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Abstract

In a recent seminal work, Bitansky and Shmueli (STOC ’20) gave the first construction of
a constant round zero-knowledge argument for NP secure against quantum attacks. However,
their construction has several drawbacks compared to the classical counterparts. Specifically,
their construction only achieves computational soundness, requires strong assumptions of quan-
tum hardness of learning with errors (QLWE assumption) and the existence of quantum fully
homomorphic encryption (QFHE), and relies on non-black-box simulation.

In this paper, we resolve these issues at the cost of weakening the notion of zero-knowledge
to what is called ε-zero-knowledge. Concretely, we construct the following protocols:

• We construct a constant round interactive proof for NP that satisfies statistical sound-
ness and black-box ε-zero-knowledge against quantum attacks assuming the existence of
collapsing hash functions, which is a quantum counterpart of collision-resistant hash func-
tions. Interestingly, this construction is just an adapted version of the classical protocol
by Goldreich and Kahan (JoC ’96) though the proof of ε-zero-knowledge property against
quantum adversaries requires novel ideas.

• We construct a constant round interactive argument for NP that satisfies computational
soundness and black-box ε-zero-knowledge against quantum attacks only assuming the
existence of post-quantum one-way functions.

At the heart of our results is a new quantum rewinding technique that enables a simulator to
extract a committed message of a malicious verifier while simulating verifier’s internal state in
an appropriate sense.
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1 Introduction

Zero-Knowledge Proof. Zero-knowledge (ZK) proof [GMR89] is a fundamental cryptographic
primitive, which enables a prover to convince a verifier of a statement without giving any additional
“knowledge” beyond that the statement is true. In the classical setting, there have been many fea-
sibility results on ZK proofs for specific languages including quadratic residuosity [GMR89], graph
isomorphism [GMW91], statistical difference problem [SV03] etc., and for all NP languages assum-
ing the existence of one-way functions (OWFs) [GMW91, Blu86]. On the other hand, van de Graaf
[Gra97] pointed out that there is a technical difficulty to prove security of these protocols against
quantum attacks. Roughly, the difficulty comes from the fact that security proofs of these results
are based on a technique called rewinding, which cannot be done when an adversary is quantum due
to the no-cloning theorem. Watrous [Wat09] considered post-quantum ZK proof, which means a
classical interactive proof that satisfies (computational) zero-knowledge property against quantum
malicious verifiers, and showed that some of the classical constructions above are also post-quantum
ZK. Especially, he introduced a new quantum rewinding technique which is also applicable to quan-
tum adversaries and proved that 3-coloring protocol of Goldreich, Micali, and Wigderson [GMW91]
is secure against quantum attacks assuming that the underlying OWF is post-quantum secure, i.e.,
uninvertible in quantum polynomial-time (QPT).1 Since the 3-coloring problem is NP-complete,
this means that there exists a post-quantum ZK proof for all NP languages assuming the existence
of post-quantum OWFs.

Round Complexity. An important complexity measure of ZK proofs is round complexity, which
is the number of interactions between a prover and verifier. In this aspect, the 3-coloring protocol
[GMW91] (and its quantumly secure version [Wat09]) is not satisfactory since that requires super-
constant number of rounds.2 Goldreich and Kahan [GK96] gave the first construction of a constant
round ZK proof for NP assuming the existence of collision-resistant hash function in the classical
setting. However, Watrous’ rewinding technique does not seem to work for this construction (as
explained in Sec. 1.2), and it has been unknown if their protocol is secure against quantum attacks.

Recently, Bitansky and Shmueli [BS20] gave the first construction of post-quantum ZK argument
[BC90] for NP, which is a weakened version of post-quantum ZK proof where soundness holds only
against computationally bounded adversaries. In addition to weakening soundness to computational
one, there are several drawbacks compared to classical counterparts. First, they assume strong
assumptions of quantum hardness of learning with erros (QLWE assumption) [Reg09] and the
existence of quantum fully homomorphic encryption (QFHE) [Mah18a, Bra18]. Though the QLWE
assumption is considered fairly standard due to reductions to worst-case lattice problems [Reg09,
Pei09, BLP+13], a construction of QFHE requires circular security of an QLWE-based encryption
scheme, which has no theoretical evidence. In contrast, a constant round classical ZK argument
for NP is known to exist under the minimal assumption of the existence of OWFs [FS90, PW09].
Second, their security proof of quantum ZK property relies on a novel non-black-box simulation
technique, which makes use of the actual description of malicious verifier instead of using it as a
black-box. In contrast, classical counterparts can be obtained by black-box simulation [FS90, GK96,

1Strictly speaking, Watrous’ assumption is a statistically binding and post-quantum computationally hiding com-
mitment scheme, and he did not claim that this can be constructed under the existence of post-quantum OWFs. How-
ever, we can see that such a commitment scheme can be obtained by instantiating the construction of [Nao91, HILL99]
with a post-quantum OWF.

23-round suffices for achieving a constant soundness error, but super-constant times sequential repetitions are
needed for achieving negligible soundness error (i.e., a cheating prover can let a verifier accept on a false statement
only with a negligible probability). Negligible soundness error is a default requirement in this paper.
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PW09]. Therefore, it is of theoretical interest to ask if we can achieve constant round quantum ZK
by black-box simulation. Third, somewhat related to the second issue, their construction also uses
building blocks in a non-black-box manner, which makes the actual efficiency of the protocol far from
practical. Again, classical counterparts are known based on black-box constructions [GK96, PW09].

Given the state of affairs, it is natural to ask the following questions:

1. Are there constant round post-quantum ZK proofs for NP instead of arguments?

2. Are there constant round post-quantum ZK proofs/arguments for NP from weaker assump-
tions than those in [BS20]?

3. Are there constant round post-quantum ZK proofs/arguments for NP based on black-box
simulation and/or black-box construction?

4. Are known constructions of constant round classical ZK proofs/arguments for NP (e.g.,
[FS90, GK96, PW09]) secure against quantum attacks if we instantiate them with post-
quantum building blocks?

1.1 Our Results

In this work, we partially answer the above questions affirmatively at the cost of weakening the
quantum ZK property to quantum ε-ZK, which is the quantum version of ε-ZK introduced in
[DNS04].3

Quantum ε-Zero-Knowledge. The standard quantum ZK property roughly requires that for
any QPT V ∗, there exists a QPT simulator S that simulates the interaction between V ∗ and
an honest prover so that the simulation is indistinguishable from the real execution against any
QPT distinguishers. On the other hand, in quantum ε-ZK, a simulator is allowed to depend on a
“accuracy parameter” ε. That is, it requires that for any QPT malicious verifier V ∗ and a noticeable
accuracy parameter ε, there exists a QPT simulator S whose running time polynomially depends on
ε−1 that simulates the interaction between V ∗ and an honest prover so that no QPT distinguisher
can distinguish it from real execution with advantage larger than ε. Though this is a significant
relaxation of quantum ZK, this still captures meaningful security. For example, we can see that
quantum ε-ZK implies both quantum versions of witness indistinguishability and witness hiding
similarly to the analogous claims in the classical setting [BKP19].4 Moreover, by extending the
observation in [DNS04] to the quantum setting, we can see the following: Suppose that a QPT
malicious verifier solves some puzzle whose solution is efficiently checkable (e.g., finding a witness
of an NP statement) after an interaction between an honest prover. Then, quantum ε-ZK implies
that if the verifier succeeds in solving the puzzle with noticeable probability p after the interaction,
then there is a QPT algorithm (whose running time polynomially depends on p−1) that solves the
same puzzle with noticeable probability (say, p/2) without interacting with the honest prover. This
captures the naive intuition of the ZK property that “anything that can be done after the execution
can be done without execution” in some sense, and this would be sufficient in many cryptographic
applications. Thus we believe that quantum ε-ZK is conceptually a similar notion to the standard
quantum ZK. More discussion on (quantum) ε-ZK and other related notions of ZK can be found
in Sec. 1.3.

3ε-ZK was originally called ε-knowledge, but some later works [BKP18, FGJ18] call it ε-ZK. We use ε-ZK to clarify
that this is a variant of ZK.

4Actually, [BKP19] shows that even weaker notion called weak ZK suffices for witness indistinguishability and
witness hiding. See also Sec. 1.3.
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Our Constructions. We give two constructions of constant round quantum ε-ZK protocols.

• We construct a constant round quantum ε-ZK proof for NP assuming the existence of collaps-
ing hash functions [Unr16b, Unr16a], which is considered as a counterpart of collision-resistant
hash functions in the quantum setting. Especially, we can instantiate the construction based
on the QLWE assumption. Our construction is fully black-box in the sense that both sim-
ulation and construction rely on black-box usage of building blocks and a malicious verifier.
Interestingly, this construction is just an adapted version of the classical protocol of [GK96]
though the proof of quantum ε-zero-knowledge property requires novel ideas.

• We construct a constant round quantum ε-ZK argument for NP assuming the minimal as-
sumption of the existence of post-quantum OWFs. This construction relies on black-box
simulation, but the construction itself is non-black-box.

At the heart of our results is a new quantum rewinding technique that enables a simulator to extract
a committed message of a malicious verifier while simulating verifier’s internal state in some sense.
We formalize this technique as an extraction lemma, which we believe is of independent interest.

1.2 Technical Overview

Though we prove a general lemma which we call extraction lemma (Lemma 4.2) and then prove
quantum ε-ZK of our constructions based on that in the main body, we directly explain the proof
of quantum ε-ZK without going through such an abstraction in this overview.

Known Classical Technique and Difficulty in Quantum Setting. First, we review a clas-
sical constant round ZK proof by Goldreich and Kahan [GK96] (referred to as GK protocol in
the following), and explain why it is difficult to prove quantum ZK for this protocol by known
techniques. GK protocol is based on a special type of 3-round proof system called Σ-protocol.5 In
a Σ-protocol, a prover sends the first message a, a verifier sends the second message e referred to
as a challenge, which is just a public randomness, and the prover sends the third message z. A
Σ-protocol satisfies a special type of honest-verifier ZK, which ensures that if a challenge e is fixed,
then one can simulate the transcript (a, e, z) without using a witness. Though this may sound like
almost the standard ZK property, a difficulty when proving ZK is that a malicious verifier may
adaptively choose e depending on a, and thus we cannot fix e at the beginning. To resolve this
issue, the idea of GK protocol is to let the verifier commit to a challenge e at the beginning of the
protocol. That is, GK protocol roughly proceeds as follows:6

1. A verifier sends a commitment com to a challenge e of a Σ-protocol.

2. The prover sends the first message a of the Σ-protocol.

3. The verifier opens com to open a challenge e and its opening information r (i.e., the random-
ness used for the commitment).

4. The prover aborts if the verifier’s opening is invalid. Otherwise it sends the third message z
of the Σ-protocol.

5In this paper, we use Σ-protocol to mean a parallel repetition version where soundness error is reduced to
negligible.

6We note that this construction is based on an earlier work of [BCY91].
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When proving the ZK property of GK protocol, they rely on a rewinding argument. That is,
a simulator first runs the protocol with a malicious verifier until Step 3 to extract a committed
message e inside com, and then rewind the verifier’s state back to just after Step 1, and then
simulates the transcript by using the extracted knowledge of e.

On the other hand, this strategy does not work if we consider a quantum malicious verifier
since a quantum malicious verifier may perform measurements in Step 3, which is in general not
reversible. In other words, since we cannot copy the verifier’s internal state after Step 1 due to the
no-cloning theorem, we cannot recover that state after running the protocol until Step 3.

Watrous [Wat09] proved that we can apply a rewinding argument for quantum verifiers under
a certain condition. Roughly speaking, the condition is that there is a simulator that succeeds
in simulation for quantum verifiers with a fixed (verifier-independent) and noticeable probability.
For example, if the challenge space is polynomial size, then a simulator that simply guesses a
challenge e suffices. However, for achieving negligible soundness error, the challenge space should
be super-polynomial size, in which case it seems difficult to construct such a simulator. Also,
relaxing quantum ZK to quantum ε-ZK does not seem to resolve the issue in any obvious way.

1.2.1 Quantum Analysis of GK Protocol.

In spite of the above mentioned difficulty, we succeed in proving quantum ε-ZK for a slight variant
of GK protocol. In the following, we explain the idea for our results.

Simplified Goal: Simulation of Non-Aborting Case. First, we apply a general trick intro-
duced in [BS20], which simplifies the task of proving quantum ZK. In GK protocol, we say that a
verifier aborts if it fails to provide a valid opening to com in Step 3. Then, for proving quantum
ZK of the protocol, it suffices to construct two simulators Sima and Simna that work only when the
verifier aborts and does not abort and they do not change the probability that the verifier aborts
too much, respectively. The reason is that if we randomly choose either of these two simulators and
just run the chosen one, then the simulation succeeds with probability 1/2 since the guess of if the
verifier aborts is correct with probability 1/2. Then, we can apply Watrous’ rewinding technique
to convert it to a full-fledged simulator. Essentially the same trick also works for quantum ε-ZK.

Moreover, it is easy to construct Sima because the first message of a Σ-protocol can be simu-
lated without witness, and one need not provide the third message to the verifier when it aborts.
Therefore, the problem boils down to constructing a simulator Simna that works only when the
verifier does not abort.

Initial Observations. For explaining how to construct Simna, we start by considering the sim-
plest case where a verifier never aborts. Moreover, suppose that the commitment scheme used for
committing to a challenge e satisfies the strict-binding property [Unr12], i.e., for any commitment
com, there is at most one valid message and randomness. Then, a rewinding strategy similar to the
classical case works since, in this case, the verifier’s message in Step 3 is information-theoretically
determined, and such a deterministic computation does not collapse a quantum state in general.7

However, for ensuring statistical soundness, we have to use a statistically hiding commitment, which
cannot be strict-binding. Fortunately, this problem can be resolved by using collapse-binding com-
mitments [Unr16b], which roughly behave similarly to strict-binding commitments for any com-

7This is also observed in [BS20].
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putationally bounded adversaries.8 Since this is rather a standard technique, in the rest of this
overview, we treat the commitment as if it satisfies the strict-binding property.

Next, we consider another toy example where a verifier sometimes aborts. Suppose that a
malicious verifier V ∗ is given an initial state 1√

2
(|ψa〉+ |ψna〉) in its internal register V where |ψa〉

and |ψna〉 are orthogonal, and runs as follows:

1. V ∗ randomly picks e, honestly generates a commitment com to e, and sends it to the prover
(just ignoring the initial state).

2. After receiving a, V ∗ performs a projective measurement {|ψa〉 〈ψa| , I − |ψa〉 〈ψa|} on V, and
immediately aborts if |ψa〉 〈ψa| is applied, and otherwise honestly opens (e, r).

3. After completing the protocol, V ∗ outputs its internal state in V.

It is trivial to construct a simulator for this particular V ∗ since it just ignores prover’s messages.
But for explaining our main idea, we examine what happens if we apply the same rewinding strategy
as the classical case to the above verifier. After getting a commitment com from V ∗, a simulator
sends a random a to V ∗ to extract e. Since we are interested in constructing a simulator that works
in the non-aborting case, suppose that V ∗ does not abort, i.e., sends back a valid opening (e, r).
At this point, V ∗’s internal state collapses to |ψna〉. Then the simulator cannot “rewind” this state
to the original verifier’s state 1√

2
(|ψa〉 + |ψna〉) in general, and thus the simulation seems to get

stuck. However, our key observation is that, conditioned on that V ∗ does not abort, V ∗’s state
always collapses to |ψna〉 even in the real execution. Since our goal is to construct Simna that is
only required to work for the non-aborting case, it does not matter if V ∗’s state collapses to |ψna〉
when the simulator runs extraction. More generally, extraction procedure may collapse verifier’s
internal state if a similar collapsing happens even in the real execution conditioned on that the
verifier does not abort.

Our Idea: Decompose Verifier’s Space To generalize the above idea, we want to decompose
verifier’s internal state after Step 1 into aborting part and non-aborting part. However, the definition
of such a decomposition is non-trivial since a verifier may determine if it aborts depending on the
prover’s message a in addition to its internal state. Therefore, instead of decomposing it into
always-aborting part and always-non-aborting part as in the example of the previous paragraph,
we set a noticeable threshold t and decompose it into “not-abort-with-probability < t part” and
“not-abort-with-probability ≥ t part” over the randomness of a.

For implementing this idea, we rely on Jordan’s lemma (e.g., see a lecture note by Regev [AR06])
in a similar way to the work by Nagaj, Wocjan, and Zhang [NWZ09] on the amplification theorem
for QMA. Let Π be a projection that corresponds to “Step 2 + Step 3 + Check if the verifier does
not abort” in GK protocol. A little bit more formally, let V be a register for verifier’s internal state
and Aux be an auxiliary register. Then Π is a projection over V ⊗Aux that works as follows:

1. Apply a unitary Uaux over Aux that maps |0〉Aux to 1√
|R|

∑
rand∈R |rand, arand〉Aux where R

is the randomness space to generate the first message of the Σ-protocol and arand is the first
message derived from the randomness rand.9

8Strictly speaking, we need to use a slightly stronger variant of collapse-binding commitments which we call strong
collapse-binding commitments. Such commitments can be constructed under the QLWE assumption or the existence
of collapsing hash functions in more general. See Sec. 2.2 for more details.

9Aux stores multiple qubits, but we denote by |0〉Aux to mean |0`〉Aux for the appropriate length ` for notational
simplicity.
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2. Apply a unitary UV that corresponds to Step 3 for prover’s message arand in Aux except for
measurement,

3. Apply a projection to the subspace spanned by states that contain valid opening (e, r) for
com in designated output registers,

4. Apply (UV Uaux)
†.

One can see that the probability that the verifier does not abort (i.e., sends a valid opening) is
‖Π |ψ〉V |0〉Aux ‖2 where |ψ〉V is verifier’s internal state after Step 1. Then Jordan’s lemma gives
an orthogonal decomposition of the Hilbert space of V ⊗Aux into many one- or two-dimensional
subspaces S1, ..., SN that are invariant under Π and |0〉Aux 〈0|Aux such that we have the following:

1. For any j ∈ [N ] and |ψj〉V |0〉Aux ∈ Sj , the projection Π succeeds with probability pj , i.e.,
‖Π |ψj〉V |0〉Aux ‖2 = pj .

2. A success probability of projection Π is “amplifiable” in each subspace. That is, there is
an “amplification procedure” Amp that maps any |ψj〉V |0〉Aux ∈ Sj to Π |ψj〉V |0〉Aux with
overwhelming probability within poly(λ, p−1

j ) times iteration of the same procedure (that does
not depend on j) for any j ∈ [N ]. Moreover, this procedure does not cause any interference
between different subspaces.

Then we define two subspaces

S<t :=
⊕
j:pj<t

Sj , S≥t :=
⊕
j:pj≥t

Sj .

Then for any |ψ〉V, we can decompose it as

|ψ〉V = |ψ<t〉V + |ψ≥t〉V
by using (sub-normalized) states |ψ<t〉V and |ψ≥t〉V such that |ψ<t〉V |0〉Aux ∈ S<t and |ψ≥t〉V |0〉Aux ∈
S≥t. In this way, we can formally define a decomposition of verifier’s internal state into “not-abort-
with-probability < t part” and “not-abort-with-probability ≥ t part”.

