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Abstract. RSA key generation requires devices to generate large prime
numbers. The näıve approach is to generate candidates at random, and
then test each one for (probable) primality. However, it is faster to use a
sieve method, where the candidates are chosen so as not to be divisible
by a list of small prime numbers tpiu.
Sieve methods can be somewhat complex and time-consuming, at least
by the standards of embedded and hardware implementations, and they
can be tricky to defend against side-channel analysis. Here we describe
an improvement on Joye et al.’s sieve based on the Chinese Remainder
Theorem (CRT). We also describe a new sieve method using quadratic
residuosity which is simpler and faster than previously known methods,
and which can produce values in desired RSA parameter ranges such as
p2n´1{2, 2nq with minimal additional work. The same methods can be
used to generate strong primes and DSA moduli.
We also demonstrate a technique for RSA private key operations using
the Chinese Remainder Theorem (RSA-CRT) without q´1 mod p. This
technique also leads to inversion-free batch RSA and inversion-free RSA
mod pkq.
We demonstrate how an embedded device can use our key generation
and RSA-CRT techniques to perform RSA efficiently without storing
the private key itself: only a symmetric seed and one or two short hints
are required.
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1 Introduction

To generate private keys for the RSA cryptosystem [RSA78], devices must choose
random, secret prime numbers. Prime number generation is also required for
finite-field Diffie-Hellman (DH) and DSA parameter generation [DH76,KG13].
DH and DSA parameter generation has become a more common requirement
since the Logjam attack [ABD`15], which allows multiple DH and DSA keys to
be attacked together if they use the same parameter set.

Prime generation algorithms may use sieving techniques to reduce the num-
ber of candidates that must be tested. [JPV00] describes two sieving meth-
ods: one based on the Chinese Remainder Theorem (CRT) and one based on
Carmichael’s λ function; the latter is improved in [JP06]. Here we describe



an improvement to the CRT sieve to mitigate its largest downside, namely a
large precomputed table of CRT coefficients. We also describe a novel sieving
algorithm based on quadratic residuosity, which may be more resistant to side-
channel attack than a CRT-based sieve.

Our improved sieving algorithms work well with the other known techniques
for generating RSA keys, DSA keys and strong primes on embedded devices
[JPV00,JP03]. With some modification, our CRT-based sieve can be used to
efficiently generate safe primes as well.

The RSA private operation is also often implemented using the CRT, which
quarters the computation time. The CRT requires an extra value, q´1 mod p,
which is typically computed during key generation and stored with the private
key. We show how to modify a side-channel countermeasure to perform RSA-
CRT efficiently without this value, simplifying key generation and storage. The
technique generalizes trivially to multi-prime RSA. Less trivially, it generalizes to
inverse-free RSA modulo pkq [Tak98,Tak04], which previously required inversion
not only of q mod p but also of the public encryption exponent e mod p.

In fact, these are instances of a more general batching technique [Ham12]
which we briefly recap in Section 3.2. This generalized batching technique has
previously been applied to elliptic curves, but not to RSA. It can also be used
to implement batch RSA [Fia90] without inversion.

For embedded devices whose nonvolatile memory consists only of fuses, the
cost of storing an RSA private key is significant. It would be preferable if the
private key could be expanded from a secret seed — perhaps even a PUF key
— instead of being stored. RSA key generation is slow, but can be skipped by
using one or two short (16-bit) hints which are recorded in nonvolatile memory.
With previous techniques, compressing the keys this way would result in a large
performance loss. But with our new key generation and RSA-CRT techniques,
it only incurs a few percent performance loss, at least for larger RSA keys.

For brevity, this conference version omits the proof of Theorem 1. It is found
in Appendix A of the full version, to be found at https://eprint.iacr.org/

2020/1507.

1.1 Notation

Let R denote the real numbers. Let Z and Z{n denote the integers and the ring
of integers mod an integer n, respectively. Let Fpe denote the Galois field of pe

elements. Call two integers pm,nq coprime if their greatest common divisor is
1. Let pZ{nq˚ be the multiplicative group of Z{n, which contains the elements
m P Z{n which are coprime to n.

For positive integers pp, e, nq, let p|n or p ffl n mean that p divides or does
not divide n, respectively, and let pe||n mean that pe divides n but pe`1 does
not. In all cases where this notation is used, p is a prime number. For brevity
we sometimes omit that qualification in notations such as “for all pe||n”.

https://eprint.iacr.org/2020/1507
https://eprint.iacr.org/2020/1507


Let φpnq and λpnq denote the Euler and Carmichael totient functions, re-
spectively:

φpnq :“
ź

pe||n

pe´1 ¨ pp´ 1q and λpnq :“ LCM tpe´1 ¨ pp´ 1q for all pe||nu

For all x P pZ{nq˚, xφpnq “ xλpnq “ 1.
For integers px, pq, we say that x is a quadratic residue (resp quadratic non-

residue) mod p if there exists (resp does not exist) an integer y such that x ” y2

mod p. We will only consider quadratic (non)residues modulo prime p.
For any ring R, and any group G with group operation d, and any functions

F1, F2 : GÑ R, their convolution F1 ˚ F2 is defined as:

pF1 ˚ F2qpxq :“
ÿ

x1dx2“x

F1px1q ¨ F2px2q.

The power-convolution F˚k1 is defined as the convolution F1 ˚ F1 ˚ . . . ˚ F1 of k
copies of F1.

A probability distribution D on a finite set S may be seen as a stochastic
function S Ñ R, meaning a function such that Dpxq ě 0 for each x P S, and
ř

xPS Dpxq “ 1. If S is a group, then this allows us to convolve distributions.
This gives the distribution of the product of two samples:

D1 ˚D2 “ tx1 d x2 : x1 Ð D1, x2 Ð D2u.

The notation x
$
ÐS means to choose an element uniformly at random from

a set S. The notation rA,Bs means the interval from A to B, inclusive.
The Montgomery reduction [Mon85] of x mod N is x{R mod N for some

fixed value R ą N which is coprime to N . This is usually implemented for N
odd and R a power of 2, in which case it is typically more efficient than ordinary
reduction (implemented using, e.g., Barrett’s reduction algorithm [Bar87]). The
operation taking px, yq Ñ xy{R mod N is called Montgomery multiplication.

2 Generating prime numbers

2.1 Näıve algorithm

Generating random prime numbers is, in some sense, simple. There are well-
established probabilistic primality tests1 [Rab80,PSW80,AM93] that work for
large numbers, and an approximately 1{pn ln 2q fraction of the numbers less than
2n are prime. So we can just choose random numbers and test them for (probable)
primality. If a 1024-bit prime is desired, it will take about 1024 ¨ ln 2 « 710 tries
in expectation, but may take much longer if the generator is unlucky.

1 Most of these algorithms exhibit false positives in rare cases. That is, when given a
prime number they always say that it is prime, but they may accept a composite
number as prime with some tiny probability. The present work does not address this
issue.



This näıve algorithm is shown in Algorithm 1. However, typically the test
“if p is prime” is somewhat slow, requiring an exponentiation in the case of a
Fermat or Miller-Rabin test. The primality test may be sped up somewhat by
using trial division by several small primes tpiu before testing, but this is not
especially fast either. Furthermore, it risks revealing information about p mod
pi via a side-channel such as power consumption.

Algorithm 1 Näıve prime generation

1: procedure PrimeGen(L,H, t) Ź Try t times to generate a prime in rL,Hs
2: for i = 1 to t do
3: p

$
ÐrL,Hs

4: if p is prime then return p
5: end for
6: return Failure
7: end procedure

2.2 Sieving algorithms

The näıve algorithm’s performance can be improved by choosing p in a way
that is guaranteed not to be divisible by small primes; for example, we might
choose x P pZ{Mq˚, for a constant M which is divisible by many small primes.
Since we wish to generate primes in a certain range — an interval rL,Hs —
we can then adjust x to be in that range without changing its value mod M .
This sieving method is shown in Algorithm 2, which is a variant of Joye et al.’s
sieving algorithm [JPV00, Figure 6]. This algorithm samples from the slightly
narrower interval

“

L,L`
X

H´L
M

\

¨M
‰

. If this is close enough to H, it may be
acceptable; otherwise we can instead sample from the slightly wider interval
“

L,L`
P

H´L
M

T

¨M
‰

and reject candidates that are greater than H.

