
Designer Primes
Anna M. Johnston

amj at juniper dot net
Juniper Networks

December 8, 2020

Abstract
Prime integers are the backbone of most public key cryptosystems.

Attacks often go after the primes themselves, as in the case of all
factoring and index calculus algorithms. Primes are time sensitive
cryptographic material and should be periodically changed. Unfortu-
nately many systems use fixed primes for a variety of reasons, including
the difficulty of generating trusted, random, cryptographically secure
primes. This is particularly concerning in the case of discrete log based
cryptosystems. This paper describes a variant of provable prime gen-
eration, intended for discrete logarithm based cryptography, based off
Pocklington’s theorem with improved efficiency, flexibility and secu-
rity.

1 Change Your Prime!

Primes used in most discrete logarithm based public key cryptographic sys-
tems are fixed. The number field sieve, the attack driving size considerations
in finite field cryptography, goes after the prime itself. Once a successful
attack has occurred, discrete logarithms modulo this prime become rela-
tively easy and every system based on this problem is broken. While the
best attacks against these primes are currently infeasible, the fact that the
same small set of primes is used everywhere and never changes makes these
primes exceedingly high value targets. If the unthinkable happens, and one
or more of these primes was successfully attacked, data from banks, industry,
government, and personal accounts would be vulnerable.

1

Variable Description

P
The potential prime (eventually proven prime) Designer
Primes will generate. This will have the form (Rh+ 1).

R
A divisor of (P − 1), with known factorization R =

∏t
j=1 r

mj
j

where rj are distinct primes and m are positive integers.
rj Known prime divisors of R
mj Exponents of known prime divisors of R, with mj ∈ Z<0.
h Random component of P .

h(j)

h may be quite large. If h needs to be split up for the stepping
(section 3.1) procedure, it will be

h = h(2)2ν1+ν0 + h(1)2ν0 + h(0)

with 0 ≤ h(j) < 2νj .
νj The number of bits in each portion of h (see above)

Figure 1: Designer Primes Variables

The best way to mitigate this threat is to treat primes in cryptographic
systems as time-sensitive cryptographic material. Just as symmetric secret
keys should be periodically changed, so should the public primes used in
finite field cryptography.

This paper describes Designer Primes, a new provable prime generation
algorithm based off Pocklington’s theorem [12]. The algorithm improves
both security and efficiency using a technique which simultaneously elim-
inates the ‘prime gap’ (definition C.2) problem and improves the weeding
out of composite integers.

1.1 Strong Provable Primes

Prime generation algorithms based off Pocklington’s theorem are not only
provable, but the generation process is more efficient and provides the nec-
essary data to very quickly repeat the primality proof [9]. A quick primality
proof is essential to security: using a composite modulus or subgroup order
can severely undermine the security of discrete logarithm based public key
cryptography[13].

2

The form of a prime integer p and the group (Z/pZ)∗ contributes to the
strength and capabilities of many public key cryptosystems. If the order of
Z/pZ∗ is smooth (definition C.3) then discrete logarithms over Z/pZ∗, along
with the cryptosystems based upon them, can be broken [15] [18].

Furthermore, a cryptographic systems functionality may require the prime
to have certain properties. For example, systems based on the difficulty of
computing an rth root [8] [1] (where r is a large prime) in a finite group, r2

must divide the order of the group. If the group is (Z/pZ)∗, then p = hr2+1

for some integer h.
Pocklington’s theorem (theorem 4.1.3 in [3]) gives a simple primality test

for integers of the form P = (hR+1) where the complete factorization of R
is known1. This theorem is the cornerstone of Designer Primes, with sieving
and linear feedback shift registers (LFSR’s) employed to improve efficiency
and randomness.

2 Pocklington’s Theorem and Prime Generation

Pocklington’s theorem (theorem A.2) enables a simple primality check on
an integer P if enough of the factorization of (P − 1) is known. Let:

P = hR+ 1 (1)

R =

t∏
k=1

rmk
k (2)

where h is a random integer, rk are distinct prime integers, and mk are
positive integers. If certain size constraints hold on h in comparison to R,
primality can be proven with only (t+ 1) modulo P exponentiations2.

1A watered down version of Pocklington’s theorem in [7] was used in provable prime
generation algorithms described in NIST FIPS 186-3.

2Composite integers are usually revealed in a single exponentiation.

3

2.1 Pocklington Test for Primality and Extensions

Pocklington’s theorem (theorem A.2) tells us that if P = hR + 1 passes a
few tests, then all factors of P ’look’ like P . In other words, if qj is a factor
of P , then:

qj = (Rhj + 1) with hj ≥ 1.