Extraction and Simulation. Then we explain how we can use the above decomposition to
implement extraction of e for simulation of non-aborting case. First, we consider an easier case
where the verifier’s state after Step 1 only has S≥t component |ψ≥t〉V. In this case, we can use
Amp to map |ψ≥t〉V |0〉Aux onto the span of Π within poly(λ, t−1) times iteration. After mapped
to Π, we can extract (e, r) without collapsing the state by the definition of Π and our assumption
that the commitment is strict-binding. This means that given |ψ≥t〉V, we can extract (e, r), which
is information theoretically determined by com, with overwhelming probability. In general, such
a deterministic computation can be implemented in a reversible manner, and thus we can extract
(e, r) from |ψ≥t〉V almost without damaging the state.

On the other hand, the same procedure does not work for |ψ<t〉V since poly(λ, t−1) times itera-
tion is not sufficient for amplifying the success probability of Π to overwhelming in this subspace.
Our idea is to let a simulator run the above extraction procedure in superposition even though S<t
component may be damaged.

Specifically, our extraction procedure Ext works as follows:

1. Given a verifier’s internal state |ψ〉V after Step 1, initialize Aux to |0〉Aux and runs Amp for
poly(λ, t−1) times iteration. Abort if a mapping onto Π does not succeed. Otherwise, proceed
to the next step.
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2. Apply UV Uaux, measure designated output registers to obtain (eExt, rExt), and apply (UV Uaux)
†.

We note that (eExt, rExt) is always a valid opening of com since Ext runs this step only if it
succeeds in mapping the state onto Π in the previous step. We also note that this step does
not collapse the state at all by the strict-binding property of the commitment.

3. Uncompute Step 1 and measure Aux. Abort if the measurement outcome is not 0. Otherwise,
proceed to the next step.

4. Output the extracted opening (eExt, rExt) along with a “post-extraction state” |ψ′〉V in register
V. For convenience, we express |ψ′〉V as a sub-normalized state whose norm is the probability
that Ext does not abort and the post-extraction state conditioned on that the extraction

succeeds is
|ψ′〉V
‖|ψ′〉V‖

.

In the following, we analyze Ext. We consider the decomposition of |ψ〉V as defined in the
previous paragraph:

|ψ〉V = |ψ<t〉V + |ψ≥t〉V .
Suppose that Ext does not abort, i.e., it outputs a valid opening (eExt, rExt) along with a post-
extraction state |ψ′〉V. Then, |ψ′〉V can be expressed as

|ψ′〉V = |ψ′<t〉V + |ψ′≥t〉V
for some |ψ′<t〉V and |ψ′≥t〉V such that |ψ′<t〉V |0〉Aux ∈ S<t, |ψ′≥t〉V |0〉Aux ∈ S≥t, and |ψ≥t〉V ≈
|ψ′≥t〉V since there is no interference between S<t and S≥t when running Amp and S≥t component
hardly changes as observed above. This is not even a close state to the original state |ψ〉V in
general since the S<t component may be completely different. However, our key observation is that,
conditioned on that the verifier does not abort, at most “t-fraction” of S<t component survives even
in the real execution by the definition of the subspace S<t. That is, in the verifier’s final output
state conditioned on that it does not abort, the average squared norm of a portion that comes
from S<t component is at most t. Thus, even if a simulator fails to simulate this portion, this only
impacts the accuracy of the simulation by a certain function of t, which is shown to be O(

√
t) in

the main body.
With this observation in mind, the non-aborting case simulator Simna works as follows.

1. Run Step 1 of the verifier to obtain com and let |ψ〉V be verifier’s internal state at this point.

2. Run Ext on input |ψ〉V. Abort if Ext aborts. Otherwise, obtain an extracted opening
(eExt, rExt) and a post-extraction state |ψ′〉V, and proceed to the next step.

3. Simulate a transcript (a, eExt, z) by the honest-verifier ZK property of the Σ-protocol.

4. Send a to the verifier whose internal state is replaced with |ψ′〉V. Let (e, r) be the verifier’s
response. Abort if (e, r) is not a valid opening to com. Otherwise send z to the verifier.

5. Output the verifier’s final output.

By the above analysis, we can see that Simna’s output distribution is close to the real verifier’s
output distribution with an approximation error O(

√
t) conditioned on that the verifier does not

abort. Furthermore, the probability that the verifier does not abort can only be changed by at most
O(
√
t). If we could set t to be a negligible function, then we would be able to achieve quantum ZK

rather than quantum ε-ZK. However, since we have to ensure that Amp’s running time poly(λ, t−1)
is polynomial in λ, we can only set t to be noticeable. Since we can set t to be an arbitrarily small
noticeable function, we can make the approximation error O(

√
t) be an arbitrarily small noticeable

function. This means that the protocol satisfies quantum ε-ZK.
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Black-Box Simulation. So far, we did not pay attention to the black-box property of simulation.
We briefly explain the definition of black-box quantum ZK and that our simulator satisfies it. First,
we define black-box quantum ZK by borrowing the definition of quantum oracle machine by Unruh
[Unr12]. Roughly, we say that a simulator is black-box if it only accesses unitary part of a verifier
and its inverse in a black-box manner, and does not directly act on the verifier’s internal registers.
With this definition, one part where it is unclear if our simulator is black-box is the amplification
procedure Amp. However, by a close inspection, we can see that Amp actually just performs
sequential measurements {Π, IV,Aux−Π} and {|0〉Aux 〈0|Aux , IV,Aux− |0〉Aux 〈0|Aux}, which can
be done by black-box access to the verifier as seen from the definition of Π. Therefore, we can see
that our simulator is black-box.

A Remark on Underlying Σ-Protocol. In the original GK protocol, any Σ-Protocol can be
used as a building block. However, in our technique, we need to use delayed-witness Σ-protocol
where the first message a can be generated without knowledge of a witness due to a technical
reason. An example of delayed-witness Σ-protocol is Blum’s Graph Hamiltonicity protocol [Blu86].
Roughly, the reason to require this additional property is for ensuring that a simulator can perfectly
simulate the first message a of the Σ-protocol when running the extraction procedure. In the
classical setting, a computationally indistinguishable simulation of a works, but we could not prove
an analogous claim in our setting.

1.2.2 OWF-based Construction.

Next, we briefly explain our OWF-based quantum ε-ZK argument. The reason why we need a
stronger assumption in our first construction is that we need to implement the commitment for
the challenge by a constant round statistically hiding commitment, which is not known to exist
from OWF. Then, a natural idea is to relax it to computationally hiding one if we only need
computational soundness. We can show that the extraction technique as explained above also works
for statistically binding commitments with a small tweak. However, we cannot prove soundness of
the protocol without any modification due to a malleability issue. For explaining this, we recall
that the first message a of a Σ-protocol itself is also implemented as a commitment. Then, the
computational hiding of commitment does not prevent a computationally bounded prover, which
is given a commitment com to e, from generating a “commitment” a whose committed message
depends on e. Such a dependence leads to an attack against soundness. To prevent this, an
extractable commitment scheme is used to generate a in the classical setting [PW09]. However,
since it is unclear if the extractable commitment scheme used in [PW09] is secure against quantum
adversaries, we take an alternative approach that we let a prover prove that it knows a committed
message inside a by using a proof of knowledge before a verifier opens a challenge as is done in
[Gol01, Sec.4.9] (see also [Gol04, App.C.3]). A naive approach to implement this idea would be
to use ZK proof of knowledge, but this does not work since a constant round ZK argument is
what we are trying to construct. Fortunately, we can instead use witness indistinguishable proof of
knowledge (WIPoK) with a simple OR proof trick. Specifically, we let a prover prove that “I know
committed message in a” OR “I know witness w for x” where x is the statement being proven in the
protocol. In the proof of soundness, since we assume x is a false statement, a witness for the latter
statement does not exist. Then we can extract a committed message inside a to break the hiding
property of the commitment scheme used by the verifier if the committed message depends on e.
On the other hand, in the proof of ε-ZK property, we can use the real witness w in an intermediate
hybrid to simulate WIPoK without using knowledge of a committed message. In such a hybrid, we
can rely on honest-verifier ZK of the Σ-protocol to change a to a simulated one for an extracted
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challenge e.
Finally, we remark that though we are not aware of any work that explicitly claims the exis-

tence of a constant round WIPoK that works for quantum provers from OWFs, we observe that
a combination of known works easily yields such a construction. (See Sec. 2.3.1 for more details.)
As a result, we obtain constant round quantum ε-ZK argument from OWFs.

1.3 Related Work

ε-Zero-Knowledge and Related Notions. Though we are the first to consider ε-ZK in the
quantum setting, there are several works that consider ε-ZK in the classical setting. We briefly
review them. We note that all of these results are in the classical setting, and it is unknown if
similar results hold in the quantum setting. The notion of ε-ZK (originally called ε-knowledge) was
introduced by Dwork, Naor, and Sahai [DNS04] in the context of concurrent ZK proofs. Bitansky,
Kalai, and Paneth [BKP18] gave a construction of 4-round ε-ZK proof for NP assuming the ex-
istence of key-less multi-collision resistant hash function.10 Barak and Lindell [BL02] showed the
impossibility of constant round black-box ZK proof with strict-polynomial time simulation, and
observed that strict-polynomial time simulation is possible if we relax ZK to ε-ZK. This can be
understood as a theoretical separation between ZK and ε-ZK. On the other hand, Fleischhacker,
Goyal, and Jain [FGJ18] showed that there does not exist 3-round ε-ZK proof for NP even with
non-black-box simulation under some computational assumptions, which is the same lower bound
as that for ZK proofs if we allow non-black-box simulation.

Another relaxation of ZK is super-polynomial simulation (SPS)-ZK [Pas03], where a simulator
is allowed to run in super-polynomial time. One may find a similarity between ε-ZK and SPS-ZK
in the sense that the latter can be seen as a variant of ε-ZK where we set the accuracy parameter
ε to be negligible. On the other hand, it has been considered that ε-ZK is much more difficult
to achieve than SPS-ZK. For example, the work of Bitansky, Khurana, and Paneth [BKP19] gave
a construction of a 2-round argument for NP that achieves a weaker notion of ZK than ε-ZK,
and the result is considered a significant breakthrough in the area even though there is a simple
construction of 2-round SPS-ZK argument for NP [Pas03].

Several works considered other weakened notions of ZK [DNRS03, BP12, CLP15, JKKR17,
BKP19]. Some of them are weaker than ε-ZK, and others are incomparable. For example, “weak
ZK” in [BP12, CLP15] is incomparable to ε-ZK whereas “weak ZK” in [BKP19] is weaker than
ε-ZK.

Post-Quantum Zero-Knowledge with Classical Computational Soundness. Ananth and
La Placa [AL20] gave a construction of post-quantum ZK argument for NP with classical com-
putational soundness assuming the QLWE assumption. Though such a protocol would be easy to
obtain if we assume average-case classical hardness of certain problems in BQP (e.g., factoring)
in addition to the QLWE assumption, what is interesting in [AL20] is that they only assume the
QLWE assumption.

Post-Quantum Zero-Knowledge with Trusted Setup. Several works studied (non-interactive)
post-quantum ZK proofs for NP in the common random/reference string model [Kob03, DFS04,
PS19]. Among them, Peikert and Shiehian [PS19] proved that there exists non-interactive post-

10The protocol achieves full-fledged ZK if we allow the simulator to take non-uniform advice or assume a super-
polynomial assumption.
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quantum ZK proof for NP in the common reference string model assuming the QLWE assump-
tion.11

Zero-Knowledge for QMA. The complexity class QMA is a quantum analogue of NP. Broad-
bent, Ji, Song, and Watrous [BJSW20] gave a construction of a ZK proof for QMA. Recently,
Broadbent and Grilo [BG20] gave an alternative simpler construction of a ZK proof for QMA.
Bitansky and Shmueli [BS20] gave a constant round ZK argument for QMA by combining the con-
struction of [BG20] and their post-quantum ZK argument for NP. We believe that our technique
can be used to construct a constant round ε-ZK proof for QMA by replacing the delayed-witness
Σ-protocol for NP with the delayed-witness quantum Σ-protocol for QMA recently proposed by
Brakerski and Yuen [BY20].12 This is beyond the scope of this paper, and we leave a formal proof
as a future work.

Several works studied non-interactive ZK proofs/arguments for QMA in preprocessing models
[CVZ20, BG20, Shm20, ACGH20].

Collapsing Hash Functions. The notion of collapsing hash functions was introduced by Unruh
[Unr16b] for a replacement of collision-resistant hash functions in post-quantum setting. Unruh
[Unr16a] gave a construction of a collapsing hash function under the QLWE assumption. Actually,
the construction is generic based on any lossy function with sufficiently large “lossy rate”.13 Cur-
rently, we are not aware of any other construction of collapsing hash function based on standard
assumptions, but any new construction of collapsing hash function yields a new instantiation of
our first construction.

Zhandry [Zha19] proved that any collision-resistant hash function that is not collapsing yields a
stronger variant of public-key quantum money (with infinitely often security). Given the difficulty
of constructing public key quantum money, he suggested that most natural post-quantum collision-
resistant hash functions are likely already collapsing.

Relation to [CCY20]. Our idea of decomposing a verifier’s internal space into “aborting space”
and “non-aborting space” is inspired by a recent work of Chia, Chung, and Yamakawa [CCY20].
In [CCY20], the authors consider a decomposition of a prover’s internal space into “know-answer
space” and “not-know-answer space” to prove soundness of parallel repetition version of Mahadev’s
classical verification of quantum computation protocol [Mah18b]. Though the conceptual idea and
some technical tools are similar, the ways of applying them to actual problems are quite different.
For example, in our case, we need a careful analysis to make sure that a post-extraction state
is close to the original one in some sense while such an argument does not appear in their work
since their goal is proving soundness rather than ZK. On the other hand, their technical core is a
approximated projection to each subspace, which is not needed in this paper.

Subsequent work. Subsequently to this work, Chia, Chung, Liu, and Yamakawa [CCLY21]
proved that there does not exist a constant round post-quantum ZK argument for NP unless
NP ∈ BQP, which is highly unlikely. This justifies the relaxation to ε-ZK in our constructions.

11In [PS19], they do not explicitly claim ZK against quantum adversaries. However, since their security proof does
not rely on rewinding, it immediately extends to post-quantum security if we assume the underlying assumption
against quantum adversaries.

12Actually, their protocol is delayed-input, i.e., the first message generation does not use the statement either.
13A lossy function is defined similarly to a lossy trapdoor function [PW08] except that we do not require the

existence of trapdoor.
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2 Preliminaries

Basic Notations. We use λ to denote the security parameter throughout the paper. For a

positive integer n ∈ N, [n] denotes a set {1, 2, ..., n}. For a finite set X , x
$← X means that x is

uniformly chosen from X . A function f : N → [0, 1] is said to be negligible if for all polynomial p
and sufficiently large λ ∈ N, we have f(λ) < 1/p(λ), said to be overwhelming if 1− f is negligible,
and said to be noticeable if there is a polynomial p such that we have f(λ) ≥ 1/p(λ) for sufficiently
large λ ∈ N. We denote by poly an unspecified polynomial and by negl an unspecified negligible
function. We use PPT and QPT to mean (classical) probabilistic polynomial time and quantum

polynomial time, respectively. For a classical probabilistic or quantum algorithm A, y
$← A(x)

means that A is run on input x and outputs y. When A is classical probabilistic algorithm, we
denote by A(x; r) to mean the execution of A on input x and a randomness r. When A is a quantum
algorithm that takes a quantum advice, we denote by A(x; ρ) to mean the execution of A on input
x and an advice ρ. For a quantum algorithm A, a unitary part of A means the unitary obtained by
deferring all measurements by A and omitting these measurements. We use the bold font (like X)
to denote quantum registers, and HX to mean the Hilbert space corresponding to the register X.
For a quantum state ρ, MX ◦ ρ means a measurement in the computational basis on the register X
of ρ. For quantum states ρ and ρ′, TD(ρ, ρ′) denotes trace distance between them. For a pure state
|ψ〉, ‖ |ψ〉 ‖ denotes its Euclidean norm. When we consider a sequence {Xλ}λ∈N of some objects
(e.g., bit strings, quantum states, sets, Hilbert spaces etc.) indexed by the security parameter λ,
we often simply write X to mean Xλ or {Xλ}λ∈N, which will be clear from the context. Similarly,
for a function f in the security parameter λ, we often simply write f to mean f(λ).

Standard Computational Models.

• A PPT algorithm is a probabilistic polynomial time (classical) Turing machine. A PPT
algorithm is also often seen as a sequence of uniform polynomial-size circuits.

• A QPT algorithm is a polynomial time quantum Turing machine. A QPT algorithm is also
often seen as a sequence of uniform polynomial-size quantum circuits.

• An adversary (or malicious party) is modeled as a non-uniform QPT algorithm A (with
quantum advice) that is specified by sequences of polynomial-size quantum circuits {Aλ}λ∈N
and polynomial-size quantum advice {ρλ}λ∈N. When A takes an input of λ-bit, A runs Aλ
taking ρλ as an advice.

Interactive Quantum Machine and Oracle-Aided Quantum Machine. We rely on the
definition of an interactive quantum machine and oracle-aided quantum machine that is given
oracle access to an interactive quantum machine following [Unr12]. Roughly, an interactive quantum
machine A is formalized by a unitary over registers M for receiving and sending messages and A
for maintaining A’s internal state. For two interactive quantum machines A and B that share the
same message register M, an interaction between A and B proceeds by alternating invocations of
A and B while exchanging messages over M.

An oracle-aided quantum machine S given oracle access to an interactive quantum machine
A with an initial internal state ρ (denoted by SA(ρ)) is allowed to apply unitary part of A and
its inverse in a black-box manner where S can act on A’s internal register A only through oracle
access. We refer to [Unr12] for more formal definitions of interactive quantum machines and black-
box access to them.
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Indistinguishability of Quantum States. We define computational and statistical indistin-
guishability of quantum states similarly to [BS20].

We may consider random variables over bit strings or over quantum states. This will be clear
from the context. For ensembles of random variables X = {Xi}λ∈N,i∈Iλ and Y = {Yi}λ∈N,i∈Iλ over

the same set of indices I =
⋃
λ∈N Iλ and a function δ, we write X

comp
≈ δ Y to mean that for any

non-uniform QPT algorithm A = {Aλ, ρλ}, there exists a negligible function negl such that for all
λ ∈ N, i ∈ Iλ, we have

|Pr[Aλ(Xi; ρλ)]− Pr[Aλ(Yi; ρλ)]| ≤ δ(λ) + negl(λ).

Especially, when we have the above for δ = 0, we say that X and Y are computationally indistin-

guishable, and simply write X
comp
≈ Y.

Similarly, we write X
stat
≈ δ Y to mean that for any unbounded time algorithm A, there exists a

negligible function negl such that for all λ ∈ N, i ∈ Iλ, we have

|Pr[A(Xi)]− Pr[A(Yi)]| ≤ δ(λ) + negl(λ).14

Especially, when we have the above for δ = 0, we say that X and Y are statistically indistinguishable,

and simply write X
stat
≈ Y. Moreover, we write X ≡ Y to mean that Xi and Yi are distributed

identically for all i ∈ I

2.1 Post-Quantum One-Way Functions and Collapsing Hash Functions

A post-quantum one-way function (OWF) is a classically computable function that is hard to invert
in QPT. A collapsing hash function is a quantum counterpart of collision-resistant hash function
introduced by Unruh [Unr16b]. Unruh [Unr16a] gave a construction of collapsing hash functions
based on the QLWE assumption. We give formal definitions in Appendix A since they are only
used for constructing other cryptographic primitives and not directly used in our constructions.

