−→u extracted from ZK.Ext.

Matching Phase: Sim does the following.

• Output from ideal functionality F :Query F with a new

sub-session for the matching phase to receive output bit y.
• Round 1: Receive (σ , {⟦u∗i ⟧}i ∈[t ]) from A.

• Round 2:
(1) Output ⊥ if Verify(vk, (epk, ⟦u∗

1
⟧, . . . , ⟦u∗t ⟧),σ ) , 1.

(2) Output “Special Abort” if Verify(vk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧),

σ ) = 1 (AND) (⟦u∗
1
⟧, . . . , ⟦u∗t ⟧,σ ) is not the tuple sent to

A in the Enrollment phase.

(3) Pick a random value IP satisfying the following: IP < T if

y = 0 and T ≤ IP ≤ IPMax if y = 1.

(4) Pick random strings a ∈ Zλ,b ∈ Z(λ ·log IPMax+λ).

(5) Pick n random strings X1, . . . ,Xn such that (X1 + . . . +

Xn ) = (a · IP + b).
(6) Compute and send ⟦X̃⟧ = ⟦Mask.Sim(X1, . . . ,Xn )⟧ to A.

• Round 3: Receive X from A.

• Round 4:
(1) Set IP′ = X−b

a .

(2) If IPMax < IP′, instruct F to output ⊥ to the honest ter-

minal.

(3) If T ≤ IP ≤ IPMax, send 1 to A. Else, send 0. Instruct F

to deliver output to the honest terminal.

We show that the above simulation strategy is successful via

a series of computationally indistinguishable hybrids where the

first hybrid Hyb
0
corresponds to the real world and the last hybrid

Hyb
5
corresponds to the ideal world.

(1) Hyb
0
: Realworld. In this hybrid, consider a simulator SimHyb

that plays the role of the honest service provider and termi-

nal as in the real world.

(2) Hyb
1
: Run the Extractor. In this hybrid, SimHyb runs the

extractorZK.Ext for the zero knowledge protocolΠptxt-knwldg

as done by Sim in the ideal world to extract witness
−→u =

(u1, . . . ,uℓ). It also queries the ideal functionality in the en-

rollment phase as done by Sim.

(3) Hyb
2
: Special Abort for signature forgery. In this hybrid,

in round 2 of the matching phase, SimHyb outputs “Spe-

cial Abort” if Verify(vk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧),σ ) = 1 (AND)

(epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧,σ ) is not the tuple sent to A in the En-

rollment phase, as done by Sim in the ideal world.

(4) Hyb
3
: Switch Ciphertexts. In this hybrid, SimHyb com-

putes the ciphertexts in the matching phase as follows:

• Pick a random value IP satisfying the following: IP < T if

y = 0 and T ≤ IP ≤ IPMax if y = 1.

• Pick random strings a ∈ Zλ,b ∈ Z(λ ·log IPMax+λ).

• Pick n random strings X1, . . . ,Xn such that (X1 + . . . +

Xn ) = (a · IP + b).
• Compute ⟦̃z⟧ using algorithm Plr.Enc where z̃ = Encode2
(X1, . . . ,Xn ).
• Pickn random strings ρ1, . . . , ρn such that (ρ1+. . .+ρn ) =
0 and ∀i, ρi ∈ Z2k . Let ρ̃ = Encode2(ρ1, . . . , ρn ).
• Compute and send ⟦X̃⟧ = ⟦Mask(̃z + ρ̃)⟧ to D.

(5) Hyb
4
: Masking Simulator. In this hybrid, SimHyb runs the

simulatorMask.Sim of the packing scheme to compute ⟦X̃⟧
in round 2 instead of running the honest masking algorithm.

(6) Hyb
5
: Ideal world. In this hybrid, SimHyb instructs the

ideal functionality to either deliver output ⊥ or the real

output to the honest terminal as done by Sim in round 4.

This hybrid corresponds to the ideal world.

We now show that every pair of successive hybrids is computa-

tionally indistinguishable.

Lemma 6. Assuming the proof of knowledge property for protocol
Πptxt-knwldg and soundness of protocols Πepk,Πzk-L2, Hyb0 is compu-
tationally indistinguishable from Hyb

1
.

