
The Cost to Break SIKE:
A Comparative Hardware-Based Analysis with

AES and SHA-3

Patrick Longa1, Wen Wang2, and Jakub Szefer2

1 Microsoft Research, USA
2 plonga@microsoft.com

Yale University, USA
{wen.wang.ww349,jakub.szefer}@yale.edu

Abstract. This work presents a detailed study of the classical security
of the post-quantum supersingular isogeny key encapsulation (SIKE)
protocol using a realistic budget-based cost model that considers the
actual computing and memory costs that are needed for cryptanalysis.
In this effort, we design especially-tailored hardware accelerators for the
time-critical multiplication and isogeny computations that we use to
model an ASIC-powered instance of the van Oorschot-Wiener (vOW)
parallel collision search algorithm. We then extend the analysis to AES
and SHA-3 in the context of the NIST post-quantum cryptography stan-
dardization process to carry out a parameter analysis based on our cost
model. This analysis, together with the state-of-the-art quantum security
analysis of SIKE, indicates that the current SIKE parameters offer higher
practical security than currently believed, closing an open issue on the
suitability of the parameters to match NIST’s security levels. In addition,
we explore the possibility of using significantly smaller primes to enable
more efficient and compact implementations with reduced bandwidth.
Our improved cost model and analysis can be applied to other cryptogra-
phic settings and primitives, and can have implications for other post-
quantum candidates in the NIST process.

Keywords: Cost model · cryptanalysis · SIKE · efficient hardware and
software implementations.

1 Introduction

The post-quantum cryptography (PQC) standardization process organized by
the National Institute of Standards and Technology (NIST) has recently entered
its third round with the selection of 15 key encapsulation mechanisms (KEM)
and digital signature schemes [34]. Among them, the Supersingular Isogeny Key
Encapsulation (SIKE) protocol [4] stands out by featuring the smallest public
key sizes of all of the encryption and KEM candidates and by being the only
isogeny-based submission. In its second round status report, NIST highlights that
it sees SIKE “as a strong candidate for future standardization with continued
improvements” [35].

2 Longa et al.

SIKE’s security history. SIKE is the actively-secure version of Jao-De Feo’s
Supersingular Isogeny Diffie-Hellman (SIDH) key exchange proposed in 2011 [21].
SIDH, in contrast to preceding public-key isogeny-based protocols [11,42,46],
bases its security on the difficulty of computing an isogeny between two isogenous
supersingular elliptic curves defined over a field of characteristic p. This problem,
which was studied by Kohel in 1996 [27] and by Galbraith in 1999 [18], continues
to be considered hard, as no algorithm is known to reduce its classical and
quantum exponential-time complexity. In contrast, the problem of computing
isogenies between ordinary curves has endured a more turbulent history. While
this problem is still considered exponential on classical computers [19], in 2010,
Childs, Jao and Soukharev proposed a quantum algorithm that solves it in
subexponential time [8]. Since supersingular curves have a non-commutative
endomorphism ring, SIDH inherently avoids this attack which requires the endo-
morphism ring to be commutative. More precisely, SIDH and SIKE are based
on a problem—called the computational supersingular isogeny (CSSI) problem
in [12]—that is more special than the general problem of constructing an isogeny
between two supersingular curves. In these protocols, the degree of the isogeny is
smooth and public, and both parties in the key exchange each publish two images
of some fixed points under their corresponding secret isogenies. However, so far
no passive attack has been able to advantageously exploit this extra information.
Hence, it is still the case that the CSSI problem can be seen as an instance of the
general claw problem, as originally suggested by the SIDH authors back in 2011.
The black-box claw problem, and thus CSSI, can be solved with asymptotic
exponential complexities O(p1/4) and O(p1/6) on classical and quantum compu-
ters, respectively [21].

SIKE’s parameter selection. Since 2011, parameters for SIDH, and later for
SIKE, have been selected following the above classical and quantum complexi-
ties [21,9,4]. Accordingly, the initial SIKE submission to the NIST PQC effort
in 2017 [4] included the parameter sets SIKEp503, SIKEp751 and SIKEp964,3

to match or exceed the computational resources required for key searches on
AES128, AES192 and AES256, respectively. These, in turn, correspond to NIST’s
security levels 1, 3 and 5 [36]. Levels 2 and 4 are defined by matching or
exceeding the computational resources required for collision searches on SHA3-
256 and SHA3-384, respectively. It was not until 2019 that Adj, Cervantes-
Vázquez, Chi-Domı́nguez, Menezes and Rodŕıguez-Henŕıquez [1] showed that the
van Oorschot-Wiener (vOW) parallel collision finding algorithm [49] is the best
classical algorithm for CSSI in practice. This was based on the observation that
the vOW algorithm allows a time-memory trade-off that enables the reduction
of the significant memory requirements (also of O(p1/4)) of the meet-in-the-
middle attack against the claw problem. Shortly afterwards, after studying the
best known quantum algorithms for CSSI, Jaques and Schank [23] confirmed
that the classical vOW algorithm should be used to establish the post-quantum
security of SIKE and to choose its parameters; see [10] for a posterior study

3 The name of the parameter set is assembled by concatenating “SIKEp” and the
bitlength of the underlying prime p.

The Cost to Break SIKE 3

with recent cryptanalytic results. Accordingly, the SIKE team updated their
parameter selection for Round 2 of the NIST PQC process, proposing SIKEp434,
SIKEp503, SIKEp610 and SIKEp751 for levels 1, 2, 3 and 5, respectively [4].4

One problem that arises, and pointed out by NIST in [35, pp.14], is that the
studies mentioned above arbitrarily limit the total amount of memory available
to an attacker. In [1,10], that memory limit is set to 280 memory units, while
in [23] it is set to 296 bits. Moreover, in some cases the security estimates
from these works either match exactly or even fall below the classical gate
requirements of the NIST levels (see [4, Table 5.1]).5 This is justified in the SIKE
specification document by conjecturing that “the corresponding conversion to
gate counts would see these parameters comfortably exceed NIST’s requirements”.
But no further explanation is provided.

Cost models for cryptographic schemes. There are several approaches in
the literature to assess the security of cryptographic schemes. A standard and
platform-independent method is the random access machine (RAM) model. A
simplistic abstraction of this model estimates security directly from the query
complexity of the corresponding attacks, while refined versions incorporate algo-
rithmic time complexity, instruction or cycle counts corresponding to an imple-
mentation of the atomic operations in the cryptanalysis. For example, in the case
of SIKE, Adj et al. [1] derived security directly from the query complexity of the
vOW algorithm, assuming 2e/2-isogenies as the unit of time. Later refinements
by Jaques and Schank [23] and Costello et al. [10] incorporated estimates of the
algorithmic complexity of the half-degree isogeny computation in the first case,
and the number of x64 instructions to implement the same computation in the
second case. One main drawback of these approaches based on the RAM model
is that they ignore the cost of memory and do not capture the significant cost
of memory access of algorithms with large shared-memory requirements, as is
the case of SIKE. It is also unclear how precisely counting the number of gates,
instructions or cycles relates to actual attacks.

Wiener [52] gave a step forward by considering a 3-dimensional machine
model and analyzing its cost in terms of the processing, storage and wiring
(communication) components that are required by an attack. This approach is
slightly more complex but gives a more precise approximation of the actual
security of a given cryptosystem. A positive side-effect of this more holistic
approach is that, for example, it permits to identify parallel attacks that are
practically more efficient than the serial versions.6 This, in general, motivates
cryptographers to use the most efficient attacks when evaluating security.

We note, however, that Wiener was only “concerned with asymptotics”. In
his model, the different components (processors, memory, wires) are assigned
the same cost or “weight”. Moreover, an algorithm’s total cost is estimated by

4 We note that there were no parameter changes for Round 3.
5 The issue is particularly problematic for level 5 for which the gap between the

security estimates for SIKEp751 and AES256 is relatively large.
6 A point emphasized by Bernstein [5], for example, is that some studies focus on serial

attacks and their improvement, ignoring the existence of better parallel attacks.

4 Longa et al.

multiplying the total number of components by the number of steps that are
executed per processing unit, giving both sides an equal weight.7

Some works in the literature apply an even more realistic budget-based cost
model that avoids the issues above and is still relatively simple (e.g., see van
Oorschot and Wiener [48,49]): Assume a fixed budget for the attacker and then
let her/him allocate the money to get all the necessary hardware in such a way
that the time it takes to break a scheme is minimized. The strength of the scheme
is determined by such a lower bound for the attack time.

This approach has several advantages. First, it motivates searching for the
most cost-effective solution for a problem to help establish a good practical
approximation of the security of a scheme (expressed in terms of the time it takes
to break it). Thus, it promotes the use of the most efficient algorithms in practice,
in place of slower ones (e.g., parallel versus serial attacks). Economically, it
motivates the use of the most cost-efficient hardware to achieve a successful
break in the least amount of time. More to the point, most effective cryptanalytic
efforts aimed at breaking cryptographically strong schemes are expected to
use application-specific integrated circuits (ASICs), which demand high non-
recurring engineering expenses but are the best alternative in large production
volumes. Establishing lower bounds for security using ASICs guarantees that
any other approach taken by an attacker (e.g., using an army of hijacked PCs
over the Internet or renting cloud infrastructure or using GPUs) is going to take
either more time or money (or both).

As Wiener [52] argued, one potential disadvantage of considering the cost of
the various hardware components required in an attack is the risk of overestima-
ting security if new cryptanalytic attacks are discovered that are able to reduce
the memory and communication requirements without increasing the number of
processing steps. However, by not including all the large costs in the analysis
of the best known attacks, one is left chasing “future” attacks that could never
materialize in practice. In our opinion, if our understanding of the underlying
hardness problem of a scheme is mature enough, it is preferable to estimate the
actual cost of the best known attacks and then decide on the security margin
we want to add on top—one can argue that this is actually the role of having
different security levels—, instead of disregarding some costs and assuming this
provides a security margin.

Contributions. In this paper, taking advantage of the relatively stable history
of SIKE’s underlying hardness problem, we analyze its security under a budget-
based cost model. Compared to previous work on cryptanalytic costs, the robust-
ness of the model is strengthened by carrying out an analysis of historical price
data of semiconductors and memory, and by making simple yet informative
projections to the future.

To determine actual hardware costs for the model, we design especially-
tailored, ASIC-friendly hardware accelerators for the multiplication in Fp2 and

7 Wiener’s approach is unable to identify the best attack if, for example, an algorithm
takes O(n1/2) steps per processor and O(n1/2) components, while another algorithm
takes O(n2/3) steps per processor and O(n1/3) components.

The Cost to Break SIKE 5

the large-degree isogeny computation, which are the most critical operations in
the cryptanalysis of SIKE. The architectures, which are of independent interest
for constructive purposes, are optimized for area-time (AT) product, matching
the requirements in a real cryptanalytic setup. Using ASIC synthesis results, we
estimate the cost of running the vOW algorithm on SIKE and produce security
estimates for the SIKE Round 3 parameters and for a set of new parameters
that we introduce.

To verify the soundness of our design, we implemented a proof-of-concept
hardware/software co-design of the vOW algorithm on FPGA, leveraging the
software developed by Costello, Longa, Naehrig, Renes and Virdia [10]. We hope
that this implementation serves as basis for real-world, large-scale cryptanalytic
efforts intended to assess the security of isogeny-based cryptosystems.

The cost model is also applied to AES [38] and SHA-3 [39], yielding more
realistic security estimates for these primitives that are relevant for the ongoing
NIST PQC process. A comparison with our SIKE estimates—complemented by
the state-of-the-art results for quantum attacks—leads us to conclude that the
current SIKE parameters are conservative and exceed the security required by
their intended NIST levels by wide margins. This solves an open issue about the
practical security of the SIKE parameters.

In addition, to explore the potential of using parameters that match more
closely the NIST security targets, we generate the following three new alternative
parameters: 8

– SIKEp377, with p = 21913117 − 1 (Level 1),

– SIKEp546, with p = 22733172 − 1 (Level 3),
– SIKEp697, with p = 23563215 − 1 (Level 5).

Finally, we report optimized implementations of these parameters for x64
platforms that show the potential improvement in performance. For example,
SIKEp377, which is intended for level 1, is roughly 1.4× faster than the Round
3 parameter SIKEp434 on an x64 Intel processor. In addition, the public key
size is reduced by roughly 13%. Even smaller key sizes would be possible with
compressed variants of the parameters [4,33,40].

Open-source release. Our Python security estimation script for SIKE, AES
and SHA-3, the proof-of-concept hardware/software co-design of vOW for ASIC/
FPGA, and the software implementation of the alternative SIKE parameters
proposed in this work, have been publicly released and can be found at:

https://github.com/microsoft/vOW4SIKE_on_HW

and

https://caslab.csl.yale.edu/code/sikehwcryptanalysis

8 The use of the prime p546 was previously suggested in [1] to match “the 160-bit
security level”.

https://github.com/microsoft/vOW4SIKE_on_HW
https://caslab.csl.yale.edu/code/sikehwcryptanalysis

6 Longa et al.

Outline. After giving some preliminary background about SIKE and the vOW
algorithm in §2, we describe the details of our improved budget-based cost
model in §3. In §4, we describe the attack setup of the vOW algorithm on
SIKE, present the design of our cryptanalysis hardware accelerators, as well as
the hardware/software co-design of vOW, and summarize the synthesis results
that are used to determine the cost of attacking SIKE. In §5, we revisit the
cost analysis of attacking AES and SHA-3. The comparative security analysis
of SIKE, AES and SHA-3 appears in §6, together with an analysis of SIKE
parameters and their optimized implementations on x64 platforms. We end with
a discussion about the implications of our analysis in §7.

