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Abstract. Point randomization is an important countermeasure to pro-
tect Elliptic Curve Cryptography (ECC) implementations against side-
channel attacks. In this paper, we revisit its worst-case security in front
of advanced side-channel adversaries taking advantage of analytical tech-
niques in order to exploit all the leakage samples of an implementation.
Our main contributions in this respect are the following: first, we show
that due to the nature of the attacks against the point randomization
(which can be viewed as Simple Power Analyses), the gain of using an-
alytical techniques over simpler divide-and-conquer attacks is limited.
Second, we take advantage of this observation to evaluate the theoretical
noise levels necessary for the point randomization to provide strong secu-
rity guarantees and compare different elliptic curve coordinates systems.
Then, we turn this simulated analysis into actual experiments and show
that reasonable security levels can be achieved by implementations even
on low-cost (e.g. 8-bit) embedded devices. Finally, we are able to bound
the security on 32-bit devices against worst-case adversaries.

Keywords: Side-Channel Analysis, Elliptic Curve Cryptography, Point
Randomization, Belief Propagation, Single-Trace Attacks

1 Introduction

Elliptic Curve Cryptography (ECC) is a building block of many security com-
ponents and critical applications including: passports, ID cards, banking cards,
digital certificates and TLS. Its relative efficiency (compared to other public-
key cryptosystems) is usually considered as an advantage for implementation in
small embedded devices. As a result, it is also a natural target for side-channel
attackers. In this context, the Elliptic Curve Scalar Multiplication (ECSM) op-
eration is critical, and many attacks against it are described in the literature [24,
8, 3, 6, 28, 16, 29]. These attacks can exploit different sources of secret-dependent
leakages, under different assumptions on the attack model. As a result, coun-
termeasures have been developed, for example based on regular execution [19],
scalar randomization [7] and point blinding/randomization [8].



In the last years, the research on Side-Channel Analysis (SCA) has been
shifting towards more powerful attacks in order to exploit as much available
information as possible, with the goal to assess (or at least estimate) the worst-
case security level of cryptographic implementations. For example the use of
Soft-Analytical Side-Channel Attacks (SASCA) in the context of AES imple-
mentations [34, 14, 12] and more recently lattice-based cryptography [30], aim
at exploiting more secret-dependent leakages that cannot be easily exploited by
classical Divide-and-Conquer (D&C) attacks (e.g. the leakage of the MixColumns
operation for the AES). Following this direction, Poussier et al. designed a nearly
worst-case single-trace horizontal attack against ECSM implementations [29].
Their attack exploits all the single-precision multiplications executed during one
step of the Montgomery ladder ECSM. Since this attack relies on the knowledge
of the input point of the ECSM, it seems natural to use point randomization as
a countermeasure against it, and the evaluation of this countermeasure was left
as an important direction for further research.

In this work, we aim at assessing the possibility of recovering the randomized
input point so that the attack of Poussier et al. (or more generally horizontal
attacks) can be applied again. Besides its importance for the understanding
of side-channel protected ECC implementations in general, we note that it is
also of interest for pairing-based cryptography [23] and isogeny-based cryptog-
raphy [25]. Our first contribution in this respect is to show how to efficiently
apply SASCA in the case of point randomization by targeting field multiplica-
tions. We study the impact of different parameters of the implementation’s graph
representation required to perform SASCA. Then, in order to compare the ef-
ficiency of SASCA to a (simpler) D&C method, we extend the Local Random
Probing Model (LRPM) introduced by Guo et al. [15] to our use case. Using
this extension, we show that for realistic noise levels, SASCA does not provide a
significant gain over the D&C strategy, especially when augmented with enumer-
ation. The latter matches the intuition that such analytical attacks work best
in the continuous setting of a Differential Power Analysis (DPA), while we are
in the context of a Simple Power Analysis (SPA). Yet, we also show that this
is not the case for very high Signal-to-Noise Ratio (SNR) values, especially for
32-bit implementations and the Jacobian coordinates system.

Based on this result, we then infer on the required SNR for such implementa-
tions to be secure against SCA. We show that it is relatively low (in comparison,
for example, with the high noise levels required for practically-secure higher-
order masked implementations [2, 5]), and should enable secure implementations
even in low-cost (e.g. 8-bit) micro-controllers. We also compare different elliptic
curve coordinates systems w.r.t. their side-channel resistance against advanced
side-channel attackers targeting the point randomization countermeasure. In ad-
dition, we evaluate the concrete security of the point randomization countermea-
sure on such low-cost devices. For this purpose, we consider two different options
for implementing multi-precision multiplications. Interestingly, we observe that
the level of optimization of the multiplication significantly impacts the level of
leakage of the implementation. Concretely, we show that, while a naive school-
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book multiplication leads to successful single-trace attacks on an Atmel ATmega
target, the operands caching optimization reduces the SNR enough such that at-
tacks become hard, even with high enumeration power.

Finally, we discuss the cases of two other implementations, one using Jacobian
coordinates on an 8-bit device, and one using homogeneous coordinates on a 32-
bit device. Based on our detailed analyses of 8-bit implementations we show how
the guessing entropy of the randomized point can be bounded using the LRPM
for 32-bit implementations even against worst-case attackers.

