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Abstract: In the last few years a new design paradigm, the so-called ARX (modular addition, rotation, exclusive-or)
ciphers, have gained popularity in part because of their non-linear operation’s seemingly ‘inherent resilience’
against Differential Power Analysis (DPA) Attacks: the non-linear modular addition is not only known to be a
poor target for DPA attacks, but also the computational complexity of DPA-style attacks grows exponentially
with the operand size and thus DPA-style attacks quickly become practically infeasible. We however propose
a novel DPA-style attack strategy that scales linearly with respect to the operand size in the chosen-message
attack setting.

1 Introduction

Ciphers that base their round function on the sim-
ple combination of modular addition, rotation, and
exclusive-or, (short ARX) have gained recent popu-
larity for their lightweight implementations that are
suitable for resource constrained devices. Some re-
cent examples include Chacha20 (Nir and Langley,
2015) and Salsa20 (Bernstein, 2008) family stream
ciphers, SHA-3 finalists BLAKE (Aumasson et al.,
2008) and SKEIN (Ferguson et al., 2010), as well as
other block ciphers such as SPECK (Beaulieu et al.,
2015), SPARX (Dinu et al., 2016) and the related
SPARKLE (Beierle et al., 2008) which made into the
second round of the NIST lightweight cipher compe-
tition. Another second round candidate of the NIST
lightweight competition Gimli (Bernstein et al., 2017)
also proposed a variation, namely Gimli-SPARX, that
has adopted the ARX paradigm.

The fact that the round function has an efficient
and simple expression via functions that are typi-
cally available as instructions on small embedded de-
vices enables excellent performance with respect to
code size, execution time and energy consumption.
Any implementation on an embedded device however
also needs to be able to withstand the threat of Side-
Channel (timing, power, EM, cache) Attacks (SCA,
for short). The absence of key dependent loops, or
indeed tables, implies resistance to timing and cache
attacks. Power (and synonymously EM) attacks how-

ever are different: they offer a potentially ‘high reso-
lution’ for the adversary. In principle, under suitably
strong assumptions, adversaries can not only observe
leaks for all instructions that are executed on a proces-
sor, but indeed attribute leakage points (more or less
accurately) to instructions (Mangard et al., 2007).

Achieving security in this scenario has proven to
be extremely challenging, and countermeasures such
as masking (secret sharing) are well understood but
costly (Schneider et al., 2015). In the case of ARX
constructions one has to cope with the fact that there
are Boolean operations (requiring Boolean masking
or secret sharing) and arithmetic operations (requir-
ing arithmetic masking or secret sharing). Thus se-
curing ARX ciphers against power (and EM) attacks
is potentially very costly; unless, it could be argued
that they are inherently ‘secure enough’ against such
attacks that “non-provable” countermeasures (such as
hiding via randomisation of instructions, etc.) could
possibly suffice. The most recent work on securing
ARX implementations is (Jungk et al., 2018).

It is well known that completely linear targets such
as the rotation and the exclusive-or operation are dif-
ficult to attack with differential (power or EM) anal-
ysis (DPA for short): attacks on such targets require
many more traces than attacks on highly non-linear
target functions, and even with a very large number
of leakage traces there remains some keys that cannot
be distinguished from each other (Prouff, 2005).



1.1 Background and Related Work on
SCA on ARX Ciphers

The idea of combining addition modulo 2n, exclusive-
or, and rotation as a round function, has been sug-
gested as early as 1987 in the block cipher FEAL
(Shimizu and Miyaguchi, 1988). Since NIST kick-
started its lightweight cryptography project in 2015,
the interest in ARX constructions has received re-
newed interest. The ciphers SIMON and SPECK
(Beaulieu et al., 2015), which were submitted to the
first of the two workshops hosted by NIST, gained
a considerable amount of interest from within the
crypto community. In 2016 the SPARX family of ci-
phers was introduced (Dinu et al., 2016).