Algorithm 2 Prime generation using sieve [JPV00]

1: procedure PrimeGen(L,H, t) Ź Try t times to generate a prime in rL,Hs
2: Let M be a product of small primes.

3: x
$
ÐpZ{Mq˚ Ź This step is tricky

4: for i = 1 to t do
5: α

$
Ðr0, tpH ´ Lq{M u´ 1s

6: pÐ L` px´ L mod Mq ` αM Ź Choose p ” x mod M
7: if p is prime then return p

8: xÐ Nextpxq Ź May just be x
$
ÐpZ{Mq˚ again

9: end for
10: return Failure
11: end procedure



This sieving algorithm provides a considerable speedup, of approximately
M{φpMq. For example, by taking M the 1019-bit product of the first 131 primes,
this is a factor of « 11.8, improving 1024-bit prime generation from 710 tries to
60 tries in expectation.

To increase performance, the sieving algorithm does not necessarily repeat
the sampling procedure for each candidate p. Instead, it updates the sample
x Ð Nextpxq, where Next is some (possibly randomized) update function.
Joye et al. take Nextpxq :“ 2 ¨ x mod M . This forces them to take M odd; to
avoid running the primality test on even p, they add M if p is even. The choice
of a deterministic update function is problematic, because it allows side-channel
attackers to accumulate information about x across several iterations [CC07]. It
also reduces the entropy of the resulting primes, because the algorithm is more
likely to choose primes p such that p{2i mod M is composite for the first few i.

The difficulty remains in sampling efficiently from pZ{Mq˚. The samples
should be nearly uniform2 in pZ{Mq˚. Rejection sampling would work, but it
is slow for large M , and calculating GCD(x,M) to test coprimality has side-
channel concerns [AGTB19,CAB20].

Joye-Paillier-Vaudenay CRT sieve Joye, Paillier and Vaudenay suggest to
sample pZ{Mq˚ using the Chinese Remainder Theorem [JPV00, Figure 3]. Let
JMiKni“1 be a sequence of mutually coprime integers – Joye et al. take them to be
prime powers. Let M :“

ś

iMi, and precompute a sequence JθiKni“1 where θi ” 1

mod Mi and θi ” 0 mod Mj for all j ‰ i. Then one can sample x
$
ÐpZ{Mq˚ as

xÐ
´

ÿ

xi ¨ θi

¯

mod M where each xi
$
ÐpZ{Miq

˚.

Here sampling from pZ{Miq
˚ may be much faster and simpler than sampling from

pZ{Mq˚. If Mi is a prime power qe, we just need to choose a sample that is not
divisible by q. For Mi of other forms, sampling algorithms will still be simpler and
faster with short Mi (e.g. one machine word) than with long ones. The simplest
approach is just to sample at random and then reject if GCDpMi, xiq ‰ 1.

However, this method has a significant disadvantage: it requires precomput-
ing and storing a list of large numbers JθiKni“1. We are also concerned that the
use of small secrets xi may be vulnerable to template attacks.

Improved CRT sieve However, we observe that it is not required to take
θi ” 1 mod Mi. Indeed, it is only required that θi is coprime to Mi, and divisible
by each Mj for j ‰ i. So we can instead take θi :“M{Mi, avoiding the need to
store it. That is, we can take

xÐ
´

ÿ

xi ¨ pM{Miq

¯

mod M where each xi
$
ÐpZ{Miq

˚.

2 They need not be cryptographically indistinguishable from uniform. In practice, a
wide variety of not-quite-uniform distributions are used [SNS`16]. This seems to be
sufficient so long as pp, qq are close enough to uniform and are uncorrelated [NSS`17].



In fact, we can avoid the division by computing the sum iteratively, as shown in
Algorithm 3. This novel algorithm is at least as fast as the Joye-Paillier-Vaudenay
version, but does not require storage of JθiKni“1.

Algorithm 3 Improved sampling from pZ{Mq˚ using CRT (new)

1: procedure Sample(JMiKni“1)
2: xÐ 0
3: M Ð 1
4: for i “ 1 to n do
5: xi

$
ÐpZ{Miq

˚

6: xÐ px ¨Mi ` xi ¨Mq mod pM ¨Miq

7: M ÐM ¨Mi

8: end for
9: return x

10: end procedure

We can use a similar technique to improve the Next algorithm, so that it is
randomized to deter side-channel attacks. We can do this by choosing a random

Mi, sampling yi
$
ÐpZ{Miq

˚, and returning

x ¨ pyi ¨ pM{Miq `Miq mod M.

This works because the factor yi ¨ pM{Miq `Mi is always coprime to M :

– It is congruent to yi ¨ pM{Miq mod Mi, and this value is coprime to Mi by
construction.

– It is congruent to Mi mod Mj for j ‰ i, and again Mi is coprime to Mj .

Joye-Paillier sieve with Carmichael’s λ However, we are still concerned
that the small domain of xi may lead to template attacks. It would be preferable
to implement a sieve that uses only large random numbers.

Joye and Paillier suggest to sample from pZ{Mq˚ as shown in [JP06, Figure 4],
reproduced in Algorithm 4. This algorithm is based on Carmichael’s observation
that for each prime qe|M ,

xλpMq mod qe “

"

0 if q|x
1 otherwise

So the update xÐ x` r ¨ p1´ xλpMqq only affects x mod qe if q|x.
The sampling algorithm is somewhat slow: 2.15 iterations are required in

expectation, and each iteration requires an exponentiation mod M . If M is
again the 1019-bit product of the first 131 primes, then λpMq has 276 bits.
Therefore overall sampling from pZ{Mq˚ is about 58% as expensive as a Fermat
or Miller-Rabin primality test of the same size, so sampling independently before
every primality test would cause a noticeable slowdown. Because the performance
decreases as λpMq increases, this method works best if M has only small prime
factors; or at least if for all primes q|M, q ´ 1 has only small prime factors.



Algorithm 4 Sampling from pZ{Mq˚ using Carmichael’s λ [JP06]

1: procedure Sample(M,λpMq)

2: x
$
ÐZ{M

3: z Ð 1´ xλpMq mod M
4: while z ‰ 0 do

5: r
$
ÐZ{M

6: xÐ x` rz
7: z Ð 1´ xλpMq mod M
8: end while
9: return x

10: end procedure

2.3 New sampling algorithm with quadratic residuosity

Here we describe a novel sieving algorithm using quadratic residuosity. We ex-
pect this method to resist side-channel attacks because it performs only a few
calculations, and all intermediate values have high entropy.

Let M be an odd number; a good choice is the product of the first n odd
primes, but we can use any odd number of known factorization. Let u be chosen
such that ´u is a quadratic nonresidue mod each prime q|M . Call such a u
“valid” mod M . If the factorization of M is known, then it is straightforward
to find valid u using the Chinese Remainder Theorem, as we will soon describe.
The values pM,uq can be precomputed, and stored in read-only memory (ROM)
on the device that needs to generate primes, or they can be calculated on the
fly to save ROM.

Then for all r P Z, by definition r2 ı ´u mod each q|M . So r2 ` u is not
divisible by any q|M : it is coprime to M . With pM,uq precomputed, the prime
generation algorithm can very easily sample from pZ{Mq˚, simply by choosing
r at random and computing r2 ` u mod M . The same technique could be used
with any other polynomial function that does not have a root modulo any q|M ,
such as ur2 ` 1, but r2 ` u is simple and requires only one multiplication.

These samples are not uniformly random: in particular, they cover only about
half of pZ{qeq˚ for each qe||M . So if M is divisible by n distinct primes, the range
is only slightly more than a 2´n fraction of pZ{Mq˚. But we will show that the
product of several independent samples approaches a uniformly random distri-
bution on pZ{Mq˚. Since prime generation algorithms usually do not require
perfectly uniform output, a product of between 4 and 10 such samples will be
close enough to uniform for most practical purposes, as shown in Figure 1. We
suggest using 6 samples, which loses less than 0.11 bits of min-entropy for all
M .

If a system is equipped with a fast random number generator, then the new
sieving technique is fast enough (11 multiplies mod M for 6 samples, compared to
several hundred for Algorithm 4) that we do not need to use an update function
Nextpxq. We can just choose a fresh sample x every time. However, if the random
number generator is somewhat slow, we can set Nextpxq “ x ¨ py2` uq mod M ,



where y is a fresh random sample. This improves on Nextpxq “ 2x mod M : it
is more uniform, and it mitigates side-channel leakage related to x. This version
is shown in Algorithm 5. Note that Line 6 guarantees that p is odd and coprime
to M , and that p P rL ¨ 2s, L ¨ 2s` 2M ´ 1s.