2 Background

2.1 Elliptic curve cryptography

In the following, we will introduce the necessary background on elliptic curve
cryptography for the understanding of this paper. We only consider elliptic
curves over a field of prime characteristic > 3. An elliptic curve E(Fp) over
a field of prime characteristic p 6= 2,3 can be defined using a short Weierstrass
equation:

E : y2 = x3 + ax+ b,

where a, b ∈ Fp and 4a3 + 27b2 6= 0. Associated to a point addition operation +,
the points (x, y) ∈ Fp2 verifying the equation E, along with the point at infinity
O as the neutral element, form an Abelian group. Point arithmetic (addition
and doubling) in affine coordinates (using 2 coordinates x and y) requires field
inversions, which are expensive compared to other field operations. In order
to avoid them, most elliptic curve implementations use projective coordinates
(X : Y : Z), such as the homogeneous ones where x = X/Z and y = Y/Z with
X,Y, Z ∈ Fp and Z 6= 0. The equation of the curve is then given by:

Y 2Z = X3 + aXZ2 + bZ3,

so that each point (x, y) can be mapped to (λx : λy : λ) for any λ ∈ F∗p.
Alternatively, considering the Jacobian projective Weierstrass equation:

Y 2 = X3 + aXZ4 + bZ6,

a point (x, y) of the curve can this time be represented using so-called Jacobian
projective coordinates as (λ2x : λ3y : λ), with λ ∈ F∗p.

In the rest of this paper, the NIST P-256 curve [31] is used to illustrate the
principle of our security assessment. Note that this choice is not restrictive, as
the study is fully independent of the curve’s choice.

2.2 Problem statement

At CHES 2017, Poussier et al. designed a nearly worst-case single-trace hori-
zontal differential SCA (HDPA) against an implementation of the Montgomery
ladder ECSM [29]. This attack relies on the knowledge of the input point and
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the operations executed. It aims at distinguishing between the two possible se-
quences of intermediate values depending on the processed scalar bit. Once the
first bit has been recovered, the current state of the algorithm is known. The
following intermediate values corresponding to the following scalar bit can then
also be predicted and matched against the side-channel leakages.

Randomizing the input point naturally prevents HDPA: considering an im-
plementation using projective coordinates, for each execution, a random value
λ ∈ F∗p is generated and the representation of the point P = (x, y) is replaced
by (λx, λy, λ) before the scalar multiplication takes place. Thus the hypothesis
space to recover one bit using HDPA is increased from 2 to 2|λ|+1, with |λ| the
size of λ in bits. If |λ| is large enough, it renders the attack impractical.

Given that HDPA is close to a worst-case attack against the ECSM, we
want to investigate the security of the point randomization that is considered
as its natural countermeasure. More precisely: could a side-channel adversary
exploiting the additional information brought by the randomization process itself
recover a sufficient amount of information about λ (e.g. by reducing the number
of λ candidates to an enumerable set) so that an HDPA can again be applied.
For that purpose, we examine two types of profiled attacks that are detailed in
the next section.

3 Attacking and evaluating the point randomization

Let’s consider the homogeneous projective coordinates randomization method
previously described. For each execution, a modular multiplication is performed
between the coordinates of the input point (for instance the public base point
G) and a random value λ. For an elliptic curve system, the implementation
of an optimized modular multiplication depends on the underlying field and of
various compromises. For instance, one can perform first a multiplication then
a modular reduction. Alternatively, these steps can be interleaved to reduce
memory footprint. In order to illustrate our two approaches to attack the point
randomization, we first focus on this initial multiplication, for which an abstract
architecture is given in Fig. 1. The Figure represents the overall functioning of a
school-book like multiplication of two 256-bit operands yielding a 512-bit result,
implemented on an 8-bit platform: {λ0, λ1, ..., λ31} correspond to the words of λ,
{xG0

, xG1
, ..., xG31

} to the known words of xG (the x coordinate of the base point
G), and c = {c0, c1, ..., c63} to the 512-bit result. Every word of λ is multiplied
by every word of xG. The resulting 2048 low (R0) and high (R1) parts of the
single-precision multiplications are then combined in a series of additions (shown
by the accumulation block in Fig. 1) to yield the 64-word result.

Given this abstract view of multiplication, we identified two profiled single-
trace side-channel attacks that can be used to defeat the point randomization
countermeasure. Our aim is to compare them to assess the most optimal secu-
rity evaluation strategy. We emphasize that both methods can be used, indepen-
dently of the point randomization algorithm.
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Fig. 1: Multi-precision multiplication of 256-bit operands on an 8-bit device.

3.1 Horizontal divide-and-conquer attack with enumeration

The Horizontal Divide-and-Conquer attack (HD&C) is applied independently
and similarly to each word of λ. Following Fig. 1, λ0 is multiplied by 32 known
values {xG0

, xG1
, ..., xG31

} resulting in the lower parts and the higher parts:
(λ0 × xGj )%256 and (λ0 × xGj )\256 (where % and \ denote the modulus and
the integer division) for j ∈ {0, 1, ..., 31}. The attacker exploits the direct leakage
on the value of λ0 but additionally observes the leakage of these 64 intermediates.
The side-channel information is extracted by characterizing the joint conditional
distribution:

Pr[λ0|L(λ0),L((λ0 × xG0
)%256), ...,L((λ0 × xG31

)\256)],

where L(v) denotes the side-channel leakage of a value v. Assuming the algorith-
mic independence of the targeted intermediates, which is verified in this case,
and additionally the independence of the noise (i.e. that the leakage of each
intermediate is independent of the leakage of other intermediates)1, the joint
distribution can be factorized into:

Pr[λ0|L(λ0)]×
31∏
j=0

Pr[λ0|L((λ0 × xGj
)%256)]× Pr[λ0|L((λ0 × xGj

)\256)].