The appeal of the ARX construction is primarily
in the fact that when choosing n equal to the word size
of a processor, software implementations gain consid-
erable speedups. Furthermore, because the non-linear
component is given by the addition modulo 2n, it does
not need to be encoded as a table lookup which sig-
nificantly reduces the memory usage. The absence
of lookup tables is also perceived as a distinctive ad-
vantage when the threats of various side channel at-
tacks are considered (Biryukov et al., 2016; Biryukov
and Perrin, 2017; Dinu et al., 2016). The absence
of cache also implies that the instructions are always
performed in a constant time and thus there is unlikely
any key dependent leakage exploitable in the execu-
tion time (Dinu et al., 2016). Being free from the ta-
bles also significantly reduces the number of mem-
ory accesses as these instructions have shown to be
the most exploitable targets in power analysis attacks
(Biryukov et al., 2016).

However, it has been shown in (Yan and Os-
wald, 2019) that naı̈ve implementations of ARX ci-
phers may still leave vulnerabilities easily exploitable.
In (Yan and Oswald, 2019), the authors simply
attempted straightforward correlation power analy-
sis attacks on the reference implementation of the
SPARX cipher (Dinu et al., 2016) on some real plat-
forms, and found that the key was efficiently recov-
ered exploiting the leakage amplified by consecutive
XOR and shifting instructions.

Nevertheless, for the modular addition in ARX-
Boxes, the authors of (Yan and Oswald, 2019) re-
ported unsuccessful attacks targeting the addition in-
struction which coincide with the previous results re-
ported by (Biryukov et al., 2016) and that align with
(Yan and Oswald, 2019; Zohner et al., 2012; Dinu
et al., 2016): their argument is that the weak non-
linearity of modular addition leaves a relatively lower
margin in distinguishing the keys comparing to a typ-
ical S-Box instruction.

To date, the Butterfly attack (Zohner et al., 2012)
remains the most effective result in attacking modular
addition. This attack demonstrated that it is possi-
ble to improve on straightforward DPA-style attacks
when targeting modular additions by testing pairs of
correlations induced by the symmetrical structure of
modular additions. However Butterfly attacks are
constrained by the fact that knowledge of one adder is
required which does not hold for some ARX ciphers
such as SPECK (Beaulieu et al., 2015) and SPARX
(Dinu et al., 2016).

1.2 Our Contribution

In this paper we propose a novel attack strategy
against the modular addition in ARX-Boxes. Our
method, in comparison to previous work, requires no
knowledge of the adders and thus is more generally
applicable on targets where a Butterfly attack is not
an option, such as SPECK (Beaulieu et al., 2015) and
SPARX (Dinu et al., 2016).

Our method requires to obtain the leakage from
the result of the modular addition only, which we need
to be a bit-linear function (e.g. Hamming Weight, or
weighted Hamming weight with positive weights of
similar magnitude). We only need to be able to ob-
serve if the leakage increases, decreases, or remains
the same upon a single-bit flip in the plaintext. Based
on this information, we show how to reconstruct the
adder output. With the adder output, and based on a
further related plaintext, we then show how to recon-
struct the secret key.

We consider our novel methodology of indepen-
dent theoretical interest as we leverage minimal side
channel leakage to perform a cryptanalytic-style anal-
ysis for ARX constructions.

1.3 Organisation of the Paper

In Section 2 we formalise our attack on ARX-Boxes
as the (Noisy) Hidden Adder Problem, (N)HAP, and
propose its sub-problem the (Noisy) Hidden Sum
Problem, (N)HSP. In Section 3 we explain how HSP
can be solved, then use the solution to solve HAP in
Section 4 thus providing a full key recovery attack
given ideal leakage. Section 5 completes the attack by
adapting the attack to noisy leakage. We present sim-
ulation results in Section 5.1 and also discuss practical
considerations.

1.4 Notation

In this work we frequently use both the integer and the
binary representation of operands. The notation [x]



indicates the binary representation of a non-negative
integer x:

x = [x]n−1[x]n−2...[x]1[x]0 =
n−1

∑
i=0

2i[x]i,

hence [x]i denotes the i-th bit of [x]. The notation [x][y]
implies the concatenation of two bit strings [x] and
[y]. The notation [x]k denotes k times repetition of [x].
Specifically, [∗]k denotes an arbitrary k-bit string.