2 Preliminaries

2.1 SIKE and the CSSI problem

SIKE is a key encapsulation mechanism that is an actively-secure variant of
the SIDH protocol [4], i.e., it offers resistance against indistinguishability under
adaptive chosen ciphertext (IND-CCA2) attacks. In practice, this means that
SIDH keys are ephemeral while SIKE’s do not need to be.

Fix a prime p = 2e23e3 − 1 with 2e2 ≈ 3e3 . The protocol works with the
roughly p/12 isomorphism classes of supersingular elliptic curves that exist in
characteristic p and that are all defined over Fp2 . Each of these classes is uniquely
identified by its Fp2-rational j-invariant. If we define an isogeny as a separable
non-constant rational map between two elliptic curves, its degree is assumed to
be equal to the number of elements in its kernel. Let E be a (supersingular)
elliptic curve defined over Fp2 , for which #E = (p+ 1)2, and G be any subgroup
of E. Then, there is a one-to-one correspondence (up to isomorphism) between
subgroups G ⊂ E and isogenies φ : E → E/G whose kernel are G. Vélu’s
formulas can be used to compute these isogenies [50].

SIKE has as public parameters the two positive integers e2 and e3 that define
p and the finite field Fp2 , a starting supersingular elliptic curve E0/Fp2 , and bases
{P2, Q2} and {P3, Q3} for the 2e2- and 3e3 -torsion groups E0[2e2] and E0[3e3],
respectively. A simplified version of the computational supersingular isogeny
(CSSI) problem can then be described as follows [1].

Definition 1. (CSSI). Let (`, e) ∈ {(2, e2), (3, e3)}. Given the public parameters
e2, e3, E0/Fp2 , P`, Q` and the elliptic curve E0/G defined over Fp2 , where G is
an order-`e subgroup of E0[`e], compute the degree-`e isogeny φ : E0 → E0/G
with kernel G or, equivalently, find a generator for G.

2.2 The vOW parallel collision finding algorithm

Let f : S → S be a (pseudo-)random function on a finite set S. The van Oorschot-
Wiener (vOW) algorithm finds collisions f(r) = f(r′) for distinct values r, r′ ∈ S.

Define distinguished points as elements in S that have a distinguishing proper-
ty that is easy to test, and denote by θ the proportion of points of S that are

The Cost to Break SIKE 7

distinguished. The vOW algorithm proceeds by executing collision searches in
parallel, where each search starts at a freshly chosen point x0 ∈ S and produces
a trail of points ri = f(ri−1), for i = 1, 2, . . ., until a distinguished point rd
is reached. Let a shared memory have capacity to collect up to w triples of
the form (r0, rd, d), where each triple represents a distinguished point and its
corresponding trail. Also assume that a given triple is stored at a memory
address that is a function of its distinguished point. Every time in a search that
a distinguished point is reached, two cases arise: (i) if the respective memory
address is empty or holds a triple with a distinct distinguished point, the new
triple (r0, rd, d) is added to memory and a new search is launched with a new
starting point r0, or (ii) if the distinguished point in the respective address is a
match, a collision was detected. Note that it is possible that trails fall into loops
that do not lead to distinguished points. To handle these cases, [49] suggests to
abandon trails that exceed certain maximum length (e.g., 20/θ). The expected
length d of the trails is 1/θ on average.

In [49], van Oorschot and Wiener classified different cryptanalytic applications
according to whether collision searches are required to find a small or a large
number of collisions. Relevant to this work is that the first case matches collision-
search on SHA-3 while the second one applies to golden collision-search for SIKE;
see §5.2 and §4 for the application of each case.

Finding one (or a small number of) collision(s). In this case, since√
π|S|/2 points are expected to be produced before one trail touches another,

the work required by each search engine is
√
π|S|/2/m when m search engines

are running in parallel. If we add to this the cost to reach a distinguished point
after a useful collision has been detected (i.e., 1/θ steps) and the cost of locating
the initial point of collision (i.e, 1.5/θ steps),9 the total runtime to locate the
first useful collision with probability close to 1 is [49]

T =

(
1

m

√
π|S|/2 +

2.5

θ

)
t, (1)

where t is the time for one run of f .

Finding a large number of collisions. For the case where a large number
of collisions exist, we follow convention and call golden collision to the unique
collision that leads to solving the targeted cryptanalytic problem. In this case,
since the number of collisions for f is approximately |S|/2, one would expect
to have to detect this same number of collisions on average before finding the
golden collision. However, the golden collision might have a low probability of
detection for a given f . This suggests that the best performance on average
should be achieved by using different function versions, each one running for a
fixed period of time, until the golden collision is found. In the remainder, we
denote the different function versions by fn, with n ∈ Z+.

9 As pointed out in [49], some applications such as discrete logarithms do not require
locating the initial point of collision of two colliding trails. In these cases, it suffices
to detect that the trails merged.

8 Longa et al.

Assisted by a heuristic analysis, van Oorschot and Wiener determined that
the total runtime of the algorithm is minimized when fixing w ≥ 210 and
θ = 2.25

√
w/|S|, and the total number of distinguished points generated by

each function version is set to 10w, where, as before, w represents the number
of memory units that are available to store the triples (r0, rd, d). Under these
conditions, the total runtime to find a golden collision is estimated as

T =

(
2.5

m

√
|S|3/w

)
t (2)

where t is the time for one run of fn and m is the number of search engines that
are run in parallel. The value 2.5 is another constant determined experimentally
in [49].

3 Budget-Based Cost Model

In this section, we describe the budget-based cost model that we use to estimate
the security of SIKE in §4 and the security of AES and SHA-3 in §6.

The basic idea under this model is that the attacker is assigned a fixed
budget that he/she then uses to get computing and storage resources.10 The
specific amount of each of these two resources is determined such that the time to
successfully break the targeted scheme is minimized. The security of the scheme
is given by the time it takes to break it.11

While our model is inspired by the analysis in [48,49], we expand it by
considering historical price information of semiconductors and memory compo-
nents. As we argue later on, an analysis of technological and economic trends
gives confidence to using this data to help determine the strength of cryptographic
schemes.

Remark 1. While there is a long list of components that are required to build and
support the full infrastructure for a large-scale, real-world attack, we simplify the
analysis and only consider sufficiently large costs, namely those for the purchase
of computation and storage resources, without losing much precision. We also
note that wiring and communication costs can be significant. However, for the
targeted cryptographic schemes these other costs can be considered relatively
small, as the analysis in [52] showed for some cryptosystems. One way to improve
the model can be done by including the cost of energy consumption and heat
dissipation. Nevertheless, we note that this is expected to lead to similar results
since both costs are correlated to memory and computing power.12

10 We use U.S. dollars (USD) as currency, without loss of generality.
11 We use “years” as the unit of security strength, without loss of generality.
12 For a relevant discussion, refer to Ray Perlner’s post in the NIST PQC mailing list

on 08-17-2020 https://csrc.nist.gov/projects/post-quantum-cryptography/

email-list.

https://csrc.nist.gov/projects/post-quantum-cryptography/email-list
https://csrc.nist.gov/projects/post-quantum-cryptography/email-list

The Cost to Break SIKE 9

The cost model. The time in years that it takes to break a cryptographic
scheme, under a budget of B dollars, is given by

Y =

(
#par ops

m
+ #ser ops

)
· 1

ct
, (3)

where:

– m represents the number of processing engines,
– ct is the computing throughput expressed in terms of the number of operations

computed per year by one processing engine,
– #par ops is the total number of operations that can be perfectly parallelized,

and
– #ser ops is the total number of serial operations.

The number of processing engines (m) and memory units (w) are constrained
according to

B = m · cm + w · cw, (4)

where cm and cw represent the cost (in dollars) of one processing engine and
one memory unit, respectively.

The cost of computation power and memory The inclusion of the costs
of memory and computing resources is a key ingredient to better reflect the
true cost of cryptanalysis. This is particularly relevant for memory-intensive
cryptanalytic attacks (such as the vOW-based attack against SIKE), especially
when analyzed in relation to attacks that require negligible use of memory (such
as brute-force attacks against AES).

An important aspect commonly overlooked is how these computing/memory
costs have behaved historically and how they are expected to behave in the
future. Most analyses in the literature use costs that correspond to one specific
point in history (typically, the “present time” for a certain study). But providing
security estimates for different security levels involves an attempt at predicting
the future looking at lifespans of 10, 15, 20 years or more. Thus, a natural
question that arises is how a budget-based estimate could vary or is expected to
vary over time.13

Barred the chance of a flux capacitor ever working,14 one imperfect but
practical approach to predict such a future is to observe the historical evolution
of transistors and memory prices. Specifically, we use the public release prices of
microprocessor units (MPUs) from Intel and AMD, together with their correspon-
ding transistor counts, to derive an approximation of the cost an attacker would
have to pay to fabricate his/her own ASIC chips. As is standard, to get gate
counts we assume that a so-called gate equivalent (GE) represents a 2-input

13 More generally, the question is how the security of a given cryptosystem is expected
to change over time due to technological advances and increases in capital, which is
an aspect that is frequently ignored.

14 “Back to the future” fans will love the reference to the DeLorean time
machine https://en.wikipedia.org/wiki/DeLorean_time_machine.

https://en.wikipedia.org/wiki/DeLorean_time_machine

10 Longa et al.

Fig. 1: Historical release prices of Intel and AMD MPUs in terms of number of gates
per dollar, and prices of memory in terms of bytes per dollar. The prices are scaled
by dividing the values by 7.4 (see App. A). Data corresponds to the lowest price
found for each category (MPU, HDD, DRAM or SSD) per year from 2000 to 2020.
Refer to App. D for the original price values and their respective sources. To estimate
the number of gates, we use the standard assumption that each gate consists of four
transistors. The (forecast) values by the Linley Group and the ITRS are taken from [16].

NAND gate in CMOS technology, and that in turn each of these gates consists
of four transistors. Similarly, we use the public prices of memory technologies
that are most suitable for the task, including hard disk drive (HDD), dynamic
random-access memory (DRAM) and solid-state drive (SSD), to get memory
costs per byte. These costs are depicted in Figure 1. It is important to note
that to deal with the relatively small gap between release prices and the actual
production cost of fabricating a chip at very large scale, we apply a scaling factor
to the transistor and memory prices, which was calculated from the estimates
in [25]; see App. A for the exact derivation of the factor value.

It can be observed that, historically, the bytes to gates cost ratio has been
quite stable, which highlights the strong correlation between the cost of transistors
(gates) and memory (bytes). This is not surprising since, in general, semiconduc-
tors—including transistors for logic and memory means such as DRAM—have
evolved under the same economic and technological stress forces, and have
followed the same fundamental projections such as those dictated by Moore’s
law [32] and Dennard scaling [13]. Over time the development of the different
processes involved in the fabrication of semiconductor devices has been coordina-
ted under the umbrella of so-called “technological roadmaps”. These wide efforts
started at the national level (e.g., with the National Technology Roadmap for
Semiconductors (NTRS) [45] organized by the Semiconductor Industry Associa-
tion (SIA) [43] in the U.S.), but then in the late 90’s morphed into a unified and

The Cost to Break SIKE 11

global initiative known as the International Technology Roadmap for Semicon-
ductors (ITRS) [20], which in 2016 was succeeded by the International Roadmap
for Devices and Systems (IRDS) [15]. These large coordination efforts—in part
responsible for the meteoric progress of semiconductors—have led to a steady
and uniform progress in the miniaturization of transistors and other related
components that, in turn, has led to a steady and uniform reduction in the cost
of semiconductors overall [16].15

Figure 1 also includes a forecast of the transistor prices for “high-performance
MPUs” done by the ITRS in 2007 for the years between 2000 and 2020 (see
Tables 7a and 7b of the “Executive Summary”, 2007 edition [16]), and includes
the costs of transistors reported by the Linley Group for the years between 2002
and 2012 and its forecast for the years 2014 and 2015 (see §8 in the “More
Moore – ITRS 2.0” white paper [16]). Overall, the stability of the data and its
consistency across different sources suggest that the adjusted prices of MPUs for
logic and HDDs for memory can be used as good approximations to the lower
bounds of the costs a real attacker would encounter in practice.

4 Cost of Attacking SIKE

In this section, we describe and adapt the vOW attack to Round-3 SIKE,
and produce operation counts corresponding to the different parameter sets.
Then, we describe the cryptanalysis design strategy, introduce our hardware
implementation that covers efficient accelerators for the multiplication in Fp2 and
the isogeny computation, and describe the proof-of-concept HW/SW co-design
of vOW on SIKE. The synthesis results that we produce are used in combination
with our operation counts to give area/time estimates that are later used in §6
to estimate the cost of breaking SIKE on ASICs.

4.1 vOW on SIKE

We start by adapting the attack setup in [10] to Round-3 SIKE for the most
commonly found scenario, i.e., ` = 2 with even e2. Refer to App. B for the
explicit details for two other cases: ` = 2 with odd e2, and ` = 3 with odd e3.

The SIKE Round 3 specification sets the Montgomery curve E6/Fp2 : y2 =
x3 + 6x2 + x with j(E6) = 287496 as the starting curve of the protocol. Fix
` = 2 and assume e2 is even. Let the final curve be defined as E = E6/G, where
G is an order-2e2 subgroup of E6[2e2]. Taking into account the use of E6 and
the savings in the final step of the large-degree isogeny computation [10, §3.1],
attackers are left with the task of finding the isogeny of degree 2e2−2 between
E6 and a certain challenge curve EA.