Proof. The difference between the two hybrids is that in Hyb
1
,

SimHyb also runs the extractor NIZK.Ext on the proofs given by

the adversary for protocol Πptxt-knwldg to compute its input vector
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−→u and checks that the L2-norm of
−→u is ζ . From the soundness of

protocols Πepk,Πzk-L2, we know that if the proofs verify success-

fully, it must indeed be the case that the public key was correctly

generated and that the L2-norm of the underlying vector is ζ if

the ciphertexts were correctly generated. Thus, the only difference

between the two hybrids is if the adversary can produce a proof

for protocol Πptxt-knwldg such that, with non-negligible probability,

the proof verifies successfully, but SimHyb fails to extract −→u and

hence SimHyb aborts. However, we can show that if there exists an

adversaryA that can cause this to happenwith non-negligible prob-

ability, we can design a reductionAZK that breaks the argument of

knowledge property of protocol Πptxt-knwldg with non-negligible

probability which is a contradiction. □

Lemma 7. Assuming the unforgeability of the signature scheme,
Hyb

1
is computationally indistinguishable from Hyb

2
.

Proof. The difference between the two hybrids is that in Hyb
2
,

in round 2 of the matching phase, SimHyb outputs “Special Abort”.

Observe that this happens if in round 1,A sends a tuple (epk, ⟦u∗
1
⟧,

. . . , ⟦u∗t ⟧,σ ) such that this was not the tuple sent toA in the enroll-

ment phase and Verify(vk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧),σ ) = 1. However,

if there exists an adversary A that can cause this event to happen

with non-negligible probability, we can useA to design a reduction

ASign that breaks the unforgeability of the signature scheme with

non-negligible probability which is a contradiction. □

Lemma 8. Assuming the circuit privacy of Paillier encryption,
Hyb

2
is computationally indistinguishable from Hyb

3
.

Proof. This is identical to the proof of Lemma 3. □

Lemma 9. Assuming the security of the packing scheme, Hyb
3
is

statistically indistinguishable from Hyb
4
.

Proof. This is identical to the proof of Lemma 4. □

Lemma 10. Hyb
4
is statistically indistinguishable from Hyb

5
.

Proof. The difference between the two hybrids is that in Hyb
5
,

the honest terminal gets its output via the ideal functionality. In

more detail, SimHyb instructs the ideal functionality to deliver

either the actual output bity or⊥ based on its computation in round

4 of the matching phase. First, note that the strings a,b are picked

by SimHyb uniformly at random in round 2, and the adversary

only learns X = (a · IP + b). Observe that in both hybrids, if the

adversary sends a string X ′ in round 3 such that IPMax ≤
(X ′−b)

a ,

the honest terminal outputs ⊥. The only difference between the

two hybrids is if the adversary can send a string X ′ , X in round

3 such that either of the following happens: (i)
(X ′−b)

a ≤ T but

T ≤ (X−b)a ≤ IPMax (OR) (ii) T ≤
(X ′−b)

a ≤ IPMax but
(X−b)
a ≤ T .

This is because in Hyb
4
, the honest terminal’s output is based on

the value of
(X ′−b)

a whereas in Hyb
5
, it only depends on the value

of IP = (X−b)a . However, since a,b are picked uniformly at random,

the probability that the adversary can send a string X ′ , X in

round 3 such that either of the two conditions happen is negligible

and this completes the proof. □

D.2 Corrupt Provider, Terminal
Consider a semi-honest adversary A that jointly corrupts the ser-

vice provider SP and terminal T . We now describe the simulator

Sim. Let ZK.Sim,ZK.Sim1,ZK.Sim2 denote simulators for the zero

knowledge protocols Πepk,Πptxt-knwldg and Πzk-L2 respectively.

Enrollment Phase: Sim does the following.

• Pick vector
−→u = (u1, . . . ,uℓ) uniformly at random.

• Compute (esk, epk) ← Plr.Setup(1λ) and send (epk, ⟦u1⟧, ...,
⟦uℓ⟧) to A.

• Run the simulators ZK.Sim,ZK.Sim1,ZK.Sim2 for the zero

knowledge protocols Πepk,Πptxt-knwldg and Πzk-L2 from Sec-

tion 8 where A is the verifier. For the first proof, the state-

ment is epk and for the next two proofs, the statement is

(epk, ⟦u1⟧, ..., ⟦uℓ⟧).
• Receive σ from A.

Matching Phase: Before the phase begins, Sim gets input (
−→w , ρ,y,

Lterm(·) = IP = ⟨−→u ,−→w ⟩) where −→w is A’s input, ρ is A’s random-

ness, y is the output bit and Lterm(·) is the leakage. Sim does the

following:

• Round 1: Send (σ , epk, {⟦u∗i ⟧}i ∈[t ]) to A.

• Round 2: Receive ⟦X̃⟧ from A.

• Round 3:
(1) Extract strings (a,b) from the adversary’s randomness ρ.
(2) Send X = (a · IP + b) to A where IP = Lterm(·).

We show that the above simulation strategy is successful via

a series of computationally indistinguishable hybrids where the

first hybrid Hyb
0
corresponds to the real world and the last hybrid

Hyb
3
corresponds to the ideal world.