For a given word of λ, the exploitation of this information gives to the attacker
a list of probabilities for each value this word can take. If the correct word is

1 This is referred to as Independent Operations’ Leakages (IOL) and is a commonly
used assumption in SCA and was shown to be reasonable [13]. For our case study it
can be easily verified by plotting a covariance matrix.
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ranked first for all the λi, the attack trivially succeeds. However, recovering λ
directly is not necessary. Indeed, a D&C attack allows the use of enumeration as
a post-processing technique [32]. As a result, reducing the entropy of λ until the
value of the randomized point can be reached through enumeration is enough.

We note that there is no straightforward way to verify if the correct point
has been found. Indeed, only the result of its multiplication by the full value of
the secret scalar k is revealed at the end of the ECSM. Yet, the attacker can
feed the points given by enumeration as inputs to (e.g.) an HDPA attack. If the
right point has been recovered, it is very likely that the HDPA will be able to
easily distinguish the scalar bits. Otherwise if the hypothesis on the input point
is wrong it will assign the possible values on the scalar bits equal probabilities.

3.2 Soft analytical side-channel attack

SASCA was introduced in [34] by Veyrat-Charvillon et al. as a new approach that
combines the noise tolerance of standard DPA with the optimal data complexity
of algebraic attacks. SASCA works in three steps: first it builds a large graphical
model, called a factor graph, containing the intermediate variables linked by con-
straints corresponding to the operations executed during the target algorithm.
Then it extracts the posterior distributions of the intermediate values from the
leakage traces. Finally, it propagates the side-channel information throughout
the factor graph using the Belief Propagation (BP) algorithm [20], to find the
marginal distribution of the secret key, given the distributions of all intermedi-
ate variables. SASCA exploits a larger number of intermediates in comparison
to D&C attacks as illustrated in Fig. 1. For instance, it can use the leakage com-
ing from the addition operations in the accumulator that combine intermediates
that depend on multiple words of λ. The optimized information combination
approach of SASCA implies that it is an appropriate tool to approximate the
worst-case security of cryptographic implementations. In the following, we pro-
vide a comprehensive description of BP based attacks and related works.

Factor graph. A factor graph is a bipartite graph representing the factor-
ization of a function. The nodes of the graph are the variables of the function
and the factors of which the function is a product of. Each variable node (rep-
resented by a circle) is connected to a factor node (represented by a square or a
rectangle) by an edge if the factor depends on it. For example the factor graph
of the computation: z = Sbox(x⊕ k) is given by:

x f⊕

k

y fSbox z

f⊕(x, k, y) =

{
1 if x⊕ k = y,
0 otherwise.

fSbox(y, z) =

{
1 if Sbox(y) = z,
0 otherwise.
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Belief Propagation (BP). The belief propagation or sum-product algorithm
is a message-passing algorithm for inference on graphical models such as fac-
tor graphs. It allows to efficiently compute the exact marginal distribution of a
variable in the graph if it is tree-like. We follow the description of the belief prop-
agation algorithm given by MacKay [26]. We denote by x the set of N variables
in the graph {xn}Nn=1. The mth factor is denoted by fm and the set of variables
it depends on by xm. The set of variables xm excluding xn is denoted xm|n.
We refer by N (m) to the set of indices of xm, and by N (m)|n to the set N (m)
excluding n. We also denote the set of factors in which a variable xn is involved
by M(n), and the set of factors in which a variable xn is involved excluding fm
by M(n)|m. The belief propagation algorithm works by passing two different
types of messages on the edges of the graph:

From variable to factor: qn→m(xn) =
∏

m′∈M(n)|m
rm′→n(xn).

From factor to variable: rn→m(xn) =
∑

xm|n

(
fm(xm)

∏
n′∈N (m)|n

qn′→m(x′n)
)
.

At first, all messages from variables to factors are initialized to the variables’
probabilities or to 1 (assuming uniformity) and to 1 also for initial messages
from factors to variables. Then, a node sends a message to a neighbor based on
all the messages received from its other neighbors and following the previously
described belief propagation rules. The number of steps required to get all mes-
sages to converge is equal to the longest path in the graph (the diameter). Once
convergence occurs, the marginal distribution of a variable xn can be recovered
by multiplying together all its incoming messages:

∏
m∈M(n)

rm→n(xn) .

The BP algorithm returns the exact marginals of variables when the graph
is a tree. When the graph contains cycles, the BP algorithm can still be applied
by initializing the messages and iterating the BP multiple times until the con-
vergence of the messages or no significant difference occurs after the message
passing. This method is called loopy belief propagation and usually provides a
good approximation of the marginals.