Algorithm 5 Prime generation with novel sieving algorithm (new)

1: procedure PrimeGen(L,H, s, t) Ź Generate a nearly random prime in
rL ¨ 2s,H ¨ 2ss

2: Let M be odd of known factorization, such that M ă H ´ L but only slightly.
3: Choose u so that ´u is a QNR mod all odd primes dividing M .

4: xÐ
ś6
j“1pr

2
j ` uq mod M , where each rj

$
ÐZ{M .

5: for i = 1 to t do
6: pÐ L ¨ 2s` p2x`M ´ L ¨ 2s mod 2Mq

7: α
$
Ðr0, s´ 1s

8: pÐ p` 2Mα
9: if p is prime then return p

10: r
$
ÐZ{M

11: xÐ x ¨ pr2 ` uq mod M
12: end for
13: return Failure
14: end procedure

Note also that it is easy to sample r Ð Z{M with a high degree of uniformity.
Simply set R to be a power of 2 (or of the machine’s word size) such that

R ą 264 ¨M (or an even larger bound); choose r
$
Ðr0, R´ 1s; and then reduce r

mod M .

Variants With M odd, this approach works with no modifications when using
power-of-2 Montgomery multiplication and Montgomery reduction mod M : if x
is coprime to M , then so is MontReducepxq. Before primality testing, x can
be made odd, or 3 mod 4 for easier Miller-Rabin implementation, by adding a
suitable multiple of M .

On systems where modular multiplication does not use Montgomery reduc-
tion, the modulus 2M can be used instead, and the candidates can then be guar-
anteed to be odd. Specifically, we can sample candidate primes in the residue
class

k
ź

i“1

p2pr2i ` uq `Mq mod 2M.

Likewise, x can be constrained to be 3 mod 4. Constrain u to be 1 mod 4, and
sample candidate primes in the residue class

´

k
ź

i“1

pp2riq
2 ` uq mod 4M.



Or again, we can sample x from pZ{Mq˚ as usual and then test p4x` cMq mod
4M for primality, where c P t1, 3u is chosen such that cM ” 3 mod 4. The same
techniques can be used to ensure that x ” 2 mod 3, which is required for RSA
with e “ 3.

Uniformity mod M Algorithm 5 draws samples from the distribution

DM,k,u :“
k
ź

i“1

px2i ` uq mod M : xi
$
Ðr0,Mq.

How close is DM,k,u to the uniform distribution UM on pZ{Mq˚? We will bound
the maximum difference in probability to sample each x mod a prime power:

‖Dqe,k,u ´ Uqe‖8 :“ max
xPpZ{qeq˚

|PrrDqe,k,u “ xs ´ PrrUqe “ xs|

This in turn will allow us to bound the L1 distance

‖DM,k,u ´ UM‖1 :“
ÿ

xPpZ{Mq˚
|PrrDM,k,u “ xs ´ PrrUM “ xs|

ď
ÿ

qe||M

φpqeq ¨ ‖Dqe,k,u ´ Uqe‖8

and the min-entropy loss

δH8 :“ max
xPpZ{Mq˚

PrrDM,k,u “ xs

PrrUM “ xs

ď
ÿ

qe||M

φpqeq ¨ ‖Dqe,k,u ´ Uqe‖8
ln 2

These three measures do not depend on which u is chosen, so long as it is
valid mod M . In practice, min-entropy loss is probably the most relevant: if the
adversary can break a single RSA key with probability ε when pÐ UM , then it
will succeed with probability at most ε ¨ 2δH8 when pÐ DM,k,u.

We can bound the L1 distance using the following theorem, which we prove
Appendix A:

Theorem 1 (Uniformity of DM,k,u). Let M be a positive odd integer, let u
be valid mod M , and let k ě 4. Let UM be the uniform distribution on pZ{Mq˚.
Let

εM,k :“
ÿ

prime q|M

ˆ

2
?
q

˙tk{2u

.

Then

‖DM,k,u ´ UM‖1 ă εM,k and δH8 ă
εM,k

ln 2
.



Note that for k ą 6, the sum converges for all primes q, so it allows us to
prove a bound that does not depend on M .

For concrete pM,kq this theorem is somewhat loose, so we also took an em-
pirical approach to calculate the L8 distance. For this approach, we calculated
the distribution DM,k,u for k P t1, 2u with M the product of the first 200 or 1000
odd primes. Then for 3 ď k ď 10, we were additionally able to extend the bound
to powers of those primes using equation (5) from the proof of Theorem 1 ; the
bound from this equation does not converge for k ď 2. Theorem 1 itself then
bounds the maximum additional distance that can be seen with even larger M .
The result is shown in Figure 1.

First 200 odd primes First 1000 odd primes All larger primes
k L1 δH8 L1 δH8 L1 δH8
1 2 197.3305 2 996.9990 - -
2 1.4362 29.1962 1.6889 65.6709 - -

3 2 4.6741 2 5.6428 - -
4 0.5510 0.7963 0.5659 0.8164 - -
5 0.1252 0.1806 0.1255 0.1810 - -
6 0.0453 0.0653 0.0453 0.0653 0.02989 0.04312
7 0.0157 0.0226 0.0157 0.0226 - -
8 0.0058 0.0084 0.0058 0.0084 0.00022 0.00031
9 0.0023 0.0033 0.0023 0.0033 - -
10 0.0010 0.0015 0.0010 0.0015 3.1 ¨ 10´6 4.5 ¨ 10´6

Fig. 1. Bounds on L1 distance and min-entropy loss between DM,k,u and UM . For
k ě 3, this includes any power of the given primes, but for k P t1, 2u it only includes
the first power. The “all larger primes” column is a bound for M “

ś

qeii where all the
prime factors qi are beyond the first thousand odd primes; the bound in Theorem 1
converges for even k ě 6. Note that the L1 distance cannot be greater than 2.

.

Choosing M The value of M is relatively unconstrained, beyond being odd
and of known factorization. If p is random in some range and is coprime to M ,
then it is prime with probability about M{pφpMq ln pq, or twice that if M is
odd and p is made odd before testing. For efficiency, M should be chosen as a
multiple of the first several odd primes, so that M{φpMq is as large as possible.
But suppose we wish to generate primes in an interval rL,Hs. We could generate
M by first taking, say, M1 ă pH´Lq{2

32 as a product of the first n odd primes,
and then calculating

M “M1 ¨

Z

H ´ L

2M1

^

.

This would result in an M very close to pH ´ Lq{2, so that adding 2M ¨ α can
be skipped, and the distribution would still be close to uniform on rL,Hs. Or we



could choose M such that pH ´Lq{p2Mq is very nearly a power of 2, so that at
least sampling α is easier. This improvement is incorporated into Algorithm 5.
The flexibility in M is an improvement on the Joye-Paillier sieve, where M
should be chosen smooth so that λpMq is small.

Another option is to follow Joye-Paillier by setting M somewhat smaller than
pH ´ Lq{2, and then adjust L and H to be multiples of M . In that case, α is
not typically chosen from a power-of-2 range, but subtracting 2L mod M can
be skipped.

When generating RSA keys, the range is usually chosen as

rL,Hs “ r2pb´1q{2, 2b{2 ´ 1s

for some even integer b. That way, if L ď p, q ď H, then 2b´1 ď p ¨ q ă 2b; that
is, N “ pq has exactly b bits. To support this case, we can set M to slightly less
than pH ´ Lq{2 for the lowest supported value of b. For higher values, H ´ L is
very nearly a power of 2 times M . This makes the sieve efficient in both cases.
This technique is similar to [JP06, Figure 5].

Choosing u We must choose a valid u, meaning one such that ´u is a quadratic
nonresidue mod each prime q|M . This can be performed by finding such a uq
mod each q, and then combining these using the CRT. However, we do not need
the full CRT, because we do not care exactly what u is mod q. It is sufficient to
calculate

u “
ÿ

qe||M

up ¨ pM{q
eq2 mod M

where each uq is a quadratic nonresidue mod q. Then for each q|M ,

´u ” ´up ¨ k
2
p mod q for some nonzero kq,

so u is also a quadratic nonresidue mod q. This u may also be calculated itera-
tively, much as in Algorithm 3. For each q ” 3 mod 4, we can take uq “ 1.