2.2 Commitment

We give definitions of commitments and their security. Though mostly standard, we introduce one
new security notion which we call strong collapse-binding, which is a stronger variant of collapse-
biding introduced by Unruh [Unr16b]. As shown in Appendix B, we can see that Unruh’s construc-
tion of collapse-binding commitments actually also satisfies strong collapse-binding with almost the
same (or even simpler) security proof.

Definition 2.1 (Commitment.). A (two-message) commitment scheme with message space M,
randomness space R, commitment space COM, and a public parameter space PP consists of two
classical PPT algorithms (Setup,Commit):

Setup(1λ): The setup algorithm takes the security parameter 1λ as input and outputs a public pa-
rameter pp ∈ PP.

Commit(pp,m): The committing algorithm takes a public parameter pp ∈ PP and a message m ∈
M as input and outputs a commitment com ∈ COM.

14In other words, X
stat
≈ δ Y means that there exists a negligible function negl such that the trace distance between

ρXi and ρYi is at most δ(λ)+negl(λ) for all λ ∈ N and i ∈ Iλ where ρXi and ρYi denote density matrices corresponding
to Xi and Yi.
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We say that a commitment scheme is non-interactive if a public parameter pp generated by Setup(1λ)
is always just the security parameter 1λ. For such a scheme, we omit to write Setup.

We define the following security notions for a commitment scheme.

Statistical/Computational Hiding. For an adversary A, we consider an experiment ExphidingA (1λ)
defined below:

1. A is given the security parameter 1λ and sends a (possibly malformed) public parameter
pp ∈ PP and (m0,m1) ∈M2 to the challenger

2. The challenger randomly picks b
$← {0, 1}, computes com

$← Commit(pp,mb), and sends com
to A.

3. A is given a commitment com and outputs b′ ∈ {0, 1}. The experiment outputs 1 if b = b′

and 0 otherwise.

We say that a commitment scheme satisfies statistical (resp. computational) hiding if for any
unbounded-time (resp. non-uniform QPT) adversary A, we have

|Pr[1
$← ExphidingA (1λ)]− 1/2| = negl(λ).

Remark 1. Our definition of hiding requires that the security should hold even if pp is maliciously
generated. Thus, the hiding property holds even if a receiver runs the setup algorithm.

Binding.

• Perfect/Statistical/Computational Binding. We say that a non-interactive commit-
ment scheme satisfies statistical (resp. computational) binding if for any unbounded-time
(resp. non-uniform QPT) adversary A, we have

Pr[Commit(pp,m; r) = Commit(pp,m′; r′) ∧m 6= m′ : pp
$← Setup(1λ), (m,m′, r, r′)

$← A(pp)] = negl(λ).

We say that a scheme satisfies perfect binding if the above probability is 0 for all unbounded-
time adversary A.

• Strong Collapse-Binding. For an adversary A, we define an experiment Expcl-bindingA (1λ)
as follows:

1. The challenger generates pp
$← Setup(1λ).

2. A is given the public parameter pp as input and generates a commitment com ∈ COM
and a quantum state σ over registers (M,R,A) where M stores an element of M, R
stores an element of R, and A is A’s internal register. Then it sends com and registers
(M,R) to the challenger, and keeps A on its side.

3. The challenger picks b
$← {0, 1} If b = 0, the challenger does nothing and if b = 1, the

challenger measures registers (M,R) in the computational basis. The challenger returns
registers (M,R) to A

4. A outputs a bit b′. The experiment outputs 1 if b′ = b and 0 otherwise.
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We say that A is a valid adversary if we we have

Pr[Commit(pp,m; r) = com : pp
$← Setup(1λ), (com, σ)

$← A(pp), (m, r)←MM,R ◦ σ] = 1.

We say that a commitment is strongly collapse-binding if for any non-uniform QPT valid
adversary A, we have

|Pr[1
$← Expcl-bindingA (1λ)]− 1/2| = negl(λ).

Remark 2. The difference of strong collapse-binding from the original collapse-binding is that the
challenger measures both registers (M,R) in Step 3 in the case of b = 1 whereas the challenger
of the original collapse-binding game only measures M. We note that the statistical binding prop-
erty immediately implies the (original) collapse-binding property, but it does not imply the strong
collapse-binding property.

Remark 3. One can easily see that the strong collapse-binding property implies the computa-
tional binding property. Indeed, if one can find (m, r) 6= (m′, r′) such that Commit(pp,m; r) =
Commit(pp,m′; r′) = com, then we can break the strong collapse-binding property by sending com
and |ψ〉 := 1√

2
(|m, r〉M,R+|m′, r′〉M,R) to the challenger and performing a measurement (|ψ〉 〈ψ| , I−

|ψ〉 〈ψ|) on the returned state to distinguish if the state is measured.

We introduce the following definition for convenience.

Definition 2.2 (Binding Public Parameter.). We say that pp ∈ PP is binding if for any com-
mitment com ∈ COM, there is at most one m ∈ M such that Commit(pp,m; r) = com for some
r ∈ R.

The following lemma is easy to see.

Lemma 2.3. If a commitment scheme is statistically binding, then overwhelming fraction of pp
generated by Setup(1λ) is binding.

We also consider an additional security definition.

Definition 2.4 (Unpredictability.). For an adversary A, we consider an experiment ExpunpreA (1λ)
defined below:

1. A is given the security parameter 1λ and sends a (possibly malformed) public parameter
pp ∈ PP to the challenger.

2. The challenger randomly picks m
$←M, computes com

$← Commit(pp,m), and sends com to
A.

3. A returns m∗. The experiment outputs 1 if m = m∗ and 0 otherwise.

We say that a commitment scheme is unpredictable if for any non-uniform QPT adversary A, we
have

Pr[1
$← ExpunpreA (1λ)] = negl(λ).

The following lemma is a folklore, and easy to prove.

Lemma 2.5. If a commitment scheme is computationally hiding and |M| = 2ω(λ), then the scheme
is unpredictable.
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Instantiations. A computationally hiding and statistically binding commitment scheme exists
under the existence of OWF [Nao91, HILL99]. A computationally hiding and perfectly binding
non-interactive commitment scheme exists under the QLWE assumption [GHKW17, LS19].

A statistically hiding and strong collapse-binding commitment scheme exists assuming the exis-
tence of collapsing hash functions (and thus under the QLWE assumption) [Unr16b, Unr16a]. This
can be seen by observing that the proof of (original) collapse-binding property from collapsing hash
functions in [Unr16b, Unr16a] already implicitly proves the strong collapse-binding property. For
completeness, we give a proof in Appendix B.

2.3 Interactive Proof and Argument.

We define interactive proofs and arguments similarly to [BS20].

Notations. For an NP language L and x ∈ L, RL(x) is the set that consists of all (classical)
witnesses w such that the verification machine for L accepts (x,w).

A (classical) interactive protocol is modeled as an interaction between interactive quantum
machines P referred to as a prover and V referred to as a verifier that can be implemented by PPT
algorithms. We denote by 〈P (xP ), V (xV )〉(x) an execution of the protocol where x is a common
input, xP is P ’s private input, and xV is V ’s private input. We denote by OUTV 〈P (xP ), V (xV )〉(x)
the fianl output of V in the execution. An honest verifier’s output is > indicating acceptance or ⊥
indicating rejection, and a quantum malicious verifier’s output may be an arbitrary quantum state.

Definition 2.6 (Interactive Proof and Argument for NP). An interactive proof or argument for
an NP language L is an interactive protocol between a PPT prover P and a PPT verifier V that
satisfies the following:

Perfect Completeness. For any x ∈ L, and w ∈ RL(x), we have

Pr[OUTV 〈P (w), V 〉(x) = >] = 1

Statistical/Computational Soundness. We say that an interactive protocol is statistically
(resp. computationally) sound if for any unbounded-time (resp. non-uniform QPT) cheating prover
P ∗, there exists a negligible function negl such that for any λ ∈ N and any x ∈ {0, 1}λ \L, we have

Pr[OUTV 〈P ∗, V 〉(x) = >] ≤ negl(λ).

We call an interactive protocol with statistical (resp. computational) soundness an interactive proof
(resp. argument).

2.3.1 Witness Indistinguishable Proof of Knowledge

Definition 2.7 (Witness Indistinguishable Proof of Knowledge). A witness indistinguishable proof
of knowledge for an NP language L is an interactive proof for L that satisfies the following properties
(in addition to perfect completeness and statistical soundness):

Witness Indistinguishability. For any non-uniform QPT malicious verifier V ∗, we have

{OUTV ∗〈P (w0), V ∗〉(x)}λ,x,w0,w1

comp
≈ {OUTV ∗〈P (w1), V ∗〉(x)}λ,x,w0,w1

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w0, w1 ∈ RL(x).
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(Non-Adaptive) Knowledge Extractability. There is an oracle-aided QPT algorithm K, a
polynomial poly, a negligible function negl, and a constant d ∈ N such that for any quantum
unbounded-time malicious prover P ∗ = {P ∗λ , ρλ}λ∈N, λ ∈ N, and x ∈ {0, 1}λ, we have

Pr[w ∈ RL(x) : w
$← KP ∗λ (ρλ)(x)] ≥ 1

poly(λ)
· Pr[OUTV 〈P ∗λ (ρλ), V 〉(x) = >]d − negl(λ).

Instantiations. We can construct a constant round (actually 4-round) witness indistinguishable
proof of knowledge for NP only assuming the existence of post-quantum OWFs by some tweak of
existing works [Unr12, Unr16b]. We briefly explain this below.

A constant round witness indistinguishable proof of knowledge that satisfies the above re-
quirements was first constructed by Unruh [Unr12] based on strict-binding commitments, where
a commitment perfectly binds not only a message but also randomness. Due to the usage of
strict-binding commitment, an instantiation of this protocol requires one-to-one OWF, for which
there is no post-quantum candidate under standard assumptions. Later, Unruh [Unr16b] proved
that the protocol in [Unr12] can be instantiated using collapse-binding commitments instead of
strict-binding commitments if we relax the knowledge extractability requirement to computational
one. Since the statistical binding property trivially implies the collapse-binding property as noted
in Remark 2, we can just use statistically binding commitments as collapse-binding commitments
in the construction of [Unr16b]. Moreover, since the statistically binding property can be seen
as a “statistical version” of collapse-binding, we obtain statistical knowledge extractability.15 In
summary, the construction in [Unr16b] instantiated with statistically binding (and computational
hiding) commitments suffices for our purpose.

We also give another more concrete explanation. The protocol in [Unr12] is a modification
of Blum’s Graph Hamiltonicity protocol [Blu86]. For proving the knowledge extractability, Unruh
introduced a rewinding technique that enables the extractor to run a prover twice for different chal-
lenges. In his extraction strategy, the extractor records both committed messages and randomness
when it runs the prover for the first time. For ensuring that this does not collapse the prover’s
state too much, he assumed the strict-binding property. Here, we observe that the extractor ac-
tually need not record both committed message and randomness, and it only need to record the
committed message. (Indeed, the security proof in [Unr16b] does so). In this case, the statistical
binding property instead of the strict-binding property suffices to ensure that the prover’s state is
not collapsed too much since the randomness register is not measured by the extractor.

2.3.2 Delayed-Witness Σ-Protocol

We introduce a special type of Σ-protocol which we call delayed-witness Σ-protocol where the first
message can be generated without witness.

Definition 2.8 (Delayed-Witness Σ-protocol). A (post-quantum) delayed-witness Σ-protocol for
an NP language L is a 3-round interactive proof for NP with the following syntax.

Common Input: An instance x ∈ L ∩ {0, 1}λ for security parameter λ ∈ N.
P ’s Private Input: A classical witness w ∈ RL(x) for x.

1. P generates a “commitment” a and a state st. For this part, P only uses the statement x and

does not use any witness w. We denote this procedure by (a, st)
$← Σ.P1(x). Then it sends a

to the verifier, and keeps st as its internal state.

15If one is not convinced by this informal explanation, one can think of our claim as the existence of a constant round
witness indistinguishable argument of knowledge for NP under the existence of OWF. Actually, this computational
version of knowledge extractability suffices for the purpose of this paper.
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2. V chooses a“challenge” e
$← {0, 1}λ and sends e to P .

3. P generates a “response” z from st, witness w, and e. We denote this procedure by z
$←

Σ.P3(st, w, e). Then it sends z to V .

4. V verifies the transcript (a, e, z) and outputs> indicating acceptance or⊥ indicating rejection.

We denote this procedure by >/⊥ $← Σ.V (x, a, e, z).

We require a delayed-witness Σ-protocol to satisfy the following property in addition to perfect
completeness and statistical soundness.16

Special Honest-Verifier Zero-Knowledge. There exists a PPT simulator SimΣ such that we
have

{(a, z) : (a, st)
$← Σ.P1(x), z

$← Σ.P3(st, w, e)}λ,x,w,e
comp
≈ {(a, z) : (a, z)

$← SimΣ(x, e)}λ,x,w,e

where x ∈ L ∩ {0, 1}λ, w ∈ RL(x), and e ∈ {0, 1}λ.

Instantiations. An example of a dealyed-witness Σ-protocol is a parallel repetition version of
Blum’s Graph Hamiltonicity protocol [Blu86]. In the ptorocol, we need a computationally hiding
and perfectly binding non-interactive commitment scheme, which exists under the QLWE assump-
tion as noted in Sec. 2.2. In summary, a delayed-input Σ-protocol for all NP languages exists
under the QLWE assumption.

2.3.3 Quantum ε-Zero-Knowledge Proof and Argument

Here, we define quantum black-box ε-zero-knowledge proofs and arguments. The difference from
the definition of quantum zero-knowledge in [BS20] are:

1. (ε-Zero-Knowledge) We allow the simulator to depend on a noticeable “accuracy parame-
ter” ε, and allows its running time to polynomially depend on ε−1, and

2. (Black-Box Simulation) the simulator is only given black-box access to a malicious verifier.

Definition 2.9 (Post-Quantum Black-Box ε-Zero-Knowledge Proof and Argument). A post-quantum
black-box ε-zero-knowledge proof (resp. argument) for an NP language L is an interactive proof
(resp. argument) for L that satisfies the following property in addition to perfect completeness and
statistical (resp. computational) soundness:

Quantum Black-Box ε-Zero-Knowledge. There exists an oracle-aided QPT simulator Sim
such that for any non-uniform QPT malicious verifier V ∗ = {V ∗λ , ρλ}λ∈N and any noticeable func-
tion ε(λ), we have

{OUTV ∗λ 〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ ε {OUTV ∗λ (SimV ∗λ (ρλ)(x, 1ε

−1
))}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(λ), and OUTV ∗λ (SimV ∗λ (ρλ)(x)) is the state in the output
register of V ∗λ after the simulated execution of V ∗λ by Sim.

16We do not require special soundness, which is often a default requirement of Σ-protocol.
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Remark 4. In the above definition of quantum black-box ε-zero-knowledge, we do not consider an
entanglement between auxiliary input of a malicious verifier and distinguisher unlike the original
definition of quantum zero-knowledge by Watrous [Wat09]. However, in Appendix C, we show that
the above definition implies indistinguishability against a distinguisher that may get an entangled
state to verifier’s auxiliary input by taking advantage of black-box simulation.

2.4 Quantum Rewinding Lemma

Watrous [Wat09] proved a lemma that enables us to amplify the success probability of a quantum
algorithm under certain conditions. The following form of the lemma is based on that in [BS20,
Lemma 2.1].

Lemma 2.10 ([Wat09, BS20]). There is an oracle-aided quantum algorithm R that gets as input
the following:

• A quantum circuit Q that takes n-input qubits in register Inp and outputs a classical bit b (in
a register outside Inp) and an m output qubits.

• An n-qubit state ρ in register Inp.

• A number T ∈ N in unary.

R(1T ,Q, ρ) executes in time T · |Q| and outputs a distribution over m-qubit states Dρ :=
R(1T ,Q, ρ) with the following guarantees.

For an n-qubit state ρ, denote by Qρ the conditional distribution of the output distribution Q(ρ),
conditioned on b = 0, and denote by p(ρ) the probability that b = 0. If there exist p0, q ∈ (0, 1),
γ ∈ (0, 1

2) such that:

• Amplification executes for enough time: T ≥ log(1/γ)
4p0(1−p0) ,

• There is some minimal probability that b = 0: For every n-qubit state ρ, p0 ≤ p(ρ),

• p(ρ) is input-independent, up to γ distance: For every n-qubit state ρ, |p(ρ)− q| < γ, and

• q is closer to 1
2 : p0(1− p0) ≤ q(1− q),

then for every n-qubit state ρ,

TD(Qρ, Dρ) ≤ 4
√
γ

log(1/γ)

p0(1− p0)
.

Moreover, R(1T ,Q, ρ) works in the following manner: It uses Q for only implementing oracles that
perform the unitary part of Q and its inverse, acts on Inp only through these oracles, and the output
of R is the state in the output register of Q after the simulated execution. We note that R may
directly act on Q’s internal registers other than Inp.

Remark 5. The final claim of the lemma (“Moreover...”) is not explicitly stated in previous works.
In the description of R in [Wat09], the first qubit of Inp is designated to output b, and thus the
above requirement is not satisfied. However, this can be easily avoided by just letting Q output b in
a register outside Inp as required above. Then one can see that R acts on the input register only
through Q as seen from the description of R in [Wat09] (with the above modification in mind).
Looking ahead, this is needed to show our ε-zero-knowledge simulators are black-box.
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3 Technical Lemmas

In this section, we introduce three lemmas that are used in the proof of the extraction lemma
(Lemma 4.2) in Sec. 4.

Lemma 3.1. Let |φb〉 = |φb,0〉+ |φb,1〉 be a normalized quantum state and Π be a projector over a
Hilbert space H such that 〈φb,0|Π |φb′,1〉 = 0 for b, b′ ∈ {0, 1}, ‖Π |φb,0〉‖2 ≤ γ for b ∈ {0, 1}, and
‖ |φ1,1〉 − |φ0,1〉 ‖ ≤ δ for some real numbers γ, δ. Let F be a quantum algorithm that takes a state
in H as input, applies the projective measurement (Π, I −Π), and outputs the resulting state if the
measurement outcome is 0 i.e., the state is projected onto Π, and otherwise outputs ⊥.

Then it holds that

TD(F (|φ0〉), F (|φ1〉)) ≤
√

4γ + 2δ.

Proof. If
√

4γ + 2δ > 1, then the desired inequality trivially holds. Thus, we assume
√

4γ + 2δ ≤ 1
in the rest of the proof. We consider an additional one-qubit register and define

|ψb〉 :=
√

1− pb |0〉 |0m〉+ |1〉Π |φb〉

for b ∈ {0, 1} where m is the number of qubits in the register for |φb〉 and

pb := ‖Π |φb〉 ‖2.

Without loss of generality, we assume p0 ≥ p1. It suffices to prove

TD(|ψ0〉 〈ψ0| , |ψ1〉 〈ψ1|) ≤
√

4γ + 2δ (1)

because a distinguisher that distinguishes F (|φ0〉) and F (|φ1〉) can be easily converted into a dis-
tinguisher that distinguishes |ψ0〉 and |ψ1〉 with the same advantage.

We have

p0 = ‖Π |φ0〉 ‖2

= ‖Π |φ0,0〉 ‖2 + ‖Π |φ0,1〉 ‖2

≤ ‖Π |φ0,1〉 ‖2 + γ

where we used the assumption that 〈φ0,0|Π |φ0,1〉 = 0 in the second equality and the assumption
that ‖Π |φ0,0〉‖2 ≤ γ in the final inequality.