In this paper we assume that all integers are drawn
from Z2n , where n ∈ N+. The � denotes modular ad-
dition over Z2n . HW (x) denotes the Hamming weight
of [x]. For a n-bit integer x, x̃ refers to the (one’s)
complement of x, where all the bits are flipped. That
is,

x̃ = x⊕ (2n−1).
We often require to be able to change the value of

a single bit to its complement (i.e. we flip a bit, but
leave all other bits unchanged). For this purpose we
define the flip function Fi(x) which returns x with the
i-th bit flipped:

Fi(x) = x⊕2i.

2 Problem Description

In this work we explore alternative SCA strategies
when targeting the modular addition in a more general
setting as described by the generalised ARX-Box in
(Yan and Oswald, 2019):

s(x,y) := (x⊕α)� (y⊕β), (1)
where (x,y) are some known input values and (α,β)
are the unknown sub-keys. All x,y,α,β and s(x,y) are
n-bit variables. We further assume an adversary who
is able to choose input pairs (x,y), and observe the
(noisy) leakage of s(x,y). For simplicity we assume
that the (noisy) leakage is the Hamming weight with
Gaussian noise, which is the most commonly consid-
ered leakage model in side-channel literature:
L(x,y)=HW (s(x,y))+e=HW ((x⊕α)�(y⊕β))+e,
where the Gaussian noise e∼N (0,σ2). We note that
our statements also hold for a more general bit-linear
model assuming that all coefficients have the same
sign.

The goal of the adversary is to recover the subkeys
(α,β) given a set of chosen inputs (x,y) and their as-
sociated leakage L(x,y). Later in Section 5 we ex-
plain that how the chosen inputs requirement can be
relaxed in different settings.

We model our attack that exploits ideal and noisy
leakage as the Hidden Adder Problem (HAP) and
Noisy Hidden Adder Problem (NHAP), respectively,
as formalised in Definition 1 and Definition 2.

2.1 Outline of Our Attack

In a nutshell, there are two steps in our attack strat-
egy. The first step is to recover the sum s(x,y) from
the leakage. From there, we then recover the subkeys
(α,β) by solving equations involving x,y and s(x,y).
We begin by explaining how the attack works in an
ideal world where the adversary observes ideal leak-
age without the Gaussian noise e, and then we show
how such solution can be adapted to realistic noisy
leakage by using statistical methods. To this end, we
define the following problems:
Definition 1 (Hidden Adder Problem (HAP)). Let
(α,β) be randomly chosen from Z2n ×Z2n . The ad-
versary chooses as many pairs x,y ∈ Z2n and obtains
leakage of the form HW (s(x,y))=HW ((x⊕α)�(y⊕
β)) for each pair. The adversary must then recover
(α,β).
Definition 2 (Noisy Hidden Adder Problem
(NHAP)). Let (α,β) be randomly chosen from
Z2n × Z2n . The adversary chooses as many pairs
x,y∈Z2n and obtains leakage of the form Lα,β(x,y)=
HW (s(x,y))+ e = HW ((x⊕α)� (y⊕β))+ e where
e ∼ N (0,σ2). The adversary must then recover
(α,β).

Note that HAP (and so is NHAP) reflects the ul-
timate goal of the adversary to reveal the subkeys
(α,β). To explain our attack, we further define
two sub-problems of HAP and NHAP called Hidden
Sum Problem (HSP) and Noisy Hidden Sum Problem
(NHSP):
Definition 3 (Hidden Sum Problem (HSP)). Let
(α,β) be randomly chosen from Z2n ×Z2n . The ad-
versary chooses as many pairs x,y ∈ Z2n and obtains
leakage of the form HW (s(x,y))=HW ((x⊕α)�(y⊕
β)) for each pair. The adversary must then recover
s(x,y).
Definition 4 (Noisy Hidden Sum Problem (NHSP)).
Let (α,β) be randomly chosen from Z2n × Z2n .
The adversary chooses pairs x,y ∈ Z2n and obtains
leakage of the form Lα,β(x,y) = HW (s(x,y)) + e =

HW ((x⊕α)� (y⊕β))+ e where e ∼N (0,σ2). The
adversary must then recover s(x,y).