It is also an interesting question to choose u as small as possible. This issue
is discussed in Appendix B.

Supporting multiple parameter sets with less storage If a device supports
key generation for multiple sizes, it is preferable (but not necessary) to use a
specific M for each size. That is, use larger values of M to generate larger primes,
so that more small divisors can be sieved out. The parameters could be stored
separately for each M , but there is an opportunity to save space as the larger
M values should be (at least nearly) divisible by the smaller ones. So we can
sample mod M1 for the smallest supported parameter size, mod M1 ¨M2 for the
next size, and in general mod M “

śn
i“1Mi for the nth smallest size or tier of

sizes.
There are a few different options for how to do this. The simplest is to

store a u which is valid mod all the Mi, and thus mod their product. The u



value can be (Montgomery) reduced modulo M before use. It is also possible
to store a separate ui (or reduce u separately) mod each Mi; we could then
sample separately mod each Mi and combine them into one sample mod M using
Section 2.2. This is likely faster for the first sample due to smaller multiplications,
but slower for the Next function if it is used.

Or we could combine the parameters as

M :“
n
ź

i“1

Mi, u :“
n
ÿ

i“1

ui ¨ pM{Miq
2 mod M

and then sample using only the QR sieve mod M .

2.4 Applications

Generating primes for RSA keys Our new sieve simplifies finding primes
in a particular range such as r2pb´1q{2, 2bs, which is the slowest step in RSA key
generation. Previous work discusses efficient generation of RSA keys once the
prime generation step is done [JP03].

One additional issue with RSA key generation is that we must have e ffl p´1.
When e “ 3 this means that p ” 2 mod 3, which can be accommodated as
discussed in Section 2.3. Otherwise it can be accomplished by rejection sampling.
Or if e is coprime to M , one could sample xÐ pZ{Mq˚ and y Ð Z{e such that
both y and yM ´ 1 are coprime to e; and then set the candidate prime to
pÐ x ¨ e` y ¨M .

Generating DSA moduli, safe primes and strong primes Some standards
require generation of primes with specific properties, such as “strong primes”
where p` 1 and/or p´ 1 have large prime factors. Either of our sieve methods
can be used to replace the g function in [JPV00, Figures 8, 12] to generate DSA
moduli and strong primes respectively. These both require sampling candidate
primes which are congruent to a mod m for certain pa,mq with m coprime to
M . In particular, DSA moduli are congruent to 1 mod 2q. We can proceed by
computing m̄ “ am´1 mod M , and then to sample values x mod M . We can
then compute candidate primes p ” px ´ m̄qm ` a mod Mb. By construction,
these are congruent to a mod m, and to xm mod M . If m and M are coprime,
then xm is uniformly random in pZ{Mq˚.

Generating “safe primes” p “ 2q ` 1, for which q is also prime, is more
difficult if we wish to sieve both p and q. However, our CRT-based sieve can be
adapted easily enough to match [JPV00, Figure 10]. Joye et al. solve the CRT
equations x ” xi mod Mi as

xÐ
n
ÿ

i“1

xi ¨ θi where θi mod Mj “

"

1 if i “ j
0 if i ‰ j



Joye et al. rejection sample each xi such that xi and 2xi`1 are both in pZ{Miq
˚.

We instead compute

xÐ
n
ÿ

i“1

xi ¨ θi where θi “
ź

j‰i

Mj

so we need xi and 2pxi ¨ θiq ` 1 both to be in pZ{Miq
˚.

Blinding inversions mod M The sieve can be used for techniques other than
prime generation. For example, if for some algorithm we must invert a value x
modulo a public constant M , we can use this technique to generate a nearly-
uniform r which is coprime to M . We can then compute x´1 ” r ¨ prxq´1 mod
M to mitigate side-channel attacks on the inversion process.

3 RSA-CRT without q´1 mod p

Let pN, eq be an RSA public key. The RSA private permutation computesm “ xd

mod N , where d ” e´1 mod λpNq. However, since the party with the private key
also knows the factorization N “ pq, it is more efficient to compute mp “ xdp

mod p, where dp ” e´1 mod p ´ 1, and likewise with q. This information may
be combined using the Chinese Remainder Theorem (CRT):

m “ ppmp ´mqq ¨ q
´1 mod pq ¨ q `mq.

This technique is called RSA-CRT. The RSA-CRT computation requires q´1

mod p, which is typically stored as part of the private key; it can also be com-
puted when the key is loaded, but this has performance and potentially side-
channel problems [CAB20].

CRT could also be performed as

m ” pmp ¨ q
´1 mod pq ¨ q ` pmq ¨ p

´1 mod qq ¨ p mod N

but this appears to require even more information. However, there is a trick to
compute mp ¨ q

´1 mod p without knowing q´1 mod p, which is based on the
multiplicative masking in [EL10]. Choose any y P pZ{pq˚ and let

α :“ pxyqe´1 mod p

β :“ pα ¨ yqp´1´dp ” pα ¨ yq´1{e mod p

mp,y :“ β ¨ x ” x1{e ¨ y´1 mod p (1)

This computes mp,y using one long exponentiation and one short one, and three
multiplications. Setting y “ q gives a way to compute RSA-CRT without any
inversions.



For multiplicative masking we can instead set y “ rq where r
$
ÐpZ{Nq˚, so

that:3

mp,rq ” xd ¨ prqq´1 mod p.

We can compute mq,rp analogously, and combine to calculate mr´1 mod N .
That is,

m ” r ¨ pmp,rq ¨ q `mq,rp ¨ pq mod N.

This allows us to compute RSA-CRT decryption with message blinding, using
only pp, q, e, dp, dqq. The technique is compatible with other blinding techniques
for pp, q, dp, dqq, such as [EL10], and for techniques which skip the step of con-
verting to Montgomery form.

Our technique generalizes to multi-prime with N “
ś

pi, where the recon-
struction equation is

m ”
ÿ

˜

mpi ¨

ˆ

N

pi

˙´1

mod pi

¸

¨
N

pi
mod N.

The inner term mpi ¨ pN{piq
´1 mod pi can be computed using our blinding and

inversion technique. Here N{pi is perhaps better written as
ś

j‰i pj .

3.1 Inverse-free RSA mod pkq

Another fast variant of RSA uses N “ pkq [Tak98]. Our inversion-free CRT
technique applies here as well, apparently trivially: we can use equation (1) to

compute xd mod φppkq ¨pqrq´1 mod pk, and combine this with xd mod φpqq ¨ppkrq´1

mod q.
However, the point of RSA mod pkq is that xd mod pk can be accelerated.

Instead of computing xd directly mod pk, the technique is to calculate xdp mod
p, where dp ” e´1 mod p´ 1. This gives a solution to the equation

me
1 ” x mod p1,

which can then be iteratively lifted to a solution me
k ” x mod pk using Hensel’s

lemma. This means that the trivial application of our technique will perform
poorly, and we still need to compute e´1 mod p [Tak04].

We will instead compute xd ¨ y´1, by solving the equation

pymqe ” x mod pk,

again with Hensel lifting. Given a nonzero solution m` mod p`, we can lift it to
a solution m``1 mod p``1 using the Hensel iteration

m``1 ” m` `
x´ pymqe`

e ¨ ye ¨me´1
1 mod p

mod p``1,

3 A random r
$
ÐZ{N will be coprime to N with overwhelming probability. But if we

wanted to be sure then we could reuse one of our sieve techniques.



whose denominator δ :“ e ¨ ye ¨ me´1
1 mod p is the derivative of pymqe with

respect to m. We can do this in an inverse-free manner given m1 “ xd ¨ y´1 mod
p and δ´1 mod p, where

δ´1 ” pe ¨ ye ¨me´1
1 q´1 mod p

” pymq1´e ¨ pyeq´1 mod p

” xd¨p1´eq ¨ pyeq´1 mod p

” xd´1 ¨ pyeq´1 ” xd ¨ pyexq´1 mod p

This value δ´1 ” xd ¨ pyexq´1 mod p can be computed using the blinding and
inversion method from equation (1), and from it we can compute m1 ” xd ¨y´1 ”

δ´1 ¨ ex mod p. As before, we can do this with y :“ qr for random r, to achieve
a blinded, inverse-free CRT algorithm.