Let S = {0, 1, . . . , 2e2/2−1 − 1}. In an efficient version of the attack, the
attacker can fix bases {P,Q} and {U, V } for E6[2e2/2] and EA[2e2/2−2], where
π(P) = −P and π(Q) = Q with π representing the Frobenius endomorphism.

15 Although the core technology behind HDDs is not based on semiconductors, they
have also followed a similar pattern of growth and cost reduction, arguably because
of being under similar economic and technological forces.

12 Longa et al.

We use the efficient instantiation for fn proposed in [10]. They define fn : S → S
by fn(r) = gn(h(r)), where gn is a hash function with index n and h is given by

h : r 7→

{
j, if lsb(b) = 0 for j = a+ b · i ∈ Fp2
j, otherwise

,

where
j =

{
j(E6/〈P + [r >> 1]Q〉), if lsb(r) = 0

j(EA/〈U + [r >> 1]V 〉), if lsb(r) = 1
.

As can be seen, the function h uses a canonical representation of the conjugate
classes in Fp2 , such that it is always the case that we land on a j-invariant
where the least significant bit of the imaginary part is 0. Note that >> represents
the right shift operator. Thus, the least significant bit of r is used to select
whether we compute an isogeny from E6 or from EA and, therefore, we have
that r ∈ {0, 1, . . . , 2e2/2−2 − 1}.

The kernels P + [r]Q determine degree-2e2/2 isogenies from E6. However,
by exploiting the Frobenius endomorphism [10, §3.1], it follows that the search
space reduces to 2e2/2−1 distinct equivalence classes of j-invariants. The kernels
U+[r]V determine degree-2e2/2−2 isogenies from EA, leading to 2e2/2−2 distinct
equivalence classes of j-invariants. In the remainder, we slightly underestimate
the attack cost and only consider the use of 2e2/2−2-isogenies as the core operation
that is needed to approximate the cost of f . This also means that we ignore the
cost of the hash function gn, in an effort to be conservative in our security
estimates.

Another crucial ingredient to estimate the cost of attacking SIKE is the
memory required to store distinguished point triples (§2.2). For a triple (r0, rd, d)
the starting and distinguished points have a length of log |S| = e2/2 − 1 bits.
However, if we apply van Oorschot and Wiener’s recommendation of defining a
fixed number of top 0 bits as the distinguishing property [49, §4.1], distinguished
points can be efficiently stored using only log |S| + log θ bits, where θ is the
distinguished point rate. If we fix the maximum length of the trails to 20/θ then
the counter d can be represented with log (20/θ) bits. Thus, a memory unit in a
vOW attack against SIKE requires approximately the following number of bytes

d(2 log |S|+ log 20)/8e. (5)

Operation counts. The two operations that make up the computation of
a full large-degree isogeny as described above are the construction of kernels
with the form P + [r]Q and the computation of the half-degree isogeny itself.
Hence, estimating their computing time and plugging the total “t” into Eq. (2) is
expected to give a good approximation to a practical lower bound of the attack
runtime.

For the kernel computation, it is standard to use the efficient Montgomery
ladder, which computes χ(P + [r]Q) given input values χ(P), χ(Q), χ(Q − P)
for elliptic curve points P,Q,Q − P , where χ(·) represents the x-coordinate of
a given point. We note that the vOW implementation reported in [10] makes
use of the 3-point Montgomery ladder for variable input points proposed by Faz

The Cost to Break SIKE 13

Table 1: Operation counts for the isogeny and elliptic curve operations in the kernel
and isogeny tree traversal computations corresponding to a 2e2/2−2-isogeny for even
exponent (resp. 2(e2−3)/2-isogeny for odd exponent, omitting single 2-isogenies). Tree
traversal uses an optimal strategy consisting of point quadrupling and 4-isogeny steps;
ADD denotes a differential point addition, DBL a point doubling, 4-get a 4-isogeny
computation, and 4-eval a 4-isogeny evaluation. Round 3 parameters appear at the
top, while the new parameters proposed in this work are at the bottom.

Kernel Tree traversal

ADD DBL 4-get 4-eval

SIKEp434 106 282 53 166
SIKEp503 123 352 61 187
SIKEp610 151 434 75 255
SIKEp751 184 548 92 334

SIKEp377 94 236 47 147
SIKEp546 135 394 67 211
SIKEp697 176 516 88 318

et al. [14]. However, for cryptanalysis one can employ the ladder version that
exploits precomputations [14, Alg. 3], since the input points are fixed in this
case. This algorithm speeds up the kernel computation by roughly 2 times at
the expense of storing about e2/2 points.

Recall that ` ∈ {2, 3}. For the case of the half-degree isogeny itself, the
computation can be visualized as traversing a tree, from top to bottom, doing
point multiplications by ` and `-isogeny computations which are guided by a
so-called optimal strategy [12, §4.2.2]. This optimal strategy is derived by using
the relative cost of point multiplication by ` and `-isogeny evaluation.

Table 1 summarizes the operation counts for a full large-degree isogeny
operation as required for cryptanalysis. The table only includes the 2-power
torsion case which is the preferable option for cryptanalysis as it is more efficient
than the 3-power torsion case for all the SIKE parameters under study. For the
kernel, we take into account the optimization using a fixed-point Montgomery
ladder. In contrast to [10, §5], we include the cost of the kernel computation as
well as the costs of both the `-isogeny computation and the `-isogeny evaluation
when assessing the cost of the full isogeny.

4.2 Hardware implementation of the attack

“Ideal” cryptanalysis design. Here we discuss our idealized design of a full
attack, under the assumption that the main goal of the analysis is to help
define conservative lower bounds for the cost of cryptanalyzing SIKE on ASICs.
Likewise, with the budget-based cost model in mind, the main optimization goal
for a hardware implementation of the attack is the minimization of the area-time
(AT) product.

14 Longa et al.

One core aspect of setting up a real-world, large-scale attack on SIKE using
vOW is the configuration of the shared memory that stores the distinguished
points. Each of the standard options, e.g., the use of a centralized database or a
peer-to-peer system, has its advantages and disadvantages, and introduces non-
negligible bottlenecks (see [10, App. C] for a discussion). In our analysis of the
attack runtime, we abstract away from these engineering complexities and only
consider the CPU time (i.e., we ignore communication costs for memory access).

A second core aspect is related to the hardware implementation of the “proce-
ssing engine” that runs vOW on SIKE. While the critical part of this vOW engine
is the isogeny step in the random function iteration for searching distinguished
points and in the collision detection mechanism (a.k.a. backtracking), other
associated costs include, for example, the pseudorandom sampling of starting
points and the hashing of the j-invariants. There is also the cost associated to
all the control circuitry to manage the algorithm flow outside the isogeny step
(e.g., see [10, App. C] for a discussion about the synchronization of function
versions across engines). Thus, by focusing the area and timing analysis on the
isogeny function only, one can safely produce lower bounds for the attack cost.

It remains to discuss parallelization opportunities for the isogeny computation
itself. In a typical setup that facilitates synchronization across engines, the pre-
fixed number of distinguished points per function version can be evenly split
between those engines, which then get to work to collect them. Beyond that,
the parallel searches hardly stay in-sync at the arithmetic level, which makes
difficult to save area by using controllers that manage multiple isogeny engines
simultaneously, or by batching elliptic curve and small-degree isogeny operations
from different engines (e.g., using Montgomery’s inversion batching trick).

Internally, one can try to parallelize operations in the kernel computation P+
[r]Q and the isogeny tree traversal operation. However, existing approaches offer
poor area utilization, which conflicts with our goal of minimizing the AT product.
In contrast, we note that the elliptic curve and small-degree isogeny formulas,
as well as the underlying arithmetic over Fp2 , do offer good opportunities for
parallelization of multiplications in Fp2 and Fp.

Following this discussion, we designed a flexible and efficient hardware accele-
rator for the cost-intensive large-degree isogeny computation. This includes the
hardware acceleration of the kernel construction as well as the isogeny computa-
tion itself. In turn, this accelerator is built on top of an efficient multiplier
architecture that exploits a novel approach to optimize and exploit internal
parallelism in the multiplication over Fp2 in hardware.

We describe our accelerators next, starting with the critical Fp2 multiplication.

Multiplier core. The basic idea of our design is to merge the inner multiplica-
tions in a schoolbook-like computation of the Fp2 multiplication using a radix-r
Montgomery multiplication algorithm. This allows us to parallelize digit multipli-
cations while saving a full Montgomery reduction. Thus, the method can be seen
as an application of lazy reduction to radix-r multiplication algorithms. While
it is possible to apply the approach to most of the several radix-r variants of
the Montgomery multiplication, in our application we use the finely integrated

The Cost to Break SIKE 15

Algorithm 1 Modified FIOS algorithm for Montgomery multiplier in Fp2

. for computing: c0 = (a0 · b0 − a1 · b1) mod p, where p is a SIKE prime.

Require: operands a0, a1, b0, b1, each of n digits, each digit ∈ [0, 2r) for radix of r
bits; m = p+ 1 and λ represents the number of 0 digits in m.

Ensure: [t0, . . . , tn−1]← MontRed(a0 · b0 − a1 · b1)

1: ti = 0 for i = 0, . . . , n− 1
2: for i = 0, . . . , n− 1 do
3: (C, S) = a0,0 · b0,i − a1,0 · b1,i + t0
4: mm = S
5: for j = 1, . . . , n− 1 do
6: if j < λ then // optimization for 0 digits in m
7: (C, S) = a0,j · b0,i − a1,j · b1,i + tj + C
8: else // mult. integrated with reduction
9: (C, S) = a0,j · b0,i − a1,j · b1,i +mm ·mj + tj + C

10: tj−1 = S

11: tn−1 = C

operand scanning (FIOS) algorithm [26]. In hardware, this algorithm allows us
to maximize the number of parallel multiplications, while minimizing the control
circuitry.

The proposed algorithm is depicted in Algorithm 1. We assume that, given
inputs a = (a0, a1) and b = (b0, b1) in Fp2 , a ·b is computed as (a0 ·b0−a1 ·b1, a0 ·
b1 + a1 · b0). We only show the computation of the left-half of the result (the
right-half computation easily follows). The algorithm also includes an additional
optimization to save multiplications when the corresponding digit of the modulus
is 0, as first noted by Costello et al. [9] in the context of SIDH. Ignoring this
optimization, the method reduces the number of digit multiplications in one Fp2
multiplication from 2 · 2 · (2n2 − n) = 8n2 − 4n (using the standard approach
on a SIKE prime) to 2 · (3n2 − n) = 6n2 − 2n. We note that, in comparison,
the Karatsuba method is able to trade one Fp multiplication with a few much
cheaper Fp additions and subtractions, roughly matching the number of digit
multiplications of our method. However, as discussed in [29], when mapping the
Karatsuba algorithm to hardware, there are more data dependencies that can
easily lead to complex data scheduling in pipelined architectures.

A simplified diagram depicting our hardware multiplier core Fp2 Multiplier

is presented in Figure 2a. The input operands a0, a1, b0, b1 as well as the constant
value m are all stored in memory blocks of width r and depth n, where r is
the size of the radix and n is the number of digits per operand. Two separate
modules step sub and step add are implemented for realizing the two inner loop
variants in Alg. 1, which gives a total of six digit multipliers and two digit adders
for optimal parallel execution. Finally, a Controller module is responsible for
coordinating the memory accesses as well as the interactions between the memory
blocks and the computation units. Since our design is fully pipelined, step sub

and step add execute their computations in one cycle on average, which means
that a full Fp2 multiplication is completed in approximately n2 cycles.

16 Longa et al.

Controller

+–

+–

step_sub step_add

mem mem

mem mem mem mem mem

a0 a1 b0 b1 m

sub
result

add
result

input data

output data

Multiplier core

(a) Diagram of the Fp2 multiplier core.

Top_Controller

xDBL_FSM

xADD_FSM

get_4_isog_FSM

eval_4_isog_FSM

Fp2_multiplier

Fp2_multiplier

Fp2_Adder

Fp2_Adder

cmd = 1/2/3/4cmd = 5

curve and isogeny operations
(2-torsion)

Fp2 field arithmetic

Isogeny Hardware Accelerator

(b) Diagram of the isogeny hardware
accelerator.

Fig. 2: Simplified diagrams of the Fp2 Multiplier and the isogeny hardware accelerator.

As desired for the cryptanalysis application, our approach gives great flexibility
to balance area and computing time by tuning the value of the radix. This
can be observed when comparing our implementation with similar works in the
literature (refer to App. C for the details).

Isogeny hardware accelerator. Figure 2b shows the diagram of our isogeny
hardware accelerator. A lightweight Top Controller module sitting at the top
of the design contains a state machine that implements the kernel and isogeny
computations as described in the subsection “Operation counts” (§4.1). Accor-
dingly, it supports all the necessary elliptic curve and small-degree isogeny
computations for the 2-power torsion case, including doubling, differential addi-
tion, 4-isogeny evaluation and 4-isogeny computation. Separate compact state
machines (called xDBL FSM, xADD FSM, get 4 isog FSM and eval 4 isog FSM)
were designed for accelerating the respective operations above. As shown in the
figure, these computations are carried out by the accelerator depending on the
value of the cmd signal.