(1) Hyb
0
: Realworld. In this hybrid, consider a simulator SimHyb

that plays the role of the honest device as in the real world.

(2) Hyb
1
: Simulate Proofs. In this hybrid, SimHyb runs the

simulators ZK.Sim,ZK.Sim1,ZK.Sim2 for the zero knowl-

edge protocols Πepk,Πptxt-knwldg and Πzk-L2 as done by Sim
in the enrollment phase of the ideal world.

(3) Hyb
2
: Change computation of X . In this hybrid, in round

3 of the matching phase, SimHyb no longer decrypts ⟦X̃⟧
to compute X . Instead, it computes X = (a · IP + b) as done
by Sim in the ideal world where (a,b) is extracted from the

adversary’ randomness ρ and IP = Lterm(·).
(4) Hyb

3
: Switch Ciphertexts. In this hybrid, SimHyb picks

input vector
−→u uniformly at random as done by Sim . This

hybrid corresponds to the ideal world.

We now show that every pair of successive hybrids is computa-

tionally indistinguishable.

Lemma 11. Assuming the zero knowledge property for protocols
Πepk,Πptxt-knwldg and Πzk-L2,Hyb0 is computationally indistinguish-
able from Hyb

1
.

Proof. The only difference between the two hybrids is that in

Hyb
0
, the proofs of protocols Πepk,Πptxt-knwldg and Πzk-L2 are com-

puted by SimHyb by following the honest prover’s strategy while in
Hyb

1
, they are generated using the simulators ZK.Sim1,ZK.Sim2.

Thus, if there exists an adversary A that can distinguish between

these two hybrids with non-negligible probability, we can design
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a reduction Azk that can break the zero knowledge property of

either Πepk,Πptxt-knwldg or Πzk-L2 which is a contradiction. □

Lemma 12. Hyb
1
is identical to Hyb

2
.

Proof. In Hyb
2
, SimHyb computes and sends X = (a · IP +

b) where (a,b) is extracted from the adversary’s randomness ρ
and IP = Lterm(·) = ⟨

−→u ,−→w ⟩. In Hyb
1
, SimHyb decrypts ⟦X ∗⟧ to

compute X . Since A is honest, notice that even in Hyb
1
, X is in

fact equal to (a · IP + b). Hence, the two hybrids are identically

distributed. □

Lemma 13. Assuming the semantic security of Paillier encryption,
Hyb

2
is computationally indistinguishable from Hyb

3
.

Proof. This is identical to the proof of Lemma 5. □

E PROTOCOL 3: PROOF
E.1 Corrupt Device
Consider a malicious adversary A that corrupts the device D. We

now describe the simulator Sim. Let ZK.Ext denote the extractor
for the zero knowledge protocol Πptxt-knwldg. LetMask.Sim denote

the simulator for the packing scheme.

Enrollment Phase. This is identical to the enrollment phase in

Section D.1. For completeness, we describe it here. Sim does the

following.

• Receive (epk, ⟦u1⟧, ..., ⟦uℓ⟧) from A.

• Run zero knowledge protocols Πepk,Πptxt-knwldg and Πzk-L2
as the verifier with A as the prover with statement epk for

the first proof and statement (epk, ⟦u1⟧, ..., ⟦uℓ⟧) for the
next two proofs. Also, run the extractor ZK.Ext on protocol

Πptxt-knwldg to extract witness {ui , ρi }
ℓ
i=1.

• If either of the proofs fail or the extractor ZK.Ext fails, send
the message “Failed” toA and query the ideal functionality

F as part of enrollment with a vector of norm larger than

ζ , thereby instructing it to deliver the message “Failed” to
the honest service provider.

• Else, do the following:

(1) Compute (sk, vk) ← Gen(1λ).
(2) Compute (⟦u∗

1
⟧, . . . , ⟦u∗t ⟧) using the algorithm Plr.Add(·)

where u∗
1
, . . . ,u∗t is the encoding of

−→u = (u1, . . . ,uℓ).
(3) Send (σ = Sign(sk, (epk, ⟦u∗

1
⟧, . . . , ⟦u∗t ⟧))) to A.

(4) Query the ideal functionality F as part of enrollment with

vector
−→u extracted from ZK.Ext.

Matching Phase: Sim does the following.

• Output from ideal functionality F :Query F with a new

sub-session for the matching phase to receive output bit y.
• Round 1: Receive (σ , {⟦u∗i ⟧}i ∈[t ]) from A.

Round 2:
(1) Output ⊥ if Verify(vk, (epk, ⟦u∗

1
⟧, . . . , ⟦u∗t ⟧),σ ) , 1.