Local Random Probing Model (LRPM). Running the BP algorithm on
a factor graph of a cryptographic implementation is time-consuming. Its time
complexity is dominated by (2vs)deg (corresponding to the factor to variable
message update) with vs the variable size (for e.g. 8 bits or 32 bits) and deg
the degree of the largest factors (number of variables connected to it). This
message passing is then repeated for each factor and for the number of iterations
required for the BP algorithm to converge. For that reason, Guo et al. introduced
the Local Random Probing Model (LRPM) [15], which bounds the information
that can be obtained by decoding the factor graph using BP without running
the BP algorithm. Concretely, the LRPM propagates the amount of information
collected throughout the graph using approximations employed in coding theory.
Assuming that the variables’ distributions are not too correlated, information
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coming from neighboring factors is summed at variable nodes. At factor nodes the
information coming from neighboring variables is multiplied. The information is
not in bits but instead computed in base log the size of the variables (such that
the information is always between 0 and 1). These rules are depicted on Fig. 2
and we refer to [34] for more details on the LRPM.

F

a

b

c v

F

G

H

MIF→c = MIa→F ×MIb→F MIv→H = MIF→v +MIG→v

Fig. 2: LRPM information propagation rules.

The LRPM provides an upper bound on the information propagated through
a generic factor function, but generally the actual information propagated by a
specifc logic or arithmetic operation is significantly lower. For instance, Guo
et al. noted that information can be diluted when propagated through a XOR
operation: when XORing two values with partial information, we may end with
even less information on the result than their product. Based on this observation,
they refine the model by introducing the XOR loss: a coefficient 0 < α < 1
that is multiplied by the information and reduces the model’s approximation for
the XOR operation to a value of information that is closer to the one that is
observed. In practice, α is estimated as the ratio between the upper bound on
the information evaluated using the model and the information estimated from
actually running BP on the XOR factor.

4 Analysis of the field multiplication factor graph

Prior to comparing the attacks identified in Section 3, we investigate the appli-
cation of SASCA on a multi-precision multiplication factor graph. The nodes
included in the graph and its structure can impact the performance of the BP
algorithm. In the following, we investigate the impact of these characteristics.
For this purpose, we build the factor graph of the first block from the assembly
description of the operand-caching multiplication2 of Hutter and Wenger [18,
Appendix A] on an 8-bit micro-controller. This graph G is presented in Fig. 3.
Given the size of this graph, it is possible to run multiple experiments of the BP
algorithm to get meaningful averaged results. The conclusions drawn from our
analysis can be generalized to the full graph and any multiplication that follows
the abstract architecture in Fig. 1 because of its very regular structure.

2 The operand-caching multiplication is an optimized schoolbook-like multiplication
that minimizes the number of operand word loads. It is specifically designed for small
embedded devices in order to improve efficiency by minimizing memory operations.

8



�0

�1

×

c30

ACC0
0

R00

R10

+ ACC0
1

carry0

+ ACC1
1

R01

R11

+ c31

carry2

+ ACC0
2

carry3

+ ACC1
2

R02

R12

+ c32

carry4

+
c33

carry1

ACC13

Multiplication	results

Carry	bits

×

×

×

Fig. 3: Factor graph G: first block of the operand caching multiplication.

There are two aspects to consider before running BP on this graph that we
detail and investigate hereafter. First, G is a cyclic graph and BP convergence
to the correct marginals is not guaranteed [26]. Second, while for previous appli-
cations of SASCA to the AES [34] and lattice-based encryption [30], the factor
graphs contained factors of at most degree 3, G contains factors of degree 4 and
5 due to the additions with carry propagations. Although carry bits are small
variables, we note that their values and possibly errors on their values may ripple
through all the following steps of the computation. To investigate the effect of
cycles and carry bits, we construct four other factor graphs. G no cycles is an
acyclic version of G built by following the strategy from Green et al. [12]: re-
moving factors causing the cycles and severing edges. G no carry is constructed
by deleting carry bit variable nodes and integrating both possible values of a
carry into the factors as described by the diagram below, where the carry (resp.
carry’) variable node corresponds to the input (resp. output) carry. It is given by
the diagram below for the addition with carry operation but is done similarly for
all carry operations. Finally, G no carry no cycles is G no carry where remaining
cycles have been removed.

adc no
carry

adc

carry’

carry

x

y

r x

y

r

with fadc and fadc no carry defined as:

fadc(x, y, carry, r, carry′) =

{
1 if r = (x+ y + carry) % 256 and carry′ = (x+ y + carry)/256,
0 otherwise.
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fadc no carry(x, y, r) =

{
1 if r = (x+ y) % 256 or r = (x+ y + 1) % 256,
0 otherwise.

To compare the different graphs, we use simulated leakages for all intermedi-
ate variables (Hamming weight leakage with Gaussian noise). We estimate the
single-trace attack success rate (SR), average across λ0 and λ1 for different noise
levels. The results of these experiments are plotted in Fig. 4. First, we notice that
for high SNR values, the cyclic graphs (G and G no carry) perform better than
the acylic ones (G no cycles and G no carry no cycles). This can be explained by
the fact that cycles typically exacerbate side-channel errors but in this case are
less detrimental since errors from side-channel observations are less likely to oc-
cur for high SNR. Additionally, the acyclic graphs are constructed by removing
factors which contribute the most to the connectedness of the graph and as a re-
sult lose some information. When moving to the (more realistic) low SNR range
(below 2), G no carry yields marginally better results, as it still benefits from
the additional information provided by factors in cycles, and is also not prone
to errors on carry bits. For even lower SNR (below 0.05), the experiments indi-
cate that the best graph option is G no carry no cycles, which reflects previous
observations on the impact of cycles and carry bits.

Fig. 4: Average single-trace success rate. Right: close-up for low SNR values.