In our design, the Fp2 -level arithmetic underlying these sub-modules is suppor-
ted by two parallel blocks of our novel Fp2 Multiplier core, as well as two
parallel Fp2 Adder blocks. This setup is optimal to minimize the AT product
when using the Montgomery formulas for the small-degree isogeny and elliptic
curve operations. As shown in Fig. 2b, the Top Controller can also directly
trigger Fp2 multiplications and additions using the cmd signal. This is done in
order to accelerate these functions when invoked outside the elliptic curve and
isogeny computations.

Comparison with other implementations. A relevant task for our analysis
is to determine the suitability of using the proposed isogeny hardware accelerator
for analyzing the security of SIKE under a realistic cost model. The main
challenge that we face is that our implementation appears to be the first one
intended for ASICs for cryptanalytic purposes. Nevertheless, we exploit the fact
that a large-degree isogeny operation is also the main part of a typical hardware

The Cost to Break SIKE 17

Table 2: Comparison of our isogeny HW accelerator with SIKE implementations
(encapsulation function Enc only, w/o SHAKE) on a Xilinx Virtex 7 690T FPGA
of partname XC7VX690TFFG1157-3. Synthesis results were obtained with Vivado
Software Version 2018.3. The use of FPGA DSPs was disallowed during synthesis.

Resources
Freq Enc Slices ×

Design log p Slices LUTs FFs RAMs (MHz) (msec.) Time

This work (radix = 232)

434

6260 22347 4023 6.5 164.00 19.70 123.7
This work (radix = 264) 19120 69636 8808 12.5 116.84 10.51 200.9

[28] 20620 64553 21064 37.0 146.91 6.33 130.5
[29], 128-bit ALU 7472 24855 8477 23.5 162.20 22.88 171.0
[29], 256-bit ALU 24400 82143 18509 20.5 163.85 10.21 249.0

This work (radix = 232)

751

6031 21745 3273 19.5 161.00 94.31 568.8
This work (radix = 264) 18587 67699 6925 38.5 115.92 40.36 750.1

[28] 52941 151411 46095 45.5 116.88 18.91 1001.1
[29], 128-bit ALU 7472 24855 8477 23.5 162.20 81.09 605.9
[29], 256-bit ALU 24400 82143 18509 20.5 163.85 25.38 619.3

implementation of SIKE to carry out a first-order comparison between our
isogeny accelerator and the most efficient open-source FPGA implementations of
SIKE in the literature: the area-efficient implementation by Massolino et al. [29]
and the speed-oriented implementation by Koziel et al. [28]. While ours is not
a full SIKE implementation we argue that the resources and timing information
it provides only introduce a small error. The isogeny function is by far the
most resource and time-consuming operation in SIKE, and implementations like
the ones from [28,29] only incorporate a specialized, lightweight controller to
provide the rest of the functionality. Note that to have a more fair comparison
we eliminated the SHAKE circuitry from the implementations of both works.

Another issue is that the implementations above are specialized for FPGA
and, hence, make use of the internal digital signal processors (DSPs). However,
what matters for our security analysis is the performance on ASICs. Therefore,
to make the results more comparable to what would be observed on an ASIC,
we have synthesized the implementations without DSPs.

Table 2 summarizes the resource utilization and encapsulation timing results
for our and the aforementioned SIKE implementations.16 As can be seen, our
accelerator using radix 232 achieves the lowest values for the slices/time product
in comparison with [28] and [29]. More importantly, we achieve so for both the
smallest and the largest SIKE Round 3 parameter sets, while the competing
implementations do not scale as efficiently for different parameters. This is due
to the efficiency and flexibility of our multiplier and isogeny designs, which have
been especially tailored to achieve a low area-time product. We remark that this

16 We only compare the encapsulation operation, as this is the only high-level function
in SIKE that fully works on the 2e2 -torsion subgroup, as in our isogeny accelerator.

18 Longa et al.

Table 3: Cycle results from synthesis for the isogeny and elliptic curve operations in
the kernel and tree traversal computations using our hardware accelerators based on
two Fp2 parallel multipliers. The parallel formula for ADD costs 3M + 3add + 3sub,
for DBL it costs 3M + 2add + 2sub, for 4-get it costs 2M + 4add + 1sub, and for
4-eval it costs 4M+ 3add+ 3sub, where M denotes multiplication, add addition and
sub subtraction in Fp2 . Each case reports the results for the radix that achieves the
lowest AT product.

Kernel Tree traversal

Radix ADD DBL 4-get 4-eval

SIKEp434 232 874 841 598 1105
SIKEp503 232 1088 1051 742 1383
SIKEp610 264 518 496 360 649
SIKEp751 264 684 658 472 863

SIKEp377 232 684 655 470 859
SIKEp546 232 1326 1288 904 1697
SIKEp697 264 634 610 438 800

first-order comparison is conservative because it ignores some costly resources
like Block RAMs.17

Synthesis results. We now proceed to obtain area and timing synthesis results
for our isogeny accelerator, which are used in §6 to determine the cost and
performance of a “processing engine” to run vOW on SIKE.

We use Synopsis version Q-2019.12-SP1 with the NanGate 45nm open-cell
library v1.3 (v2010.12) [44]. Table 3 summarizes the cycle counts obtained for
each of the individual elliptic curve and small-degree isogeny operations. To
estimate conservative lower bounds for the computing cost of the full isogeny, we
treat the individual accelerators (xDBL FSM, xADD FSM, get 4 isog FSM, and
eval 4 isog FSM) as independent units, ignoring the controller computation cost
and the timing overhead due to data communication. That is, the cycle counts
from Table 3 are multiplied with the operation counts in Table 1 to calculate the
total cycle counts for a full isogeny (see Table 4). The total time (msec) is then
calculated by multiplying the isogeny cycle count by the clock period. Table 4
also reports the area (kGEs) occupied by our isogeny hardware accelerator.

HW/SW co-design prototype. To validate the soundness of our cryptanalytic
design as well as the hardware accelerators, we devised a hardware prototype of
the vOW algorithm on SIKE using HW/SW co-design based on the popular
RISC-V platform [41]. An approach based on HW/SW co-design facilitates
prototyping and analyzing cryptanalytic targets by combining the flexibility and

17 Each Block RAM on the Virtex-7 consists of 36Kb which our accelerator uses very
scarcely (see Table 2).

The Cost to Break SIKE 19

Table 4: Area and timing synthesis results for a full 2e2/2−2-isogeny (for even exponent)
and a full 2(e2−3)/2-isogeny (for odd exponent; omitting single 2-isogenies), using
NanGate 45nm technology. The estimated computing time ignores the controller
computation and the data communication overhead. Total cycles are estimated using
the operation counts from Table 1 and the cycle counts for each individual elliptic curve
and small-degree isogeny operation (Table 3). The total time (msec) is calculated by
multiplying the total cycle count by the clock period. Total area (kGEs) corresponds to
the full isogeny hardware accelerator. For each case, results are reported for the radix
that achieves the lowest AT product.

Area Freq Period
Speed

Radix (kGE) (MHz) (nsec) cycles msec

SIKEp434 232 372.2 167.5 5.97 544930 3.253
SIKEp503 232 409.5 167.8 5.96 807659 4.814
SIKEp610 264 748.0 83.75 11.94 485977 5.803
SIKEp751 264 822.3 84.32 11.86 818106 9.703

SIKEp377 232 341.3 156.5 6.39 367239 2.347
SIKEp546 232 441.1 155.8 6.42 1105117 7.095
SIKEp697 264 798.9 83.68 11.95 719288 8.595

VexRiscV
RV32IM

On-Chip
RAM

APB

APB
Decoder APB

Bridge
Isogeny

Accelerator

UART

JTAG

UART

Murax SoC
user defined

Fig. 3: Diagram of the HW/SW co-design for SIKE cryptanalysis based on Murax
SoC. Blue box represents the user-defined logic, including the the dedicated isogeny
hardware accelerator and the APB bridge module ApbController.

portability of a processor like RISC-V with the power of rapidly-reprogrammable
hardware acceleration on FPGA. The design uses as basis the software implemen-
tation of vOW by Costello, Longa, Naehrig, Renes and Virdia [10,31]. Since their
software targets SIKE Round 1 parameters, our first task was to adapt it to the
Round 3 parameters and to the parameters proposed in this work, as described
in §4.1. The HW/SW co-design is based on an open-source RISC-V platform,
namely, VexRiscv [51]. It supports the RV32IM instruction set and implements
a 5-stage in-order pipeline. The VexRiscv ecosystem also provides a complete
predefined processor setup called “Murax SoC” that has a compact and modular
design and aims at small resource usage. Due to the modularity of the VexRiscv
implementation, dedicated hardware modules can be easily integrated to the
system as an APB peripheral before synthesis of the System-on-a-Chip (SoC).

Figure 3 depicts the high-level view of the HW/SW co-design. As we can see,
the dedicated isogeny hardware accelerator was integrated to the Murax SoC

20 Longa et al.

as an APB peripheral, and the communication between the two was realized by
implementing a dedicated memory-mapped bridge module ApbController.

5 Cost of Attacking Symmetric Primitives

In this section, we revisit the cost of cryptanalyzing AES and SHA-3 using
efficient ASIC implementations from the literature. The analysis results are
applied in §6 to produce estimates for the security of these primitives using
the budget-based cost model.

5.1 Cost of attacking AES

We revisit the problem of how costly it is for an attacker to find a secret key
k that was used to encrypt a plaintext P as C = Ek(P) using a block cipher
E, assuming knowledge of the plaintext/ciphertext pair (P,C). In this scenario,
one of the most efficient key-extraction algorithms is the rainbow chains method
by Oechslin [37]. Herein, we treat E as a black box since the attack applies
generically to block ciphers.

Let fn(r) = gn(h(r)) define a function where h(r) = Er(P) for a fixed
plaintext P and gn is a function with index n that produces (pseudo-)random
values. The attack works as follows. In the precomputation stage, the attacker
first chooses a random value k0, then generates a rainbow chain of values ki+1 =
fi(ki) for i = 0, . . . , t− 2 (the term “rainbow” precisely originates from the use
of distinct function versions at each step of the chain generation), and finally
stores the starting and ending values k0 and kt−1. This process is repeated to
create a table with l entries, corresponding to l rainbow chains of length t each.

In the online stage, the attacker tries to determine if the key k used to encrypt
P as C = Ek(P) is among all the keys ki used during the precomputation stage.
To do so, he/she generates a new chain of length t starting from gn(C), and
proceeds to compare the intermediate key values with the ending values kt−1
stored in the table. If one of those values was indeed used to construct the table,
a collision with one of the ending values kt−1 will be detected and the attacker
can proceed to reconstruct the stored chain using its corresponding starting value
k0. The key k is expected to be found in the step right before computing the
value gn(C).

To implement the function gn one can exploit that the block cipher itself can
be used to generate pseudo-random values. Let β be a value chosen randomly.
Since each execution of gn is preceded by a computation of the form Er(P), we
can use the pair (β, i) to represent the index n, for i = 1, . . . , t − 2, and set
gβ,i(x) = x⊕ (β || i) using a simple logical XOR operation, as suggested in [5].

The probability of finding k with the rainbow chains method is roughly l·t/2b,
where b is the cipher key bitlength. To increase this probability efficiently (i.e.,
without increasing the memory requirement excessively), the attacker can repeat
the procedure above as many times as required, each time with a new table and
a fresh value for β.

The Cost to Break SIKE 21

Cost of parallel attack. The precomputation and online key search stages can
be perfectly parallelized and distributed across multiple processors with minimal
communication. The sorting process for collision search of the precomputed and
online key values can be done serially using some efficient sorting algorithm.
The cost of this part can be made negligible in comparison to the rest of the
computation for suitably chosen parameters.

The regeneration of the chain after a collision is detected needs to be executed
serially. Therefore, to guarantee that this cost is relatively negligible we need
t � l·t

m to hold or, equivalently, m � l, for m key-search engines. In this case,
the time to find k with probability close to 1 using m engines is approximately

T =
2b

m
· t, (6)

where t denotes the time to compute one iteration of E.

Hardware cost. The main building block in the attack is the targeted cipher
itself. In the case of AES, there is a plethora of implementations in the literature
ranging in scope from low-power/low-area to high-throughput/low-latency appli-
cations. As explained before, in a budget-based cost model trying to replicate a
real-world setup the focus shifts instead to implementations that minimize the
area-time product and are efficient on ASICs.

In that direction, we use the efficient round-based AES implementation by
Ueno et al. [47]. A summary of their results for AES128/192/256, using the exact
same Synopsis synthesis tool with the NanGate 45nm library that we use for the
case of SIKE in §4.2, is given in Table 5.

It is worth highlighting that Ueno et al.’s implementation compares favorably
against the AES implementation used by NIST to estimate the gate counts that
determine security levels 1, 3 and 5 [36]. For example, in the case of AES128 this
implementation requires about 215 AND, XOR and INV gates.18 Doing a more
“cross-technology”-friendly count based on gate equivalents, the gate count is
estimated at approximately 100,000 ≈ 217 GEs, which is about 10× larger than
Ueno et al.’s gate results.19

5.2 Cost of attacking SHA-3

Finding hash collisions in SHA-3 can be done efficiently using the vOW algorithm
in the scenario targeting a small number of collisions [49, 4.1]; see §2.2. In this
case, the total runtime to locate the first useful collision with probability close
to 1 using m collision-search engines is given by Eq. (1). However, this estimate
is slightly optimistic since it does not consider that in a real setting an attacker
runs out of memory at some point and new distinguished points need to replace
old ones. See [49, §6.5] for an analysis for MD5 that also applies to SHA-3.
18 The gate counts of the AES implementation used by NIST can be found at https:

//homes.esat.kuleuven.be/~nsmart/MPC/.
19 Assuming that AND gate ≡ 1.5GE, XOR gate ≡ FF ≡ 3GE.

https://homes.esat.kuleuven.be/~nsmart/MPC/
https://homes.esat.kuleuven.be/~nsmart/MPC/

22 Longa et al.

Table 5: Area and timing synthesis results for the AES implementation by Ueno
et al. [47] and the Keccak-f [1600] implementation by Akin et al. [2] using 45nm
technology. InvThr represents the inverse throughput given in nanoseconds per
operation (nsec/op). The latency for the Keccak-f [1600] (90nm) implementation is
scaled using the factor 1.5 · (45/90)2 = 0.375 to approximate it to SHA-3 on 45nm.
The area is scaled by the factor 1.2.