Thus, we have

‖Π |φ0,1〉 ‖2 ≥ p0 − γ. (2)

We give a lower bound for |〈ψ0|ψ1〉|. By the definition of |ψb〉,

|〈ψ0|ψ1〉| = |
√

(1− p0)(1− p1) + 〈φ0|Π |φ1〉 |

= |
√

(1− p0)(1− p1) + 〈φ0,0|Π |φ1,0〉+ 〈φ0,1|Π |φ1,1〉 |

= |
√

(1− p0)(1− p1) + 〈φ0,0|Π |φ1,0〉+ 〈φ0,1|Π |φ0,1〉+ 〈φ0,1|Π (|φ1,1〉 − |φ0,1〉) |
≥ (1− p0) + ‖Π |φ0,1〉 ‖2 − ‖Π |φ0,0〉‖ · ‖Π |φ1,0〉 ‖ − ‖ |φ1,1〉 − |φ0,1〉 ‖
≥ (1− p0) + (p0 − γ)− γ − δ
= 1− (2γ + δ)
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where we used the assumption that 〈φb,0|Π |φb′,1〉 = 0 for b, b′ ∈ {0, 1} in the first equality, the
assumptions that p0 ≥ p1 and |φ0,1〉 = |φ1,1〉 in the first inequality, and Eq. 2 and the assumptions
that ‖Π |φb,0〉‖2 ≤ γ for b ∈ {0, 1} and ‖ |φ1,1〉 − |φ0,1〉 ‖ ≤ δ in the second inequality. We note that
1− (2γ + δ) > 0 since we assume

√
4γ + 2δ ≤ 1.

Then, we have

TD(|ψ0〉 〈ψ0| , |ψ1〉 〈ψ1|) =
√

1− |〈ψ0|ψ1〉|2

≤
√

4γ + 2δ

This completes the proof of Lemma 3.1.

The second lemma is the following variant of the gentle measurement lemma.

Lemma 3.2. Let |ψ〉X be a (not necessarily normalized) state over register X and U be a unitary
over registers (X,Y,Z). Suppose that a measurement of register Z of U |ψ〉X |0〉Y,Z results in a
deterministic value except for probability ν, i.e., there is z∗ such that

‖(I − |z∗〉 〈z∗|)ZU |ψ〉X |0〉Y,Z ‖
2 ≤ ν.

If we let R := (|0〉 〈0|)Y,ZU †(|z∗〉 〈z∗|)ZU , then we have

‖ |ψ〉X |0〉Y,Z −R |ψ〉X |0〉Y,Z ‖ ≤
√
ν.

Proof. Let Πz∗ := (|z∗〉 〈z∗|)Z. We have

|ψ〉X |0〉Y,Z = (|0〉 〈0|)Y,ZU †U |ψ〉X |0〉Y,Z
= R |ψ〉X |0〉Y,Z + (|0〉 〈0|)Y,ZU †(I −Πz∗)U |ψ〉X |0〉Y,Z .

Thus, we have

‖ |ψ〉X |0〉Y,Z −R |ψ〉X |0〉Y,Z ‖ = ‖(|0〉 〈0|)Y,ZU †(I −Πz∗)U |ψ〉X |0〉Y,Z ‖
≤ ‖(I −Πz∗)U |ψ〉X |0〉Y,Z ‖ ≤

√
ν.

The third lemma is about amplifying the success probability of a projection. Very roughly
speaking, the lemma states that for any projection Π and a “threshold” 0 < t < 1, we can
decompose the Hilbert space into two subspaces S<t and S≥t so that

1. Π succeeds with probability < t (resp. ≥ t) in S<t (resp. S≥t).

2. There is an efficient procedure Amp that runs in time T = O(t−1) that maps any state
|ψ〉 ∈ S≥t onto the span of Π with probability almost 1. We note that this does not necessarily
map |ψ〉 to Π |ψ〉.

3. Each subspace is invariant under Π and Amp.

The formal statement of our lemma is given below:

Lemma 3.3. Let Π be a projection over a Hilbert space HX ⊗ HY. For any noticeable function
t = t(λ), there exists an orthogonal decomposition (S<t, S≥t) of HX⊗HY that satisfies the following:
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1. (S<t and S≥t are invariant under Π and (|0〉 〈0|)Y.) For any |ψ〉X,Y ∈ S<t, we have

Π |ψ〉X,Y ∈ S<t, (IX ⊗ (|0〉 〈0|)Y) |ψ〉X,Y ∈ S<t.

Similarly, for any |ψ〉X,Y ∈ S≥t, we have

Π |ψ〉X,Y ∈ S≥t, (IX ⊗ (|0〉 〈0|)Y) |ψ〉X,Y ∈ S≥t.

2. (Π succeeds with probability < t and ≥ t in S<t and S≥t.) For any quantum state
|φ〉X ∈ HX s.t. |φ〉X |0〉Y ∈ S<t we have

‖Π |φ〉X |0〉Y ‖
2 < t.

Similarly, for any quantum state |φ〉X ∈ HX s.t. |φ〉X |0〉Y ∈ S≥t we have

‖Π |φ〉X |0〉Y ‖
2 ≥ t.

3. (Unitary for amplification.) For any T ∈ N, there exists a unitary Uamp,T over HX ⊗
HY⊗HB⊗HAnc where B is a register to store a qubit and Anc is a register to store ancillary
qubits with the following properties:

(a) (Mapped onto Π when B contains 1.) For any quantum state |ψ〉X,Y ∈ HX ⊗HY,
we can write

|1〉 〈1|B Uamp,T |ψ〉X,Y |0〉B,Anc =
∑
anc

|ψ′anc〉X,Y |1〉B |anc〉Anc

by using sub-normalized states |ψ′anc〉X,Y that are in the span of Π.

(b) (Amplification of success probability in S≥t.) For any noticeable function ν = ν(λ),
there is T = poly(λ) such that for any quantum state |φ〉X ∈ HX s.t. |φ〉X |0〉Y ∈ S≥t,
we have17

‖ |1〉 〈1|B Uamp,T |φ〉X |0〉Y |0〉B,Anc ‖
2 ≥ 1− ν.

(c) (S<t and S≥t are invariant under Uamp,T ). For any quantum state |ψ<t〉X,Y ∈ S<t
and any b, anc, we can write

Uamp,T |ψ<t〉X,Y |b, anc〉B,Anc =
∑
b′,anc′

|ψ′<t,b′,anc′〉X,Y |b
′, anc′〉B,Anc

by using sub-normalized states |ψ′<t,b′,anc′〉X,Y ∈ S<t.
Similarly, for any quantum state |ψ≥t〉X,Y ∈ S≥t and any b, anc, we can write

Uamp,T |ψ≥t〉X,Y |b, anc〉B,Anc =
∑
b′,anc′

|ψ′≥t,b′,anc′〉X,Y |b
′, anc′〉B,Anc

by using sub-normalized states |ψ′≥t,b′,anc′〉X,Y ∈ S≥t.
17In the previous versions of this paper, we claimed that the lower bound is 1− (1− 2t+ 2t2)T−1(1− t). However,

this was based on a false claim that (1− 2t+ 2t2)T−1(1− t) is decreasing in t ∈ [0, 1] for any fixed T ≥ 1.
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4. (Efficient Implementation of Uamp,T .) There exists a QPT algorithm Amp (whose descrip-
tion is independent of Π) that takes as input 1T , a description of quantum circuit that perform
a measurement (Π, IX,Y − Π), and a state |ψ〉X,Y,B,Anc, and outputs Uamp,T |ψ〉X,Y,B,Anc.
Moreover, Amp uses the measurement circuit for only implementing an oracle that apply uni-
tary to write a measurement result in a designated register in Anc, and it acts on X only
through the oracle access.

Since the above lemma can be proven by a similar usage of Jordan’s lemma to existing works
[NWZ09, CCY20], we give the proof in Appendix D.

4 Extraction Lemma

In this section, we prove our main technical lemma, which we call the extraction lemma. Before
giving a formal statement, we give an intuitive explanation. Suppose that we have a two-stage
quantum algorithm A = (Acom,Aopen) that works as follows. Acom is given pp of a commitment
scheme and generates a commitment com, and passes a quantum state ρst in its internal register to
Aopen. Aopen is given the internal state ρst, and outputs a message-randomness pair (m, r) (which is
not necessarily a valid opening to com) along with a classical output out, and let ρ′st be its internal
state after the execution. We call a successive execution of Acom and Aopen a real experiment. On
the other hand, we consider an extraction experiment where an “extractor” Ext runs on input ρst
in between Acom and Aopen to “extract” a committed message mExt while generating a simulated
A’s internal state ρExt. Then we run Aopen with the internal state ρExt instead of ρst to complete
the extraction experiment. Roughly, the extraction lemma claims that if the commitment scheme
is strong collapse-binding (resp. statistically binding), then there exists an extractor Ext such that
we have m = mExt with high probability and distributions of (m, r, out, ρ′st) in real and extraction
experiments are computationally (resp. statistically) indistinguishable conditioned on that (m, r)
is a valid opening to com.

The formal statement is given below.

Definition 4.1 (Extraction Experiments). Let Com = (Setup,Commit) be a commitment scheme
with message space M, randomness space R, commitment space COM, and a public parameter
space PP. Let A = {Acom,λ,Aopen,λ, ρλ}λ∈N be a sequence of two-stage non-uniform QPT algorithms
with the following syntax:

Acom,λ(pp; ρλ)→ (com, ρst): It takes as input pp ∈ PP and an advice ρλ, and outputs com ∈ COM
and a quantum state ρst in register ST.

Aopen,λ(ρst)→ (m, r, out, ρ′st): It takes as input a quantum state ρst in register ST, and outputs
m ∈M, r ∈ R, a classical string out, and a quantum state ρ′st in register ST.

Let Ext be a QPT algorithm and δ be a function in λ. Then we define following experiments:

Expreal[Com,A](λ)

pp
$← Setup(1λ),

(com, ρst)
$← Acom,λ(pp; ρλ),

(m, r, out, ρ′st)
$← Aopen,λ(ρst),

If Commit(pp,m; r) 6= com,
Output ⊥

Else Output (pp, com,m, r, out, ρ′st).

Expext[Com,A,Ext](λ, δ)
pp

$← Setup(1λ),

(com, ρst)
$← Acom,λ(pp; ρλ),

(mExt, ρExt)
$← Ext(1λ, 1δ

−1
, pp, com,Aopen,λ, ρst),

(m, r, out, ρ′st)
$← Aopen,λ(ρExt),

If Commit(pp,m; r) 6= com ∨m 6= mExt,
Output ⊥

Else Output (pp, com,m, r, out, ρ′st).
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Lemma 4.2 (Extraction Lemma). For any strong collapse-binding commitment scheme Com =
(Setup,Commit), there exists a QPT algorithm Ext such that for any noticeable function δ(λ) and
A = {Acom,λ,Aopen,λ, ρλ}λ∈N as in Definition 4.1, we have

{Expreal[Com,A](λ)}λ∈N
comp
≈ δ {Expext[Com,A,Ext](λ, δ)}λ∈N. (3)

If Com is statistically binding instead of strong collapse-binding, we have

{Expreal[Com,A](λ)}λ∈N
stat
≈ δ {Expext[Com,A,Ext](λ, δ)}λ∈N. (4)

Moreover, Ext(1λ, 1δ
−1
, pp, com,Aopen,λ, ρst) works in the following manner: It uses Aopen,λ for only

implementing oracles that perform unitary part of Aopen,λ and its inverse, and acts on ST only
through black-box access to the oracles. The second output ρExt of Ext is the state in ST after the
execution. We note that Ext may directly act on internal registers of Aopen,λ other than ST.

4.1 Proof of Extraction Lemma (Lemma 4.2)

Proof. (of Lemma 4.2) We first prove the lemma for the case of strong collapse-binding commit-
ments. We explain how to modify the proof to prove the lemma for statistically binding commit-
ments at the end of the proof.

In the proof, we need to consider sequences of many objects (e.g., unitary, Hilbert space,
projection, etc.) indexed by λ. For the sake of simplicity, we will often ignore the indexing by λ.

Let Uopen be the unitary that represents Aopen,λ. More precisely, we define Uopen over a Hilbert
space HA := HST ⊗HW ⊗HM ⊗HR ⊗HOut so that Aopen,λ can be described as follows:

Aopen,λ(ρst): It stores a quantum state ρst in the register ST and initializes registers W, M, R,
and Out to be |0〉W,M,R,Out. Then it applies a unitary Uopen, measures registers M, R, and
Out in the standard basis to obtain m, r, and out, and outputs m, r, out, and a quantum
state ρ′st in register ST tracing out register W.

For any pp ∈ PP and com ∈ COM, we define a projection Πpp,com over HA as

Πpp,com := U †openΠ
pp,com
test Uopen (5)

where

Πpp,com
test :=

 ∑
(m,r):Commit(pp,m;r)=com

(|m, r〉 〈m, r|)M,R

 .

We apply Lemma 3.3 for HX := HST, HY := HW ⊗HM ⊗HR ⊗HOut, Π := Πpp,com, t := δ2/6,
and T = poly(λ) is chosen in such a way that Item 3b of Lemma 3.3 holds for ν = t2. Then we
have a decomposition (Spp,com

<t , Spp,com
≥t ) of HA and a unitary Upp,com

amp,T over HX ⊗HY ⊗HB ⊗HAnc

that satisfies the requirements in Lemma 3.3 where we write pp, com in superscript to clarify the
dependence on them.

Then we construct an extractor Ext as follows:

Ext(1λ, 1δ
−1
, pp, com,Aopen,λ, ρst):

1. Store a quantum state ρst in register ST and initialize registers W, M, R, Out, B, and
Anc to be all |0〉.
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2. Apply Upp,com
amp,T by using the algorithm Amp in Item 4 of Lemma 3.3.

3. Measure register B and let b be the outcome. If b = 0, then return ⊥ and immediately
halt.18 Otherwise, proceed to the next step.

4. Apply Uopen, measure registers M and R to obtain an outcome (mExt, rExt), and apply

U †open.

5. Apply Upp,com
amp,T

†
by using the algorithm Amp in Item 4 of Lemma 3.3.

6. Measure all registers W, M, R, Out, B, and Anc. If the outcome is not all 0, return
⊥. Otherwise, output mExt and the state ρExt in the register ST.

We say that Ext fails if it outputs ⊥. We can see that Ext runs in QPT and satisfies the syntactic
requirements noting that Amp can be implemented by black-box access to Aopen,λ by the definition
of Πpp,com and Item 4 of Lemma 3.3.

For Ext as constructed above, we consider the following sequence of hybrid experiments:

Expext[Com,A,Ext](λ, δ): This is the experiment as defined in Definition 4.1.

ExpHyb1
[Com,A,Ext](λ, δ): This experiment is identical to the previous one except that the experi-

ment only checks if Ext fails (i.e., Ext returns ⊥) instead of checking m 6= mExt for the decision
of outputting ⊥. More concretely, we replace “If Commit(pp,m; r) 6= com ∨ m 6= mExt” with
“If Commit(pp,m; r) 6= com ∨ Ext fails”.

ExpHyb2
[Com,A,Ext′](λ, δ): This experiment is identical to the previous one except that instead of

Ext, we use Ext′ that works similarly to Ext except that Step 4 is deleted and mExt is omitted
from the output. We note that the experiment is well-defined since mExt is no longer used
due to the modification made in the previous hybrid.

Expreal[Com,A](λ): This is the experiment as defined in Definition 4.1.

We prove that output distributions of each neighboring experiments are close.

Claim 4.3. If Com is strong collapse-binding, we have

{Expext[Com,A,Ext](λ, δ)}λ∈N
comp
≈ {ExpHyb1

[Com,A,Ext](λ, δ)}λ∈N.

Proof. For this part, we only need the computational binding property. (As remarked in Remark
3, the strong collapse-binding property implies the computational binding property.)

We can see that the difference between these two experiments may happen only when Commit(pp,m; r) =
com, Ext does not fail, and m 6= mExt. We denote this event by Bad. We prove that Bad hap-
pens with a negligible probability. When Ext does not fail, we have b = 1 in Step 3 of Ext.
When this happens, at this point, the state in the registers ST, W, M, R, Out is in the span
of Πpp,com by Item 3a of Lemma 3.3. When this happens, for (mExt, rExt) obtained in Step 4, we
have Commit(pp,mExt; rExt) = com by the definition of Πpp,com. Therefore, when Bad happens, we
have Commit(pp,m; r) = Commit(pp,mExt; rExt) = com and m 6= mExt. Thus, if this happens with
non-negligible probability, we can use A to break the computational binding of the commitment
scheme. Therefore, assuming the computational binding property of Com (which follows from the
strong collapse-binding), this happens with a negligible probability.

18More precisely, it returns (mExt, ρExt) := (⊥, |⊥〉 〈⊥|). The same remark also applies to Step 6
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Claim 4.4. If Com is strong collapse-binding, we have

{ExpHyb1
[Com,A,Ext](λ, δ)}λ∈N

comp
≈ {ExpHyb2

[Com,A,Ext′](λ, δ)}λ∈N

Proof. As observed in the proof of Claim 4.3, if we have b = 1 in Step 3 of Ext, at this point,
the state in the registers ST, W, M, R, Out is in the span of Πpp,com by Item 3a of Lemma
3.3. This means that conditioned on that this happens, the registers M and R contain a valid
opening (m, r) for com under the public parameter pp (i.e., we have Commit(pp,m; r) = com) by
the definition of Πpp,com. Therefore, by the strong collapse-binding property of Com, the experiment
is computationally indistinguishable even if we omit the measurement of registers M and R in Step
4. If we omit the measurement, then the Step 4 just applies Uopen followed by U †open, which is
equivalent to doing nothing. Therefore, the experiment is indistinguishable even if we delete the
Step 4 of Ext and the claim is proven.

Claim 4.5. we have

{ExpHyb2
[Com,A,Ext′](λ, δ)}λ∈N

stat
≈ δ {Expreal[Com,A]}(λ)}λ∈N

We give a proof of Claim 4.5 in next subsection. Combining Claim 4.3, 4.4, and 4.5, we obtain
Eq. 3. This completes the proof of Lemma 4.2 for the strong collapse-binding case.

Statistically binding case. Here, we briefly explain how to modify the proof to prove Lemma 4.2
when Com is statistically binding instead of strong collapse-binding commitment. The construction
of Ext is the same as the above strong collapse-binding case except that it only measures the register
M and does not measure the register R in Step 4. Then, the rest of the proof is done similarly to
the strong collapse-binding case. We explain how we can use statistical binding instead of strong
collapse-binding. In the above proof, we use strong collapse-binding property for bounding the
difference between Expext and ExpHyb1

(Claim 4.3) and bounding the difference between ExpHyb1

and ExpHyb2
(Claim 4.4).

For bounding the difference between Expext and ExpHyb1
, we observe that for mExt extracted

by Ext, there must exist rExt such that Commit(pp,mExt; rExt) = com by the construction of Ext
(though rExt is not measured by Ext due to the modification explained above). Therefore, if
Commit(pp,m; r) = com, then we must have mExt = m assuming that pp is binding.19 Thus,
replacing the check of mExt = m with the check of if Ext fails does not change the experiment
unless pp is not binding, which happens with negligible probability as shown in Lemma 2.3.