5 Comparison of SASCA and HD&C attack

In this section, we begin our investigation of the security level that can be
achieved by the point randomization countermeasure by comparing SASCA and
an HD&C attack. We still consider the 8-bit implementation of the operand
caching multiplicaton. Since SASCA comes at a higher computational cost than
an HD&C attack, it is worth evaluating the advantage of SASCA over an HD&C
attack. For this purpose we make use of the LRPM’s efficiency and introduce
new extensions of it such that it is applicable to the target factor graph.
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5.1 Applying the LRPM to multi-precision multiplication

To investigate the relevance of the LRPM, Guo et al. [15] consider the AES as
a target, for which all atomic operations have one output only and LRPM rules
apply straightforwardly. To apply the LRPM to the full factor graph of the multi-
precision multiplication, we extend the LRPM rules to operations with multiple
outputs. This new rule is described below and is based on the factorization
principle of BP. An example factorization for an addition factor is given in
Appendix A.

out1

in2

in1

F

out2

MIF→out1 = MIin1→F ×MIin2→F

MIF→out2 = MIin1→F ×MIin2→F

MIF→in1 = MIin2→F × (MIout1→F +MIout2→F)
MIF→in2 = MIin1→F × (MIout1→F +MIout2→F )

Additionally, based on the work of Guo et al. and as explained in Section 3.2,
in order to avoid too pessimistic upper bounds on the information, we estimate
loss coefficients for all variables for every kind of operation in the graph. We
estimated the loss coefficients assuming a Hamming weight leakage function as
the ratio between the information computed after performing BP and the one
predicted by the LPRM rules.

Prior to using the LRPM to compare SASCA and HD&C attacks, we confirm
in Fig. 5 that the LRPM’s MI predictions fit the experimental SR on G and its
variants. We ran the LRPM assuming MI values that correspond to the simulated
SR experiments and we focus on reasonable and realistic noise levels for software
implementations. The left part of Fig. 5 corresponds to the MI on one word of
λ of each graph as a function of the SNR, and the right part to the SR. The
efficiency orderings of the different graphs in terms of MI and SR are similar.
Slight discrepancies might be due to the experimental estimation of the SR.
Decisively, the LRPM and the SR estimations agree on the fact that the best
graph option is G no carry for a reasonable SNR < 2, while for even lower SNR
all seem to perform similarly.

5.2 SASCA vs. HD&C

Based on our previous results, we build the full graph of the multi-precision mul-
tiplication with carry bits integrated in factors. Notably, this graph option is not
only the best based on the previously shown experiments and LRPM predictions,
but also the most pragmatic one. Indeed, the full graph of the multi-precision
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Fig. 5: Left: MI evaluated with the LRPM with loss coefficients for the different
graphs. Right: the SR of SASCA for different graphs.

multiplication is highly connected. Attempting to remove all cycles will render
the graph very close to the one exploited by the HD&C strategy. Accordingly,
we build the full graph which consists of 1024 multiplication factors and 3216
addition factors, then the factor graph corresponding to the HD&C attack that
only contains the multiplication factors and related variables. We additionally
build the full graph of the randomization procedure including the modular re-
duction implemented as suggested in [31]. In comparison to the efficient HD&C
attack, running the BP algorithm for a single iteration on the factor graph of the
multi-precision multiplication would naively require more than 237 operations,
or more than 229 operations with specific factor message passing optimizations.

For all three graphs, we use the LRPM to upper bound the information
extracted in bytes on a word of λ. Results are given in Fig. 6. We observe that
both BP and D&C attacks reach the maximal information of one byte across all
words of λ when the SNR exceeds 0.4. The horizontal attack succeeds right after
SASCA and, for lower SNR values, the gain is negligible considering the running
time and the effort required to mount a BP-based attack. This is in-line with
the results from [15] (e.g. for the AES): when the number of attack traces is too
low (e.g. in a DPA), SASCA does not provide any gain over a D&C template
attack. Things naturally get worse for lower SNR values.

Our results therefore indicate that classical D&C attacks (on our particu-
lar target) come very close to the worst-case attack for low SNR cases (which
are essentially the most interesting ones for side-channel investigations). This
fact can be additionally highlighted by the limited information provided by the
addition of the modular reduction to the factor graph compared to solely the
multiplication. An analogy can be made with the AES MixColumns: since the
operations contained in these examples (MixColumns, modular reduction by a
Mersenne prime) diffuse already limited information (by combining noisy leak-
ages of multiple intermediates), they do not contribute significantly to the overall
information on the targeted secret for low and reasonable SNR values.

Overall, this result shows that SASCA, which exploits all the available in-
formation, barely improves the results compared to a D&C attack. Moreover, as
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Fig. 6: Comparison of SASCA on the full graph of the field multiplication, includ-
ing the modular reduction, and the HD&C attack on register multiplications.

SASCA does not allow optimal enumeration: adding the use of computational
power to HD&C mitigates even more the already small gap between them. As a
result, the rest of this paper considers the HD&C strategy in order to evaluate
the security of the point randomization countermeasure. This naturally raises
the question of how much noise is necessary to make the attack fail, which we
investigate in the following section.