(2) Output “Special Abort” if Verify(vk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧),

σ ) = 1 (AND) (⟦u∗
1
⟧, . . . , ⟦u∗t ⟧,σ ) is not the tuple sent to

A in the Enrollment phase.

(3) Pick a random value IP satisfying the following: IP < T if

y = 0 and T ≤ IP ≤ IPMax if y = 1.

(4) Pick random strings a ∈ Zλ,b ∈ Z(λ ·log IPMax+λ), pad ∈
Z
log IPMax+λ .

(5) Pick 2n random strings X1, . . . ,Xn,Y1, . . . ,Yn such that

(X1+ . . .+Xn ) = (IP+pad) and (Y1+ . . .+Yn ) = (a · IP+b).
(6) Compute and send ⟦X̃⟧ = ⟦Mask.Sim(X1, . . . ,Xn )⟧ and

⟦Ỹ⟧ = ⟦Mask.Sim(Y1, . . . ,Yn )⟧ to A.

• Round 3: Receive otrec from A.

• Round 4: (T → D) T does the following:

(1) Compute (C̃, lab) = Garble.Sim(y).
(2) Let (labpad, laba, labb ) denote the simulated labels for in-

puts (pad,a,b) to the garbled circuit.

(3) Let labX ,Y denote the simulated labels for values (X ,Y )
that are input by A to evaluate the circuit. Compute

otsen = OT.Round2.Sim(labX ,Y , otrec).
(4) Send (C̃, labpad, laba, labb , ot

sen) to A.

• Round 5:
(1) Receive label laby from A.

(2) If laby corresponds to the label for output bity of simulated

labels lab, instruct the ideal functionality to deliver output
to the honest T . Else, instruct F to output ⊥ to the honest

terminal.

We now show that the above simulation strategy is successful

via a series of computationally indistinguishable hybrids where the

first hybrid Hyb
0
corresponds to the real world and the last hybrid

Hyb
7
corresponds to the ideal world.

(1) Hyb
0
: Realworld. In this hybrid, consider a simulator SimHyb

that plays the role of the honest service provider and termi-

nal as in the real world.

(2) Hyb
1
: Run the Extractor. In this hybrid, SimHyb runs the

extractorZK.Ext for the zero knowledge protocolΠptxt-knwldg

as done by Sim in the ideal world to extract witness
−→u =

(u1, . . . ,uℓ). It also queries the ideal functionality in the en-

rollment phase as done by Sim.

(3) Hyb
2
: Special Abort for signature forgery. In this hybrid,

in round 2 of the matching phase, SimHyb outputs “Spe-

cial Abort” if Verify(vk, (epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧),σ ) = 1 (AND)

(epk, ⟦u∗
1
⟧, . . . , ⟦u∗t ⟧,σ ) is not the tuple sent to A in the En-

rollment phase, as done by Sim in the ideal world.

(4) Hyb
3
: SimulateOT. In round 4 of thematching phase, SimHyb

computes the OT sender message by using the simulator

OT.Round2.Sim(·). That is, otsen = OT.Round2.Sim(labX ,Y ,

otrec) where labX ,Y are the labels for the inputs (X ,Y ) to be
used by A as input to the garbled circuit.

(5) Hyb
4
: Simulate garbled circuit. In round 4 of thematching

phase, SimHyb computes a simulated garbled circuit and

simulated labels. That is, (C̃, lab) = Garble.Sim(y).
(6) Hyb

5
: Switch Ciphertexts. In this hybrid, SimHyb com-

putes the ciphertexts in the matching phase as follows:

• Pick a random value IP satisfying the following: IP < T if

y = 0 and T ≤ IP ≤ IPMax if y = 1.

• Pick random strings a ∈ Zλ,b ∈ Z(λ ·log IPMax+λ), pad ∈
Z
log IPMax+λ .

• Pick 2n random strings X1, . . . ,Xn,Y1, . . . ,Yn such that

(X1+ . . .+Xn ) = (IP+pad) and (Y1+ . . .+Yn ) = (a · IP+b).
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• Compute ⟦̃z0⟧, ⟦̃z1⟧ using the algorithm Plr.Enc where

z̃0 = Encode2(X1, . . . ,Xn ) and z̃1 = Encode2(Y1, . . . ,Yn ).
• Pick 2n random strings ρ1, . . . , ρ2n such that (ρ1 + . . . +
ρn ) = 0, (ρn+1 + . . . + ρ2n ) = 0 and ∀i, ρi ∈ Z2k . Let ρ̃0 =
Encode2(ρ1, . . . , ρn ) and ρ̃1 = Encode2(ρn+1, . . . , ρ2n ).
• Send ⟦X̃⟧ = ⟦Mask(̃z0 + ρ̃0)⟧, ⟦Ỹ⟧ = ⟦Mask(̃z1 + ρ̃1)⟧ to
A.