If P is composite, it must have at least two factors of this form. These
factors force h to be fairly large — greater than R. If h ≤ R, then P can
not be composite and must be prime.

Extensions on the bounds of h (see section 3.3 and A.4) increase the
flexibility of the algorithm. Increasing the bound on h increases the po-
tential for entropy in the prime while reducing the computational cost of
the algorithm by reducing necessary steps (i.e., faster growth) and required
exponentiations.

2.2 Bootstrapping

Pocklington’s theorem based prime generation starts with smaller, known
prime numbers (R), finds larger primes using random h values which pass
Pocklington’s primality test (theorem A.3), repeating these steps to find
successively larger primes. This bootstrapping technique is used in many
existing algorithms, including [11], [2], [19], and [10].

2.3 Prime Properties

There are several properties required in cryptographic prime numbers.
If P is the prime being generated then:

Size: The size of the prime must generally be within a given range bit
range: 2B < P < 2B+1, with B determined by current security stan-
dards and user requirements. A larger B increases the cost of field
based attacks such as the number field sieve [6] and its variants.

4

Group Structure: Security and functional requirements for the cryp-
tosystem dictate the structure of the multiplicative group – i.e., con-
straints on the factorization of (P − 1). At a bare minimum there
must be at least one large prime factor of (P − 1), r, with r > 2b, with
b determined by current security standards. A larger b increases the
cost of both field based attacks (number field sieve) and group based
attacks (for examples see [17], [15] [13]).

Other Attack Prevention: Designer Primes are intended for use in fi-
nite field based cryptography. If the primes generated will be used
in factoring, the resulting prime P must have a large prime divisor
of (P + 1) to avoid Lucas sequence based attacks [20]. There are
no discrete logarithm attacks known using smooth (definition C.3) of
(P + 1). Forcing these restrictions on primes used for finite field cryp-
tography reduces randomness and increases computational costs, and
should not be used.

2.4 Probability of finding a prime and maximal R

Pocklington’s theorem tests for primality, but it does not guarantee that a
prime of the given form (equation 1) exists. The probability of finding a
prime of this form depends on the size of R and the desired size of P .

We can compute the probability of a prime existing of the given size and
form using the prime number theorem [4]. If π(x) is the number of primes
less than x, the prime number theorem states:

lim
x→∞

log(x)π(x)x−1 = 1 (3)

or for very large x

π(x) ∼ x (log(x))−1 (4)

Since the final cryptographic primes will be quite large (> 22048), we use
the approximation for the number of primes (equation 4). The expected

5

number of primes 2a < P < 2b is approximately:(
π
(
2b
)
− π(2a)

)
∼ 2a

(
2b−aa− b

)
(ab log(2))−1 .

If R ≈ 2c, then the number of primes with this form in this range is:(
π
(
2b
)
− π(2a)

)
2−c ∼ 2a−c

(
2b−aa− b

)
(ab log(2))−1 . (5)

To improve our chances of finding a prime in the given range and increase
the entropy in each prime, we’d like the expected number of primes (equation
5) to be greater than a positive value n, where lg(n) is a minimal bound on
the maximal entropy of the prime.

n ≤ 2a−c
(
2b−aa− b

)
(ab log(2))−1 ,

The largest R we should use then is:

c < a+ lg
(
2b−aa− b

)
− (lg(a) + lg(b) + lg(log(2)))− lg(n) . (6)

As an example, if a = 2048 and b = 2049 and we want the expected
number of primes in our search to be n = 2256, then the maximal R would
be 2c with

c = 2048 + lg(2047)− (11 + lg(2049)− 0.5288)− 256 = 1781.527

In other words, we can generate a 2048-bit prime with 2256 expected primes
in this range by choosing a R < 21909.

2.4.1 Safe is unsafe

Safe primes have the form P = 2Q + 1 where Q is also prime. These
are often chosen for finite field cryptography due the maximal size of the
multiplicative subgroup, which protects against subgroup based attacks [13],
[14], [15], [17].

While a safe-prime has the advantage of a maximal multiplicative sub-
group, this comes at a cost of greatly reduced entropy and increased gen-
eration costs when primes are regularly changed. There are far fewer safe

6

primes than generic cryptographically secure Pocklington primes, increasing
the computational cost of generating and reducing the entropy contained in
the prime, thus reducing the long term security when primes are regularly
changed.

For example, let’s say we want to find a 2048 bit primes. What must we
do to generate a safe prime and one with a 1024-bit prime divisor of (P −1)?