6 Security graphs and necessary noise levels

In this section, we investigate the nearly worst-case security of the point ran-
domization countermeasure. For this purpose, we use the HD&C strategy, iden-
tified in the previous section to achieve comparable efficiency to the worst-case
BP-based attack. Since the HD&C attack strategy is extremely efficient com-
putationally (in comparison to SASCA), it allows us to investigate different
implementation cases. For our experiments, we choose a homogeneous projec-
tive coordinates system to represent the points and later discuss the case of
Jacobian projective coordinates. A homogeneous coordinates system allows for
a very efficient point randomization procedure as it requires at most two field
multiplications. We consider the case where both the affine coordinates of a point
are randomized, and additionally the fast parallel point addition and doubling
Montgomery ladder from Fischer et al. [10], where only the x coordinate is re-
quired and thus randomized. The field multiplication is as described previously:
a multi-precision multiplication followed by a modular reduction. We also take
into account a 256-bit randomizing parameter λ and a 128-bit alternative.

The goal of this section is to provide a characterization of the security level
expected as a function of the measurements’ SNR. For this purpose, we plot
security graphs based on [33] for the different cases of the point randomization
procedure. These graphs are produced by performing 100 independent attacks
and rank estimations for different SNR values. These experiments provide sam-
pled ranks for each SNR value. Using these samples, the rank distributions can
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be easily estimated using kernel density estimation. The most interesting con-
clusions can be deduced from the cumulative distribution function (CDF) of the
rank. The CDF of the rank for a specific SNR tells us about the probability
that the rank of the secret lies above a certain enumeration effort, and thus the
probability for an adversary to recover the secret. This is visually represented
by a gray-scale on a security graph: the darker (resp. lighter) the zone is, the
higher (resp. lower) is the probability of recovering the secret.

For the following results, we performed HD&C attacks and corresponding
rank estimations on simulated leakages of every 8-bit word of λ and every result
of a register multiplication following the classical side-channel model: HW and
Gaussian noise. This leads to 65 leakages per target byte (one for the byte itself
and 64 for the 2 parts of the 32 multiplication results). We produce in Fig. 7 the
security graph for a 128-bit λ, when randomizing only the x coordinate of the
base point (Fig. 7a) and when randomizing both coordinates (Fig. 7b). Fig. 8
gives the corresponding security graphs for a 256-bit λ.

(a) Randomization of x (b) Randomization of x and y.

Fig. 7: Security graph of the point randomization countermeasure for λ ∈ F2128 .

(a) Randomization of x (b) Randomization of x and y.

Fig. 8: Security graph of the point randomization countermeasure for λ ∈ F2256 .
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The red line corresponds to the log2 of the guessing entropy. The security
graphs shown in Fig. 7 and 8 encompass a great deal of information on the
security of the target. For e.g. to achieve security against an adversary attack-
ing only the x coordinate randomization using a 256-bit parameter, who can
enumerate up to 250 candidates, the SNR needs to be lower than 0.3 based on
the results displayed in Fig. 8a. The comparison of Fig. 7a and Fig. 7b high-
lights the expected fact that the information is simply doubled when exploiting
λ × xG and λ × yG compared to only λ × xG. Subsequently, to get the same
level of security, the SNR has to be halved. The same applies to Fig. 8a and
Fig. 8b. Moreover, the security graphs for the 128-bit case and the 256-bit case
illustrate the trade-off between the randomness requirements (i.e. the size of λ)
and the side-channel noise necessary to make the point randomization robust
against nearly worst-case adversaries. Additionally, since the LRPM provides an
upper bound on the information that can be extracted from a factor graph (in
this case of the D&C attack), in all security graphs we plot the corresponding
remaining entropy as a lower bound of the actual guessing entropy. This bound
is quite helpful particularly in cases where performing multiple attacks and rank
estimations is not possible.

7 Experimental evaluations

In this section, we analyze two different implementations of a long-integer mul-
tiplication both written in assembly. First, a naively implemented schoolbook
multiplication with two nested unrolled loops and no specific optimizations.
The second multiplication is the operand-caching multiplication of Hutter and
Wenger [18] that we presented above. We performed our experiments on an 8-bit
AVR ATmega328p microcontroller mounted on an Arduino UNO board running
at 16 MHz. Using a custom probe, the measurements are captured on a Pico-
Scope5244D oscilloscope synchronized with a trigger at the beginning of each
execution, at a sampling rate of 125 MSam/s. The traces are preprocessed using
amplitude demodulation.

Hereafter we describe the HD&C attack applied to both implementations.
First, we first performed a preliminary Points Of Interest (POIs) selection step
using a correlation test [9] to find the samples that correspond to leakages of
intermediate values depending on the target byte. We then use a dimensionality
reduction technique, namely Principal Component Analysis (PCA) [1], to further
reduce the number of dimensions. This can be done since as the coordinate of
the base point is fixed and known, the leakage only depends on the bytes of λ.
Using the compressed traces, we build multivariate Gaussian templates using 49k
traces based on the values of the bytes. Note that while the noise is independent
for the attack on simulations presented in Section 6, it is not perfectly the case
for real traces. We thus take the dependency into account in order to improve the
results and perform a single-trace template attack on each secret byte. Finally,
we combine the results of all the bytes using the Glowacz et al. histogram-based
rank estimation algorithm [11].
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7.1 Classical schoolbook multiplication

In this section, we show the results of the HD&C attack on the non-optimized
schoolbook multiplication. This multiplication loads every byte of the secret 32
times, displaying notable leakages on λ. As a first step, we examine the bytes’
guessing entropies as a function of the number of PCA components retained.
These results are shown in Fig. 9. Typically, when applying PCA to side-channel
leakages of symmetric cryptography implementations, the relevant information is
located in a few principal directions (e.g. the recent [4] uses 10). For our specific
target, more dimensions are useful, as shown by Fig. 9. This is presumably due to
the large amount of intermediate values that relate to the secret bytes, and the
amount of different single-precision operations manipulating these intermediates.
From Fig. 9, we observe that the logarithms of the guessing entropies of all bytes
decrease similarly and are mostly below 4 bits (less than 16 candidates) when the
number of components is above 350. The guessing entropies keep on decreasing
as the number of components increases.