The adversaries in the problems HSP and NHSP
are given exactly the same form of leakage as the
adder problems (HAP and NHAP). Only their goals
are changed to recover the sum s(x,y) in the sum
problems rather than the sub-keys in the adder prob-
lems.

In this paper, we always consider the general case
where n ≥ 2. For the special case where n = 1, we
have

HW (s(x,y)) = s(x,y) = x⊕α⊕ y⊕β



which immediately gives α⊕β given HW (s(x,y)),x
and y. It should also be noted that as shown in (Yan
and Oswald, 2019), any side-channel attack target-
ing the modular addition of the generalised ARX-Box
will yield at least two pairs of the subkeys. Conse-
quently, as we will see later in Section 4, all the above
problems have at least two pairs of solutions in (α,β).

3 Solving the Hidden Sum Problem

Our solution to the HSP recovers s(x,y) one bit at
a time. Starting from the MSB down to the LSB, we
flip each bit of x and observe the resulting differences
in the Hamming weight leakage. In the end we re-
cover all bits of the hidden sum s(x,y). We abbreviate
s := s(x,y) and s′i := s(Fi(x),y), which are the sum,
and the sum with [x]i flipped, respectively.

Since flipping [x]i also flips the bit [x⊕α]i, this
effectively changes the sum by ±2i due to commuta-
tivity of addition. In the following sections we explain
how to exploit this property of s(x,y) to solve HSP.

Define ∆sy([x]i) to be the difference in s(x,y) in-
duced by flipping [x]i. We have:
∆sy([x]i)≡ s(Fi(x),y)− s(x,y)≡±2i (mod 2n).

(2)
Equivalently,

s(Fi(x),y) = s(x,y)±2i. (3)

3.1 Recovering the MSB

In this section we give a solution that recovers the
MSB of s, which is the base case for our algorithm.

Note that the MSB of s can be reduced to XORing
the carry bit c from the sum of the lower-order bits,
and the MSBs of x⊕α and y⊕ β. Because flipping
[x]n−1 flips [x⊕α]n−1 and thus [s]n−1, the adversary
can determine that [s]n−1 = 0 if the Hamming weight
increases (from 0 to 1) and vice versa.
Lemma 1. Given x, y, Hamming weights of the sums
s(x,y) and s(Fn−1(x),y), the MSB of the sum s is:

[s]n−1 =

{
0 if HW (s′n−1)−HW (s)> 0,

1 if HW (s′n−1)−HW (s)< 0.

Proof. We can write HW (s) as:
HW (s) = HW ([s]n−1)+HW ([s]n−2[s]n−3...[s]1[s]0).

(4)
Also,
s′n−1 ≡ ∆sy([x]n−1)+ s

≡ ∆sy([x]n−1)+ [s]n−12n−1 +
n−2

∑
i=0

[s]i ·2i (mod 2n).

(5)

Note that [s]n−1 ∈ {0,1}, ∆sy([x]n−1) ∈
{+2n−1,−2n−1} according to Equation (2), and
−2n−1 mod 2n = +2n−1. Equation (5) can, there-
fore, be categorised into four cases:

1. If [s]n−1 = 0, ∆sy([x]n−1) = +2n−1, then

s′n−1 = (+2n−1 +0 ·2n−1 +
n−2

∑
i=0

[s]i2i) (mod 2n)

= [1][s]n−2...[s]1[s]0.

2. If [s]n−1 = 0, ∆sy([x]n−1) =−2n−1, then

s′n−1 = (−2n−1 +0 ·2n−1 +
n−2

∑
i=0

[s]i2i) (mod 2n)

= [1][s]n−2...[s]1[s]0.