(7) Hyb
6
: Masking Simulator. In this hybrid, SimHyb runs

the simulatorMask.Sim of the packing scheme to compute

⟦X̃⟧, ⟦Ỹ⟧ in round 2 instead of running the honest masking

algorithm.

(8) Hyb
7
: Ideal world. In this hybrid, SimHyb instructs the

ideal functionality to either deliver output ⊥ or the real

output to the honest terminal as done by Sim after round 5.

This hybrid corresponds to the ideal world.

We now show that every pair of successive hybrids is computa-

tionally indistinguishable.

Lemma 14. Assuming the proof of knowledge property for pro-
tocol Πptxt-knwldg and soundness of protocols Πepk,Πzk-L2, Hyb0 is
computationally indistinguishable from Hyb

1
.

Proof. This is identical to the proof of Lemma 6. □

Lemma 15. Assuming the unforgeability of the signature scheme,
Hyb

1
is computationally indistinguishable from Hyb

2
.

Proof. This is identical to the proof of Lemma 7. □

Lemma 16. Assuming the security of the oblivious transfer protocol
against a malicious receiver, Hyb

2
is computationally indistinguish-

able from Hyb
3
.

Proof. The only difference between the two hybrids is the way

the OT sender’s message in round 4 of thematching phase are gener-

ated. InHyb
2
, SimHyb generates the OT sender’s message honestly

using the labels for the values (X ,Y ). In Hyb
3
, the OT sender’s mes-

sages are also generated using the simulator OT.Round2.Sim(·). It
is easy to see that if there exists an adversary A that can distin-

guish between these two hybrids with non-negligible probability,

we can design a reduction AOT that can break the security of the

oblivious transfer protocol against a malicious receiver which is a

contradiction. □

Lemma 17. Assuming the security of the garbling scheme, Hyb
3

is computationally indistinguishable from Hyb
4
.

Proof. The only difference between the two hybrids is the way

the garbled circuit and the associated labels are generated. In Hyb
3
,

SimHyb computes them honestly as follows: (C̃, lab) = Garble(C)
where circuit C is described in Figure 6. InHyb

4
, SimHyb simulates

them both as follows: (C̃, lab) = Garble.Sim(y) where y is the

output from the ideal functionality. It is easy to see that if there

exists an adversary A that can distinguish between these two

hybrids with non-negligible probability, we can design a reduction

A
C̃
that can break the security of the garbling scheme which is a

contradiction. □

Lemma 18. Assuming the circuit privacy of Paillier encryption,
Hyb

4
is computationally indistinguishable from Hyb

5
.

Proof. This is identical to the proof of Lemma 3. □

Lemma 19. Assuming the security of the packing scheme, Hyb
5
is

statistically indistinguishable from Hyb
6
.

Proof. This is identical to the proof of Lemma 4. □

Lemma 20. Hyb
6
is statistically indistinguishable from Hyb

7
.

Proof. The difference between the two hybrids is that in Hyb
7
,

the honest terminal gets its output via the ideal functionality. In

more detail, SimHyb instructs the ideal functionality to deliver

either the actual output bit y or ⊥ based on its computation after

round 5 of the matching phase. Similar to the proof of Lemma 10,

the strings a,b, pad are picked by SimHyb uniformly at random

in round 2, and the adversary only learns X = (IP + pad) and
Y = (a · IP + b). Observe that in both hybrids, if the adversary

uses input strings (X ′,Y ′) to evaluate the garbled circuit such that

(a·(X ′−pad)+b) , Y ′, the honest terminal would end up outputting

⊥. The only difference between the two hybrids is if the adversary

can input a pair of strings (X ′,Y ′) , (X ,Y ) such that (a ·(X ′−pad)+
b) = Y ′ and either of the following happens: (i)(X ′ − pad) ≤ T but

T ≤ (X − pad) (or) (ii)T ≤ (X ′ − pad) but (X − pad) ≤ T . However,
since (a,b, pad) are picked uniformly at random, the probability

that this can occur is negligible and this completes the proof. □

E.2 Corrupt Provider, Terminal
Consider a semi-honest adversary A that jointly corrupts the ser-

vice provider SP and terminal T . We now describe the simula-

tor Sim. Let ZK.Sim,ZK.Sim1,ZK.Sim2 denote the simulator for

the zero knowledge protocols Πepk,Πptxt-knwldg and Πzk-L2 respec-

tively.

Enrollment Phase: Sim does the following.