Fig. 9: Logarithm of the guessing entropy of the 32 bytes of λ as a function of the
number of PCA components for the non-optimized schoolbook multiplication.

The next step of the evaluation is to assess if a single-trace recovery is feasible
on the full value of λ. For each execution, we combine the results obtained from
the independent attacks on the bytes of λ and plot the results of rank estimation
in Fig. 10. We show the distribution of the logarithm of the ranks. The red
vertical line denotes the mean log rank observed. We also focus on two sizes for
λ, namely 128 and 256 bits, in order to evaluate the impact of the HD&C attack
on the required randomness for each execution. First, for a 128-bit randomizing
parameter, we observe that approximately half of the randomized points can
be recovered with a minimal enumeration of less than 216. The results for a
256-bit randomizing parameter are given in Fig. 10b. In this case, while the
rank of the secret is higher than for the 128-bit case, the implementation can
still be considered vulnerable with an average rank of 50 bits. Moreover, some
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parameters are easily recovered. For instance approximately 20% of all λs are
fully recovered using an enumeration effort of 216.

(a) λ ∈ F2128 (b) λ ∈ F2256

Fig. 10: Distribution of log rank of λ for the schoolbook multiplication.

7.2 Operand caching multiplication

The second part of our experiment consists of applying the same process of
HD&C attack against an optimized implementation, namely the operand-caching
one. This method is a variant of the long-integer multiplication that reduces the
number of memory accesses to gain in efficiency, thereby reducing the amount
of leakage. For each byte of λ, we perform the same systematic steps as for the
non-optimized implementation. In Fig. 11, we plot the evolution of the guessing
entropies for the different bytes as a function of the number of PCA components.
Bytes are color coded according to the number of times they are loaded. First,
we observe the same behavior as for the previous implementation when it comes
to the number of PCA components: we require a large number of components.
Next, we clearly notice the impact of the amount of loads on the guessing entropy.
That is, less loads tend to lead to a higher entropy in comparison with the non-
optimized implementation. It is clear that the limited leakages in this case do
not allow reaching guessing entropies below 20 candidates, which is significantly
more than on the naive schoolbook multiplication.

Next, we plot the distribution of the log ranks for both 128- and 256-bit λ
in Fig. 12. We observe that due to the optimizations applied for the operand
caching, the leakages are minimized, leading to significantly different results
compared to the non-optimized implementation. For the 128-bit (resp. 256-bit)
size parameter, we obtain an average log rank of 100 bits (resp. 200 bits). The
entropy of λ is only marginally reduced and its value cannot be recovered with
a reasonable enumeration effort.

Overall, the comparison of the non-optimized multiplication and the opti-
mized one highlights how point randomization can be made quite robust against
nearly worst-case adversaries without much performance overheads: as clear
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Fig. 11: Logarithm of the guessing entropy of the 32 bytes of λ as a function of the
number of PCA components for the optimized operand-caching multiplication.

(a) λ ∈ F2128 (b) λ ∈ F2256

Fig. 12: Distributon of log rank of λ for the operand caching multiplication.

from [17], the additional cost of point randomization is limited for (already
expensive) ECC implementations. That is, a few design considerations and op-
timizations suffice to reduce the overall leakages that can be exploited by an
adversary, so that horizontal attacks become impractical. We note that, as usual
in experimental side-channel attacks, these results obviously depend on the mea-
surement setup and the preprocessing applied to the traces, which can possibly
be improved. Yet, the conclusion that limited SNR reductions are enough to se-
cure point randomization, and that simple optimizations (that are motivated by
general performance concerns) are good for this purpose, should hold in general.

8 Projective coordinates system comparison

In our preliminary analysis, we focused on an homogeneous projective point
representation. This section investigates the use of a different coordinates sys-
tem, namely Jacobian coordinates, and the possible consequences regarding side-
channel resistance. For this purpose, using the LRPM and its extensions pro-
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posed in this paper, we further extend our analysis by comparing the randomiza-
tion in homogeneous and Jacobian projective coordinates. In the Jacobian case,
the computation of λ2 is required. Therefore, we consider again two cases: one
where a generic multiplication is used to perform the squaring, and one where
the squaring is implemented efficiently (avoiding the re-calculation of equal cross
products). The results of our evaluations are depicted in Fig. 13 where MI upper
bounds are plotted as a function of the SNR.

Fig. 13: Comparison of SASCA on homogeneous projective coordinates random-
ization and Jacobian projective coordinates randomization

.