3. If [s]n−1 = 1, ∆sy([x]n−1) = +2n−1, then

s′n−1 = (+2n−1 +1 ·2n−1 +
n−2

∑
i=0

[s]i2i) (mod 2n)

= [0][s]n−2...[s]1[s]0.

4. If [s]n−1 = 1, ∆sy([x]n−1) =−2n−1, then

s′n−1 = (−2n−1 +1 ·2n−1 +
n−2

∑
i=0

[s]i2i) (mod 2n)

= [0][s]n−2...[s]1[s]0.

Observe that in Cases 1 and 2, where [s]n−1 = 0,
we have

s′n−1 = [1][s]n−2...[s]1[s]0.
Similarly, in Cases 3 and 4 where [s]n−1 = 1, we have

s′n−1 = [0][s]n−2...[s]1[s]0.

Therefore, we obtain

HW (s′n−1) ={
HW (1)+HW ([s]n−2[s]n−3...[s]1[s]0)if [s]n−1 = 0,
HW (0)+HW ([s]n−2[s]n−3...[s]1[s]0)if [s]n−1 = 1.

(6)
Denote by ∆HWn−1 the (signed) difference in

Hamming weight between s to s′n−1. Subtracting
Equation (6) by Equation (4), we have:

∆HWn−1 = HW (s′n−1)−HW (s)

=

{
HW (1)−HW (0) = +1 if [s]n−1 = 0,
HW (0)−HW (1) =−1 if [s]n−1 = 1.

(7)

Observing Equation (7), we can see that the sign
of ∆HWn−1 solely depends on [s]n−1. Since both
HW (s′n−1) and HW (s) can be obtained as (ideal)
leakage, we can thus recover [s]n−1 by computing
∆HWn−1 and then applying Equation (7).

Algorithm 1 provides the pseudo code for recov-
ering the MSB.



Algorithm 1 Compute MSB of s

function [s]n−1 = GetMsb(x,y)
∆HW = HW (s′n−1)−HW (s);
if ∆HW > 0 then

return 0;
else

return 1;
end if

end function

3.2 Recovering the m-th bit

In Section 3.1 we explained how the MSB of s =
s(x,y) can be recovered by the noiseless Hamming
weight leakage. We now show how to recover the
remaining bits.

Lemma 2. Suppose we flip the bit [x]n−m. If:

• HW (s′n−m)> HW (s), then [s]n−m = 0,

• HW (s′n−m) = HW (s), then [s]n−m = [̃s]n−(m−1),

• HW (s′n−m)< HW (s), then [s]n−m = 1,

for 2≤ m≤ n.

Proof. We assume that the higher-order m−1 bits of
s:

sknown = [s]n−1[s]n−2...[s]n−(m−1)

has been determined. The goal is then to recover
the next bit [s]n−m. According to Equation (3), when
[x]n−m is flipped, we have the flipped sum s′n−m:

s′n−m = s+∆sy([x]n−m) (8)

where ∆sy([x]n−m) =±2n−m.
In the RHS of Equation (8), bits “lower” than

[s]n−m is unchanged after the addition operation and
thus does not affect the Hamming weight. On the
other hand, the addition to (or subtraction from)
[s]n−m may potentially generate a carry bit that propa-
gates through bits “higher” than [s]n−m and result into
a change of Hamming weight.

Let ∆HWn−m be the (signed) change of Hamming
weight induced by flipping [x]n−m:

∆HWn−m = HW (s′n−m)−HW (s). (9)

We can categorise ∆HWn−m by:

• Whether there exists or not a carry bit (either pos-
itive or negative),

• If there exists a carry bit, then
– Whether the carry triggers an overflow (and

hence modular reduction).

We next analyse each of the above cases.

Conditions
∆HWn−m[s]n−m ∆sy([x]n−m) Overflow? sknown

[0]
+2n−m No [∗]m−1 +1

−2n−m Yes [0]m−1 +m
No [∗]m−(k+2)[1][0]k +k

[1] +2n−m Yes [1]m−1 -m
No [∗]m−(k+2)[0][1]k -k

−2n−m No [∗]m−1 -1

Table 1: ∆HW under different conditions, where 2≤m≤ n,
0≤ k ≤ m.