• Pick vector
−→u = (u1, . . . ,uℓ) uniformly at random.

• Compute (esk, epk) ← Plr.Setup(1λ) and send (epk, ⟦u1⟧, ...,
⟦uℓ⟧) to A.

• Run the simulators ZK.Sim,ZK.Sim1,ZK.Sim2 for the zero

knowledge protocols Πepk,Πptxt-knwldg and Πzk-L2 from Sec-

tion 8 where A is the verifier. epk is the statement for the

first proof and (epk, ⟦u1⟧, ..., ⟦uℓ⟧) is the statement for the

next two.

• Receive σ from A.

Matching Phase: Before the phase begins, Sim gets input (
−→w , ρ,y)

where
−→w is A’s input, ρ is A’s randomness and y is the output bit.

Sim does the following:

• Round 1: Send (σ , epk, {⟦u∗i ⟧}i ∈[t ]) to A.

• Round 2: Receive (⟦X̃⟧, ⟦Ỹ⟧) from A.

• Round 3: Send otrec ← OT.Round1((X ,Y ); ρot) toA where

X ,Y are picked uniformly at random.

• Round 4 Receive (C̃, labpad, laba, labb , ot
sen) from A.

• Round 5: From A’s randomness ρ, extract the label laby of

the garbled circuit corresponding to the output bit y. Send
laby to A.

We show that the above simulation strategy is successful via

a series of computationally indistinguishable hybrids where the
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first hybrid Hyb
0
corresponds to the real world and the last hybrid

Hyb
4
corresponds to the ideal world.

(1) Hyb
0
: Realworld. In this hybrid, consider a simulator SimHyb

that plays the role of the honest device as in the real world.

(2) Hyb
1
: Simulate Proofs. In this hybrid, SimHyb runs the

simulators ZK.Sim,ZK.Sim1,ZK.Sim2 for the zero knowl-

edge protocols Πepk,Πptxt-knwldg and Πzk-L2 as done by Sim
in the enrollment phase of the ideal world.

(3) Hyb
2
: Change computation of output label. In this hy-

brid, in round 5 of the matching phase, SimHyb no longer

evaluates the garbled circuit C̃ to compute the output label

laby. Instead, laby is extracted from the adversary’ random-

ness ρ corresponding to the output y as done by Sim in the

ideal world.

(4) Hyb
3
: Switch OT receiver inputs. In this hybrid, in round

3 of the matching phase, SimHyb generates the OT receiver’s

message by picking its inputs X ,Y uniformly at random as

done by Sim.

(5) Hyb
4
: Switch Ciphertexts. In this hybrid, SimHyb picks

input vector
−→u uniformly at random as done by Sim . This

hybrid corresponds to the ideal world.

We now show that every pair of successive hybrids is computa-

tionally indistinguishable.

Lemma 21. Assuming the zero knowledge property for protocols
Πepk,Πptxt-knwldg and Πzk-L2,Hyb0 is computationally indistinguish-
able from Hyb

1
.

Proof. This is identical to the proof of Lemma 11. □

Lemma 22. Hyb
1
is identical to Hyb

2
.

Proof. In Hyb
2
, SimHyb computes the output label laby corre-

sponding to output bit y from the randomness used to generate the

garbled circuit C̃. This randomness is extracted from the adversary’

randomness ρ. InHyb
1
, SimHyb evaluates the garbled circuit using

the labels obtained as output of the OT protocol (with input X ,Y )
to generate the label laby. Since A is honest, the garbled circuit,

OT sender messages in round 4 and the ciphertexts in round 2 are

honestly generated and so, notice that even in Hyb
1
, laby in fact

indeed corresponds to the label for the output bit of the protocol -

y. Hence, the two hybrids are identically distributed. □

Lemma 23. Assuming the security of the oblivious transfer protocol
against a semi-honest sender, Hyb

2
is computationally indistinguish-

able from Hyb
3
.

Proof. The only difference between the two hybrids is the way

the OT receiver’s message is generated in round 3 of the match-

ing phase. In Hyb
2
, SimHyb generates them using the receiver’s

inputs (X ,Y ) computed by decrypting and decoding the ciphertexts

received from the sender in round 2 while in Hyb
3
, the receiver’s

inputs (X ,Y ) are picked uniformly at random. Thus, if there exists

an adversary A that can distinguish between these two hybrids

with non-negligible probability, we can design a reduction AOT
that can break the security of the oblivious transfer protocol against

a semi-honest sender which is a contradiction. □

Parameters: A Paillier public key pk = (N , д), statement st =
(c1, . . . , cn ) and witness wit = ((x1, r1), . . . , (xn , rn )).
Protocol:

• P samples s ← ZN and sends ⟦s ;u⟧← Plr.Enc(pk, s ;u) to V .