Area Freq Latency InvThr
(kGE) (GHz) (nsec) (nsec/op)

AES128 11.59 787.40 13.97 12.70
AES192 13.32 757.58 17.16 15.84
AES256 13.97 775.19 19.35 18.06

SHA-3 12.60 – 20.61 20.61

Hardware cost. Similar to the case of AES, the main building block of the
attack is the targeted primitive itself. For our analysis, we use the efficient, ASIC-
friendly implementation of Keccak by Akin, Aysu, Can Ulusel and Savaş [2].
Their single-message hash (SMH) approach takes one cycle per round and achie-
ves, to our knowledge, the lowest AT product on ASIC in the literature.

Akin et al. only report synthesis results for the Keccak-f [1600] permutation
function with rate r = 1088—which corresponds to the standardized instance
SHA3-256—on 90nm technology. Table 5 presents the timing results scaled to
45nm using the factor (45/90)2 = 0.25 and scaled with a factor 1.5 to account for
the initialization and absorb stages not considered by Akin et al. To account for
the extra area required by the standardized instances SHA3-256 and SHA3-384,
we scale the results by the factor 1.2.

6 Security Estimation: A Comparative Hardware-Based
Analysis

We now proceed to put all the pieces together and estimate the security strength
of SIKE, AES and SHA-3 using the budget-based cost model described in §3.

To get security estimates we set fixed budgets of ten million, one hundred
million and one billion dollars. Arguably, these choices apply to the vast majority
of scenarios that involve sufficiently motivated actors.20 We note that our threat
model only considers single-target attacks. In the case of multi-target attacks (or
more generally, attacks that have large-scale application), it might be conservative
yet prudent to assume the possibility of a billion-dollar budget or more.

To estimate the security provided by SIKE, AES and SHA-3, we first proceed
to calculate the cost of one processing engine using the area information (in GEs)
from Tables 4 and 5 and multiplying it by the adjusted cost per gate of a given

20 As a relevant point of reference, the annual budget of the NSA in 2013 was estimated
at US$10.8 billion https://en.wikipedia.org/wiki/National_Security_Agency.

https://en.wikipedia.org/wiki/National_Security_Agency

The Cost to Break SIKE 23

year (Tables 10 and 11 in App. D). We proceed to do a similar calculation to get
the cost of one memory unit; in the case of SIKE we use Eq. (5). Our setup for
the attacks against AES and SHA-3 guarantees that the total cost of memory is
significantly smaller than the cost of computing power.

Recall that the operation complexity for SIKE, AES and SHA-3 is given by
Eq. (2), (6) and (1), respectively (after setting t = 1). The security strength
in terms of years is then estimated as follows. We fix B to a given budget
value in Eq. (4) and determine the optimal values for the number of processing
engines and memory units that minimize Eq. (3) using the respective operation
complexity and the costs for the processing and memory units established above.
The minimal value found for Eq. (3), in years, is set as our security estimate.

In a first calculation, we use the yearly historical prices of MPUs and HDDs
from 2000 to 2020 to determine the costs of processing and memory units. In each
case we consider the lowest price per component (dollar/GE and dollar/byte)
that we found per year. The exact prices as well as the respective sources are
detailed in Table 10, App. D.

In a second calculation, we make projections of the prices of MPUs and
HDDs for the years 2025, 2030, 2035 and 2040 by assuming a constant reduction
rate starting at year 2020 and estimated from data for the latest 5-year period,
i.e., 2015–2020. Specifically, the reduction rate for MPUs is taken as the ratio
between a gate cost in 2015 and its cost in 2020. Similarly, for HDDs it is taken
as the ratio between the cost of a byte of SSD memory in 2015 and its cost in
2020.21 The projected prices that we derived are detailed in Table 11, App. D.

We emphasize that making forecasts of future prices is a difficult task and,
hence, we use a simple approach that is not expected to be highly precise.
Nevertheless, the error is expected to have a negligible effect in the security
estimates, and be largely compensated by our conservative approach that favors
SIKE attackers. In particular, it is widely argued that Moore’s law is expected
to slow down in the next years, which would put the actual prices above our
projections and, consequently, increase the gap between the costs of attacking
SIKE and AES/SHA-3.

The estimates for the various budget options for the years 2000–2020, as well
as the estimates using projected data for the years 2025–2040, are depicted in
Fig. 4 (refer to App. E for extreme budget scenarios of up to one trillion dollars).
For the case of SIKE, Fig. 4 covers the four Round 3 parameter sets as well as
our three alternative parameters.

All our results were obtained with a Python script that we wrote for the task
and is available at https://github.com/microsoft/vOW4SIKE_on_HW.

21 The use of SSD memory for calculating the cost reduction rate is to be conservative
in our estimates: HDD memory is currently cheaper, but SSD is expected to become
more cost-effective in the next years.

https://github.com/microsoft/vOW4SIKE_on_HW

24 Longa et al.

(b) Budget = US$10 million

(c) Budget = US$100 million

(d) Budget = US$1 billion

Fig. 4: Security estimates using historical GEs/HDDs prices from 2000 to 2020 and
using projections of the same prices from 2025 to 2040, at intervals of five years.
Security estimates are expressed as the base-2 logarithms of the number of years
required to break a given primitive under a fixed budget. AES is depicted in red,
SHA-3 in brown and SIKE in blue. SIKEp377 (new) and SIKEp434 (Round 3) are
intended for level 1 (AES128), SIKEp546 (new) and SIKEp610 (Round 3) are intended
for level 3 (AES192), and SIKEp697 (new) and SIKEp751 (Round 3) are intended for
level 5 (AES256). SIKEp503 (Round 3) is for level 2 (SHA3-128). SHA3-384 determines
level 4.

The Cost to Break SIKE 25

Table 6: Quantum security estimates in terms of gate (G) and depth-width (DW)
costs. Results correspond to key-search on AES [22], collision-search on SHA-3 [7,24]
and golden collision-search on SIKE. The displayed values for SIKE are the lowest
achieved for the respective circuit Maxdepth (MD) assumption and cost metric by
either Jaques-Schanck [23] (Grover and Tani), Jaques-Schrottenloher [24] (parallel local
prefix-based walk and parallel local multi-Grover) or Biasse-Pring [6] (improved Grover
oracle). Estimates for the alternative SIKE parameters were obtained using Jaques-
Schrottenloher’s script.

AES key-search SHA-3 coll. SIKE collisions

Security level Security level log p log p (This work)

Metric MD 1 3 5 2 4 434 503 610 751 377 546 697

∞ 83 116 148 124 184 109 124 147 178 96 133 166

G-cost
296 83 126 191 134 221 110 134 179 234 96 152 213
264 93 157 222 148 268 145 181 235 307 116 203 279
240 117 181 246 187 340 184 219 274 345 155 241 318

∞ 87 119 152 134 201 126 148 170 211 116 159 198

DW-cost
296 87 130 194 145 239 131 158 189 244 116 169 223
264 97 161 225 159 285 163 198 252 322 134 219 295
240 121 185 249 198 357 187 222 276 346 158 243 319

Quantum security. Initially, SIDH and SIKE proposals used Tani’s algorithm
(of O(p1/6) time and memory complexity) to establish the quantum security of
their parameters [21,9,4]. In 2019, Jaques and Schanck [23] established that the
complexity of this algorithm is expected to actually achieve a time complexity
of O(p1/4) due to costly random memory accesses in the quantum circuit model.
More recently, Jaques and Schrottenloher [24] proposed efficient parallel golden
collision finding algorithms that use Grover searches and a quantum analogue of
vOW to achieve lower gate complexities, also in the quantum circuit model.

In Table 6, we summarize the gate (G-cost) and depth-width (DW-cost)
complexities corresponding to all the SIKE parameters under analysis, as well
as the respective complexities for AES and SHA-3 taken from [22] and [7,24],
respectively. We present the lowest values achieved by either Jaques and Schanck
[23] using Grover or Tani’s algorithm, Jaques and Schrottenloher’s parallel local
prefix-based walk or parallel local multi-Grover method [24], or Biasse and
Pring’s improved Grover oracle for very deep maxdepths (beyond 2115) [6]. Note
that the maxdepth values suggested by NIST in [36] are 240, 264 and 296. The
estimates for our newly proposed parameters use the same procedure followed
in [24, §6] and were obtained with Jaques and Schrottenloher’s script.

Security levels. We now have the tools to assess the security of the various
SIKE parameters under our model. After observing the estimates in Fig. 4 and
Table 6 (also see the summary of results in Table 12, App. F), we can conclude
that the SIKE Round 3 parameters achieve higher security than previously
assumed. For example, if we look at the calculation for year 2040 with a billion
dollar budget (worst case analyzed in Table 12), the security margin is of at least

26 Longa et al.

Table 7: Performance results comparing SIKE Round 3 parameters and the alternative
parameters proposed in this work. The speed results (rounded to 105 cycles) were
obtained on a 3.4GHz Intel Core i7-6700 (Skylake) processor for the three SIKE
operations: key generation (Gen), encapsulation (Enc), and decapsulation (Dec). Public
keys are measured in bytes B.

Round 3 SIKE [30,4] Proposed (this work)

NIST log p PK
Speed (× 106 cc)

log p PK
Speed (× 106 cc)

sec level Gen Enc Dec Gen Enc Dec

1 434 330B 5.9 9.7 10.3 377 288B 3.9 7.3 7.2

2 503 378B 8.2 13.5 14.4 – – – – –

3 610 462B 14.9 27.3 27.4 546 414B 11.5 19.9 19.9

5 751 564B 25.2 40.7 43.9 697 528B 19.8 33.3 35.0

215 years (case between SIKEp751 and AES256 at level 5) and as high as 248

years (case between SIKEp503 and SHA3-256 at level 2).

When we examine the case of our alternative parameters it can be seen that
they approximate levels 1, 3 and 5 more closely. For example, the classical and
quantum security of SIKEp377 meets the requirements for level 1, even when
considering our most stringent budget scenarios. If we assume the case for the
year 2020 with a billion dollar budget, SIKEp377 achieves a security estimate
of 240 years, which is above the estimate of 233 for AES128. For the year 2040,
AES128 is projected to provide a security of 228 years, while SIKEp377 would
achieve 232. Similar observations hold for SIKEp546 and SIKEp697 with respect
to levels 3 (AES192) and 5 (AES256), respectively. SIDHp503 appears to hold
its Round 3 position (i.e., level 2), although with a very large margin.22

Our results show that the gap between SIKE and AES reduces over time
and with larger budgets. Nevertheless, security estimates for the Round 3 and
our alternative parameters stay above or virtually match the corresponding AES
estimates even for unrealistic budgets (Fig 5, App. E) and taking into account
that our approach is still conservative and favors SIKE attackers. Conveniently,
we comment that these results are also confirmed by the estimates obtained with
a simplistic but more standard cost model (see the security estimation using a
non-local gate model in App. G).

Benchmarking results. To assess the potential impact of using the alternative
smaller parameters, we wrote hand-optimized x64 assembly implementations of
the field arithmetic for p377, p546 and p697, and integrated them into the
SIDH library, version 3.4 [30]. The implementations are written in constant
time, i.e., there are no secret memory accesses and no secret data branches.
Therefore, the software is protected against timing and cache attacks. Our

22 The classical security of SIKEp503 is actually closer to that of AES192 and SHA3-
384. It would be interesting to investigate if further analysis can reduce or eliminate
the small gap.

The Cost to Break SIKE 27

software implementations can be found at https://github.com/microsoft/

vOW4SIKE_on_HW.
The results on a 3.4GHz Intel Core i7-6700 (Skylake) processor are shown in

Table 7. Following standard practice, TurboBoost was disabled during the tests.
For compilation we used clang v3.8.0 with the command clang -O3.

Our results show that the new parameters introduce large speedups in the
range 1.25–1.40 (comparing the total costs), in addition to reductions in the
public key and ciphertext sizes. For example, SIKEp377 is shown to be about
1.4× faster than SIKEp434, while reducing the public key size by ∼ 13%.

7 Discussion and Future Work

The analysis in [1,23,10] gave a step forward in the understanding of the security
of SIDH and SIKE by restricting the use of “unrealistic amounts” of memory
for cryptanalysis. Specifically, [1] suggested to fix the number of memory units
to the somewhat arbitrary value 280, and this was the setup that was used to
choose the current (Round 3) parameters. A key insight leveraged in this work
is that the memory size is crucial for security estimation using certain attack
setups, such as the case of vOW on SIKE. So a first challenge to produce more
realistic scenarios is to find a relatively precise relationship between memory
and computing resources. We argue that actual hardware costs can be used
as a natural tool to define such a relationship. A budget-based cost model
then fits into this approach, since it imposes hardware cost limitations that
an actual attacker would have to face in practice. Moreover, it models security
as a “moving target”, instead of a static one, reflecting that attack costs (and
hence the security of cryptographic schemes) change over time.