No carry bit. In the following conditions there is no
carry bit:

1. If [s]n−m = 0 and ∆sy([x]n−m) = +2n−m, then
∆HWn−m =+1.

2. If [s]n−m = 1 and ∆sy([x]n−m) = −2n−m, then
∆HWn−m =−1.

Otherwise there must exist a carry bit.
Carry bit. The existence of a carry bit implies either

one of the following conditions:
• Case C1 : [s]n−m = 1 and ∆sy([x]n−m) =+2n−m.
• Case C2 : [s]n−m = 0 and ∆sy([x]n−m) =−2n−m.
is satisfied. This can be further categorised into:
Overflow. In this case, all the bits of sknown are

flipped after the addition:
1. In the Case C1, it is required that sknown =

[1]m−1. The propagation results in sknown
flipped to [0]m−1, with ∆HWn−m =−m.

2. In the Case C2, it is required that sknown =
[0]m−1. The propagation results in sknown
flipped to [1]m−1, with ∆HWn−m =+m.

No overflow. In this case, only a part of sknown is
flipped after adding ∆sy([x]n−m). Denote by k ∈
[0,m− 2] the number of bits flipped in sknown
before the carry propagation terminates, then

1. In the Case C1, the carry propagation termi-
nates at the least significant [0] of sknown which
is required to have the form

sknown = [s]n−1...[s]n−(m−(k+2))[0][1]
k.

After the addition with ∆sy([x]n−m) = +2n−m,
sknown changes to

[s]n−1...[s]n−(m−(k+2))[1][0]
k.

Therefore ∆HWn−m =−k.
2. The Case C2 is just the opposite of C1 with

∆HWn−m =+k.

Table 1 summarises the above scenarios. It is
shown that positive ∆HWn−m implies [s]n−m = [0]
and negative ∆HWn−m implies [s]n−m = [1] as both
m,k≥ 0. The case ∆HWn−m = 0 is only possible when
k = 0, which indicates a carry bit exists without over-
flow. In such a case sknown is required to be either:



Algorithm 2 Compute m-th significant bit [s]n−m (2≤
m≤ n)

function [s]n−m =
GetNextBit(x,y,m, [s]n−1[s]n−2...[s]n−(m−1))

∆HW = HW (s′n−1)−HW (s);
if ∆HW > 0 then

return 0;
else if ∆HW < 0 then

return 1;
else . ∆HW == 0

if [s]n−m+1 == 0 then
return 1;

else
return 0;

end if
end if

end function

• sknown = [∗]m−2[1], for [s]n−m = 0, or

• sknown = [∗]m−2[0], for [s]n−m = 1.

In either case, [s]n−m can be determined by the LSB
of sknown.

To summarise, given ∆HWn−m, we can uniquely
determine [s]n−m.

Algorithm 2 provides the pseudo code that com-
putes sn−m for 2≤ m≤ n.

3.3 Complete Solution to HSP

Combining the methods described in Section 3.1 and
Section 3.2, we now have a full solution to the HSP,
as summarised in Algorithm 3. Notice that the same
HW (s) can indeed be reused in Algorithm 1 and Al-
gorithm 2 ; hence Algorithm 3 only needs n+1 traces
to recover s(x,y).

Algorithm 3 Compute s

function s = GetSum(x,y)
. We initialise the sum to its MSB

s = GetMsb(x,y);
. Recover one bit at a time from 2nd MSB to

LSB
for (m = 2;m≤ n;m++) do

s = [s][GetNextBit(x,y,m,s)];
end for
return s;

end function

4 Solving HAP

In this section we show how HAP (cf. Defini-
tion 1) can be solved using a solution to HSP (cf. Sec-
tion 3).

Lemma 3. Let ∆ := ((s(x,y) − s(x̃,y) − 1)
(mod 2n)) � 1 (here � refers to the right shift
operator).