We’ll look at the simple finite field strong prime first, with R = 2Q.
Given Q, the number of 2048-bit primes P = 2Qh+1 expected in the range
22048 < P < 22049 is:(
π
(
22049

)
− π

(
22049

))
2−1025 ≈ 21023 (4096− 2049) (2048 · 2049 log(2))−1 ≈ 21012.

If Q is a 2047-bit prime and P = 2Q+ 1, then this expected number drops
to:(
π
(
22048

)
− π

(
22049

))
2−2048 ≈ (4096− 2049) (2048 · 2049 log(2))−1 ≈ 2−10.47.

In other words, to generate a safe prime of this form, you’d expect to have
to first generate around 2048 primes, each 2047 in size. In the strong prime
case, there should be more than enough primes in the given range from a
single 1024 bit prime.

2.5 Algorithm Outline

All Pocklington based prime generation algorithms have the same basic
structure. To generate a prime P with 2B < P < 2B+1 and a set of con-
straints on the multiplicative subgroup (i.e., the form of R), primes will be
grown starting from a smaller known prime (or set of primes) to the desired
prime. The single prime generation algorithm is called first with the known
prime(s), then repeated using its output, until the desired size and shape of
prime has been generated.

The following algorithm outlines the prime generation step. Input for
the algorithm is the set of prime divisors in R, and the range for h. How

7

these values are chosen depend on the stage of the generation process and the
desired form of the final prime. For example, the range of smaller primes
should be bounded only by the testing requirements, while later primes
should be bounded to insure appropriate sizes.

Algorithm 2.1: Generate single prime

Input:
{rj ,mj | 1 ≤ j ≤ t} Known factors for P , with R =∏t

j=1 r
mj
j

hL, hU
Bounds for h with hL ≤ h < hU ≤
R2

Output: P prime number, or 0 for FAILURE

I : Choose a random starting value hL ≤ h0 < hU and set h = h0.

II : While P = (Rh+ 1) fails primality test (section 3.2):

A: Increment h (section 3.1);

B: If h = h0, then return 0 (FAILURE);

III : return P

End of Algorithm 2.1

Designer Primes differs from other Pocklington based generation tech-
niques in how both the testing and stepping of h is performed.

• Stepping (section 3.1) is improved by using Galois registers to step
through the h values. This insures every h value within the bounds
can occur once and only once, as in a traditional additive stepping,
but with (for all practical purposes) random step sizes. The random
step size minimizes entropy loss in the generation process from the
prime-gap bias, improving the entropy contained in the final output
prime.

8

• Testing (section 3.2) is improved by tying it to the stepping process,
eliminating trial division. Sieving (section 3.4) ’pre-checks’ all poten-
tial prime numbers for divisibility by small primes making trial division
unncessary.

3 Algorithm Details
3.1 Incrementing h

The value of h is incremented at step j of algorithm 2.1. The technique for
incrementing h should satisfy several constraints:

Non-repeating: The range for h is generally very large, therefore the
probability of a repeated h value is quite small. However, this is still
a concern if (1) the range for h is small; (2) the randomizer is poor.

Random stepping: After choosing a random starting point for h, it could
be stepped by one each time. However, large gaps exist between some
primes but not between others. Single stepping h may bias the algo-
rithm towards those primes on the edges of the gaps.

Bounded: Bounds on P are obtained through bounds, first on R, then on
h.

3.1.1 Stepping through h values with Galois Registers

Using Galois registers to step h solves both the non-repeating and random
requirements. Galois registers are a simple, deterministic way to imitate
a random number generator. Its output passes many random tests, but
cycles over all possible non-zero values. If a k bit register starts at an initial
random point 0 < reg < 2k it can be stepped 2k − 1 times before it repeats.

Galois registers use polynomials, polynomial arithmetic (figure 2) and
modular polynomial arithmetic (figure 3) as described in appendix B

The following algorithm iterates through a Galois register, given a cur-
rent non-zero initial and current state.

9

Algorithm 3.1: Galois Step Register

Input: reg0 starting register value
reg current register value

Output: Modifies reg by stepping it with the fixed, degree k-polynomial.

I : Constants – ply
integer representing lower k
coefficients of a degree k prim-
itive binary polynomial

mask 2k−1

II : If reg = 0: Return ERROR register can not zero.

III : if reg&mask = 0: reg = reg << 1 Left shift register over
one bit (multiply by 2)

IV : else: reg = ((reg ⊕mask) << 1)⊕ ply Left shift and reduce

V : if reg = reg0: Set reg = 0 ran out of possible reg
values, except zero

VI : return

End of Algorithm 3.1

A sieve (section 3.2) to reduce trial division costs will be performed over
the size of the register. If the register is k-bits long, and 64-bit words are
used to store the sieve data, then 2k−6-words are needed for the sieve. For
k = 16, the sieve will require a 1024 long array of 64-bit words.