• V sends e1, ..., en ← Z∗N to P .
• P sends w := s +

∑
i eixi mod N , and z := uдt

∏
i r

ei
i mod N 2

to V where t is defined by tN +w = s +
∑
i eixi .

• V outputs accept if ⟦w ; z⟧ = ⟦s ;u⟧ ·∏i c
ei
i and otherwise reject.

Figure 9: ZK protocol Πptxt-knwldg for batch proving knowl-
edge of Paillier plaintexts.

Lemma 24. Assuming the semantic security of Paillier encryption,
Hyb

3
is computationally indistinguishable from Hyb

4
.

Proof. This is identical to the proof of Lemma 5. □

F ZERO KNOWLEDGE
F.1 Proof: Knowledge of Plaintexts
Honest Verifier Zero Knowledge. Consider a honest-verifier A.

The strategy of the simulator Sim on input the verifier’s randomness

(e1, ..., en ) (each of which are randomly chosen in ZN ) is as follows:

• Samplew ← ZN , z ← ZN 2 .

• Define ⟦s;u⟧ := дwzN /
∏

i c
ei
i

• Send ⟦s;u⟧ in round 1 and (w, z) in round 3 to A.

Lemma 25. Assuming the semantic security of Paillier encryption,
the above simulation strategy is successful.

Proof. Observe that the checks performed by A at the end of

the protocol succeed in both the real execution and the simulated

one. Therefore, the only difference between the two hybrids is

the way the ciphertext ⟦s;u⟧ is computed. The rest of the proof is

identical to the proof of Lemma 5. □

Proof of knowledge. Consider a malicious prover A. We first

describe the strategy of the extractor ZK.Ext below:

• Receive the first message a from Adv.
• Send random

−→e 0 = (e0,1, . . . , e0,n ) in round 2 to receive

output (w0, z0) in round 3 from A.

• For each i ∈ [n], do the following:

(1) Rewind the adversary to the beginning of round 2.

(2) Send
−→e i = (e0,1, . . . , e0,i + 1, e0,i+1, . . . , e0,n ) in round 2

to receive output (wi , zi ) in round 3 from A.

(3) Compute the ith plaintext as xi = (wi − w0) and the

corresponding randomness as ri =
zi
z0 .

• Output {(xi , ri )}i ∈[n].

We now argue that the above extractor successfully extracts a wit-

ness {(xi , ri )}i ∈[n] with overwhelming probability. We will prove

this by reaching a contradiction. Lets assume that there exists a PPT

cheating prover A such that it succeeds in generating accepting

proofs even though the extraction of the witness fails. Since the

adversary generates accepting proofs, for all 0 ≤ i ≤ n it must be

the case that:

дwi zNi = a ·
∏
j
c
ei , j
j
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Parameters: A Paillier public key pk = (N , д), a value y ∈ Z, state-
ment st = (c1 = ⟦x1; r1⟧, . . . , cn = ⟦xn ; rn⟧), and witness wit =
((x1, r1), . . . , (xn , rn )).
Protocol:

• V uniformly samples a prime N̂ < N .

• V samples random α ← Z
2
λ , ρ1, ..., ρn , β , ˆβ ← ZN . Then it

sends P the following:

– ⟦wi⟧ := α⟦xi⟧ + ⟦ρi⟧ for all i ∈ [n],
– ⟦v⟧ := (

∑
i∈[n](−2αρi⟦xi⟧ − ρ2i )) + ⟦β⟧,

– ⟦v̂⟧ := (
∑
i∈[n] ci⟦xi⟧) + d + ⟦ ˆβ⟧ where ci := (−2αρi

mod N̂ ), d := (
∑
i∈[n] −ρ2i mod N̂ ),

– N̂ .

• P decrypts ⟦wi⟧, ⟦v⟧, ⟦v̂⟧ and sends the following to V :

– z := v +
∑
i∈[n]w2

i mod N ,

– ẑ := v̂ +
∑
i∈[n]w2

i mod N̂ .

• V outputs accept if z = yα 2 + β and ẑ ≡N̂ yα 2 + ˆβ . Otherwise,
V outputs reject.

Figure 10: ZK protocol Πzk-L2 for proving the L2-norm.

Therefore, for all 1 ≤ i ≤ n:

дwi zNi

дw0zN
0

=
a ·

∏
j c

ei , j
j

a ·
∏

j c
ei , j
j

This implies дwi−w0

( zi
z0

)N
= ci based on the way we pick

−→e i . This

implies that ci is of the form дxi rNi where xi = (wi − w0) and

ri =
zi
z0 . This exactly corresponds to a valid Paillier ciphertext

and is indeed the tuple output by the extractor ZK.Ext for each
index i . Thus, the above extractor successfully extracts a witness

{(xi , ri )}i ∈[n] with overwhelming probability and this completes

the proof.