The solutions to HAP are:{
α = ∆⊕ x
β = y⊕ ((s(x,y)−∆) (mod 2n))

or {
α = (∆�2n−1)⊕ x

β = y⊕ ((s(x,y)− (∆+2n−1)) (mod 2n)),

for arbitrary x,y ∈ Z2n .

Proof. Observe that for any x ∈ Z2n , we have

x̃⊕α = x̃⊕α = 2n−1− (x⊕α).

Hence

s(x,y)− s(x̃,y)
= ((x⊕α)+(y⊕β))− ((x̃⊕α)+(y⊕β)) (mod 2n),

= (x⊕α)− (2n−1− (x⊕α)) (mod 2n),

= 2(x⊕α)+1 (mod 2n).

Note that we have already computed the values s(x,y)
and s(x̃,y) in Section 3. Since 2 is not co-prime to the
modulo 2n, there are exactly two values of x⊕α that
satisfy the above equation: ∆ and ∆�2n−1. Hence the
lemma follows.

Algorithm 4 provides the pseudo code for solving
HAP. The algorithm has trace complexity O(n) - re-
quiring 2n+2 calls to the (ideal) leakage function.

Algorithm 4 Compute (α,β)

function (α,β) = GetAl phaBeta(void)
Pick arbitrary (x,y);
. Compute s(x,y) and s(x̃,y) by Algorithm 3

S0 = GetSum(x,y);
S1 = GetSum(x̃,y);

. Recover (α,β) using Lemma 3
a1 = ((S0−S1−1) (mod 2n))>> 1;
a2 = a1⊕2n−1;
b1 = y⊕ ((S0−a1) mod 2n);
b2 = y⊕ ((S0−a2) mod 2n);
return {(a1,b1),(a2,b2)};

end function



Algorithm 5 Determine sign of ∆HW

function ∆HW =CompareHW (S1,S2)
(t, p) = test(S1,S2)
if p/2≥ Signi f icanceLevel then . Accept

∆HW = 0
return 0

else
if t > 0 then . +1 for positive ∆HW .

return +1
else . −1 for negative ∆HW .

return −1
end if

end if
end function

5 Converting to Noisy Leakage

In a real world attack setting an adversary is un-
likely to have noise free leakages. We thus now con-
sider how to translate the developed attack strategy
into a more realistic setting.

In principle, the reduction explained in Section 4
also holds for NHAP to NHSP, as long as the adver-
sary is able to recover s(x,y) given the noisy leak-
age in NHSP. Further examining the HSP solution
in Section 3, we see it is indeed sufficient to solve
HSP given only the signs of the difference ∆HWi =
HW (s′i)−HW (s), i ∈ [0,n− 1]. In the case of noisy
leakages we can reveal this difference by sampling the
leakage function (i.e. the device) multiple times on
the same input. We thus get two sets of leakages:

S1 = {HW (s′i)+ e},
S2 = {HW (s)+ e}.

Clearly by subtracting the averages of these sets, we
can recover ∆HWi also in the noisy case. Moreover
because we are only interested in the sign of ∆HWi,
we can hope that in practice we don’t require ‘large’
sets. To add a bit more rigour, we opted to implement
a standard two-tailed t-test in our experiments. A two-
tailed test can tell us if

• HW (s′i) = HW (s),

• HW (s′i)> HW (s), or

• HW (s′i)< HW (s).

Algorithm 5 summarises the pseudo code that de-
termines the sign of ∆HW . It first conducts a two-
tailed test:

H0 : S1 = S2

H1 : S1 6= S2

using a set significance level, and interprets the result
in terms of the sign of ∆HWi.