Thus, we can extend our technique to inverse-free RSA modulo general prod-
ucts of powers of primes.

3.2 Generalized batching

Our inverse-free CRT technique was inspired by side-channel countermeasures,
but it is a special case of a framework for inversion and root calculations [Ham12]
including

px, yq Ñ px1{e, y´1q mod p

when x and y are nonzero. We can do this by calculating

α :“ pxyqe´1

β :“ pα ¨ yq´1{e ” x1{e´1 ¨ y´1 mod p

x1{e ” β ¨ xy mod p

y´1 ” α ¨ βe mod p

This technique was proposed for elliptic curves, and to our knowledge has
not been applied to RSA before. The principle is to consider the exponential
lattice L of expressions the form xa ¨ yb for a, b P Z. For more inputs, a higher-
dimensional lattice may be used. The target expression(s) such as tx1{e, y´1u lie
in a superlattice L1 of volume 1{e. If (as in this example) L1{L is one-dimensional,
then we can find an element z P L1, such that tx, y, zu span L1, the coefficients
of z are either all positive or all negative, and the target element is spanned
by tx, y, zu with (small) non-negative coefficients. Typically this is best done by
giving z strictly negative coefficients, so that non-negative linear combinations
of tx, y, zu cover all of L1.

Then z can be computed by calculating ˘ez as a non-negative integer com-
bination of tx, yu, and then applying the ˘1{e map (or more generally, using the
˘k{e map for some integer k coprime to e) at the cost of a single large exponen-
tiation. Since now tx, y, zu span the target expressions with small non-negative



coefficients, these targets can be calculated using only multiplications and small
exponentiations.

This principle generalizes batch RSA [Fia90], Montgomery’s batched in-
version, and batch inversion and square root [Ham12]. It directly provides an

inversion-free variant of batch RSA: for example, batching a message m3 “ x
1{3
3

and m5 “ x
1{5
5 can be calculated as:

z :“ px53 ¨ x
3
5q
´1{15 “ x

´1{3
3 ¨ x

´1{5
5 ; m3 “ z5 ¨ x23 ¨ x5; m5 “ z9 ¨ x33 ¨ x

2
5.

This can be further optimized with an appropriate addition chain, and possibly
by choosing a different generator z of the lattice.

These techniques can batch multiple small roots and/or inverses using one
large exponentiation if and only if the roots are of relatively prime degrees.
Otherwise the quotient L1{L has multiple generators, so while a batching tech-
nique might provide a speedup in some cases, it will require more than one large
exponentiation.

We note that batching techniques can also be used to avoid conversions to
Montgomery form. The Montgomery form of a number x is x ¨ R mod p for
some R. Multiplication and exponentiation are typically faster when the inputs
are given in Montgomery form. Division by R mod p is fast: it is Montgomery
reduction. But multiplication by R mod p requires Barrett reduction, which is
slower and more complex in hardware. However, consider that x is itself the
Montgomery form of another number x̂ :“ x{R mod p. So we can compute

x1{e “ px̂ ¨Rq1{e “ px̂e´1{Rq´1{e ¨ x̂

where the input x̂ is given by its Montgomery form x, and now we are only
dividing by R instead of multiplying by it. This technique may not be worthwhile
by itself, because it requires an extra short exponentiation, but it is essentially
free if batching is already in use. As a special case of this, random blinding values
can be assumed to already be in Montgomery form.

4 RSA with compressed private keys

Our new sieving and RSA-CRT algorithms give an interesting improvement to
compressed RSA private keys for devices with limited nonvolatile storage. This
can be done easily enough just by replacing the random numbers in the usual
RSA key generation algorithm with a pseudorandom generator, and storing only
the secret seed for that generator. The private key can then be regenerated from
the seed whenever it is needed. But RSA key generation is notoriously slow, so
this compression mechanism is usually unacceptable. However, if we record hints
indicating on which iterations hp resp hq we found p resp q, then p and q can
be reconstructed very quickly, skipping all the primality tests. This is easiest if
each iteration samples an independent candidate p, so that only the hpth and
hqth iterations must be performed to reconstruct pp, qq.



This technique could have been used with other RSA key generation algo-
rithms, but at a significant cost in efficiency. Algorithm 1 would suffer from long
key generation time. The Joye-Paillier-Vaudenay CRT sieve requires large ROM
storage, whereas their Carmichael λ sieve requires extra large exponentiations
in order to use the key. But with our Algorithm 3 or Algorithm 5, the perfor-
mance penalty to generating and to use the key is very small. With previous
techniques, we also would have needed to avoid RSA-CRT or else compute q´1

mod p, but with inverse-free RSA-CRT we can also mitigate that performance
cost. The other nontrivial step, computing d from e, has a shortcut for small
prime e [JP03].

We work through the details with Algorithm 5. In the key generation al-
gorithm we can replace the random number generator with a pseudorandom
function Fkpi, h, j; Rq. Its arguments are:

– the secret seed k;
– a flag i P t0, 1u indicating whether we’re generating p or q (or from a larger

domain for multi-prime RSA);
– a hint h P r0, t ´ 1s where t is the maximum number of attempts to find a

prime in key generation (e.g. t “ ln φpMq
ε¨M ¨ ln p for a failure rate near ε);

– a counter j P r0,ms where m is the number of samples required for uniformity
(e.g. m “ 6);

– and the size R of the desired range.

Fk should return a uniformly pseudorandom integer in r0, R ´ 1s. This enables
us to sample pseudorandom integers in rL ¨ 2s,H ¨ 2ss which are coprime to M
using the SieveSample routine shown in Algorithm 6.

The secret primes pp, qq can then be represented by the parameters pL,H, s, eq,
the secret seed k and the hints hp and hq. The private key can be reconstructed
by calling SieveSample:

p “ SieveSamplepL,H, s, k, 0, hpq and q “ SieveSamplepL,H, s, k, 1, hqq.

The other values in the private key, d mod p´ 1 and mod q ´ 1, can be recon-
structed efficiently using Arazi’s lemma and Hensel’s lemma as shown in [JP03],
reproduced as DMod. A complete compressed RSA algorithm is shown in Algo-
rithm 6. If the negligible probability of failure from line 37 is unacceptable, we
can instead generate pp, qq ” 3 mod 4, and implement that line using Algorithm 5
with u “ 1.

Suppose we wish to generate 1536-bit primes for RSA-3072, roughly corre-
sponding to 128-bit security. If M is divisible by the first 180 primes so that
φpMq{M « 0.08, then each candidate will be prime with probability

Prrprimes «
M

1536 ¨ φpMq ¨ ln 2
«

1

85
.

If we set t “ 216, then CompressedRSA will fail to find a suitable p or q with
probability about 2 ¨ e´t¨Prrprimes ă 2´1111. So a 3072-bit private RSA key may



Algorithm 6 RSA with compressed private keys

1: procedure SieveSample(L,H, s, k, i, h)Ź Sample a value in rL ¨ 2s,H ¨ 2ss using
Fkpi, h, ¨q

2: Let M be a multiple of many small primes, such that M ă H ´ L but only
slightly.

3: Let u be odd such that ´u is a QNR mod all odd primes dividing M .
4: xÐ

ś6
j“1

`

Fkpi, h, j; Mq
2
` u

˘

mod M .