Our security estimates for SIKE using this realistic approach show that
simplistic metrics such as those solely based on algorithmic time complexity, and
gate, instruction or cycle counts can be imprecise and lead to more expensive
parameters. These metrics do not consider memory use and reflect poorly the
attacker’s perspective for which implementation cost, size and speed matter. On
a positive note, we believe our analysis gives solid confidence in the security of
the current Round 3 SIKE parameters in the NIST PQC standardization effort.
Moreover, the obtained results can be used to complement and provide further
evidence to the results obtained with simpler cost models such as the non-local
gate model, as shown in App. G.

We comment that the analysis with a budget-based cost model is somewhat
more complicated, and that obtaining satisfactory hardware prices to predict
the future cost of attacks can be difficult. However, we think the advantages
above outweigh the difficulties, especially for schemes with a relatively stable
security history like SIKE. To minimize the effect of the error or of unexpected
changes in some of the system variables (e.g., the occurrence of some unexpected
technological advance, potential improvements in isogeny-based hardware, etc.),
we make our analysis conservative in several aspects. For example, we ignore
the area occupied by the hash function, and in the isogeny accelerator we ignore
the main controller computation and the data communication costs; see §4.1

https://github.com/microsoft/vOW4SIKE_on_HW
https://github.com/microsoft/vOW4SIKE_on_HW

28 Longa et al.

and §4.2. We also note that, in favor of SIKE attackers, we apply a constant cost
reduction rate to get future price projections, even though a slowdown in the
progress of semiconductors (reflecting a slowdown in Moore’s law) is expected
to occur in the next years. In addition, we mention that there is still room for
improvement of AES and SHA-3 designs on ASICs for cryptanalytic purposes,
using pipelined designs and multi-message hashing techniques that have the
potential of increasing the throughput per gate [2]. We welcome research efforts
in this direction.

On another aspect, further research is needed to gain a better understanding
of the real cost of quantum attacks. While much work is being done to improve
quantum algorithms for cryptanalysis, it is still hard to determine which algo-
rithms are (expected to be) the most cost-effective ones in practice and in which
cases they might outperform the best classical attacks. Current metrics typically
equate one classical operation to one logical qubit operation. In contrast, some
works suggest that it would be more precise to assign one full classical operation,
such as a hash function iteration [3], to one physical (surface code) qubit-cycle,
under the assumption that a qubit-cycle reaches a time of about 100 nsec. [17].

Finally, it would be interesting to investigate the impact of using a budget-
based cost model on other schemes based on, for example, lattices. A special
challenge in this case would be to deal with the arguably complex and fast-
paced progress of cryptanalysis in lattice cryptography.

Acknowledgments

We would like to thank Rei Ueno and Naofumi Homma for providing very
valuable information about their AES implementation on ASIC for different
security levels, and for answering our many questions. We thank Joseph Ku
and Lou Kordus II for providing useful information on chip technology and
its associated costs. We also thank Sam Jaques and André Schrottenloher for
answering our questions on quantum algorithms and for giving us early access to
their quantum security estimation script. Finally, we thank Craig Costello and
Michael Naehrig for proofreading an early version of this paper and for their
valuable feedback.

References

1. Gora Adj, Daniel Cervantes-Vázquez, Jesús-Javier Chi-Domı́nguez, Alfred
Menezes, and Francisco Rodŕıguez-Henŕıquez. On the cost of computing isogenies
between supersingular elliptic curves. In Carlos Cid and Michael J. Jacobson Jr.,
editors, Selected Areas in Cryptography - SAC 2018, volume 11349 of LNCS, pages
322–343. Springer, 2019.

2. Abdulkadir Akin, Aydin Aysu, Onur Can Ulusel, and Erkay Savaş. Efficient
hardware implementations of high throughput SHA-3 candidates Keccak, Luffa and
Blue Midnight Wish for single- and multi-message hashing. In Oleg B. Makarevich,
Atilla Elçi, Mehmet A. Orgun, Sorin A. Huss, Ludmila K. Babenko, Alexander G.

The Cost to Break SIKE 29

Chefranov, and Vijay Varadharajan, editors, International Conference on Security
of Information and Networks (SIN 2010), pages 168–177. ACM, 2010.

3. Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent,
and John M. Schanck. Estimating the cost of generic quantum pre-image attacks on
SHA-2 and SHA-3. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas
in Cryptography - SAC 2016, volume 10532 of LNCS, pages 317–337. Springer,
2016.

4. Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo,
Basil Hess, Aaron Hutchinson, Amir Jalali, Koray Karabina, David
Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig,
Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik.
Supersingular Isogeny Key Encapsulation (SIKE), 2017–2020. Latest
specification available at https://sike.org. Round 1 submission available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/submissions/SIKE.zip. Round 2 submission available at
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-2/submissions/SIKE-Round2.zip.
5. Daniel J. Bernstein. Understanding brute force. In Workshop Record of ECRYPT

STVL Workshop on Symmetric Key Encryption, eSTREAM report 2005/036,
2005.

6. Jean-Francois Biasse and Benjamin Pring. A framework for reducing the overhead
of the quantum oracle for use with Grover’s algorithm with applications to
cryptanalysis of SIKE. MathCrypt 2019, 2019.

7. André Chailloux, Maŕıa Naya-Plasencia, and André Schrottenloher. An efficient
quantum collision search algorithm and implications on symmetric cryptography.
In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017, volume 10625 of LNCS, pages 211–240. Springer, 2017.

8. Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic curve
isogenies in quantum subexponential time. J. Mathematical Cryptology, 8(1):1–29,
2014. Available at https://arxiv.org/abs/1012.4019.

9. Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Matthew Robshaw and Jonathan Katz,
editors, Advances in Cryptology - CRYPTO 2016, volume 9814 of LNCS, pages
572–601. Springer, 2016.

10. Craig Costello, Patrick Longa, Michael Naehrig, Joost Renes, and Fernando Virdia.
Improved classical cryptanalysis of SIKE in practice. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, Public-Key Cryptography -
PKC 2020, volume 12111 of LNCS, pages 505–534. Springer, 2020.

11. Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive,
Report 2006/291, 2006. http://eprint.iacr.org/2006/291.

12. Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant
cryptosystems from supersingular elliptic curve isogenies. Journal of Mathematical
Cryptology, 8(3):209–247, 2014.

13. Robert H. Dennard, Fritz Gaensslen, Hwa-Nien Yu, Leo Rideout, Ernest Bassous,
and Andre LeBlanc. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, SC-9(5):256–268, 1974.

14. Armando Faz-Hernández, Julio López Hernandez, Eduardo Ochoa-Jiménez,
and Francisco Rodŕıguez-Henŕıquez. A faster software implementation of the
supersingular isogeny Diffie-Hellman key exchange protocol. IEEE Trans.
Computers, 67(11):1622–1636, 2018.

https://sike.org
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/SIKE-Round2.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-2/submissions/SIKE-Round2.zip
https://arxiv.org/abs/1012.4019
http://eprint.iacr.org/2006/291

30 Longa et al.

15. International Roadmap for Devices and Systems (IRDS), 2016–2020. https://

irds.ieee.org/.
16. The International Technology Roadmap for Semiconductors (ITRS). ITRS reports,

2001–2015. http://www.itrs2.net/itrs-reports.html.
17. Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.

Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A,
86(3)(032324), 2012.

18. Steven D. Galbraith. Constructing isogenies between elliptic curves over finite
fields. LMS J. Comput. Math., 2:118–138 (electronic), 1999.

19. Steven D. Galbraith and Anton Stolbunov. Improved algorithm for the isogeny
problem for ordinary elliptic curves. Appl. Algebra Eng. Commun. Comput.,
24(2):107–131, 2013.

20. Paolo Gargini. The International Technology Roadmap for Semiconductors
(ITRS): ”Past, present and future”. In IEEE Gallium Arsenide Integrated Circuits
(GaAs IC) Symposium, pages 3–5. IEEE, 2000.

21. David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum
Cryptography - PQCrypto 2011, volume 7071 of LNCS. Springer, 2011.

22. Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia.
Implementing Grover oracles for quantum key search on AES and LowMC. In
Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT
2020, volume 12106 of LNCS, pages 280–310. Springer, 2020.

23. Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019, volume 11692 of LNCS, pages
32–61. Springer, 2019.

24. Samuel Jaques and André Schrottenloher. Low-gate quantum golden collision
finding. In Selected Areas in Cryptography - SAC 2020, 2020. http://eprint.

iacr.org/2020/424.
25. Saif M. Khan and Alexander Mann. AI chips: What they are and why they matter.

Center for Security and Emerging Technology, 2020.
26. Çetin K. Koç, Tolga Acar, and Burton S. Kaliski Jr. Analyzing and comparing

Montgomery multiplication algorithms. Micro, IEEE, 16(3):26–33, 1996.
27. David Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis,

University of California, Berkeley, 1996.
28. Brian Koziel, A.-Bon Ackie, Rami El Khatib, Reza Azarderakhsh, and

Mehran Mozaffari Kermani. SIKE’d Up: Fast and secure hardware architectures
for supersingular isogeny key encapsulation. IEEE Transactions on Circuits and
Systems I: Regular Papers, 2020. Software Available at https://github.com/

kozielbrian/VHDL-SIKE_R2.
29. Pedro Maat C. Massolino, Patrick Longa, Joost Renes, and Lejla Batina. A

compact and scalable hardware/software co-design of SIKE. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020(2):245–271, 2020. Software Available at
https://github.com/pmassolino/hw-sike.

30. Microsoft. SIDH Library v3.4. Available at https://github.com/Microsoft/

PQCrypto-SIDH, 2015–2021.
31. Microsoft. vOW4SIKE Library. Available at https://github.com/microsoft/

vOW4SIKE, 2020.
32. Gordon E. Moore. Cramming more components onto integrated circuits.

Electronics, 38(8):114–117, 1965.

https://irds.ieee.org/
https://irds.ieee.org/
http://www.itrs2.net/itrs-reports.html
http://eprint.iacr.org/2020/424
http://eprint.iacr.org/2020/424
https://github.com/kozielbrian/VHDL-SIKE_R2
https://github.com/kozielbrian/VHDL-SIKE_R2
https://github.com/pmassolino/hw-sike
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/microsoft/vOW4SIKE
https://github.com/microsoft/vOW4SIKE

The Cost to Break SIKE 31

33. Michael Naehrig and Joost Renes. Dual isogenies and their application to public-
key compression for isogeny-based cryptography. In Steven D. Galbraith and Shiho
Moriai, editors, Advances in Cryptology - ASIACRYPT 2019, volume 11922 of
LNCS, pages 243–272. Springer, 2019.

34. National Institute of Standards and Technology (NIST). Post-quantum
cryptography standardization – round 3 submissions, 2020. https://csrc.nist.

gov/Projects/Post-Quantum-Cryptography/Round-3-Submissions.
35. National Institute of Standards and Technology (NIST). Status report on the

second round of the NIST post-quantum cryptography standardization process,
2020. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf.

36. National Institute of Standards and Technology (NIST). Submission
requirements and evaluation criteria for the post-quantum cryptography
standardization process, December, 2016. https://csrc.nist.

gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf.
37. Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Dan

Boneh, editor, Advances in Cryptology - CRYPTO 2003, volume 2729 of LNCS,
pages 617–630. Springer, 2003.

38. National Institute of Standards and Technology (NIST). Advanced Encryption
Standard (AES. Federal Inf. Process. Stds. (FIPS PUBS) – 197, 2001. https:

//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf.
39. National Institute of Standards and Technology (NIST). SHA-3 standard:

Permutation-based hash and extendable-output functions. Federal Inf. Process.
Stds. (FIPS PUBS) – 202, 2015. https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.202.pdf.
40. Geovandro C. C. F. Pereira, Javad Doliskani, and David Jao. x-only point addition

formula and faster compressed SIKE. J. Cryptogr. Eng., 11(1):57–69, 2021.
41. RISC-V, 2010-2020. https://riscv.org/.
42. Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on

isogenies. Cryptology ePrint Archive, Report 2006/145, 2006. http://eprint.

iacr.org/2006/145.
43. Semiconductor Industry Association (SIA), 1977–2020. https://www.

semiconductors.org/.
44. Silvaco. NanGate FreePDK45 open-cell library. Available at https://si2.org/

open-cell-library/, accessed on 09/2020.
45. William J. Spencer and Thomas E. Seidel. National technology roadmaps: the

U.S. semiconductor experience. In International Conference on Solid-State and IC
Technology (ICSICT). IEEE, 1995.

46. Anton Stolbunov. Constructing public-key cryptographic schemes based on class
group action on a set of isogenous elliptic curves. Adv. Math. Commun., 4(2):215–
235, 2010.

47. Rei Ueno, Naofumi Homma, Sumio Morioka, Noriyuki Miura, Kohei Matsuda,
Makoto Nagata, Shivam Bhasin, Yves Mathieu, Tarik Graba, and Jean-Luc
Danger. High throughput/gate AES hardware architectures based on datapath
compression. IEEE Trans. Computers, 69(4):534–548, 2020.

48. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
application to hash functions and discrete logarithms. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, and Ravi S. Sandhu, editors, ACM Conference on
Computer and Communications Security - CCS’94, pages 210–218. ACM, 1994.

49. Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
cryptanalytic applications. Journal of Cryptology, 12(1):1–28, 1999.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-3-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-3-Submissions
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://riscv.org/
http://eprint.iacr.org/2006/145
http://eprint.iacr.org/2006/145
https://www.semiconductors.org/
https://www.semiconductors.org/
https://si2.org/open-cell-library/
https://si2.org/open-cell-library/

32 Longa et al.

50. Jacques Vélu. Isogénies entre courbes elliptiques. Comptes Rendus de l’Académie
des Sciences des Paris, 273:238–241, 1971.

51. VexRiscv, 2017-2020. https://github.com/SpinalHDL/VexRiscv/.

52. Michael J. Wiener. The full cost of cryptanalytic attacks. Journal of Cryptology,
17(2):105–124, 2004.

A Adjusting factor for release prices

To estimate an approximation of the gap between the release MPU prices and
the actual cost of producing a chip from the viewpoint of a foundry, we use the
estimation procedure by Khan and Mann [25]. They estimate that in the year
2020 the capital invested per 300mm wafer is approximately $16,746 using 5nm
technology. To estimate the cost (or the “capital consumed”) per wafer (cpw)
we apply the formula:

cpw = (cinv · crt · (100− op)/cc)(1 + tap), (7)

where cinv is the capital invested per 300mm wafer, crt is the capital depreciation
rate which is estimated at 0.2529, op is the operating profit which is estimated
at 35.91%, and cc is the capital consumed (depreciated) which is estimated at
24.93%. Note that in contrast to [25] we exclude the operating profit to obtain
a better approximation of the production cost. We also add the cost of testing,
assembling and packaging (tap), which is estimated at 0.3348 of the total cost
of the wafer. Thus, we arrive at the estimated value cpw = $14, 532.

We then calculate the total wafer area available for chip fabrication. For
this we use the online “die-per-wafer” calculator (https://anysilicon.com/
die-per-wafer-formula-free-calculators/). Assuming a (small) square die
size of 76.04 mm2 with a 85% production yield gives us a total area of 76.04 ×
798 × 0.85 = 51, 578mm2. Finally, using the transistor density estimated at
171.3 × 106 transistors per mm2 [25, Table 7], assuming that a gate equivalent
consists of four transistors and using the total area above, we arrive at an
estimate of (4 × 14, 532)/(area × 171.3 × 106) = 6.58 × 10−9 for the cost per
gate, and this value is 7.4 times smaller than the cost per gate at year 2020 from
Table 10 (i.e., 4.86 × 10−8). This factor 7.4 is used in App. D to estimate the
“adjusted” costs used in §6.

B Variants to attack SIKE

In this section, we describe the vOW attack setup on SIKE for the cases ` =
2 with odd e2 and ` = 3 with odd e3. As in §4, we assume an attacker has
the challenge of finding the isogeny between the starting curve E6 and a given
challenge curve EA.

https://github.com/SpinalHDL/VexRiscv/
https://anysilicon.com/die-per-wafer-formula-free-calculators/
https://anysilicon.com/die-per-wafer-formula-free-calculators/

The Cost to Break SIKE 33

Case ` = 2, odd e2. This case applies to SIKEp377, SIKEp546 and SIKEp610.
As in the even e2 case, the attacker’s challenge is to find the isogeny of degree
2e2−2 that connects E6 and EA.

Let S = {0, 1, . . . , 2(e2−1)/2 − 1}. To run an efficient version of the attack,
the attacker can fix bases {P,Q} and {U, V } for E6[2(e2−1)/2] and EA[2(e2−3)/2],
where π(P) = −P and π(Q) = Q. Since r ∈ {0, 1, . . . , 2(e2−3)/2 − 1}, kernels of
the form P + [r]Q determine degree-2(e2−1)/2 isogenies from E6. The Frobenius
endomorphism then enables a reduction of the search space to 2(e2−3)/2 distinct
equivalence classes of j-invariants. Kernels of the form U+[r]V determine degree-
2(e2−3)/2 isogenies from EA, leading to 2(e2−3)/2 distinct equivalence classes of
j-invariants. For the cost analysis (§4), we slightly overestimate the attack cost
and consider the use of 2(e2−3)/2-isogenies only.

Case ` = 3, odd e3. In this case, the attacker’s challenge is to find the isogeny
of degree 3e3 that connects E6 and a challenge curve EA.

Let S = {0, 1, . . . , 2 · 3(e3−1)/2 − 1}. To run an efficient version of the attack,
the attacker can fix bases {P,Q} and {U, V } for E6[3(e3+1)/2] and EA[3(e3−1)/2],
where π(P) = −P and π(Q) = Q. Since r ∈ {0, 1, . . . , 3(e3−1)/2 − 1}, kernels
of the form P + [r]Q determine degree-3(e3+1)/2 isogenies from E6. However,
the Frobenius endomorphism enables a reduction of the search space to 2−1 ·
3(e3+1)/2 distinct equivalence classes of j-invariants. Kernels of the form U +
[r]V determine degree-3(e3−1)/2 isogenies from EA, leading to 3(e3−1)/2 distinct
equivalence classes of j-invariants. For the cost analysis, we slightly overestimate
the attack cost and consider the use of 3(e3−1)/2-isogenies only.

The 3-power torsion case is relevant for SIKEp377 and SIKEp697 for which
2e2 > 3e3 . Nevertheless, under the budget-based cost model, we determined that
the 3-power torsion case is still more expensive than a 2-power torsion based
attack.

C Comparison of hardware multipliers

Tables 8 and 9 show the comparison results on FPGA of our hardware core
Fp2 Multiplier with multiplication units from existing works in the literatu-
re [28,29]. In the first case (Table 8), the comparison includes the use of DSPs. To
have a better approximation to an ASIC setting, the use of DSPs is disallowed
during synthesis in the second case (Table 9). In both scenarios, we compare the
results corresponding to two Fp2 multiplications executed in parallel.

In the high-performance category of SIKE hardware [28], an interleaved
systolic architecture is implemented to compute the high-radix Montgomery
product. In this design, n processing units are arranged in parallel, where n =
d log2pt e is the number of digits of the input and output operands. These parallel
processing units enable fast computation but, at the same time, bring a large
area overhead, especially in terms of DSP usage. Note that the design from Koziel
et al. [28] can simultaneously fit two Fp modular multiplications in parallel with
a single dual-multiplier, therefore arranging three of these dual-multipliers in

34 Longa et al.

Table 8: Performance comparison of our hardware module Fp2 Multiplier with related
work for SIKEp434 and SIKEp751. Results correspond to two Fp2 multiplications.
Estimates for [28] assume optimal parallelization for three dual-multipliers. All
implementations were synthesized with DSPs on a Virtex-7 690T FPGA partname
XC7VX690TFFG1157-3. Synthesis results were obtained with Vivado Software
v2018.3.

Resources
Cycles Freq Slices ×

Design Radix r Slices LUTs FFs RAMs DSPs (MHz) Time

p434

This work 222 454 1308 1294 0 24 446 269 7.5

[28] 222 4638 7356 14901 0 240 64 164 18.0

p751

This work 224 452 1310 1382 0 24 1090 280 17.6

[28] 224 6897 12879 25971 0 384 100 167 41.3
[29], 128-bit ALU – 3855 11984 7268 21 57 634 152 160.8
[29], 256-bit ALU – 8131 21321 13756 39 162 178 142 101.9

parallel can enable the computation of two parallel Fp2 multiplications (assuming
the use of Karatsuba). As shown in Table 8, our implementation takes less than
8× and 13× the number of slices and DSPs that Koziel et al. require, respectively,
which translates to much smaller area-time products. This is achieved even
considering that our estimates for [28] assume optimal parallelization of multipli-
cations in their implementation, which is not always achieved due to their
complex scheduling design.

The comparison results with the compact SIKE hardware design by Massoli-
no et al. [29] are also included in the tables. Since the multiplier accumulator
(MAC) unit from [29] is designed to be unified for all the Round 3 SIKE
parameter sets, for a fair comparison we only consider the largest SIKE parameter
set, namely SIKEp751. Their MAC unit can be configured as either 128-bit or
256-bit to provide different area/time trade-offs. Note that in both cases the
MAC unit features an 8-stage pipeline architecture, thus, it is able to perform
8 Fp multiplications in parallel corresponding to two Fp2 multiplications. The
results show that our hardware multiplier is significantly more lightweight in
terms of slices, memory usage and DSP blocks, while it also achieves much
better area-time products.

D Price data

Table 10 summarizes the price information that we collected per year for memory
(HDD, DRAM and SSD) and Intel/AMD MPUs. For our security estimates,
we used the lowest prices available per byte, which in all the cases considered
correspond to HDDs. To estimate the cost per gate we considered the MPU (Intel
or AMD) that provided the cheapest cost per transistor for a given year. We used

The Cost to Break SIKE 35

Table 9: Performance comparison of our hardware module Fp2 Multiplier with related
work for SIKEp434 and SIKEp751. Results correspond to two Fp2 multiplications.
Estimates for [28] assume optimal parallelization for three dual-multipliers. All
implementations were synthesized without DSPs on a Virtex-7 690T FPGA partname
XC7VX690TFFG1157-3. Synthesis results were obtained with Vivado Software
v2018.3.

Resources
Cycles Freq Slices ×

Design Radix r Slices LUTs FFs RAMs (MHz) Time

p434

This work 222 2302 7882 1838 0 446 205 50.1

[28] 222 18669 55188 15033 0 64 122 98.0

p751

This work 224 2526 8776 1994 0 1090 195 141.2

[28] 224 34794 101898 26115 0 100 123 283.0
[29], 128-bit ALU – 7131 23417 8080 6 634 161 281.2
[29], 256-bit ALU – 24188 81503 18004 0 178 159 270.3

the standard assumption that one gate equivalent consists of four transistors.
The rows with the “adjusted” costs per byte or gate are obtained by dividing
the corresponding costs by the factor 7.40 which approximates the release prices
to the chip production cost, as described in App. A.

Table 11 summarizes our projections of HDD memory and gate costs for
the years between 2025 and 2040. To obtain these values we used a constant
cost reduction rate applied starting at the year 2020’s prices. Specifically, the
reduction rate that we used for MPUs is taken as the ratio between a gate cost
in 2015 and its cost in 2020. Similarly, for HDDs it is taken as the ratio between
the cost of a byte on SSD memory in 2015 and its cost in 2020. The use of data
from SSD memory in this case is to derive conservative estimates, so that SSD
is expected to become more cost-effective than HDD in the next years.

The “adjusted” costs were used to calculate the costs of the memory and
processing units that are needed to set up the cryptanalytic attacks against
SIKE, AES and SHA-3 (see §6).

Sources. We used the following sources for data collection:

– https://en.wikipedia.org/wiki/List_of_Intel_Core_2_microprocessors
– https://en.wikipedia.org/wiki/List_of_Intel_Core_i3_microprocessors
– https://en.wikipedia.org/wiki/List_of_Intel_Core_i5_microprocessors
– https://en.wikipedia.org/wiki/List_of_Intel_Celeron_microprocessors
– https://en.wikipedia.org/wiki/List_of_Intel_Pentium_D_microprocessors
– https://en.wikipedia.org/wiki/List_of_AMD_Athlon_microprocessors
– https://en.wikipedia.org/wiki/List_of_AMD_Ryzen_microprocessors
– https://en.wikichip.org
– https://www.cpu-world.com
– https://www.newegg.com
– http://jcmit.net/memoryprice.htm
– http://jcmit.net/diskprice.htm

https://en.wikipedia.org/wiki/List_of_Intel_Core_2_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Core_i3_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Core_i5_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Celeron_microprocessors
https://en.wikipedia.org/wiki/List_of_Intel_Pentium_D_microprocessors
https://en.wikipedia.org/wiki/List_of_AMD_Athlon_microprocessors
https://en.wikipedia.org/wiki/List_of_AMD_Ryzen_microprocessors
https://en.wikichip.org
https://www.cpu-world.com
https://www.newegg.com
http://jcmit.net/memoryprice.htm
http://jcmit.net/diskprice.htm

36 Longa et al.

– http://jcmit.net/flashprice.htm

And other several chip manufacturer websites.

http://jcmit.net/flashprice.htm

The Cost to Break SIKE 37

T
a
b
le

1
0
:

H
is

to
ri

ca
l

re
le

a
se

p
ri

ce
s

co
ll
ec

te
d

fo
r

m
em

o
ry

(H
D

D
,

D
R

A
M

a
n
d

S
S
D

)
a
n
d

In
te

l/
A

M
D

M
P

U
s

fr
o
m

2
0
0
0

to
2
0
2
0
.

T
o

es
ti

m
a
te

th
e

co
st

p
er

g
a
te

w
e

co
n
si

d
er

ed
th

e
M

P
U

(I
n
te

l
o
r

A
M

D
)

th
a
t

p
ro

v
id

ed
th

e
ch

ea
p

es
t

co
st

p
er

tr
a
n
si

st
o
r

(“
tr

a
n
s.

”
)

fo
r

a
g
iv

en
y
ea

r.
W

e
u
se

d
th

e
st

a
n
d
a
rd

a
ss

u
m

p
ti

o
n

th
a
t

o
n
e

g
a
te

eq
u
iv

a
le

n
t

co
n
si

st
s

o
f

fo
u
r

tr
a
n
si

st
o
rs

.
“
A

d
ju

st
ed

”
co

st
s

a
p
p
ro

x
im

a
te

co
st

s
b
a
se

d
o
n

re
le

a
se

p
ri

ce
s

to
co

st
s

a
t

p
ro

d
u
ct

io
n

b
y

d
iv

id
in

g
th

e
co

rr
es

p
o
n
d
in

g
co

st
s

b
y

th
e

fa
ct

o
r

7
.4

(s
ee

A
p
p
.