For bounding the difference between ExpHyb1
and ExpHyb2

, we observe that Step 4 of Ext (with
the modification that it only measures the register M) does not collapse the state assuming that
pp is binding. Therefore, we can prove the counterpart of Claim 4.4 based on statistical binding.

We note that an upper bound of the difference between ExpHyb2
and Expreal (Claim 4.5) can be

proven by the exactly same proof since we do not use security of commitment for this part as seen
in next subsection.

4.2 Proof of Claim 4.5

In this subsection, we give a proof of Claim 4.5, which was used in the proof of Lemma 4.2 in Sec.
4.1.

19See Defitinion 2.2 for the definition of pp being binding.
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Proof. (of Claim 4.5) We prove a stronger claim that two experiments Expreal[Com,A](λ) and
ExpHyb2

[Com,A,Ext′](λ, δ) are statistically close for any fixed pp, com and ρst. More precisely,
for any fixed pp, com and ρst, we consider the following two experiments:

Ẽxp
pp,com

real [Com,A](λ, ρst)

(m, r, out, ρ′st)
$← Aopen,λ(ρst),

If Commit(pp,m; r) 6= com,
Output ⊥

Else Output (m, r, out, ρ′st).

Ẽxp
pp,com

Hyb2
[Com,A,Ext′](λ, ρst, δ)

ρExt
$← Ext′(1λ, 1δ

−1
, pp, com,Aopen,λ, ρst),

(m, r, out, ρ′st)
$← Aopen,λ(ρExt),

If Commit(pp,m; r) 6= com or Ext′ fails
Output ⊥

Else Output (m, r, out, ρ′st).
Recall that Ext′ is an algorithm that works similarly to Ext except that it deletes Step 4 and does
not output mExt as introduced in ExpHyb2

. We prove that for any fixed pp, com, and ρst, we have

{Ẽxp
pp,com

real [Com,A](λ, ρst)}λ∈N
stat
≈ δ {Ẽxp

pp,com

Hyb2
[Com,A,Ext′](λ, ρst, δ)}λ∈N. (6)

It is easy to see that if Eq. 6 holds for all pp, com and ρst, then Claim 4.5 follows by averaging over
pp, com and ρst. Moreover, since any mixed state can be understood as a probability distribution
over pure states, it suffices to prove Eq. 6 assuming ρst is a pure state. Since we assume it is a pure
state, we denote it by |φst〉ST instead of ρst. Since we fix pp and com, we omit to write pp, com in
superscripts of Π, Πtest, S<t, S≥t, and Uamp,T for notational simplicity.

In the following, we denote by Other to mean registers (W,M,R,Out,B,Anc). Let R be an
operator defined as follows:

R := (|0〉 〈0|)OtherU
†
amp,T (|1〉 〈1|)BUamp,T .

Let Π<t and Π≥t be projections onto S<t and S≥t, respectively. To apply Lemma 3.1, we define
states |φ0〉 = |φ0,0〉+ |φ0,1〉 and |φ1〉 = |φ1,0〉+ |φ1,1〉 over (D,ST,Other) where D is an additional
one-qubit register as follows:

|φ0〉 := |1〉D |φst〉ST |0〉Other ,

|φ0,0〉 := |1〉D Π<t |φst〉ST |0〉Other ,

|φ0,1〉 := |1〉D Π≥t |φst〉ST |0〉Other ,

|φ1〉 := |1〉DR |φst〉ST |0〉Other + α |0〉D |0〉ST |0〉Other ,

|φ1,0〉 := |1〉DRΠ<t |φst〉ST |0〉Other + α |0〉D |0〉ST |0〉Other ,

|φ1,1〉 := |1〉DRΠ≥t |φst〉ST |0〉Other

for α :=
√

1− ‖R |φst〉ST |0〉Other ‖2 (so that |φ1〉 is a normalized state). Let Π′ be a projector over
(D,ST,Other) defined as

Π′ := (|1〉 〈1|)D ⊗ΠST,W,M,R,Out ⊗ IB,Anc

where Π is as defined in Eq. 5. (Note that we are omitting the superscript pp, com here.) Let F be
the quantum algorithm as in Lemma 3.1 with respect to the projection Π′ as defined above. That
is, F is the algorithm that takes a state over (D,ST,Other), applies the projective measurement
(Π′, I − Π′), and outputs the resulting state if the measurement outcome is 0, i.e., the state is
projected onto Π′ and otherwise outputs ⊥. Then we have

TD(Ẽxp
pp,com

real [Com,A](λ, |φst〉ST), Ẽxp
pp,com

Hyb2
[Com,A,Ext′](λ, |φst〉ST , δ)) ≤ TD(F (|φ0〉), F (|φ1〉))

(7)
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Indeed, this can be seen by the following observation. Let G be a quantum algorithm that
works as follows: If its input is ⊥, then G outputs ⊥. Otherwise, G parses the input as a
state over (D,ST,Other), applies Uopen, measures registers (M,R,Out), and outputs registers

(M,R,Out,ST) tracing out all the other registers. Noting that Π = U †openΠtestUopen, it is easy to

see thatGmaps F (|φ0〉) and F (|φ1〉) to Ẽxp
pp,com

real [Com,A](λ, |φst〉ST) and Ẽxp
pp,com

Hyb2
[Com,A,Ext′](λ, |φst〉ST , δ)),

respectively. Thus Eq. 7 follows from monotonicity of trace distance. Thus, it suffices to prove

TD(F (|φ0〉), F (|φ1〉)) ≤ δ.

To show this by using Lemma 3.1, we prove the following claim.

Claim 4.6. The following hold:

1. 〈φb,0|Π′ |φb′,1〉 = 0 for b, b′ ∈ {0, 1}.

2. ‖Π′ |φb,0〉 ‖2 ≤ t for b ∈ {0, 1}.

3. ‖ |φ1,1〉 − |φ0,1〉 ‖ ≤
√
ν.

Proof of Claim 4.6. The first item immediately follows from the definition. The second item for
b = 0 immediately follows from Item 2 of Lemma 3.3. To see the second item for the case of
b = 1, we observe that RΠ<t |φst〉ST |0〉Other is in the intersection of the spans of Π<t⊗ IB,Anc and
(|0〉 〈0|)Other by Item 1 and 3c of Lemma 3.3 and the definition of R. Then the desired inequality
follows from Item 2 of Lemma 3.3 similarly to the case of b = 0. To see the third item, we observe
that Item 3b of Lemma 3.3 implies

‖(|1〉 〈1|)BUamp,TΠ≥t |φst〉ST |0〉Other ‖
2 ≤ ν.

Thus, Lemma 3.2 implies

‖Π≥t |φst〉ST |0〉Other −RΠ≥t |φst〉ST |0〉Other ‖ ≤
√
ν.

This immediately implies the third item.

By Claim 4.6, we can apply Lemma 3.1 to obtain

TD(F (|φ0〉), F (|φ1〉)) ≤
√

4t+ 2
√
ν = δ

where the final inequality follows from t = δ2/6 and ν = t2. This completes the proof of Claim 4.5.

5 Post-Quantum ε-Zero-Knowledge Proof

In this section, we prove the following theorem.

Theorem 5.1. If the QLWE assumption holds, then there exists a 5-round post-quantum black-box
ε-zero-knowledge proof for all NP languages.

Then we generalize it to obtain the following theorem in Sec. 5.4.

Theorem 5.2. If a collapsing hash function exists, then there exists a 5-round post-quantum black-
box ε-zero-knowledge proof for all NP languages.
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5.1 Construction

Our construction is the same as the Golderich-Kahan protocol [GK96] except that we instantiate the
verifier’s commitment with a strong collapse-binding commitment and we rely on a post-quantum
delayed-witness Σ-protocol. Specifically, our construction is built on the following ingredients:

• A commitment scheme (CBCom.Setup,CBCom.Commit) that is statistical hiding and strong
collapse-binding with message space {0, 1}λ and randomness space R. As noted in Sec. 2.2,
such a commitment scheme exists under the QLWE assumption.

• A delayed-witness Σ-protocol (Σ.P1,Σ.P3,Σ.V ) for an NP language L as defined in Definition
2.8. As noted in Sec. 2.3.2, such a protocol exists under the QLWE assumption.

Then our construction of post-quantum black-box ε-zero-knowledge proof is given in Figure 1.

Protocol 1

Common Input: An instance x ∈ L ∩ {0, 1}λ for security parameter λ ∈ N.
P ’s Private Input: A classical witness w ∈ RL(x) for x.

1. V ’s Commitment to Challenge:

(a) P computes pp
$← CBCom.Setup(1λ) and sends pp to V .

(b) V chooses e
$← {0, 1}λ and r

$← R, computes com
$← CBCom.Commit(pp, e; r), and sends com

to P .

2. Σ-Protocol Execution:

(a) P generates (a, st)
$← Σ.P1(x) and sends a to V .

(b) V sends (e, r) to P .

(c) P aborts if CBCom.Commit(pp, e; r) 6= com.

Otherwise, it generates z
$← Σ.P3(st, w, e) and sends z to V .

(d) V outputs Σ.V (x, a, e, z).

Figure 1: Constant-Round Post-Quantum ε-Zero-Knowledge Proof for L ∈ NP

The completeness of the protocol clearly follows from that of the underlying Σ-protocol. In
Sec. 5.2 and 5.3, we prove that this protocol satisfies statistical soundness and quantum black-box
ε-zero-knowledge. Then we obtain Theorem 5.1.

5.2 Statistical Soundness

This is essentially the same as the proof in [GK96], but we give a proof for completeness.
For x /∈ L an unbounded-time cheating prover P ∗, we consider the following sequence of hybrids.

We denote by wini the event that P ∗ wins in Hybi.

Hyb1: This is the original game. That is,

1. P ∗ sends pp to V .

2. V chooses e
$← {0, 1}λ and r

$← R, computes com
$← CBCom.Commit(pp, e; r), and sends

com to P ∗.

3. P ∗ sends a to V .
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4. V sends (e, r) to P ∗

5. P ∗ sends z to V .

We say that P ∗ wins if we have Σ.V (x, a, e, z) = >.

Hyb2: This hybrid is identical to the previous one except that in Step 4, V uniformly chooses r′

such that com = CBCom.Commit(pp, e; r′) and sends (e, r′) to P ∗ instead of (e, r). We note
that this procedure may be inefficient.

This is just a conceptual change and thus we have Pr[win1] = Pr[win2].

Hyb3: This hybrid is identical to the previous one except that in Step 2, V sends com
$← CBCom.Commit(pp, 0`; r)

and the generation of e is delayed to Step 4.

Since no information of r is given to P ∗ due to the modification made in Hyb2, by the statistical
hiding property of CBCom, we have |Pr[win3]− Pr[win2]| = negl(λ).

Now, it is easy to prove Pr[win3] = negl(λ) by reducing it to the statistical soundness of the
Σ-protocol. Namely, we consider a cheating prover Σ.P ∗ against the Σ-protocol that works
as follows.

1. Σ.P ∗ runs P ∗ to get the first message pp.

2. Σ.P ∗ computes com
$← CBCom.Commit(pp, 0`; r), sends com to P ∗, and gets the third

message a. Then Σ.P ∗ sends a to its own external challenger as the first message of the
Σ-protocol.

3. Upon receiving a challenge e from the external challenger, Σ.P ∗ uniformly chooses r′

such that com = CBCom.Commit(pp, e; r′), sends (e, r′) to P ∗, and gets the P ∗’s final
message z. Then Σ.P ∗ sends z to the external challenger.

It is easy to see that Σ.P ∗ perfectly simulates the environment in Hyb3 for P ∗. Therefore,
Σ.P ∗’s winning probability is equal to Pr[win3]. On the other hand, by soundness of the
Σ-protocol, Σ.P ∗’s winning probability is negl(λ). Therefore we have Pr[win3] = negl(λ).

Combining the above, we have Pr[win1] = negl(λ), which means that the protocol satisfies the
statistical soundness.

5.3 Quantum Black-Box ε-Zero-Knowledge

Structure of the Proof. A high-level structure of our proof is similar to that of [BS20]. Specif-
ically, we first construct simulators Sima and Simna that simulate the “aborting case” and “non-
aborting case”, respectively. More precisely, Sima correctly simulates the verifier’s view if the verifier
aborts and otherwise returns a failure symbol Fail and Simna correctly simulates the verifier’s view
if the verifier does not abort and otherwise returns a failure symbol Fail. Then we consider a com-
bined simulator Simcomb that runs either of Sima or Simna with equal probability. Then Simcomb

correctly simulates the verifier’s view conditioned on that the output is not Fail, and it returns Fail
with probability almost 1/2. By applying the Watrous’ quantum rewinding lemma (Lemma 2.10)
to Simcomb, we can convert it to a full-fledged simulator.

Though the above high-level structure is similar to [BS20], the analyses of simulators Sima and
Simna are completely different from [BS20] since we consider different protocols. While the analysis
of Sima is easy, the analysis of Simna is a little more complicated as it requires the extraction lemma

29



(Lemma 4.2), which was developed in Sec. 4.

Proof of Quantum Black-Box ε-Zero-Knowledge. For clarity of exposition, we first show the
quantum ε-zero-knowledge property ignoring that the simulator should be black-box. That is, we
give the full description of the malicious verifier and its quantum advice as part of the simulator’s
input instead of only the oracle access to the verifier. At the end of the proof, we explain that the
simulator is indeed black-box.

In quantum ε-zero-knowledge, we need to show a simulator Sim that takes an accuracy parameter
1ε
−1

as part of its input. We assume ε(λ) = o(1) without loss of generality since the other case
trivially follows from this case. Without loss of generality, we can assume that a malicious verifier
V ∗ does not terminate the protocol before the prover aborts since it does not gain anything by
declaring the termination. We say that V ∗ aborts if it fails to provide a valid opening (e, r) to com
in Step 2b (i.e., the prover aborts in Step 2c).

First, we construct a simulator Simcomb, which returns a special symbol Fail with probability
roughly 1/2 but almost correctly simulates the output of V ∗λ conditioned on that it does not return
Fail. The simulator Simcomb uses simulators Sima and Simna as sub-protocols:

Simcomb(x, 1ε
−1
, V ∗λ , ρλ):

1. Choose mode
$← {a, na}.

2. Run Simmode(x, 1
ε−1
, V ∗λ , ρλ).

3. Output what Simmode outputs.

Sima(x, 1
ε−1
, V ∗λ , ρλ): 20

1. Set V ∗λ ’s internal state to ρλ.

2. Compute pp
$← CBCom.Setup(1λ) and send pp to V ∗λ .

3. V ∗λ returns com.

4. Compute (a, st)
$← Σ.P1(x) and send a to V ∗λ .

5. V ∗λ returns (e, r).

6. Return Fail and abort if CBCom.Commit(pp, e; r) = com.
Otherwise, let V ∗λ output the final output notifying that the prover aborts.

7. The final output of V ∗λ is treated as the output Sima.

Simna(x, 1
ε−1
, V ∗λ , ρλ):

1. Set V ∗λ ’s internal state to ρλ.

2. Compute pp
$← CBCom.Setup(1λ) and send pp to V ∗λ .

3. V ∗λ returns com. Let ρst be the internal state of V ∗λ at this point.

4. Compute (eExt, ρExt)
$← Ext(1λ, 1δ

−1
, pp, com,Aopen,λ, ρst) where Ext is as in Lemma 4.2

for the commitment scheme CBCom, δ := ε2

3600 log4(λ)
, andA = (Acom,λ,Aopen,λ) as defined

below:

Acom,λ(pp; ρλ): It sets V ∗λ ’s internal state to ρλ and sends pp to V ∗λ . Let com be the
response by V ∗λ and ρst be the internal state of V ∗λ at this point. It outputs (com, ρst).

20Though Sima does not depend on ε, we include 1ε
−1

in the input for notational uniformity.
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Aopen,λ(ρst): It generates (a, st)
$← Σ.P1(x),21 sets V ∗λ ’s internal state to ρst, and sends

a to V ∗λ . Let (e, r) be the response by V ∗λ and let ρ′st be the internal state of V ∗λ at
this point. It outputs (e, r, out := (a, st), ρ′st).

Here, we remark that V ∗λ ’s internal register corresponds to ST and e corresponds to m
in the notation of Lemma 4.2.

5. Set the verifier’s internal state to ρExt.

6. Compute (a, z)
$← SimΣ(x, eExt) and send a to V ∗λ .

7. V ∗λ returns (e, r).

8. Return Fail and abort if e 6= eExt or CBCom.Commit(pp, e; r) 6= com.
Otherwise, send z to V ∗λ .

9. The final output of V ∗λ is treated as the output Simna.

Intuitively, Sima (resp. Simna) is a simulator that simulates the verifier’s view in the case that
verifier aborts (resp. does not abort).

More formally, we prove the following lemmas.

Lemma 5.3 (Sima simulates the aborting case.). For any non-uniform QPT malicious verifier
V ∗ = {V ∗λ , ρλ}λ∈N, let OUTV ∗a 〈P (w), V ∗λ (ρλ)〉(x) be the V ∗λ ’s final output that is replaced with Fail
if V ∗λ does not abort. Then we have

{OUTV ∗a 〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w ≡ {Sima(x, 1
ε−1
, V ∗λ , ρλ)}λ,x,w.

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Since Sima perfectly simulates the real execution for V ∗λ when it aborts, Lemma 5.3 imme-
diately follows.

Lemma 5.4 (Simna simulates the non-aborting case.). For any non-uniform QPT malicious verifier
V ∗ = {V ∗λ , ρλ}λ∈N, let OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x) be the V ∗λ ’s final output that is replaced with Fail
if V ∗λ aborts. Then we have

{OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ δ {Simna(x, 1

ε−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Here, we analyze Simna(x, 1
ε−1
, V ∗λ , ρλ). In the following, we consider hybrid simulators

Simna,i(x,w, 1
ε−1
, V ∗λ , ρλ) for i = 1, 2, 3. We remark that they also take the witness w as input

unlike Simna.

Simna,1(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna(x, 1

ε−1
, V ∗λ , ρλ) except that it

generates (a, st)
$← Σ.P1(x) and z

$← Σ.P3(st, w, eExt) instead of (a, z)
$← SimΣ(x, eExt) in Step

6.

By the special honest-verifier zero-knowledge property of the Σ-protocol, we have

{Simna(x, 1
ε−1
, V ∗λ , ρλ)}λ,x,w

comp
≈ {{Simna,1(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

21We note that we consider x to be hardwired into Aopen,λ. We also note that though Aopen,λ does not take explicit
randomness, it can generate randomness by say, applying Hadamard on its working register and then measuring it.

31



Simna,2(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna,1(x,w, 1ε

−1
, V ∗λ , ρλ) except that

the generation of z is delayed until Step 8 and it is generated as z
$← Σ.P3(st, w, e) instead of

z
$← Σ.P3(st, w, eExt).

The modification does not affect the output distribution since it outputs Fail if e 6= eExt and
if e = eExt, then this simulator works in exactly the same way as the previous one. Therefore
we have

{Simna,1(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w ≡ {Simna,2(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Simna,3(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna,2(x,w, 1ε

−1
, V ∗λ , ρλ) except that

Step 4 and 5 are deleted and the check of e 6= eExt in Step 8 is omitted. That is, it outputs
Fail in Step 8 if and only if we have CBCom.Commit(pp, e; r) 6= com. We note that eExt and
ρExt are no longer used at all and thus need not be generated.