5: α
$
ÐFkpi, h, 0; sq

6: return pÐ L ¨ 2s` p2x`M ´ L ¨ 2s mod 2Mq ` 2αM
7: end procedure

8: procedure CompressedRSAKeygen(L,H, s, e, t, k)
9: for hp = 0 to t´ 1 do

10: pÐ SieveSamplepL,H, s, k, 0, hpq
11: if e ffl p´ 1 and p is prime then goto line 14
12: end for
13: return Failure
14:
15: for hq = 0 to t´ 1 do
16: q Ð SieveSamplepL,H, s, k, 1, hqq
17: if e ffl q ´ 1 and q is prime then goto line 20
18: end for
19: return Failure
20:
21: return public key pp ¨ q, eq and compressed private key pL,H, s, e; k, hp, hqq
22: end procedure

23: procedure DMod(e, φ,H) Ź Computes e´1 mod φ ă H if e is prime and e ffl φ
24: RÐ 2rlgHs

25: ēÐ 1
26: for i = 1 to rlg lgRs do Ź Compute ēÐ e´1 mod R

27: ēÐ ē ¨ p2´ e ¨ ēq mod 22i

28: end for Ź In practice, share ē for the two calls
29: return p1` p´φe´2 mod eq ¨ φq ¨ ē mod R Ź Arazi’s lemma
30: end procedure

31: procedure CompressedRSAPrivate(pL,H, s, e; k, hp, hqq, xq)
32: pÐ SieveSamplepL,H, s, k, 0, hpq
33: q Ð SieveSamplepL,H, s, k, 1, hqq
34: dp Ð DModpe, p´ 1, H ¨ 2sq
35: dq Ð DModpe, q ´ 1, H ¨ 2sq
36: N Ð pq

37: r
$
ÐpZ{Nq˚ Ź Or r

$
ÐZ{N works with overwhelming probability

38: αp Ð pqrxqe´1 mod p
39: mp Ð pqr ¨ αpq

p´1´dp mod p
40: αq Ð pprxqe´1 mod q
41: mq Ð ppr ¨ αqq

q´1´dq mod q
42: return rx ¨ pmp ¨ q `mq ¨ pq mod N Ź Returns x1{e mod N
43: end procedure



be compressed to 160 bits with no loss of security: a 128-bit key and two 16-bit
hints.

To prevent mistakes, it may also be useful to store ps, eq, or to make the
pseudorandom function F depend on them, or both. In hardware deployed to a
hostile environment, it is also worth adding fault countermeasures, for example
a checksum on pp, q, dp, dqq, to prevent fault attacks [ABF`03].

If k is derived — for example from hardware constants, a master key or a PUF
— then only hp and hq need to be stored. If k can be chosen by the generator
(i.e. it is not a derived key), then storage requirements can be further reduced
by removing hp, and instead re-randomizing k in the first loop. Various other
arrangements can be used to trade hint size for key generation performance, such
as using a shorter hint hq and incrementing hp if no prime q can be found.

Combining the new RSA-CRT technique with Algorithm 6, we can implement
RSA efficiently with compressed private keys. For RSA-3072 with e “ 65537, the
calculations of pp, q, dp, dqq and the recovery of the final m costs:

– 11 multiplications mod M to sample p, and as many for q.
– 4 multiplications mod R, and several smaller ones, to compute dp and dq.
– 19 multiplications mod p, plus one long exponentiation mod p, to compute
q ¨ r, αp Ð px ¨ qrqe´1 and mp “ pqr ¨ αpq

p´1´dp ; and the same to compute
mq.

– 2 integer multiplications and two multiplications mod N to calculate the
final output m ” x ¨ r ¨ pmp ¨ q `mq ¨ pq mod N .

Counting the wider multiplications mod N as four, the additional cost of private
key compression and blinding together is around 72 large multiplications (mostly
squarings) plus a few smaller ones. The exponentiations mod p and q collectively
cost some 12882 or 3715 multiplications with the Montgomery ladder and sliding
window approaches, respectively, meaning that the additional cost is between
0.6% and 3% of the total runtime.

The same techniques generalize naturally to multi-prime RSA and RSA mod
pkq.

5 Performance

We tested our new techniques by modifying OpenSSL 1.1.1j to support the Joye-
Paillier sieve, the quadratic residuosity sieve, inversion-free RSA and compressed
private keys. We tested on a 2.3 GHz Intel Core i3-6100U processor at 2.3 GHz;
this processor is convenient for benchmarks because it does not use TurboBoost.
The OpenSSL big number API does not exactly match our algorithms, and we
adjusted our algorithms to match its API. In particular, we didn’t use Hensel
lifting, and we were not able to avoid many conversions into and out of Mont-
gomery form. The results are shown in Table 1. Note that prime generation is a
Poisson process, so those timings have an enormous variance and the difference
between the Carmichael sieve and the new QR sieve is not significant.



Operation 1024-bit 2048-bit 3072-bit 4096-bit

Primegen OpenSSL standard 26 M 143 M 400 M 950 M

Primegen Carmichael sieve [JP06] 6 M 60 M 257 M 802 M

Primegen new QR sieve 6 M 58 M 251 M 731 M

RSA-CRT sign standard 305 k 2077 k 6161 k 13992 k

RSA-CRT sign inverse-free 412 k 2248 k 6420 k 14376 k

RSA-CRT sign compressed 532 k 2403 k 6622 k 14644 k

Table 1. Performance comparison of new techniques; timings in thousands or millions
of cycles (k or M). Prime generation is averaged over 2000 trials. Signatures are av-
eraged over 100,000 trials: 1000 trials for each of 100 different keys, without outliers
more than twice the mean removed. The same 100 keys are used for the standard,
inverse-free and compressed versions.

5.1 Discussion

OpenSSL’s standard key generation uses trial division and not sieving, so a large
performance increase is expected. As expected, Joye-Paillier sieve and quadratic
residuosity sieve have similar performance.

The overhead from inverse-free and compressed signatures is larger than we
expected, amounting to 4% and 7.5% respectively for RSA-3072. Part of this is
due to adjusting our algorithms to the OpenSSL APIs, so the overhead might
be smaller (or larger!) in an embedded environment. Even at 7.5% it might be
worthwhile if nonvolatile memory is limited.

6 Future work

We leave to future work the task of evaluating the embedded performance, side-
channel resistance and fault resistance of these methods, as well as any applica-
tion to post-quantum RSA [BHLV17,Sch18].
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A proof of Theorem 1

Let’s start with an easy lemma.

Lemma 1. Given two distributions D1 and D2 and a uniform distribution U on
a group of size n, we have

‖D1 ˚D2 ´ U‖1 ď ‖D1 ´ U‖1 ¨ ‖D2 ´ U‖1 .

and
‖D1 ˚D2 ´ U‖8 ď n ¨ ‖D1 ´ U‖8 ¨ ‖D2 ´ U‖8 .

Proof. This is true for distributions if and only if it is true for stochastic func-
tions. For i P t1, 2u, let Fi :“ Di ´ U as functions. Since it is the difference of
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two stochastic functions, each Fi sums to 0. Then

D1 ˚D2 “ pU ` F1q ˚ pU ` F2q

“ U ˚ U ` U ˚ pF1 ` F2q ` F1 ˚ F2

“ U ` F1 ˚ F2

because F1 and F2 each sum to 0. Thus

‖D1 ˚D2 ´ U‖1 “ ‖F1 ˚ F2‖1 ď ‖F1‖1 ˚‖F2‖1 “ ‖D1 ´ U‖1 ¨‖D2 ´ U‖1 .

Likewise,

‖D1 ˚D2 ´ U‖8 “ ‖F1 ˚ F2‖8 ď n¨‖F1‖8˚‖F2‖8 “ n¨‖D1 ´ U‖8¨‖D2 ´ U‖8
as claimed.

We will next bound Dq,2,u. The rough argument is that the probability of picking
a particular z P Z{q is related to the number of solutions to a certain algebraic
equation, which we can show is about the expected amount using the Hasse
bound.

Lemma 2. Let q be an odd prime. Then for each z P pZ{qq˚, we have
ˇ

ˇ

ˇ

ˇ

PrrDq,2,u “ zs ´
1

q ´ 1

ˇ

ˇ

ˇ

ˇ

ď 2q´3{2

That is,
‖Dq,2,u ´ Uq‖8 ď 2q´3{2.

Proof. Let q be an odd prime, and let’s bound PrrDq,2,u “ zs for z P F˚q :“
pZ{qq˚. This is n{q2, where n is the number of solutions to

E : px2 ` uq ¨ py2 ` uq “ z : x, y P Fq.

E isomorphic to an Edwards curve over Fq2 , and it is elliptic unless z “ 0 or
z “ u2. The case z “ 0 is ruled out because z P pZ{qq˚, and we will deal with
z “ u2 later. For now, suppose that E is elliptic. E has no points at infinity over
Fq: they would have x2` u “ 8 and y2` u “ 0 or vice-versa, but the latter has
no solutions over Fq. Therefore, by the Hasse bound,

|n´ pq ` 1q| ď 2
?
q. (2)

We want to show that
ˇ

ˇ

ˇ

ˇ

n´
q2

q ´ 1

ˇ

ˇ

ˇ

ˇ

ď 2
?
q (3)

so that
ˇ

ˇ

ˇ

ˇ

PrrDq,2,u “ zs ´
1

q ´ 1

ˇ

ˇ

ˇ

ˇ

“
1

q2

ˇ

ˇ

ˇ

ˇ

n´
q2

q ´ 1

ˇ

ˇ

ˇ

ˇ

ď
2
?
q

q2
.