The sieve restrictions bound the size of the Galois register. In most cases
it will not cover the entire h range. Instead, h will be divided into sections,
each k-bits long.

Let hL ≤ h < hU . Then we can rewrite h as

h = hL + h′

where 0 ≤ h′ < hR and hR = (hU − hL).

10

The number of acceptable values for h′ will be divided into k-bit words.
These k-bit words will be initialized with non-zero values, then Galois stepped
to find subsequent trials.

Let s =
⌊
lg hR
k

⌋
, then

h′ = h(s)2sk +
s−1∑
j=0

h(j)2jk

where 0 ≤ h(j) < 2k for 0 ≤ j < s and 0 ≤ h(s) <
⌊
hR

2sk

⌋
.

All words of h′ are randomly initialized with a non-zero value within
their bounds:

h′0 = h
(s)
0 2sk +

s−1∑
j=0

h
(j)
0 2jk.

Stepping (algorithm 3.2) occurs in a clock like fashion, with the (s− 1)

term stepping every time until all possible values have been tried. If more
steps are necessary, the (s−2) term is stepped once before returning to step
the (s− 1) term again, and so on.

Algorithm 3.2: Extended Galois Stepping

Input:
h0 = h

(s)
0 2sk +

∑s−1
j=0 h

(j)
0 2jk

starting register values, h
(j)
0 ̸= 0

for 0 ≤ j ≤ s

h′ = h(s)2sk +
∑s−1

j=0 h
(j)2jk

current register value, h(j) ̸= 0 for
0 ≤ j ≤ s

Output: Modifies h′, returning an error if the boundaries have been ex-
hausted.

I : Set j = (s− 1),

II : while (j ≥ 0) AND
(the call to algorithm
3.1 with

(
h
(j)
0 , h(j)

)
re-

turns an error)
:

loop until a new ran-
dom value can be stepped
into; note: this added
stepping is VERY rarely
needed.

11

A: Subtract one from j: j = j − 1 move the index to try the
next lowest k-bit register

III : If j < 0: return ERROR No new random values
can be found

IV : Else return

End of Algorithm 3.2

3.2 Primality test

Pocklington’s theorem (theorem A.2) and the resulting primality tests re-
quire two conditions (equation 9, 8) and bounds on h (theorem A.3, A.4).
The conditions and bounds are used together with some common sense tech-
niques. These are detailed in algorithm 3.3.

Algorithm 3.3: Primality Test

Input:

P Prime to be tested

wasSieved Boolean, true if sieve was used for
small divisors

{rj | 1 ≤ j ≤ t} Divisors of (P − 1), ordered with
r
mj

j > r
mj+1

j+1

Output: prime status prime or composite

I : Set status = unsure

II : If wasSieved = false: Test for small primes divisors –
return composite if a divisor is found

check for small divisors
if needed

III : Set g = 2 Base for Pocklington’s
tests

IV : While status = unsure:

A: If gP−1 ̸≡ 1 mod P : Set status = composite Fails Fermat test (equa-
tion 8)

12

B: j = 1 index for prime divisors
of R

C : rem = (P − 1) allows all powers of R to
be removed from (P −1)

D: Set:divisors = 1
Stores size of divisors:
with (P − 1) = rem ·
divisors

E: While status = unsure and divisors < rem2 and j ≤
t:

1: Compute x ≡ gP/rj − 1 mod P Pocklington’s second test
(equation 9)

2: If gcd(x, P) = 1:

i: While rem ≡ 0 mod rj : Set

⋄ rem = rem/rj remove all powers of rj
from rem

⋄ divisors = divisors · rj and put it in divisors

ii: Else: Add one to g: g = g + 1, and
set divisors = 0

try a different base as P
is probably prime

F: If rem ≤ divisors: status = prime Satisfies simple Pock-
lington’s test

G: Else if rem2 ≤ divisors

1: status = PocklingtonExtension (h,R) Algorithm 3.4

V : return status.

End of Algorithm 3.3

3.3 Extending Pocklington’s Bound

Pocklington based prime generation test (theorem A.3) restricts the size of
the random portion of the prime h, to less than the known portion, R. While
this test allows the prime to double in size at each iteration, there is a simple
extension which allows the prime to triple in size at each interation. Not
only does this extension improve the growth rate of primes, but it increases
entropy and reduces computation costs.