We can see that Step 3 is exactly the same as executing (com, ρst)
$← Acom,λ(pp; ρλ) and

Step 6 and 7 of previous and this experiments are exactly the same as executing (e, r, out =

(a, st), ρ′st)
$← Aopen,λ(ρExt) and (e, r, out = (a, st), ρ′st)

$← Aopen,λ(ρst), respectively where we
define ρ′st in simulated experiments as V ∗λ ’s internal state after Step 7. Moreover, the rest of
execution of the simulators can be done given (pp, com, e, r, out = (a, st), ρ′st). Therefore, by
a straightforward reduction to Lemma 4.2, we have

{Simna,2(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w

comp
≈ δ {Simna,3(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

We can see that Simna,3(x,w, 1ε
−1
, V ∗λ , ρλ) perfectly simulates the real execution for V ∗λ and

outputs V ∗λ ’s output conditioned on that V ∗λ does not abort, and just outputs Fail otherwise.
Therefore, we have

{Simna,3(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w ≡ {OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x). Combining the above, Lemma 5.4 is proven.

By combining Lemmas 5.3 and 5.4, we can prove the following lemma.

Lemma 5.5 (Simcomb simulates V ∗λ ’s output with probability almost 1/2). For any non-uniform

QPT malicious verifier V ∗ = {V ∗λ , ρλ}λ∈N, let psuccomb(x, 1ε
−1
, V ∗λ , ρλ) be the probability that Simcomb(x, 1ε

−1
, V ∗λ , ρλ)

does not return Fail and Dsim,comb(x, 1ε
−1
, V ∗λ , ρλ) be a conditional distribution of Simcomb(x, 1ε

−1
, V ∗λ , ρλ),

conditioned on that it does not return Fail. There exists a negligible function negl such that for any
x = {xλ ∈ L ∩ {0, 1}λ}λ∈N, we have∣∣∣psuccomb(x, 1ε

−1
, V ∗λ , ρλ)− 1/2

∣∣∣ ≤ δ/2 + negl(λ). (8)

Moreover, we have

{OUTV ∗〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ 4δ {Dsim,comb(x, 1ε

−1
, V ∗λ , ρλ)}λ,x,w (9)

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).
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Proof. (sketch.) Intuition of the proof is very easy: By Lemma 5.3 and 5.4, Sima and Simna almost
simulate the real output distribution of V ∗λ conditioned on that V ∗λ aborts and does not abort,
respectively. Therefore, if we randomly guess if V ∗λ aborts and runs either of Sima and Simna

that successfully works for the guessed case, the output distribution is close to the real output
distribution of V ∗λ conditioned on that the guess is correct, which happens with probability almost
1/2.

Indeed, the actual proof is based on the above idea, but for obtaining concrete bounds as in Eq.
8 and 9, we need some tedious calculations. We give a full proof in Appendix E since the proof is
easy and very similar to that in [BS20] (once we obtain Lemma 5.3 and 5.4).

Then, we convert Simcomb to a full-fledged simulator that does not return Fail by using the
quantum rewinding lemma (Lemma 2.10). Namely, we let Q be a quantum algorithm that takes
ρλ as input and outputs Simcomb(x, 1ε

−1
, V ∗λ , ρλ) where b := 0 if and only if it does not return Fail,

p0 := 1
4 , q := 1

2 , γ := δ, and T := 2 log(1/δ). Then it is easy to check that the conditions for
Lemma 2.10 is satisfied by Eq. 8 in Lemma 5.5 (for sufficiently large λ). Then by using Lemma
2.10, we can see that R(1T ,Q, ρλ) runs in time T · |Q| = poly(λ) and its output (seen as a mixed

state) has a trace distance bounded by 4
√
γ log(1/γ)
p0(1−p0) from Dsim,comb(x, 1ε

−1
, V ∗λ , ρλ). Since we have

γ = δ = ε2

3600 log4(λ)
= 1/poly(λ), we have 4

√
γ log(1/γ)
p0(1−p0) < 30

√
γ log2(λ) = ε

2 for sufficiently large λ

where we used log(1/γ) = log(poly(λ)) = o(log2(λ)). Thus, by combining the above and Eq. 9 in
Lemma 5.5, if we define Sim(x, 1ε

−1
, V ∗λ , ρλ) := R(1T ,Q, ρλ), then we have

OUTV ∗〈P (w), V ∗λ (ρλ)〉(x)
comp
≈ ε

2
+4δ Sim(x, 1ε

−1
, V ∗λ , ρλ).

We can conclude the proof of quantum ε-zero-knowledge by noting that we have ε
2 + 4δ < ε since

we have δ = ε2

3600 log4(λ)
< ε

8 .

Black-Box Simulation. Here, we explain that the simulator Sim constructed as above only
needs black-box access to the verifier. What we need to show are that Sim applies the unitary
part UV ∗λ of V ∗λ and its inverse U †V ∗λ

only as oracles and Sim does not directly act on V ∗λ ’s internal

register. There are two parts of the construction of Sim that are not obviously black-box. The first
is Step 4 and 5 of Simna where it runs the extraction algorithm Ext of Lemma 4.2, and the second
is the conversion from Simcomb to Sim using R in Lemma 2.10. In the following, we explain that
both steps can be implemented by black-box access to the verifier.

1. By Lemma 4.2, Ext uses the unitary part of Aopen,λ and its inverse only in a black-box manner,

and they can be implemented by black-box access to UV ∗λ and U †V ∗λ
. Moreover, since register

ST in the notation of Lemma 4.2 corresponds to the internal register of V ∗λ in our context, the
lemma ensures that Ext does not directly act on it. Also, Simna need not explicitly set V ∗λ ’s
internal register to ρExt in Step 5 if we do the above black-box simulation since a state in the
register automatically becomes ρExt after the execution as stated in Lemma 4.2. Therefore,
this step can be implemented by black-box access to V ∗λ .

2. Given the above observation, we now know that both Sima and Simna only need black-box
access to V ∗λ . This means that Q only needs black-box access to V ∗λ . Since R only uses Q
as oracles that perform the unitary part of Q and its inverse as stated in Lemma 2.10 and
they can be implemented by black-box access to V ∗λ , R uses UV ∗λ and U †V ∗λ

only as oracles.

Moreover, since the register Inp in Lemma 2.10 corresponds to the internal register of V ∗λ in
our context, R does not directly act on it.
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By the above observations, we can see that the simulator Sim only needs black-box access to V ∗λ .

5.4 Instantiation from Collapsing Hash Function

Our construction in Figure 1 is based on two building blocks: a statistically hiding and strong
collapse-binding commitment scheme and a delayed-witness Σ-protocol. Though the former can
be instantiated by a collapsing hash function, we do not know how to instantiate the latter by
a collapsing hash function since it needs non-interactive commitment that is not known to be
implied by collapsing hash functions. However, we can just use a 4-round version of a delayed-
witness Σ-protocol where the first message “commitment” in the Σ-protocol is instantiated based
on Naor’s commitments [Nao91] instead of a non-interactive one. Since Naor’s commitments can
be instantiated under any OWF and collapsing hash function is trivially also one-way, we can
instantiate the 4-round version of a delayed-witness Σ-protocol based on a collapsing hash function.
We can prove security of the construction based on 4-round version of a delayed-witness Σ-protocol
in essentially the same manner as the security proofs in Sec. 5.2 and 5.3. We also note that this
does not increase the number of rounds of our construction. Based on these observations, we obtain
Theorem 5.2.

6 Post-Quantum ε-Zero-Knowledge Argument from OWF

In this section, we construct a constant-round ε-zero-knowledge argument from any post-quantum
OWF.

Theorem 6.1. If post-quantunm OWF exists, then there exists a 9-round post-quantum black-box
ε-zero-knowledge argument for all NP languages.

6.1 Preparation

Before giving our construction, we prepare a formalization of a variant of Blum’s Graph Hamil-
tonicity protocol [Blu86] by Pass and Wee [PW09]. For clarity of exposition, we describe the
construction and its properties in an abstracted form that is sufficient for our purpose.

Definition 6.2 (Modified Hamiltonicity Protocol). Let (Σ.Setup,Σ.Commit) be a statistically bind-
ing and computationally hiding commitment scheme with message spaceMΣ randomness space RΣ,
and public parameter space PPΣ. A modified Hamiltonicity protocol for an NP language L instan-
tiated with (Σ.Setup,Σ.Commit) is a 4-round interactive proof for NP with the following syntax.
Common Input: An instance x ∈ L ∩ {0, 1}λ for security parameter λ ∈ N.
P ’s Private Input: A classical witness w ∈ RL(x) for x.

1. V generates ppΣ
$← Σ.Setup(1λ) and sends ppΣ to P .

2. P generates {mi}i∈[λ] ∈ Mλ
Σ by using x (without using w). We denote this procedure by

{mi}i∈[λ]
$← Σ.Samp(x). Then P picks ri

$← RΣ and computes comi := Σ.Commit(ppΣ,mi; ri)
for all i ∈ [λ] and sets a := {comi}i∈[λ] and st := {mi, ri}i∈[λ]. Then it sends a to V , and
keeps st as a state information.

3. V chooses a “challenge” e
$← {0, 1}λ and sends e to P .

4. P generates a “response” z from st, witness w, and e. We denote this procedure by z
$←

Σ.Presp(st, w, e). Then it sends z to V .
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5. V verifies the transcript (ppΣ, a, e, z) and outputs > indicating acceptance or ⊥ indicating

rejection. We denote this procedure by >/⊥ $← Σ.V (x, ppΣ, a, e, z).

We require the protocol to satisfy the following properties (in addition to perfect completeness and
statistical soundness).

Special Honest-Verifier Zero-Knowledge. There exist PPT simulators SimSamp and Simresp

such that we have
(
{comi}i∈[λ], z

)
:

{mi}i∈λ
$← Σ.Samp(x),

ri
$← RΣ for i ∈ [λ],

comi
$← Σ.Commit(ppΣ,mi, ri) for i ∈ [λ],

z
$← Σ.Presp({mi, ri}, w, e)


λ,x,w,e,ppΣ

comp
≈


(
{comi}i∈[λ], z

)
:

{mi}i∈λ
$← SimSamp(x, e),

ri
$← RΣ for i ∈ [λ],

comi
$← Σ.Commit(ppΣ,mi, ri) for i ∈ [λ],

z
$← Simresp({mi, ri}, e)


λ,x,w,e,ppΣ

where x ∈ L ∩ {0, 1}λ, w ∈ RL(x), e ∈ {0, 1}λ, and ppΣ ∈ PPΣ.

Bad Challenge Searchability. Intuitively, this property requires that for any x /∈ L and a, if
one is given a decommitment of a, one can efficiently compute a “bad challenge” e for which there
may exist a valid response z. Note that we do not require that a valid response exists for the bad
challenge. Rather, we require that a valid response can exist only for the bad challenge if it exists
at all. A formal definition is given below.

There exists an efficiently computable function fbad : Mλ
Σ → {0, 1}λ such that for any binding

ppΣ,22 x ∈ {0, 1}λ \ L, a = {comi = Σ.Commit(ppΣ,mi; ri)}i∈[λ], e ∈ {0, 1}λ \ {fbad({mi}i∈[λ])},
and z, we have Σ.V (x, ppΣ, a, e, z) = ⊥.

Remark 6. Looking ahead, bad challenge searchability is needed for the reduction from computa-
tional soundness of our protocol to computational hiding of a commitment scheme.

Instantiations. The above definition is an abstraction of the modified version of Blum’s Graph
Hamiltonicity protocol by Pass and Wee [PW09], and this construction only requires the existence
of OWF. For completeness, we briefly explain more details.

First, we recall (unparallelized version of) Blum’s Graph Hamiltonicity protocol [Blu86]. In
the protocol, a prover is going to prove that a graph G has a cycle where the prover is given a
cycle w as a witness. In the first round, the prover picks a random permutation π, and commits
to π(G). In the second round, the verifier returns a challenge e ∈ {0, 1}. In the third round,
if e = 0, the prover opens all commitments and sends π, and if e = 1, the prover only opens
commitments corresponding to the cycle π(w). The verifier verifies the response in an obvious
way. If we just implement the parallel version of Blum’s Graph Hamiltonicity protocol by using
(bit-wise) statistically binding commitments (e.g., Naor’s commitments [Nao91]), then we can see
that it already satisfies the syntactic requirements and the special honest-verifier zero-knowledge
property. However, it does not seem to satisfy bad challenge searchability. The reason is that, even

22See definition 2.1 for the definition of binding public parameters.
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if one is given a decommitment G′ of the commitment, there is no efficient way to check if G and
G′ are isomorphic, and thus one cannot know for which challenge bit a cheating prover may answer
correctly. To resolve this issue, the idea of Pass and Wee [PW09] is to let the prover commit not
only to π(G), but also to π. In this case, for G that does not have a cycle, if a decommitment is
of the form (π(G), π) for some permutation π, there does not exist a valid response for e = 1 since
π(G) does not have a cycle, and otherwise there clearly does not exist a valid response for e = 0.
By instantiating the parallel repetition of this construction with a Naor’s commitment, we obtain
a protocol that satisfies the above requirements under the existence of OWF.

6.2 Construction

Our construction is inspired by that of [PW09], but it is not a simple instantiation of their con-
struction since they rely on extractable commitments whose quantum security is unclear.23 Our
idea is to replace extractable commitments in their construction with usual commitment combined
with witness indistinguishable proof of knowledge.

Our construction is built on the following ingredients:

• A commitment scheme (SBCom.Setup, SBCom.Commit) that is computationally hiding and
statistically binding with message space {0, 1}λ and randomness space R. As noted in Sec.
2.2, such a commitment scheme exists under the existence of post-quantum OWF.

• A 4-round witness indistinguishable proof of knowledge (WIPoK.P,WIPoK.V ) for an NP
language L̃ described in Figure 2. As noted in Sec. 2.3.1, this exists under the existence of
post-quantum OWF.

• Modified Hamiltonicity protocol for an NP language L instantiated with a computationally
hiding and statistically binding commitment scheme (Σ.Setup,Σ.Commit) as defined in Def-
inition 6.2. As discussed in Sec. 6.1, this exists under the existence of post-quantum OWF.
We denote byMΣ and RΣ message space and randomness space of the commitment scheme.

Then our construction of post-quantum black-box ε-zero-knowledge argument is given in Figure 2.
The completeness of the protocol clearly follows from that of the underlying Σ-protocol. In Sec.

6.3 and 6.4, we prove that this protocol satisfies computational soundness and quantum black-box
ε-zero-knowledge. Then we obtain Theorem 6.1.

6.3 Computational Soundness

Suppose that computational soundness does not hold. This means that there exists a non-uniform
QPT adversary P ∗ = {P ∗λ , ρλ} and a sequence of false statements {x ∈ {0, 1}λ \ L} such that
Pr[OUTV 〈P ∗λ (ρλ), V 〉(xλ) = >] is non-negligible. We denote this probability by pwin. By an aver-
aging argument, for at least pwin/2-fraction of (pp, e, com, ppΣ, {comi}i∈[λ]) generated in Step 1a,
1b, 2a, and 2b and P ∗’s internal state ρP ∗ after Step 2b, we have Pr[OUTV 〈P ∗λ (ρλ), V 〉(xλ) =
> | (pp, e, com, ppΣ, {comi}i∈[λ], ρP ∗)] ≥ pwin/2 where the above probability means a conditional
probability that V returns > conditioned on (pp, e, com, ppΣ, {comi}i∈[λ], ρP ∗). Moreover, by the
statistical binding property of the commitment scheme, ppΣ is binding except for negligible proba-
bility by Lemma 2.3. Therefore, if we define a set S consisting of (pp, e, com, ppΣ, {comi}i∈[λ], ρP ∗)
such that

23We could use the extractable commitment in [BS20], but that construction relies on a constant-round post-
quantum zero-knowledge argument, which is stronger than our goal.
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Protocol 2

Common Input: An instance x ∈ L ∩ {0, 1}λ for security parameter λ ∈ N.
P ’s Private Input: A classical witness w ∈ RL(x) for x.

1. V ’s Commitment to Challenge:

(a) P computes pp
$← SBCom.Setup(1λ) and sends pp to V .

(b) V chooses e
$← {0, 1}λ and r

$← R, computes com
$← SBCom.Commit(pp, e; r), and sends com

to P .

2. First Half of Modified Hamiltonicity Protocol:

(a) V generates ppΣ
$← Σ.Setup(1λ).

(b) P generates {mi}i∈[λ]
$← Σ.Samp(x) and comi := Σ.Commit(ppΣ,mi; ri) where ri

$←RΣ for all
i ∈ [λ]. It sends a := {comi}i∈[λ] to V and keeps st := {mi, ri}i∈[λ] as a state information.

3. Proof of Knowledge of Decommitments: P and V interactively run the protocol
〈WIPoK.P ({mi, ri}i∈[λ]),WIPoK.V 〉(ppΣ, x, a) where the language L̃ is defined as follows:

(ppΣ, x, a = {comi}i∈[λ]) ∈ L̃
⇐⇒ (x ∈ L) ∨

(∃{mi, ri}i∈[λ] ∈ (MΣ ×RΣ)λ s.t. comi = Σ.Commit(ppΣ,mi; ri) for all i ∈ [λ])

4. Second Half of Modified Hamiltonicity Protocol:

(a) V sends (e, r) to P .

(b) P aborts if SBCom.Commit(pp, e; r) 6= com.

Otherwise, it generates z
$← Σ.Presp(st, w, e) and sends z to V .

(c) V outputs Σ.V (x, ppΣ, a, e, z).

Figure 2: Constant-Round Post-Quantum ε-Zero-Knowledge Argument for L ∈ NP

1. ppΣ is binding, and

2. Pr[OUTV 〈P ∗λ (ρλ), V 〉(xλ) = > | (pp, e, com, ppΣ, {comi}i∈[λ], ρP ∗)] ≥ pwin/2,

then the probability that (pp, e, com, ppΣ, {comi}i∈[λ], ρP ∗) is in S is non-negligible over the ran-
domness of the execution of 〈P ∗λ (ρλ), V 〉(xλ).

We fix (pp, e, com, ppΣ, {comi}i∈[λ], ρP ∗) ∈ S. Since ppΣ is binding, for each i ∈ [λ], there is
a unique mi ∈ M such that SBCom.Commit(ppΣ,mi; ri) = comi for some ri ∈ R. By the bad
challenge searchability, a valid response z can exist only for e = fbad({mi}i∈[λ]). Therefore, for
letting V accept, we must have e = fbad({mi}i∈[λ]). Since V accepts with probability pwin/2 > 0,
we must have e = fbad({mi}i∈[λ]).

24 Moreover we can use the knowledge extractor K of WIPoK
to extract {mi}i∈[λ] from P ∗. That is, since the verification of WIPoK accepts with probability at
least pwin/2 (since otherwise the overall accepting probability should be smaller than pwin/2), we
have

Pr[w̃ ∈ R
L̃

(ppΣ, xλ, {comi}i∈λ) : w̃
$← KP ∗λ (ρP∗ )(ppΣ, xλ, {comi}i∈[λ])] ≥

1

poly(λ)
· (pwin/2)d − negl(λ)

24Strictly speaking, we may have pwin/2 = 0 for a finite number of λ. This can be easily dealt with by considering
sufficiently large λ. For simplicity, we omit this.
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where one can see that the RHS is non-negligible. Since we assume xλ /∈ L and ppΣ is binding,
when we have w̃ ∈ R

L̃
(ppΣ, xλ, {comi}i∈λ), we have w̃ = {mi, r

′
i}i∈[λ] for some {r′i}i∈[λ]. By using

this extracted witness, one can compute e = fbad({mi}i∈[λ]). We can use this to show contradiction
to the unpredictability of the commitment scheme.