“ 2q´3{2



The only way that n could meet bound (2) but not the claimed (3) is if

n´ pq ` 1q P

„

´2
?
q,´2

?
q `

1

q ´ 1



When can this interval contain integers? Empirically it does for q P t2, 3u, and
does not for 3 ă q ă 19. For larger prime q, it also cannot contain integers: if it
contained an integer m, then we would have

m2 P

„

4q ´
4
?
q

q ´ 1
`

1

pq ´ 1q2
, 4q



With q ą 18 we have:

q2 ą 18q ´ 1

pq ´ 1q2 “ q2 ´ 2q ` 1

ą 16q

q ´ 1 ą 4
?
q

so the interval width
4
?
q

q ´ 1
´

1

pq ´ 1q2
ă 1.

Therefore it contains no integers other than 4q, and we cannot have m2 “ 4q
because q is prime.

For the case q “ 3, we must have u “ 1. Then PrrDq,2,u “ zs is 1{3 for
z “ 1 and 2{3 for z “ 2, and in both cases it differs from 1{2 by 1{6 ă 2{33{2 as
claimed.

Finally, what about the case z “ u2, so that E is not elliptic? In this case,
we will show that there are exactly q or q ` 2 solutions in Z{q. The solutions
have either x “ 0, in which case also y “ 0, or px, yq nonzero and satisfying:

x2 ¨ y2 ` upx2 ` y2q “ 0

x2py2 ` uq “ ´uy2

y2 ` u “ ´upy{xq2

which is a non-degenerate ellipse in variables y and w :“ y{x. Every non-
degenerate ellipse has exactly q ` 1 points py, wq in the projective plane, and
none of the points on this ellipse are at infinity, but only the points with py, wq
nonzero lift to unique solutions in px, yq P E. None of the points have w “ 0
because y2 ` u ‰ 0. If y “ 0 the equation reduces to w2 “ ´1, which has two
solutions for q ” 1 mod 4 and none for q ” 3 mod 4. So there are either q´ 1 or
q ` 1 nonzero solutions py, wq in these respective cases, for a total of q or q ` 2
solutions respectively. So in this case

|n´ pq ` 1q| “ 1 ă 2
?
q

as well. This completes the proof of Lemma 2.



The following lemma extends Lemma 2 to Dqe,k,u for even k ě 4. The idea is
to begin with e “ 1, where we can bound the convolution of several copies of
Dqe,2,u using Lemma 1. For larger e, we can then apply Hensel lifting. However,
the Hensel argument fails when all the x’s are equal to zero. That case introduces
an additional term, which violates the bound when k “ 2 but becomes tiny when
k ě 4.

Lemma 3. Let q be an odd prime, k ě 4 be an even integer, and e be a positive
integer. Then

‖Dqe,k,u ´ Uqe‖8 ď
2k{2

qe`k{4

Proof. First, let’s handle the case that e “ 1 by induction on k. Here Lemma 2
gives us a base case for k “ 2:

‖Dq,2,u ´ Uq‖8 ď
22{2

q1`2{4

For larger even values of k, we apply Lemma 1 with n “ q ´ 1 to get:

‖Dq,k,u ´ Uq‖8 ď pq ´ 1q ¨ ‖Dq,k´2,u ´ Uq‖8 ¨ ‖Dq,2,u ´ Uq‖8

ď pq ´ 1q ¨
2k{2´1

q1`pk´2q{4
¨

2

q1`1{2

“
2k{2

q1`k{4
¨

ˆ

1´
1

q

˙

, (4)

which is a slightly stronger version of the claim.
For e ą 1, we will divide samples into equivalence classes according to a

certain relation mod qe. If two samples are equivalent mod qe they all output
the same value z ”

ś

px2i ` uq mod qe, and also they are equivalent mod qe
1

for each e1 ă e. We call each class “zero” or “nonzero” according to whether it
contains the solution p0, 0, . . . , 0q.

Let a class C 1 mod qe´1 output some z1 mod qe´1. We define the lifting
probability for C 1 to z mod qe as

Prrlift to z : Cs :“ Pr
”

S outputs z mod qe : S
$
ÐC

ı

We will show two proposition:

Proposition 1. Nonzero solutions mod qe´1 will lift to nonzero solutions mod
q in the following way. Let C be a nonzero equivalence class of solutions to
ś

px2i ` uq ” z mod qe´1. Then for all z1 P pZ{qeq˚ with z1 ” z mod qe´1,

Prrlift to z : Cs “
1

q
.

Proposition 2. If a sample S is chosen uniformly at random, then:

PrrS P C0,e´1s “ q´rpe´1q{2sk.



Furthermore,
ˇ

ˇ

ˇ

ˇ

Prrlift to z : C0,e´1s ´
1

q

ˇ

ˇ

ˇ

ˇ

ď αe

where αe ď 1 for even e, and αe ď 1{qk{2 ď 1{q2 for odd e.

Once we have proven these two propositions, we can prove the main theorem
by strong induction. Let “zeropqeq” denote the event that a sample lies in C0,e.
Abbreviate

δqe,k :“ qe ¨ ‖Pr rDqe,k,us ´ Uqe‖

Applying the propositions, we have

δqe,k ď δqe´1,k ` q
e ¨ αe ¨ Prrzeropqe´1qs

ď δqe´1,k ` q
e ¨

"

q´e{2¨k if e is even

1{q ¨ q´pe´1q{2¨k if e is odd

Letting e be odd and applying this twice, we thus have

δqe,k ď δqe´2,k ` q
e ¨ q´1´pe´1q{2¨k ` qe´1 ¨ q´pe´1q{2¨k

“ δqe´2,k ` 2qe´1´pe´1q{2¨k

“ δqe´2,k ` 2q´pe´1q{2¨pk´2q

Summing this up from e “ 3 to 8, we have that for all e,

δqe,k ď δq,k ` 2
8
ÿ

e“3 odd

q´pe´1q{2¨pk´2q

“ δq,k `
2

qk´2 ´ 1
(5)

For q ě 3 and k ě 4, plugging in (4) and

2

qk´2 ´ 1
ă

4

qk´2
ă

2k{2

q1`k{4

gives δq,k ď
2k{2

qk{4
as claimed. But it remains to prove Propositions 1 and 2.

Proof of Proposition 1 Next we will define the equivalence classes and prove
Proposition 1. This step is essentially a Hensel lift. Consider two tuples of the
form

X :“ px1, x2, . . . , xkq and X 1 :“ px11, x
1
2, . . . , x

1
kq,

For each i, let fi be the maximum integer such that fi ď re{2s and qfi |xi. Define
xi “: qfi ¨ yi and likewise define f 1i and y1i. Then for all di,

x2i ` u ” pq
fipyi ` diq

e´2fiqq2 ` u mod qe



and, on the contrary, if fi ă re{2s then values of the form

pqfipyi ` diq
e´2fi´1qq2 ` u

span all values equivalent to x2i ` u mod qe´1. Thus, we will call these tuples
equivalent if for each i, fi “ f 1i and y1i ” yi mod qe´2fi . We call an equivalence
class C nonzero if it doesn’t contain p0, 0, . . . , 0q, which is equivalent to having
at least one fi ă re{2s.

Suppose that X is in a nonzero class C mod qe´1, such that
ś

px2i ` uq ” z
mod qe´1. Then for each z1 ” z mod qe´1, the class C samples z1 mod qe with
probability 1{q. To see this, let fj ă pe´ 1q{2 and write

ź

i

px2i ` uq “
`

pqfj pyj ` djq
e´2fj qq2 ` u

˘

¨
ź

i‰j

px2i ` uq

The latter term is nonzero mod q and thus invertible, and the former term
samples each value equivalent to z{

ś

i‰jpx
2
i `uq mod qe´1 each with probability

1{q. This completes the proof of the Proposition 1.

Proof of Proposition 2 As defined, a class is zero mod qe´1 if and only if each
fi “ rpe´ 1q{2s, which is to say if each xi is divisible by qrpe´1q{2s. This happens
with probability qkrpe´1q{2s.