Alternative to Chosen Input Requirement. Due to
the symmetric structure of Equation (1), Lemma 2
also applies when the i-th bit of y is flipped. It should
also be noted that flipping the i-th bit of α is effec-
tively equivalent of flipping the i-th bit of x:

x⊕Fi(α) = Fi(x)⊕α = Fi(x⊕α)

and vice versa for y and β. Therefore our attack can
also be achieved in a fault attack set up where the
plaintexts are known to the adversary and for each bit
the adversary can induce an i-th bit flip of either x, y,
α or β.
Checking the recovered key-pair. In many attacks
utilising side channel information another practically
relevant question is that of which part of the side
channel trace to use (often not just a single value is
available but a vector of leakages). Typical side chan-
nel attacks proceed via applying the analysis to all
leakage points independently (this lends itself to an
efficiently parallelisable algorithm). This technique
applies also to our attack: each leakage point eventu-
ally gives one key pair. We can test each key pair via
a pair of known plaintext and ciphertext. In case of a
plaintext only attack, another test would be possible:
if we set x = α and y = β then both adder inputs are
equal to 0 which can be detected by a collision anal-
ysis (Schramm et al., 2004; Bogdanov, 2007; Moradi
et al., 2010).

5.1 Experiments

Attack simulations are a valuable tool because they
enable us to produce results quickly for different sets
of parameter choices. In the absence of detailed char-
acterisations of devices and their actual power mod-
els, one cannot fall back on established statistical
techniques such as a power-based sample size anal-
ysis to derive how many leakage traces are necessary
in practice to conduct successful attacks. Thus simu-
lations are the established ‘workaround’ when exam-
ining new attack techniques. The attack is mainly af-
fected by three parameters in practice. These are the
noise distribution (characterised by σ), the number of
repeat queries to the leakage function N, and the sig-
nificance level of the two-tailed test. It is well under-
stood that these three quantities jointly determine how
well a test performs, and thus in turn, how often our
attack succeeds.

We simulated the attack with 16-bit word size
(n = 16) which has been chosen in certain ARX ci-
phers such as SPARX. Algorithm 5 is implemented
using a t-test1. S1 and S2 are chosen to have the same
sample size for simplicity. We simulated the attack

1We follow the assumption of Gaussian noise, which



(a) Significance level of 0.01

(b) Significance level of 0.05

Figure 1: Simulation results for the attack. The left figure
shows the success rate as a function of the number of leak-
age traces (per query) when choosing a significance of 0.01.
The right figure is identical but for a significance of 0.05.

using different configurations where σ ∈ [0.1,6] and
N ∈ [100,1000]. Recall that N is the number of sam-
ples used for each tests. A complete attack hence uses
2N(n+1) traces.

The result follows our expectations in general. For
the same choice of significance level, the number of
traces required to achieve the same success rate in-
creases as the noise variance increases. This directly
derives from the fact that the power of t-test weak-
ens as the noise variance increases. With the same
amount of traces and the same noise level, the signif-
icance level of 0.05 has a lower success rate cap than
0.01, which are around 0.74 and 0.96, respectively.
But in return the former also showed a better noise
tolerance than the latter. Since the significance level
of 0.05 implies a higher rate of false positives in re-
turn for less traces required; thus the results follow an
expected and natural trend.

6 Conclusions

We present a novel theoretical concept to attack
the modular addition in the context of ARX ciphers
using side channel leakage. Our assumptions are min-
imal w.r.t. the leakage because we only require to ob-
serve a change in the leakage magnitude relating to
the adder output in an implementation. Our paper de-
tails the mathematical idea using idealised Hamming

motivates the choice of the t-test. Thus if noise follows a
different distribution, then a different two-tailed test could
be used.

weight leakage information at first, and then discusses
an adaptation to cope with a noisy leakage function.
To ascertain the impact of noise we provide a case
study and via simulations we demonstrate the impact
and trade-off between noise and significance level that
would need to be considered in practice.

Purely from a practical perspective, there exists
a more powerful attack for ARX ciphers on a spe-
cific class of devices as described in (Yan and Os-
wald, 2019). They observe a device specific effect
called leakage amplification that makes the attack on
the rotation very trace efficient on a specific type of
device. We are not aware of any successful attack
however, beyond the Butterfly attack that requires a
known adder input, on the modular addition in the
context of an ARX cipher.

Thus we believe our contribution is of general
cryptanalytic interest because it opens up a new av-
enue for analysing modular additions utilising rather
generic leakage from the adder output.
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