First, and as previously shown, we confirm that for homogeneous coordi-
nates since λx and λy are independent operations when targeting λ, the overall
information is simply doubled. Secondly, when it comes to Jacobian coordinates,
using a squaring instead of a multiplication for λ2 leads to improved security.
Regarding the comparison, while the coordinates system used is typically dic-
tated by the ECSM’s overall performance, the results shown in Fig. 13 lead
to interesting conclusions. These results suggest that for low SNR (< 0.1), Ja-
cobian coordinates randomization is more resistant to worst-case side-channel
adversaries than homogeneous coordinates. For SNR > 0.1, the x-only homo-
geneous projective randomization is the best option, followed by the Jacobian
coordinates randomization with a dedicated squaring operation.

9 Worst-case evaluation of 32-bit implementations

In this section, we translate our previous investigation on 8-bit implementa-
tions to the practically-relevant case of 32-bit devices. First, we emphasize that
implementing an actual attack against a 32-bit implementation is much more
challenging. While profiling 32-bit leakage is feasible by using a linear regres-
sion based approach, exploitation on the other hand is very demanding since it
would require enumerating 232 values, leading to large computation and storage
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efforts. Some workarounds are possible by trading computational complexity for
algorithmic noise.

As we focus on worst-case security, we analyze the information obtained
by a strong attacker able to perform attacks on 32-bit leakages directly. For
that purpose, we use the LRPM. As shown in Section 6 in Fig. 7 and 8, the
LRPM provides a lower bound on the guessing entropy after the attack. Based
on this observation, we bound the guessing entropy when targeting a 32-bit
implementation for different attacks (D&C and SASCA) and for different SNR
levels. The results of this analysis are plotted in Fig. 14 for high (left) and low
SNR (right) cases. First, we note that when the SNR is low the gain of analytical
strategies over D&C strategies is still very limited as for the 8-bit case. But more
interestingly, we observe that implementations of the point randomization on 32-
bit devices are able to resist worst-case adversaries as shown by the pessimistic
lower bounds on the guessing entropy in Fig. 14. Concretely, for an SNR ≈
0.9 as measured in a recent attack targeting an STM32F405 [21] it is possible
to achieve excellent concrete security even against attackers exploiting all the
possible leakage of the point randomization. This is a positive result that suggests
that securing 32-bit ECC implementations (for e.g. on ARM devices) against
very powerful attackers might be feasible in practice.

(a) High SNR (b) Low SNR

Fig. 14: Entropy lower bound comparison of SASCA on the full graph of the field
multiplication, and the HD&C attack for a 32-bit implementation with λ ∈ F2256 .

10 Conclusion and future works

In this work, we investigated the security of the point randomization counter-
measure w.r.t. worst-case attackers. We showed how to apply SASCA when
targeting point randomization and additionally adapted a recent and efficient
evaluation methodology for SASCA using the LRPM to this asymmetric use
case. Second, and using that model, we showed that, for realistic noise levels for
8-bit devices, there is almost no gain in mounting a complex SASCA making use
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of all the available information compared to a simpler horizontal D&C attack
that can be complemented with enumeration. As a result, we estimate the re-
quired SNR needed by implementations in small embedded devices to be secure.
Somewhat surprisingly, we observe that the point randomization technique can
be implemented quite securely even in 8-bit devices.

We then perform practical experiments against basic and optimized imple-
mentations to further illustrate the impact of performance optimizations: while
the naive implementation is shown to be broken, the optimized one leads to
ranks that are not reachable with enumeration. Finally, we provide guessing
entropy lower bounds for challenging attacks on 32-bit implementations which
again confirm the resistance of point randomization against side-channel attacks.
Interestingly, our results indicate that the point randomization on 32-bit devices
provides excellent concrete security against worst-case adversaries. This leads
to the positive conclusion that secure 32-bit ECC implementations might be
feasible in practice.

While we studied different implementation options of the point randomiza-
tion, there is still room for analyzing other options to implement elliptic curve
based systems and evaluate the security provided by side-channel countermea-
sures. For instance, then this additional leakage that does not depend on the
secret scalar bit could potentially be exploited. Besides, different multiplication
algorithms have been described in the literature. We focused on multiplications
that share the same abstract architecture as a classical schoolbook multiplica-
tion, but other long-integer multiplication algorithms such as the Karatsuba
algorithm [22] or modular multiplication methods such as the Montgomery mul-
tiplication [27] remain to be studied.
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A Factorization of fadd

The LPRM rules for information propagation for factors with multiple outputs
are deduced from the factorization of a factor with two outputs into two factors
with one output each, as shown by the diagram below for the addition operation:

in1

in2

out1

out2

fadd

in1

in2

out1

out2

f1
add

f2
add
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Where in1 and in2 refer to the two inputs to the addition. out1 to the result of
the addition and out2 to the output carry bit. Then the add factor is defined as:

fadd(in1, in2, out1, out2) =

{
1 if out1 = (in1 + in2) % 256 and out2 = (in1 + in2)/256
0 otherwise

The add factor can be factorized into f1add and f2add which are defined as:

f1add(in1, in2, out1) =

{
1 if out1 = (in1 + in2) % 256
0 otherwise

f2add(in1, in2, out2) =

{
1 if out2 = (in1 + in2)/256
0 otherwise

The LRPM propagation rules applied to the factorized factor yield for the vari-
able in1:

MIf1
add→in1 = MIin2 ×MIout1 and MIf2

add→in1 = MIin2 ×MIout2

Since information at variable node is summed we have:

MI(f1
add,f

2
add)→in1 = MIfadd→in1 = MIin2 × (MIout1 + MIout2)
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