A
).

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

2
0
1
5

2
0
1
6

2
0
1
7

2
0
1
8

2
0
1
9

2
0
2
0

H
D

D
(
U
S
$
)

1
2
5
.0

0
2
5
9
.0

0
1
4
6
.0

0
8
9
.9

9
9
7
.5

0
1
3
0
.0

0
6
9
.9

9
9
9
.9

9
9
9
.9

9
6
9
.9

9
8
9
.9

9
5
4
.9

9
5
4
.9

9
5
4
.9

9
1
0
4
.9

9
8
4
.9

9
2
2
1
.6

3
9
9
.9

9
9
3
.4

9
1
4
9
.9

9
1
2
9
.9

9

H
D

D
(
×

1
0
1
0

b
y
t
e
s
)

3
.1

1
0

1
2

1
2

1
6

3
2

3
2

5
0

1
0
0

1
0
0

2
0
0

1
5
0

1
5
0

1
5
0

3
0
0

3
0
0

8
0
0

4
0
0

4
0
0

8
0
0

8
0
0

C
o
s
t

(
U
S
$
)

/
b
y
t
e

(
×

1
0
−

1
0
)

4
0
.7

2
2
5
.9

0
1
2
.1

7
7
.5

0
6
.0

9
4
.0

6
2
.1

9
2
.0

0
1
.0

0
0
.7

0
0
.4

5
0
.3

7
0
.3

7
0
.3

7
0
.3

5
0
.2

8
0
.2

8
0
.2

5
0
.2

3
0
.1

9
0
.1

6

“
A
d
ju

s
t
e
d
”

c
o
s
t

(
×

1
0
−

1
1
)

5
5
.0

3
3
5
.0

0
1
6
.4

5
1
0
.1

4
8
.2

3
5
.4

9
2
.9

6
2
.7

0
1
.3

5
0
.9

5
0
.6

1
0
.5

0
0
.5

0
0
.5

0
0
.4

7
0
.3

8
0
.3

8
0
.3

4
0
.3

1
0
.2

6
0
.2

2

D
R
A
M

(
U
S
$
)

8
9
.0

0
1
8
.8

9
3
4
.1

9
3
9
.0

0
3
9
.0

0
3
9
.0

0
1
4
8
.9

9
4
9
.9

5
3
9
.9

9
3
9
.9

9
3
9
.9

9
4
1
.9

9
2
9
.9

9
2
9
.9

9
2
9
.9

9
2
9
.9

9
4
4
.9

9
4
4
.9

9
4
4
.9

9
4
4
.9

9
4
4
.9

9

D
R
A
M

(
×

1
0
8

b
y
t
e
s
)

1
.3

1
1
.3

1
2
.6

2
5
.2

4
5
.2

4
5
.2

4
2
0
.9

7
2
0
.9

7
4
1
.9

4
4
1
.9

4
4
1
.9

4
8
3
.8

9
8
3
.8

9
8
3
.8

9
8
3
.8

9
8
3
.8

9
1
6
7
.7

7
1
6
7
.7

7
1
6
7
.7

7
1
6
7
.7

7
1
6
7
.7

7

C
o
s
t

(
U
S
$
)

/
b
y
t
e

(
×

1
0
−

1
0
)

6
7
9
3
.9

1
4
4
2
.0

1
3
0
5
.0

7
4
4
.3

7
4
4
.3

7
4
4
.3

7
1
0
.5

2
3
8
.2

9
5
.4

9
5
.4

9
5
.4

5
0
.1

3
5
.7

3
5
.7

3
5
.7

3
5
.7

2
6
.8

2
6
.8

2
6
.8

2
6
.8

2
6
.8

“
A
d
ju

s
t
e
d
”

c
o
s
t

(
×

1
0
−

1
0
)

9
1
8
.1

1
9
4
.9

1
7
6
.4

1
0
0
.6

1
0
0
.6

1
0
0
.6

9
6
.0

3
2
.2

1
2
.9

1
2
.9

1
2
.9

6
.8

4
.8

4
.8

4
.8

4
.8

3
.6

3
.6

3
.6

3
.6

3
.6

S
S
D

(
U
S
$
)

-
-

-
-

-
-

-
-

-
-

-
-

-
1
5
9
.9

9
1
7
9
.9

9
5
9
.9

9
1
9
4
.9

9
1
9
4
.9

9
4
9
.9

9
7
5
.9

9
7
5
.9

9

S
S
D

(
×

1
0
1
1

b
y
t
e
s
)

-
-

-
-

-
-

-
-

-
-

-
-

-
2
.5

6
4
.8

0
2
.4

0
9
.6

0
9
.6

0
4
.8

0
9
.6

0
9
.6

0

C
o
s
t

(
U
S
$
)

/
b
y
t
e

(
×

1
0
−

1
0
)

-
-

-
-

-
-

-
-

-
-

-
-

-
6
.2

5
3
.7

5
2
.5

0
2
.0

3
2
.0

3
1
.0

4
0
.7

9
0
.7

9

“
A
d
ju

s
t
e
d
”

c
o
s
t

(
×

1
0
−

1
1
)

-
-

-
-

-
-

-
-

-
-

-
-

-
8
.4

5
5
.0

7
3
.3

8
2
.7

4
2
.7

4
1
.4

1
1
.0

7
1
.0

7

In
t
e
l
M

P
U

(
U
S
$
)

1
1
2
.0

6
4
.0

3
3
.0

3
3
.0

3
0
.0

3
0
.0

3
0
.0

3
0
.0

3
0
.0

3
0
.0

7
0
.0

4
2
.0

4
2
.0

1
2
2
.0

4
2
.0

4
2
.0

-
-

-
-

-

In
t
e
l
M

P
U

(
×

1
0
6

t
r
a
n
s
.)

2
8
.1

2
8
.1

5
5

5
5

1
2
5

1
2
5

1
2
5

1
2
5

1
2
5

1
2
5

3
8
2

6
2
4

1
4
0
0

1
4
0
0

1
4
0
0

1
4
0
0

-
-

-
-

-

A
M

D
M

P
U

(
U
S
$
)

-
-

-
-

-
-

-
-

-
-

-
7
9
.0

7
1
.0

7
1
.0

1
0
1
.0

7
9
.0

5
8
.0

5
1
.0

5
1
.0

5
1
.0

6
0
.0

A
M

D
M

P
U

(
×

1
0
6

t
r
a
n
s
.)

-
-

-
-

-
-

-
-

-
-

-
1
1
7
8

1
3
0
3

1
3
0
3

2
4
1
0

2
4
1
0

3
1
0
0

3
1
0
0

3
1
0
0

3
1
0
0

4
9
4
0

C
o
s
t

(
U
S
$
)

/
g
a
t
e

(
×

1
0
−

8
)

1
5
9
4
.3

9
1
1
.0

2
4
0
.0

2
4
0
.0

9
6
.0

9
6
.0

9
6
.0

9
6
.0

9
6
.0

9
6
.0

7
3
.3

2
6
.8

2
1
.8

2
1
.8

1
2
.0

1
2
.0

7
.4

8
6
.5

8
6
.5

8
6
.5

8
4
.8

6

“
A
d
ju

s
t
e
d
”

c
o
s
t

(
×

1
0
−

9
)

2
1
5
4
.5

1
2
3
1
.1

3
2
4
.3

3
2
4
.3

1
2
9
.7

1
2
9
.7

1
2
9
.7

1
2
9
.7

1
2
9
.7

1
2
9
.7

9
9
.1

3
6
.2

2
9
.5

2
9
.5

1
6
.2

1
6
.2

1
0
.1

8
.8

9
8
.8

9
8
.8

9
6
.5

7

B
y
t
e
s
/
g
a
t
e

3
9
1
5
.6

3
5
1
7
.5

1
9
7
2
.6

3
2
0
0
.4

1
5
7
5
.4

2
3
6
3
.1

4
3
8
9
.2

4
8
0
0
.5

9
6
0
1
.0

1
3
7
1
6
.2

1
6
2
9
0
.3

7
3
1
7
.3

5
9
4
5
.4

5
9
4
5
.4

3
4
2
8
.9

4
2
3
5
.8

2
7
0
1
.4

2
6
3
2
.5

2
8
1
5
.6

3
5
0
9
.9

2
9
9
0
.0

38 Longa et al.

Table 11: Projected prices for HDD memory and gates for 2025-2040, at 5-year intervals.
The values were obtained by applying a constant reduction factor starting at the
adjusted cost in 2020. For MPUs the factor (2.47) is computed by diving a gate cost
in 2015 by its cost in 2020. For HDDs the factor (3.16) is computed by dividing the
cost of an SSD byte in 2015 by its cost in 2020.

2025 2030 2035 2040

“Adjusted ” cost (US$) / byte (×10−13) 6.95 2.20 0.70 0.22

“Adjusted ” cost (US$) / gate (×10−9) 2.66 1.08 0.44 0.18

Bytes/gate 3822.5 4886.9 6247.7 7987.4

E Extreme budget estimates

Figure 5 depicts the security estimates for SIKE, AES and SHA-3 considering
very high, arguably unrealistic budgets (ten billion, one hundred billion and
one trillion dollars). The estimates use the budget-based cost model with price
information for MPUs and HDDs for the years 2000–2020, and projected price
data for the years 2025–2040, as explained in §6.

The Cost to Break SIKE 39

(a) Budget = US$10 billion

(b) Budget = US$100 billion

(b) Budget = US$1 trillion

Fig. 5: Security estimates using historical GEs/HDDs prices from 2000 to 2020 and
using projections of the same prices from 2025 to 2040, at intervals of five years.
Security estimates are expressed as the base-2 logarithms of the number of years
required to break a given primitive under a fixed budget. AES is depicted in red,
SHA-3 in brown and SIKE in blue. SIKEp377 (new) and SIKEp434 (Round 3) are
intended for level 1 (AES128), SIKEp546 (new) and SIKEp610 (Round 3) are intended
for level 3 (AES192), and SIKEp697 (new) and SIKEp751 (Round 3) are intended for
level 5 (AES256). SIKEp503 (Round 3) is for level 2 (SHA3-128). SHA3-384 determines
level 4.

40 Longa et al.

F Security estimates

Table 12: Security estimates in terms of years produced by the budget-based cost
model and following the procedure from §6. The estimates are expressed as the base-2
logarithms of the number of years required to break a given primitive under a fixed
budget. Results correspond to key-search on AES using Oechslin’s rainbow chains,
collision-search on SHA-3 using vOW (case of small number of collisions) and golden
collision-search on SIKE using vOW (case of large number of collisions). The hardware
(computing power and memory) costs used for the analysis can be found in App. D.

AES key-search SHA-3 coll. SIKE collisions

Security level Security level log p log p (This work)

Budget year 1 3 5 2 4 434 503 610 751 377 546 697

2020 39 104 168 41 105 69 95 139 189 50 114 177
US$10 mill. 2030 37 101 166 38 102 65 91 134 185 46 110 173

2040 34 99 163 35 99 60 87 130 181 42 106 168

2020 36 101 165 37 105 64 90 134 184 45 109 172
US$100 mill. 2030 33 98 162 35 99 60 86 129 180 41 105 168

2040 31 95 160 32 96 55 82 125 176 37 101 163

2020 33 97 162 34 98 59 85 129 179 40 104 167
US$1 billion 2030 30 95 159 31 95 55 81 124 175 36 100 163

2040 28 92 156 29 93 51 77 120 171 32 96 158

G Cost using the non-local gate model

Here we estimate the security of the various SIKE parameters using the standard
non-local gate model applied to the vOW algorithm. In this model, the cost is
estimated as

query complexity× gates×memory access. (8)

Table 13 details the SIKE security estimates using this model in comparison
to the classical gate requirements provided by NIST. We assume that the cost
of accessing memory is either O(w1/2) or O(w1/3), where, again, w represents
the number of memory units to store the vOW triples.

As can be seen, all the parameters under consideration essentially fulfill their
intended targets, with a slight outlier in the form of SIKEp697 for level 5 in the
case of cube-root memory access cost. These estimates provide further evidence
that the Round 3 and the alternative SIKE parameters proposed in this work
match their corresponding NIST security levels.

The Cost to Break SIKE 41

Table 13: Classical cost to run vOW on the 2-torsion using the non-local gate model.
The set size is given by |S| = 2e2/2−1 for even e2 and |S| = 2(e2−1)/2 for odd e2. vOW’s
query complexity is calculated by setting m = t = 1 in Eq. (2). The gate complexities
are taken from Table 4. The cost of memory is assumed to be eitherO(w1/2) orO(w1/3).
For the latter, to estimate the number of memory units w we assume a budget of 264

US dollars, that a byte of memory costs 0.22 × 10−11 US dollars (see Table 10), and
that each memory unit occupies d(2 log |S| + log 20)/8e bytes (see Eq. (5)). The total
security estimates are obtained using Eq. (8). Numbers are shown as the floor of their
base-2 logarithms.

Memory access cost Classical gate

O(w1/2) O(w1/3) requirement

SIKEp377 162 145
143 (AES128)

SIKEp434 180 164

SIKEp546 224 207
207 (AES192)

SIKEp610 248 232

SIKEp697 286 270
272 (AES256)

SIKEp751 298 282

	The Cost to Break SIKE: A Comparative Hardware-Based Analysis with AES and SHA-3