F.2 Proof: L2 Norm
Completeness for the first check that z = yα2+β and Πrange is easy

to observe. For the second check, the core observation is that the

underlying computation never wraps around the Paillier modulus

N . Consider the following equalities:

ẑ =
∑
i
ŵ2

i + v̂ (1)

=
∑
i
α2x2i + 2αxiρi + ρ

2

i − cixi + d +
ˆβ (2)

≡N̂

∑
i
α2x2i + 2αxiρi + ρ

2

i − 2αρixi − ρ
2

i +
ˆβ (3)

=
∑
i
α2x2i +

ˆβ (4)

Equality 2 holds since wi = αxi + ρi and v̂ = (
∑
i cixi ) + d + ˆβ

holds over the integers with overwhelming probability. In particular,

v̂ , (
∑
i cixi ) + d + ˆβ requires N − N̂ ≤ ˆβ < N which is negligible.

Equivalency 3 holds due to ci ,d being defined modulo N ′. The final
equality holds trivially. Therefore the verifier will always accept

for an honest prover.

We now prove honest verifier zero knowledge and soundness.

Honest Verifier Zero Knowledge. Consider a honest-verifier

A. The strategy of the simulator Sim is described below. Sim
takes as input the statement ⟦x1⟧, ..., ⟦xn⟧,pk and the randomness

(α,α, β, ˆβ, ρ1, ..., ρn, ρ1, ..., ρn ) which the verifier will use.

• Compute and send (z = yα2 + β, ẑ = yα2 + ˆβ) to A.

We show that the above simulation strategy is successful.

(1) Hyb
0
: Realworld. In this hybrid, consider a simulator SimHyb

that plays the role of the honest prover.

(2) Hyb
1
: Switch (z, ẑ). In this hybrid, simulator SimHyb com-

putes z = (yα2+β) and ẑ = (yα2+ ˆβ). This now corresponds

to the simulated execution.

We now show that every pair of successive hybrids is computation-

ally indistinguishable.

Lemma 26. Hyb
0
is identical to Hyb

1
.

Proof. In Hyb
1
, SimHyb computes and sends z = (yα2 + β)

and ẑ = (yα2 + ˆβ) where (α, β,bb) are extracted from the adver-

sary’s randomness. In Hyb
0
, SimHyb decrypts {⟦wi⟧}i ∈[n], ⟦v⟧

to compute (z, ẑ). Since A is honest, notice that even in Hyb
0
,

z = ẑ = (yα2 + β) and ẑ = (yα2 + ˆβ). Hence, the two hybrids are

identically distributed. □

Soundness. Consider a malicious prover A that produces accept-

ing proof transcripts but

∑
i ∈[n] x

2

i , y. We will show that this

event can happen only with negligible probability.

Since the verification succeeds, it implies that:

z = yα2 + β and y =
∑
i
x2i + e

for some e ∈ Z∗N . This means that

z = α2
∑
i
x2i + β + α

2e = γ + α2e mod N

whereγ := α2
∑
i x

2

i +β . Note that e is known to the prover.γ is also

known to the prover - it decrypts the ciphertexts from the verifier

and can compute γ = v +
∑
i ∈[n]w

2

i . If the prover can compute

z = γ + α2e , this implies that the prover knows α and hence,

can also deduce β (since γ is essentially α2
∑
i x

2

i + β). However,
β is a uniformly random value chosen by the verifier and only

included in the stringv (that is encrypted). Thus, the probability that

the prover learns β should be negligible which is a contradiction.

Hence, the probability that the prover can compute z = γ + α2e is
negligible which implies that e = 0. That is, we can conclude that

z = (α2
∑
i x

2

i + β mod N ).
Similarly, since the verification succeeds, the second equation

ẑ ≡N̂ yα2 + ˆβ also holds. Then, for the same reason as above, it

must hold that ẑ = (α2
∑
i x

2

i +
ˆβ mod N̂ ).∑

i
x2i ≡N

z − β

α2
≡N y =⇒ ∃t ∈ Z∗,

∑
i
x2i = y + Nt

∑
i
x2i ≡N ′

ẑ − ˆβ

α2
≡N ′ y =⇒ ∃s ∈ Z∗,

∑
i
x2i = y + N

′s

Rewriting the implication we obtain Nt = N ′s . This means that

the prover must choose t to be a multiple of N ′. However, since N ′

is prime and chosen after all of the xi are fixed, the prover can only

do this with negligible probability.
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