Specifically, we construct an adversary A = {Aλ, ρA,λ}λ∈N that breaks the unpredictability of
SBCom, which contradicts the computational hiding property as noted in Lemma 2.5.

Advice: A gets an advice ρA,λ = (xλ, ρλ)

Aλ(ρA,λ): It sets P ∗λ ’s internal register to ρλ, gives xλ as input to P ∗λ , receives pp from P ∗λ , and
sends pp to its external challenger. Let com be challenger’s response. (Here, e is implicitly
chosen by the challenger.) A gives com to P ∗λ as a message from V , and simulates the protocol
between P ∗λ and V until Step 2b. Let ρP ∗ be P ∗λ ’s internal state at this point. Then it runs

{m∗i , r∗i }i∈[λ]
$← KP ∗λ (ρP∗ )(ppΣ, xλ, {comi}i∈[λ]) computes e∗ = fbad({m∗i }i∈[λ]), and outputs

e∗.

We can see that A perfectly simulates the soundness game until Step 2b. Therefore, we have
(pp, e, com, ppΣ, {comi}i∈[λ], ρP ∗) ∈ S with non-negligible probability, and for any fixed such values,
we have e∗ = e with non-negligible probability as observed in the previous paragraph. Therefore,
A succeeds in finding e with non-negligible probability overall, and breaks the unpredictability.

Since this contradicts the unpredictability, which follows from the assumed computational hiding
property, there does not exist non-uniform QPT P ∗ that breaks soundness.

6.4 Quantum Black-Box ε-Zero-Knowledge

The proof is similar to that in Sec. 5.3 except that we need to deal with WIPoK. Similarly to the
proof there, we show the quantum ε-zero-knowledge property ignoring that the simulator should be
black-box for clarity of exposition. One can see that the simulator is indeed black-box by similar
observations made at the end of Sec. 5.3.

In quantum ε-zero-knowledge, we need to show a simulator Sim that takes an accuracy parameter
1ε
−1

as part of its input. We assume ε(λ) = o(1) without loss of generality since the other case
trivially follows from this case. Without loss of generality, we can assume that a malicious verifier
V ∗ does not terminate the protocol before the prover aborts since it does not gain anything by
declaring the termination. We say that V ∗ aborts if it fails to provide a valid opening (e, r) to com
in Step 4a (i.e., the prover aborts in Step 4b).

First, we construct a simulator Simcomb, which returns a special symbol Fail with probability
roughly 1/2 but almost correctly simulates the output of V ∗λ conditioned on that it does not return
Fail. The simulator Simcomb uses simulators Sima and Simna as sub-protocols:

Simcomb(x, 1ε
−1
, V ∗λ , ρλ):

1. Choose mode
$← {a, na}.

2. Run Simmode(x, 1
ε−1
, V ∗λ , ρλ).

3. Output what Simmode outputs.

Sima(x, 1
ε−1
, V ∗λ , ρλ):

1. Set V ∗λ ’s internal state to ρλ.

2. Compute pp
$← SBCom.Setup(1λ) and send pp to V ∗λ .
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3. V ∗λ returns com and ppΣ.

4. Compute {mi}i∈[λ]
$← Σ.Samp(x) and comi := Σ.Commit(ppΣ,mi; ri) where ri

$← RΣ

for all i ∈ [λ], and sends a := {comi}i∈[λ] to V ∗λ . Let ρV ∗λ be V ∗λ ’s internal state at this
point.

5. Interactively execute 〈WIPoK.P ({mi, ri}i∈[λ]),WIPoK.V ∗λ (ρV ∗λ )〉(ppΣ, x, a) where WIPoK.V ∗λ
is the corresponding part of V ∗λ .

6. V ∗λ returns (e, r).

7. Return Fail and abort if SBCom.Commit(pp, e; r) = com.
Otherwise, let V ∗λ output the final output notifying that the prover aborts.

8. The final output of V ∗λ is treated as the output Sima.

Simna(x, 1
ε−1
, V ∗λ , ρλ):

1. Set V ∗λ ’s internal state to ρλ.

2. Compute pp
$← SBCom.Setup(1λ) and send pp to V ∗λ .

3. V ∗λ returns com. Let ρst be the internal state of V ∗λ at this point.25

4. Compute (eExt, ρExt)
$← Ext(1λ, 1δ

−1
, x, pp, com,Aopen,λ, ρst) where Ext is as in Lemma

4.2 for the commitment scheme SBCom, δ := ε2

3600 log4(λ)
, and A = (Acom,λ,Aopen,λ) is

defined as follows:

Acom,λ(pp; ρλ): It sets V ∗λ ’s internal state to ρλ and sends pp to V ∗λ . Let com be the
response by V ∗λ and ρst be the internal state of V ∗λ at this point. It outputs (com, ρst).

Aopen,λ(ρst): It sets V ∗λ ’s internal state to ρst, and receives ppΣ from V ∗λ . It gener-

ates {mi}i∈[λ]
$← Σ.Samp(x) and comi := Σ.Commit(ppΣ,mi; ri) where ri

$← RΣ

for all i ∈ [λ] and sends a := {comi}i∈[λ] to V ∗λ . Let ρV ∗λ be V ∗λ ’s internal state
at this point. Then it executes 〈WIPoK.P ({mi, ri}i∈[λ]),WIPoK.V ∗λ (ρV ∗λ )〉(ppΣ, x, a)
where WIPoK.V ∗λ is the corresponding part of V ∗λ . After completing the execution
of WIPoK, V ∗λ returns (e, r). Let ρ′st be the internal state of V ∗λ at this point. It
outputs (e, r, out := (a, {mi, ri}i∈[λ]), ρ

′
st).

Here, we remark that V ∗λ ’s internal register corresponds to ST and e corresponds to m
in the notation of Lemma 4.2.

5. Set the verifier’s internal state to ρExt.

6. V ∗ returns ppΣ.

7. Compute {mi}i∈λ
$← SimSamp(x, eExt), comi

$← Σ.Commit(ppΣ,mi, ri) where ri
$← RΣ

for all i ∈ [λ], and z
$← Simresp({mi, ri}, eExt). Send a := {comi}i∈[λ] to V ∗λ . Let ρV ∗λ be

V ∗λ ’s internal state at this point.

8. Interactively execute 〈WIPoK.P ({mi, ri}i∈[λ]),WIPoK.V ∗λ (ρV ∗λ )〉(ppΣ, x, a) where WIPoK.V ∗λ
is the corresponding part of V ∗λ .

9. V ∗λ returns (e, r).

10. Return Fail and abort if e 6= eExt or SBCom.Commit(pp, e; r) 6= com.
Otherwise, send z to V ∗λ .

25Though com and ppΣ can be sent simultaneously in the real protocol, we consider that they are sent one by one,
and the state ρst is defined to be V ∗λ ’s internal state in between them. We stress that this is just for convenience of
the proof, and the protocol satisfies the same security even if the verifier sends com and ppΣ simultaneously.
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11. The final output of V ∗λ is treated as the output Simna.

Intuitively, Sima (resp. Simna) is a simulator that simulates the verifier’s view in the case that
verifier aborts (resp. does not abort).

More formally, we prove the following lemmas.

Lemma 6.3 (Sima simulates the aborting case.). For any non-uniform QPT malicious verifier
V ∗ = {V ∗λ , ρλ}λ∈N, let OUTV ∗a 〈P (w), V ∗λ (ρλ)〉(x) be the V ∗λ ’s final output that is replaced with Fail
if V ∗λ does not abort. Then we have

{OUTV ∗a 〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w ≡ {Sima(x, 1
ε−1
, V ∗λ , ρλ)}λ,x,w.

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Since Sima perfectly simulates the real execution for V ∗λ when it aborts, Lemma 6.3 imme-
diately follows.

Lemma 6.4 (Simna simulates the non-aborting case.). For any non-uniform QPT malicious verifier
V ∗ = {V ∗λ , ρλ}λ∈N, let OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x) be the V ∗λ ’s final output that is replaced with Fail
if V ∗λ aborts. Then we have

{OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ δ {Simna(x, 1

ε−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. Here, we analyze Simna(x, 1
ε−1
, V ∗λ , ρλ). In the following, we consider hybrid simulators

Simna,i(x,w, 1
ε−1
, V ∗λ , ρλ) for i = 1, 2, 3, 4, 5. We remark that they also take the witness w as input

unlike Simna.

Simna,1(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna(x, 1

ε−1
, V ∗λ , ρλ) except that in

the simulation of WIPoK in Step 8, it uses witness w instead of {mi, ri}i∈[λ].

By witness indistinguishability of WIPoK, we have

{Simna(x, 1
ε−1
, V ∗λ , ρλ)}λ,x,w

comp
≈ {Simna,1(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Simna,2(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna,1(x,w, 1ε

−1
, V ∗λ , ρλ) except that

it generates (a = {comi}i∈[λ], z) as in the real protocol for the challenge eExt instead of

using the simulator in Step 7. That is, it generates {mi}i∈[λ]
$← Σ.Samp(x), comi :=

Σ.Commit(ppΣ,mi; ri) where ri
$← RΣ for all i ∈ [λ], and z

$← Σ.Presp(st, w, eExt) where
st := {mi, ri}i∈[λ].

By the special honest-verifier zero-knowledge property of the modified Hamiltonicity protocol,
we have

{Simna,1(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w

comp
≈ {Simna,2(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).
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Simna,3(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna,2(x,w, 1ε

−1
, V ∗λ , ρλ) except that

in the simulation of WIPoK in Step 8, it uses witness {mi, ri}i∈[λ] instead of w.

By witness indistinguishability of WIPoK, we have

{Simna,2(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w

comp
≈ {Simna,3(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Simna,4(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna,3(x,w, 1ε

−1
, V ∗λ , ρλ) except that

the generation of z is delayed until Step 10 and it is generated as z
$← Σ.Presp(st, w, e) instead

of z
$← Σ.Presp(st, w, eExt).

The modification does not affect the output distribution since it outputs Fail if e 6= eExt and
if e = eExt, then this simulator works in exactly the same way as the previous one. Therefore
we have

{Simna,3(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w ≡ {Simna,4(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Simna,5(x,w, 1ε
−1
, V ∗λ , ρλ): This simulator works similarly to Simna,4(x,w, 1ε

−1
, V ∗λ , ρλ) except that

Step 4 and 5 are deleted and the check of e 6= eExt in Step 10 is omitted. That is, it outputs
Fail in Step 10 if and only if we have SBCom.Commit(pp, e; r) 6= com. We note that eExt and
ρExt are no longer used at all and thus need not be generated.

We can see that Step 3 is exactly the same as executing (com, ρst)
$← Acom,λ(pp; ρλ) and Step

6, 7, 8, and 9 of previous and this simulators are exactly the same as executing (e, r, out =

(a, {mi, ri}i∈[λ]), ρ
′
st)

$← Aopen,λ(ρExt) and (e, r, out = (a, {mi, ri}i∈[λ]), ρ
′
st)

$← Aopen,λ(ρst),
respectively where we define ρ′st in simulated experiments as V ∗λ ’s internal state after Step
9. Moreover, the rest of execution of the simulators can be done given (pp, com, e, r, out =
(a, st), ρ′st). Therefore, by a straightforward reduction to Lemma 4.2, we have

{Simna,4(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w

stat
≈ δ {Simna,5(x,w, 1ε

−1
, V ∗λ , ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

We can see that Simna,5(x,w, 1ε
−1
, V ∗λ , ρλ) perfectly simulates the real execution for V ∗λ and

outputs V ∗λ ’s output conditioned on that V ∗λ does not abort, and just outputs Fail otherwise.
Therefore, we have

{Simna,5(x,w, 1ε
−1
, V ∗λ , ρλ)}λ,x,w ≡ {OUTV ∗na〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x). Combining the above, Lemma 6.4 is proven.

By combining Lemmas 6.3 and 6.4, we can prove the following lemma.

Lemma 6.5 (Simcomb simulates V ∗λ ’s output with probability almost 1/2). For any non-uniform

QPT malicious verifier V ∗ = {V ∗λ , ρλ}λ∈N, let psuccomb(x, 1ε
−1
, V ∗λ , ρλ) be the probability that Simcomb(x, 1ε

−1
, V ∗λ , ρλ)

does not return Fail and Dsim,comb(x, 1ε
−1
, V ∗λ , ρλ) be a conditional distribution of Simcomb(x, 1ε

−1
, V ∗λ , ρλ),
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conditioned on that it does not return Fail. There exists a negligible function negl such that for any
x = {xλ ∈ L ∩ {0, 1}λ}λ∈N, we have∣∣∣psuccomb(x, 1ε

−1
, V ∗λ , ρλ)− 1/2

∣∣∣ ≤ δ/2 + negl(λ). (10)

Moreover, we have

{OUTV ∗〈P (w), V ∗λ (ρλ)〉(x)}λ,x,w
comp
≈ 4δ {Dsim,comb(x, 1ε

−1
, V ∗λ , ρλ)}λ,x,w (11)

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x).

Proof. The proof of this lemma is exactly the same as that of Lemma 5.5 in Appendix E.

Finally, we convert Simcomb to a full-fledged simulator that does not return Fail by using the
quantum rewinding lemma (Lemma 2.10). This part is exactly the same as that in Sec. 5.3.
Finally, we can see that our simulator is black-box similarly to the last paragraph of Sec. 5.3. This
completes the proof of quantum black-box ε-zero-knowledge property.
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A Omitted Preliminaries

We define post-quantum one-way functions and collapsing hash functions.

Definition A.1 (Post-Quantum One-Way Functions.). We say that a function f : {0, 1}∗ → {0, 1}∗
is post-quantum one-way function if f is computable in classical polynomial time and for any non-
uniform QPT adversary A, we have

Pr[f(x) = f(x′) : x
$← {0, 1}λ, x′ $← A(f(x))] = negl(λ).

Definition A.2 (Collapsing Hash Function.). A length-decreasing function family H = {Hk :
{0, 1}L → {0, 1}`}k∈K for L > ` is collapsing if the following is satisfied:

Collapsing. For an adversary A, we define an experiment ExpcollapseA (1λ) as follows:

1. The challenger generates k
$← K.

2. A is given k as input and generates a hash value y ∈ {0, 1}` and a quantum state σ over
registers (X,A) where X stores an element of {0, 1}L and A is A’s internal register. Then
it sends y and register X to the challenger, and keeps A on its side.

3. The challenger picks b
$← {0, 1} If b = 0, the challenger does nothing and if b = 1, the

challenger measures register X in the computational basis. The challenger returns register X
to A

4. A outputs a bit b′. The experiment outputs 1 if b′ = b and 0 otherwise.

We say that A is a valid adversary if we we have

Pr[Hk(x) = y : k
$← K, (y, σ)

$← A(k), x←MX ◦ σ] = 1.

We say that a hash function is collapsing if for any non-uniform QPT valid adversary A we have

|Pr[1
$← ExpcollapsingA (1λ)]− 1/2| = negl(λ).
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As shown in [Unr16a], a collapsing hash function with arbitrarily long (or even unbounded)
input-length exists under the QLWE assumption.

B Construction of Strong Collapse-Binding Commitments

In this section, we show that (bounded-length) Halevi-Micali commitments [HM96, Unr16b] satisfies
the strong collapse-binding property if we instantiate it based on a collapsing hash function.

Construction. In the following, we give a description of (bounded-length) Halevi-Micali commit-
ments. Let H = {Hk : {0, 1}L → {0, 1}`}k∈K be a family of collapsing hash functions and F be a
family of universal hash functions f : {0, 1}L → {0, 1}n where L = 4`+ 2n+ 4. Then Halevi-Micali
commitments over message space {0, 1}n is described as follows:

Setup(1λ): It chooses k
$← K and outputs pp := k.

Commit(pp = k,m): It picks f
$← F and r

$← {0, 1}L conditioned on that f(r) = m, computes
y := Hk(r), and outputs com := (y, f).

This completes the description of the scheme. In the following, we prove security.

Statistical Hiding. This proof is completely identical to that in [HM96].

Strong Collapse-Binding. Suppose that there exists a non-uniform QPT adversary A that
breaks the strong collapse-binding property of the above construction. Then we construct non-
uniform QPT B that breaks the collapsing property of H as follows:

B(k): Given k ∈ K, it sets pp := k, sends pp to A as input, and receives (com = (y, f),M,R)
from A. Then B sends (y,R) to its external challenger where R plays the role of X in the
collapsing game. Then it receives the register R (which is either measured or not) returned
from the challenger and sends (M,R) to A as a response from the challenger. Finally, when
A outputs b′, then B also outputs b′.

First, if A is valid, then B is also valid since if (m, r) is a valid opening for com = (y, f), then we
have Hk(r) = y. Moreover, since (M,R) contains a superposition of valid openings to com and the
value of r completely determines m for a valid opening (m, r), measuring register R is equivalent
to measuring both registers (M,R). Based on this observation, we can see that cases of b = 0 and
b = 1 for the strong collapse-binding and collapsing games perfectly match. Therefore B breaks
the collapsing with the same advantage as A breaks the strong collapse-binding.

Remark 7. By a similar proof to that in [Unr16b, Unr16a], we can also prove the strong collapse-
binding property for the unbounded-length version. We omit this since this is not needed for our
purpose.

C Equivalence between Definitions of Zero-Knowledge

Here, we introduce a seemingly stronger definition of quantum black-box ε-zero-knowledge than
Definition 2.9, which captures entanglement between auxiliary input of a verifier and a distinguisher.
Then we show that they are actually equivalent.

We define a seemingly stronger definition which we call quantum black-box ε-zero-knowledge
with entanglement.
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Definition C.1 (Post-Quantum Black-Box ε-Zero-Knowledge with Entanglement). For an inter-
active proof or argument for L, we define the following property:

Quantum Black-Box ε-Zero-Knowledge with Entanglement. There exists an oracle-aided
QPT simulator Sim that satisfies the following: For any sequences of polynomial-size quantum
circuits (referred to as malicious verifiers) V ∗ = {V ∗λ }λ∈N that takes x as input and a state in a
register V as advice and any noticeable function ε(λ), we define quantum channels ΨV ∗

real,λ,x,w and

ΨV ∗
Sim,λ,x as follows:

ΨV ∗
real,λ,x,w: Take a state σ in the register V as input and output OUTV ∗λ 〈P (w), V ∗λ (σ)〉(x).

ΨV ∗
Sim,λ,x: Take a state σ in the register V as input and output OUTV ∗λ (SimV ∗λ (σ)(x, 1ε

−1
)).

Then for any sequence of polynomial-size states {ρλ}λ∈N in registers V and any additional register
R, we have

{(ΨV ∗
real,λ,x,w ⊗ IR)(ρλ)}λ,x,w

comp
≈ ε {(ΨV ∗

Sim,λ,x ⊗ IR)(ρλ)}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(λ).

Lemma C.2. If an interactive proof or argument satisfies quantum black-box ε-zero-knowledge
(Definition 2.9), then it also satisfies quantum black-box ε-zero-knowledge with entanglement (Def-
inition C.1).

Proof. Suppose that we have sequences {V ∗λ }λ∈N and {ρλ}λ∈N as in the definition of quantum ε-

zero-knowledge with entanglement in Definition C.1. For each λ, we consider a modified circuit Ṽ ∗λ
that works similarly to V ∗λ except that it also takes a state on the register R as part of its advice
but does not touch R at all. Then clearly we have

(ΨV ∗
real,λ,x,w ⊗ IR)(ρλ) = OUT

Ṽ ∗λ
〈P (w), Ṽ ∗λ (ρλ)〉(x).