It remains to show that for odd e and z “ uk`cqe´1, the probability that the
zero class mod qe´1 samples z mod qe is between 1{q ´ 1{qk{2 and 1{q ` 1{qk{2.
The resulting equation is

ź

´

pq
e´1
2 diq

2 ` u
¯

” uk ` cqe´1 mod qe

which is equivalent to

uk´1
k
ÿ

i“1

d2i ” c mod q.

The leading uk´1 is invertible and may be discarded. The remaining distribution
may be bounded by [Elk11], which considers a convolution S˚kq of k copies of
the distribution Sq :“ td2i mod q : di Ð Z{qu. The Fourier coefficients

pSpjq :“
1

q

q´1
ÿ

x“0

e2πjx
2
{q

of S are a Gauss sum, and so are equal to 1 for j “ 0 and to 1{
?
˘q for j ‰ 0.

There are q ´ 1 coefficients with j ‰ 0. The Fourier transform of the uniform
distribution Uq has coefficients pUqp0q “ 1 and 0 elsewhere, so∥∥∥yS˚kq ´ pUq

∥∥∥2
2
“
q ´ 1

qk
.



Therefore
ˇ

ˇ

ˇ

ˇ

PrrS˚kq “ cs ´
1

q

ˇ

ˇ

ˇ

ˇ

ď
∥∥S˚kq ´ U

∥∥
2

“

d

1

q

∥∥∥yS˚kq ´ pU
∥∥∥2
2

“

c

q ´ 1

qk`1
ă

1

qk{2

This completes the proof of Proposition 2 and Lemma 3.

We are now ready to prove the theorem.

Theorem 1 (Uniformity of DM,k,u). Let M be a positive odd integer, let u
be valid mod M , and let k ě 4. Let UM be the uniform distribution on pZ{Mq˚.
Let

εM,k :“
ÿ

prime q|M

ˆ

2
?
q

˙tk{2u

.

Then
‖DM,k,u ´ UM‖1 ă εM,k and δH8 ă

εM,k

ln 2
.

Proof. We note that the claimed bounds are at most additive for powers qe||M ,
so it suffices to prove them for each qe||M . It also suffices to consider only
even k, because convolving with another copy of DM,1,u cannot increase either
quantity, nor does going from even k to k ` 1 change εM,k. The L1 distance
follows immediately from Lemma 3, because

‖Dqe,k,u ´ Uqe‖1 ă qe ‖Dqe,k,u ´ Uqe‖8 ď
2k{2

qk{4
.

For the min-entropy loss, let n :“ φpqeq, and note that for each z P pZ{qeq˚,

δH8 ď ln zn

“ log2p1` npz ´ 1{nqq

ď
1

ln 2
¨ npz ´ 1{nq

ď
1

ln 2
¨ n

∥∥Dqe,k,u ´ Ueq
∥∥
8

This completes the theorem.

B Minimizing u

We say that u is “valid” mod M if
´

´u
p

¯

“ ´1 for all primes p|M . If M ’s

factorization is known, then it is easy to find a valid up modulo each p|M (e.g.



by checking the Jacobi symbol
´

´up

p

¯

until a valid up is found), and to combine

them using the Chinese Remainder Theorem. But what is the minimum valid u?
Using a smaller u could allow the same u to be used for several values of M , or
could reduce memory usage and compute time, but mostly it is a mathematically
interesting question. For simplicity, we assume here that M is square-free.

If there are n primes dividing M , then a random element of pZ{Mq˚ is
valid with probability 2´n, so we expect the minimum valid u to be around
uminexp :“ 2n ¨ M{φpMq. A brute-force strategy would require about uminexp

work, which is infeasible past the first 50 primes or so. But this work can be
reduced somewhat, particularly if we settle for a small but not minimal u.

B.1 Sparse solutions to linear equations

The most effective method we found was to search for valid u of the form u “
q1 ¨ q2 ¨ ¨ ¨ qm where the qi’s are in some set Q. The validity criterion is that:

for each prime p|M,

ˆ

´u

p

˙

“

ˆ

´1

p

˙

¨

ˆ

q1
p

˙

¨ ¨ ¨

ˆ

qm
p

˙

(6)

If each qi is coprime to M , then the Jacobi symbols are all either ´1 or 1;
mapping these to 1 and 0 respectively translates the validity criterion to a system
of affine equations over F2. This allows us to solve for u with xor-list or sparse
solution techniques, such as:

– A birthday attack or stronger collision technique [VOW99] for m “ 2 and Q
a large set (e.g. |Q| « 232).

– Wagner’s xor-list algorithm [Wag02] for m small and Q a large set.
– Information set decoding for large m and a relatively small set Q (e.g. the

first 1000 primes not dividing M).

Using a birthday attack, we discovered that the 59-bit value

u “ 0x4b0555d761f3f52

is valid mod the 383-bit product of the first 59 odd primes. We also used Wagner’s
algorithm to search for u a product of four 32-bit odd numbers, requiring it to
be valid mod at least the first 72 odd primes. We ran the algorithm for a day
on a 64-core Amazon EC2 Graviton2 instance, producing some 5 million results.
Notably,

u “ 0xe3b0f73b0050ab294417001ad1e63d

is valid mod the 729-bit product of the first 99 odd primes. Our search was tuned
to find u relatively close to uminexp; tuning it differently would have been faster
or found valid u mod more primes, but the resulting u would be significantly
larger.

It isn’t necessary to choose M before u. One could start with a small u
which is valid mod the first several primes, and then choose further primes p|M



so that u is valid. This sacrifices some performance, because discarding small
primes reduces M{φpMq. Our search using Wagner’s algorithm found that

u “ 0x23e9ee9bd621b0b248e8b59a4c80bb55

performs well across a range of bit sizes, losing about 0.5% of performance com-
pared to an unconstrained pM,uq at 1024 bits and 3% at 2048 bits.

The quality of results from Wagner’s algorithm should fall off exponentially
with the number of primes dividing M , because at each step the algorithm
multiplies two intermediate values to produce another intermediate that solves
b more equations, for some block size b. So while it performs well for the first
100 primes, ISD appears to perform better for the first 400 primes.

B.2 Multiple u

Instead of using linear equations to search for a single u, we could choose a few
small u such that at least one of them is valid for every p|M . For example, for
each of the first 133 odd primes, at least one of u P U :“ t1, 2, 5, 19u is valid. We
could factor M into

ś

uPU Mu such that u is valid mod the corresponding Mu.

Then we could sample values xu
$
ÐpZ{Muq

˚ and combine them as in Section 2.2.

B.3 Quadratic minimization

Two other techniques are based on finding small values of quadratic functions
over the integers. One is to factor M as M1 ¨M3 where M1 contains the 1-mod-4
factors and M3 contains the 3-mod-4 factors of M . Valid u are of the form u ” x2

mod M3 for some x coprime to M3. We may plug in x “ t
?
kM3u` ` for small

positive integers k, ` as a more efficient brute force technique. This technique
gives many candidate values of u which are around

?
M3 «

4
?
M , but it still

takes exponential time as M increases.
The second approach is to choose small, coprime, square-free positive integers

pα, βq, and then partition M as M0 ¨M1, such that

u “ αM0 ´ βM1

is valid. This will be true if:

1. For all primes p|M , if p|α then p|M0 and likewise if p|β then p|M1.

2. For all other primes p|M0,
´

β
p

¯

¨
ś

q|M1

´

q
p

¯

“ ´1 and vice versa.

These equations are actually affine: switching a prime p from M0 to M1 or back
has the same effect on all the equations regardless of where the other primes
are assigned. They can therefore be solved efficiently for a given pα, βq with
probability about p1´ 1

2 q ¨ p1´
1
4 q ¨ ¨ ¨ « 0.29.

To further reduce u, we make two improvements. First, we extend the equa-
tion to u “ αM0x

2 ´ βM1y
2 where x is coprime to βM1y

2 and vice versa. By



setting x{y as convergents to
a

βM1{pαM0q, we can find many valid values of
u «

?
α ¨ β ¨M0 ¨M1. Furthermore, we don’t need to set M “M0 ¨M1 exactly:

it suffices to instead choose M2|M upfront and set M “ M0 ¨M1 ¨M2. This
method produces many u which are valid mod M0 ¨M1, and we can continue
until by chance we find one which is also valid mod M2. Overall, this approach
finds u which are slightly smaller than

?
M , as does ISD, but ISD seems to work

better in practice.
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