By quantum black-box ε-zero-knowledge (Definition 2.9), there is a QPT simulator Sim such that
we have

{OUT
Ṽ ∗λ
〈P (w), Ṽ ∗λ (ρλ)〉(x)}λ,x,w

comp
≈ ε {OUTṼ ∗λ (SimṼ ∗λ (ρλ)(x, 1ε

−1
))}λ,x,w

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(λ). By the definition of Ṽ ∗λ (ρλ), it does not act on register

R and thus SimṼ ∗λ (ρλ) does not act on R either. Therefore, we have

OUT
Ṽ ∗λ

(SimṼ ∗λ (ρλ)(x, 1ε
−1

)) = (SimV ∗λ (·)(x, 1ε
−1

)⊗ IR)(ρλ).

By combining the above, we can conclude that the protocol also satisfies the quantum ε-zero-
knowledge with entanglement w.r.t. the same simulator Sim.

Remark 8. In the above proof, we do not use the full power of black-box simulation. Indeed, it
suffices to assume a very mild condition that a simulator does not act on any register on which the
verifier does not act. We also remark that the same proof works for equivalence between quantum
black-box zero-knowledge and quantum black-box zero-knowledge with entanglement (which can be
defined analogously).
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D Proof of Lemma 3.3

For proving Lemma 3.3, we first introduce the following lemma taken from [NWZ09], which is an
easy consequence of Jordan’s lemma.

Lemma D.1 ([NWZ09, Section 2.1]). Let Π0 and Π1 be projectors on an N -dimensional Hilbert
space H. Then there is an orthogonal decomposition of H into two-dimensional subspaces Sj for

j ∈ [`] and N − 2` one-dimensional subspaces T
(bc)
j for b, c ∈ {0, 1} that satisfies the following

properties:

1. For each two-dimensional subspace Sj, there exist two orthonormal bases (|αj〉 , |α⊥j 〉) and

(|βj〉 , |β⊥j 〉) of Sj such that

Π0 |αj〉 = |αj〉 , Π0 |α⊥j 〉 = 0,

Π1 |βj〉 = |βj〉 , Π1 |β⊥j 〉 = 0.

Moreover, if we let

pj := 〈αj |Π1 |αj〉 ,

then we have 0 < pi < 1 and

|αj〉 =
√
pj |βj〉+

√
1− pj |β⊥j 〉 , |βj〉 =

√
pj |αj〉+

√
1− pj |α⊥j 〉 .

2. Each one-dimensional subspace T
(bc)
j is spanned by a unit vector |α(bc)

j 〉 such that Π0 |α(bc)
j 〉 =

b |α(bc)
j 〉 and Π1 |α(bc)

j 〉 = c |α(bc)
j 〉.

Then we prove Lemma 3.3.

Proof. (of Lemma 3.3.) We define projections Π0 and Π1 over H = HX ×HY as

Π0 := IX ⊗ (|0〉 〈0|)Y,Π1 := Π,

and apply Lemma D.1 for them. In the following, we use the notations in Lemma D.1 for this
particular application. We define

S<t :=

⊕
j:pj<t

Sj

⊕
⊕

j,b

T
(b0)
j


and

S≥t :=

⊕
j:pj≥t

Sj

⊕
⊕

j,b

T
(b1)
j

 .

Then it is easy to see that they are an orthogonal decomposition of H. Since each subspace is
invariant under Π0 = IX ⊗ (|0〉 〈0|)Y and Π1 = Π by the Item 1 of Lemma D.1, Item 1 of Lemma
3.3 immediately follows.

For any quantum state |φ〉X such that |φ〉X |0〉Y ∈ S<t, we can write

|φ〉X |0〉Y =
∑
j:pj<t

dj |αj〉+
∑
j

d
(10)
j |α(10)

j 〉
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by using dj ∈ C and d
(10)
j ∈ C for each j such that

∑
j:pj<t

|dj |2 +
∑

j |d
(10)
j |2 = 1.

Then we have

〈φ|X 〈0|Y Π |φ〉X |0〉Y =
∑
j:pj<t

|dj |2 〈αj |Π |αj〉+
∑
j

|d(10)
j |2 〈α(10)

j |Π |α(10)
j 〉

=
∑
j:pj<t

|dj |2pj

< t.

Similarly, for any |φ〉X such that |φ〉X |0〉Y ∈ S≥t, we can show

〈φ|X 〈0|Y Π |φ〉X |0〉Y ≥ t.

This completes the proof of Item 2 of Lemma 3.3.
For proving the Item 3 and 4 of Lemma 3.3, we first consider an algorithm Ãmp described as

follows:

Ãmp(1T , |ψ〉X,Y): This algorithm takes a repetition parameter T and a quantum state |ψ〉X,Y ∈ H
as input and works as follows:26

1. Repeat the following T times:

(a) Perform a measurement {Π1, IX,Y − Π1} If the outcome is 1, i.e., if Π1 is applied,
then output the state in the registers (X,Y) and a classical bit b = 1 indicating a
success and immediately halt.

(b) Perform a measurement {Π0, IX,Y −Π0}.
2. Output the state in the registers (X,Y) and a classical bit b = 0 indicating a failure.

Then we prove the following claim:

Claim D.2. The following hold

1. For any quantum state |ψ〉X,Y, if we run (|ψ′〉X,Y , b)
$← Ãmp(1T , |ψ〉X,Y) and we have b = 1,

then |ψ′〉X,Y is in the span of Π1 with probability 1.

2. For any noticeable function ν = ν(λ), there is T = poly(λ) such that for any quantum state
|φ〉X such that |φ〉X |0〉Y ∈ S≥t, we have

Pr[b = 1 : (|ψ′〉X,Y , b)
$← Ãmp(1T , |φ〉X |0〉Y)] ≥ 1− ν.

3. S<t and S≥t are invariant under Ãmp(1T , ·). More precisely, for any quantum state |ψ<t〉X,Y ∈
S<t if we run (|ψ′〉X,Y , b)

$← Ãmp(1T , |ψ<t〉X,Y), then we have |ψ′〉X,Y ∈ S<t with probability

1. Similarly, for any quantum state |ψ≥t〉X,Y ∈ S≥t if we run (|ψ′〉X,Y , b)
$← Ãmp(1T , |ψ≥t〉X,Y),

then we have |ψ′〉X,Y ∈ S≥t with probability 1.

26Strictly speaking, we need to consider descriptions of quantum circuits to perform measurements {Π0, IX,Y−Π0}
and {Π1, IX,Y−Π1} as part of its input so that we can make the description of Ãmp independent on them. (Looking
ahead, this is needed for showing Item 4 in Lemma 3.3 where Amp is required to be a uniform QPT machine.) We

omit to explicitly write them in the input of Ãmp for notational simplicity.
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Proof. (of Claim D.2.) Item 1 immediately follows from the description of Ãmp since it returns

b = 1 only after succeeding in applying Π1. Item 3 is easy to see noting that Ãmp just sequentially
applies measurements {Π1, IX,Y − Π1} and {Π0, IX,Y − Π0} over the registers X and Y and each

subspace Sj or T
(bc)
j is invariant under these measurements by Lemma D.1. In the following, we

prove Item 2. We note that essentially the same statement was proven in [CCY20]. We include a
proof for completeness.

For any quantum state |φ〉X such that |φ〉X |0〉Y ∈ S≥t, we can write

|φ〉X |0〉Y =
∑
j:pj≥t

dj |αj〉+
∑
j

d
(11)
j |α(11)

j 〉

by using dj ∈ C and d
(11)
j ∈ C for each j such that

∑
j:pj≥t |dj |

2 +
∑

j |d
(11)
j |2 = 1. Since Ãmp just

sequentially applies measurements {Π1, IX,Y − Π1} and {Π0, IX,Y − Π0} over the registers X and

Y and each subspace Sj or T
(bc)
j is invariant under these measurements by Lemma D.1, states in

different subspaces do not interfere with each other. Therefore, it suffices to prove Item 2 of D.2

assuming that |φ〉X |0〉Y = |αj〉 for some j such that pj ≥ t or |φ〉X |0〉Y = |α(11)
j 〉 for some j.

The latter case is easy: If |φ〉X |0〉Y = |α(11)
j 〉 for some j, then Ãmp(1T , |α(11)

j 〉) outputs

(|α(11)
j 〉 , b = 1) and halts at the very first step with probability 1 since we have Π1 |α(11)

j 〉 = |α(11)
j 〉

by Lemma D.1.
In the following, we analyze the case of |φ〉X |0〉Y = |αj〉 for some j such that pj ≥ t. For k ∈ N,

let Pk and P⊥k be the probability that Ãmp(1k, |αj〉) and Ãmp(1k, |α⊥j 〉) succeed, respectively. (We

define P0 = P⊥0 := 0.) By using

|αj〉 =
√
pj |βj〉+

√
1− pj |β⊥j 〉 , |βj〉 =

√
pj |αj〉+

√
1− pj |α⊥j 〉 ,

we can see that we have

Pk+1 = pj + (1− pj)2Pk + (1− pj)pjP⊥k ,
P⊥k+1 = (1− pj) + pj(1− pj)Pk + p2

jP
⊥
k .

Solving this, we have

PT = 1− (1− 2pj + 2p2
j )
T−1(1− pj)

for T ≥ 1. Since pj ≥ t and ν are noticeable, we can take T = poly(λ) in such a way that PT ≥ 1−ν.
This completes the proof of Claim D.2.

We define an algorithm Amp as a purified version of Ãmp. That is, Amp works similarly
to Ãmp except that intermediate measurement results are stored in designated registers in Anc
without being measured and the output b is stored in register B. Let Uamp,T be the unitary part
of Amp(1T , ·). Then Item 3 of Lemma 3.3 directly follows from the corresponding statements of
Claim D.2. Finally, Amp clearly runs in QPT by the definition, and thus Item 4 of Lemma 3.3
follows.

E Proof of Lemma 5.5

Here, we give a proof of Lemma 5.5.
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Proof. (of Lemma 5.5). We consider the following probabilities:

psucreal(x,w, 1
ε−1
, V ∗λ , ρλ): A probability that V ∗λ does not abort in an execution 〈P (w), V ∗λ (ρλ)〉(x).

psuca (x, 1ε
−1
, V ∗λ , ρλ): A probability that Sima(x, 1

ε−1
, V ∗λ , ρλ) does not return Fail.

psucna (x, 1ε
−1
, V ∗λ , ρλ): A probability that Simna(x, 1

ε−1
, V ∗λ , ρλ) does not return Fail.

Lemma 5.3 and 5.4 immediately imply that there is a negligible function negl such that for all
x = {xλ ∈ L ∩ {0, 1}λ}λ∈N we have

psuca (x, 1ε
−1
, V ∗λ , ρλ) = psucreal(x,w, 1

ε−1
, V ∗λ , ρλ) (12)

and ∣∣∣psucna (x, 1ε
−1
, V ∗λ , ρλ)− (1− psucreal(x,w, 1

ε−1
, V ∗λ , ρλ))

∣∣∣ ≤ δ + negl(λ). (13)

By the construction of Simcomb(x, V ∗λ , ρλ), we have

psuccomb(x, 1ε
−1
, V ∗λ , ρλ) =

1

2

(
psuca (x, 1ε

−1
, V ∗λ , ρλ) + psucna (x, 1ε

−1
, V ∗λ , ρλ)

)
. (14)

Combining Eq. 12, 13, and 14, we obtain Eq. 8.
For proving Eq. 9, We consider the following distributions:

Dreal,a(x,w, 1
ε−1
, V ∗λ , ρλ) : A conditional distribution of OUTV ∗λ 〈P (w), V ∗λ (ρλ)〉(x), conditioned on

that V ∗λ aborts.

Dreal,na(x,w, 1
ε−1
, V ∗λ , ρλ) : A conditional distribution of OUTV ∗λ 〈P (w), V ∗λ (ρλ)〉(x), conditioned on

that V ∗λ does not abort.

Dsim,a(x, 1
ε−1
, V ∗λ , ρλ) : A conditional distribution of Sima(x, V

∗
λ , ρλ), conditioned on that the out-

put is not Fail.

Dsim,na(x, 1
ε−1
, V ∗λ , ρλ) : A conditional distribution of Simna(x, 1

ε−1
, V ∗λ , ρλ), conditioned on that

the output is not Fail.

Then we consider the following sequence of distributions implicitly indexed by λ ∈ N, x ∈
L ∩ {0, 1}λ, and w ∈ RL(x).

D1 := Dsim,comb(x, 1ε
−1
, V ∗λ , ρλ). We note that this can be rephrased as follows:

It samples from Dsim,a(x, V
∗
λ , ρλ) with probability

psuca (x, 1ε
−1
, V ∗λ , ρλ)

psuca (x, 1ε−1 , V ∗λ , ρλ) + psucna (x, 1ε−1 , V ∗λ , ρλ)

and from Dsim,na(x, V
∗
λ , ρλ) with probability

psucna (x, 1ε
−1
, V ∗λ , ρλ)

psuca (x, 1ε−1 , V ∗λ , ρλ) + psucna (x, 1ε−1 , V ∗λ , ρλ)
.

D2 : It samples from Dsim,a(x, 1
ε−1
, V ∗λ , ρλ) with probability psucreal(x,w, 1

ε−1
, V ∗λ , ρλ) and from

Dsim,na(x, 1
ε−1
, V ∗λ , ρλ) with probability 1− psucreal(x,w, 1

ε−1
, V ∗λ , ρλ).
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D3 : It samples from Dreal,a(x,w, 1
ε−1
, V ∗λ , ρλ) with probability psucreal(x,w, 1

ε−1
, V ∗λ , ρλ) and from

Dsim,na(x, 1
ε−1
, V ∗λ , ρλ) with probability 1− psucreal(x,w, 1

ε−1
, V ∗λ , ρλ).

D4 : It samples from Dreal,a(x,w, 1
ε−1
, V ∗λ , ρλ) with probability 1− psucna (x, 1ε

−1
, V ∗λ , ρλ) and from

Dreal,na(x, 1
ε−1
, V ∗λ , ρλ) with probability psucna (x, 1ε

−1
, V ∗λ , ρλ).

D5 : It samples from Dreal,a(x,w, 1
ε−1
, V ∗λ , ρλ) with probability psucreal(x,w, 1

ε−1
, V ∗λ , ρλ) and from

Dreal,na(x, 1
ε−1
, V ∗λ , ρλ) with probability 1− psucreal(x,w, 1

ε−1
, V ∗λ , ρλ).

We can see that this is exactly equal to OUTV ∗λ 〈P (w), V ∗λ (ρλ)〉(x)

In the following, we give an upper bound for advantage to distinguish each neighboring distributions.
We denote by Dj to mean {Dj}λ∈N,x∈L∩{0,1}λ,w∈RL(x).

• D1
stat
≈ 2δ D2: By Eq. 12 and 13, we have

1− δ − negl(λ) ≤ psuca (x, 1ε
−1
, V ∗λ , ρλ) + psucna (x, 1ε

−1
, V ∗λ , ρλ) ≤ 1 + δ + negl(λ).

Then, by using Eq. 12 again, we have∣∣∣∣∣ psuca (x, 1ε
−1
, V ∗λ , ρλ)

psuca (x, 1ε−1 , V ∗λ , ρλ) + psucna (x, 1ε−1 , V ∗λ , ρλ)
− psucreal(x,w, 1

ε−1
, V ∗λ , ρλ)

∣∣∣∣∣ ≤ 2δ + negl(λ)

where we use δ < ε = o(1) and in particular δ < 1/2 for a sufficiently large λ and 1− z < 1
1+z

and 1
1−z < 1 + 2z for all reals 0 < z < 1/2. Then D1

stat
≈ 2δ D2 immediately follows.27

• D2 ≡ D3: This immediately follows from Lemma 5.3 since it implies Dsim,a(x, V
∗
λ , ρλ) and

Dreal,a(x,w, 1
ε−1
, V ∗λ , ρλ) are exactly the same distributions.

• D3
comp
≈ δ D4: Here, we denote by Dj,λ,x,w to mean Dj for clarifying the dependence on

λ, x, w. We consider distributions D3,λ,x,w,ρ∗ and D4,λ,x,w,ρ∗ for any state ρ∗ in the support

of Dreal,a(x,w, 1
ε−1
, V ∗λ , ρλ) defined as follows:

D3,λ,x,w,ρ∗ : It outputs ρ∗ with probability psucreal(x,w, 1
ε−1
, V ∗λ , ρλ) and samples fromDsim,na(x, 1

ε−1
, V ∗λ , ρλ)

with probability 1− psucreal(x,w, 1
ε−1
, V ∗λ , ρλ).

D4,λ,x,w,ρ∗ : It outputs ρ∗ with probability 1−psucna (x, 1ε
−1
, V ∗λ , ρλ) and samples fromDreal,na(x, 1

ε−1
, V ∗λ , ρλ)

with probability psucna (x, 1ε
−1
, V ∗λ , ρλ).

Suppose that D3
comp
≈ δ D4 does not hold. This means that there exists a non-uniform PPT

distinguisher A = {Aλ, ρA,λ}λ∈N and a sequence {(xλ, wλ) ∈ (L ∩ {0, 1}λ)×RL(x)}λ∈N such
that

|Pr[1
$← Aλ(D3,λ,xλ,wλ)]− Pr[1

$← A(D4,λ,xλ,wλ)]− δ
is non-negligible. By an averaging argument, there exists a sequence {ρ∗λ}λ∈N such that

|Pr[1
$← Aλ(D3,λ,xλ,wλ,ρ

∗
λ
)]− Pr[1

$← A(D4,λ,xλ,wλ,ρ
∗
λ
)]− δ

is non-negligible. We fix such {ρ∗λ}λ∈N. By using A, we construct a non-uniform QPT distin-
guisherA′ that is given {ρA,λ, ρ∗λ}λ∈N as an advice and distinguishes OUTV ∗na〈P (wλ), V ∗λ (ρλ)〉(xλ)

and Simna(xλ, 1
ε−1
, V ∗λ , ρλ) as follows:

27Indeed, we can prove D1
stat
≈ cδ D2 for any constant c > 1 similarly.
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A′(ρ′): It is given an input ρ′, which is sampled from either OUTV ∗na〈P (wλ), V ∗λ (ρλ)〉(xλ) or

Simna(xλ, 1
ε−1
, V ∗λ , ρλ). It sets ρ := ρ′ if ρ′ 6= Fail and otherwise sets ρ := ρ∗λ. Then it

runs A on input ρ and outputs as A outputs.

Clearly, if ρ′ is sampled from OUTV ∗na〈P (wλ), V ∗λ (ρλ)〉(xλ), then ρ is distributed according
to D3,xλ,wλ,ρ

∗
λ

and if ρ′ is sampled from Simna(xλ, V
∗
λ , ρλ), then ρ is distributed according to

D4,xλ,wλ,ρ
∗
λ
. Therefore,

|Pr[1
$← A′(OUTV ∗na〈P (wλ), V ∗λ (ρλ)〉(xλ))]− Pr[1

$← A′(Simna(xλ, 1
ε−1
, V ∗λ , ρλ))]| − δ

is non-negligible. This contradicts Lemma 5.4. Therefore, we have D3
comp
≈ δ D4.

• D4
comp
≈ δ D5: This immediately follows from Eq. 13.

By combining the above, we obtain Eq. 9.
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