13

The extension (theorem A.4) changes the bound on h from h ≤ R to
h ≤ R2. The added test is fairly simple. Assuming the integer passes the
exponentiation tests and h < R2, then if

(
(h mod R)2 − 4

⌊
h
R

⌋)
is not a

perfect square, P is prime.
Testing an integer to see if it is not a perfect square is fairly simple. If

an integer x is a perfect square, then it must be a quadratic residue modulo
q for any prime q. If x is not a quadratic residue for any prime q, then x is
not a perfect square.

Algorithm 3.4 tests for quadratic residue modulo a set of small primes.
If the integer is not a quadratic residue for even a single prime, it is not a
perfect square and it passes the extension test.

Algorithm 3.4: Pocklington’s Extension Test

Input: h Random portion of the prime
R Known portion of the prime

Output: true if prime, false otherwise

I : Constants : A set of small primes {qj | 0 ≤ j < 1000}, with
q0 = 5, q1 = 7 an so on.

II : set status = false
status of the prime
test. As soon as one
prime fails the quadratic
residue test, the status
changes to true

III : Set b = (h mod R)2

IV : Set a = 4 ·
⌊
h
R

⌋
V : If b < a: neg= true

val=a− b

Computing b − a, keep-
ing track of the negative
sign

VI : else neg= false
val=b− a

14

VII : set j = 0

VIII : While j < 1000 and status = false

A: Compute v = val(qj−1)/2 mod qj

B: if neg is true:

1: if (qj − 1)/2 is odd and v = 1: status = true b−a is a quadratic non-
residue

2: else (qj − 1)/2 is even and v = qj − 1: status = true b−a is a quadratic non-
residue

C : else if v = (qj − 1): status = true

D: j = j + 1

End of Algorithm 3.4

3.4 Sieving for Small Factors

Though there are several techniques for weeding out the composites with
small prime factors, sieving is the most efficient when searching for large
prime numbers. Let S = {qi | 1 ≤ i < s} be the set of all small primes less
than a chosen bound and relatively prime to R. Sieving quickly searches
a set of possible h-values for those which P = hR + 1 are not divisible by
any prime in S. It does this by creating an array A of bits, with each bit
corresponding to a particular h. If the bit is ’on’ (i.e., 1), no small primes
divide P ; if it is ’off’ the integer is divisible by some small prime in S.

To create this array, work is done modulo qi ∈ S. The first h such that
P is divisible by qi needs to be found. Recall that

P =

hL +
s∑

j=0

h(j)2j

R+ 1.

Only one of the h(j) words will be sieved over at a time – generally j = (s−1).
The rest remain fixed. For the general case, assume that all words are fixed

15

except j = w. To find the first h value, set P ≡ 0 mod qi.

0 ≡

hL +
s∑

j=0

h(j)2kj

R+ 1 mod qi

h
(w)
i ≡ −


(
R2wk

)−1
+

s∑
j = 0
j ̸= w

h(j)2(j−w)k + hL2
−wk

 mod qi

Not only is (hiR + 1) divisible by qi using this value of h(w), but so is
any (hR+ 1) where h(w) ≡ h

(w)
i mod qi.

Using a bit array the of a given length (say 2k long), the sieve starts
with all bits on – indicating good h-values. For each prime qi, the solution
h
(w)
i is turned off, then h

(w)
i + qi, hi + 2qi, and so on. The remaining bits

on will be h(w) values whose corresponding P value is not divisible by any
prime in S.

Algorithm 3.5: Basic Sieving of h-values

Input:

S = {qi} 1 ≤ i < s small prime set

R
the known prime factorization of
P = hR+ 1

k the number of bits to sieve

w,
{
h(j)

} fixed portions of h, with 0 ≤ j ≤ s,
and j ̸= w

Output: A
k-long bit array with good h values
’on’

I : Create an k-long bit array A and set all k bits of A ’on’ (set to
1)

II : for each prime qi ∈ S

16

A: h(w)[i] = −

(
R2wk

)−1
+
∑s

j = 0
j ̸= w

h(j)2(j−w)k + hL2
−wk

 mod

qi

B: set v = h(w)[i]

C : while v < 2k:

1: turn off bit v of A;

2: Set v = v + qi

III : return A

End of Algorithm 3.5

As an example, we’ll solve for hi values for R = 1999 and S = {2, 3, 5, 7, 11}.
The first step is to solve for hi, in this case hi(1999) + 1 ≡ 0 mod qi, or
≡ (−1)(1999)−1 mod qi. The starting solutions are:

i 1 2 3 4 5

qi 2 3 5 7 11

hi 1 2 1 5 4

The sieve data A is stored as a bit array. In this example, the actual values
are placed in each ’bit’ position for clarity.

For this example, sieving is performed for the values from 200 to 249.
The starting array will be:

200 201 202 203 204 205 206 207 208 209

210 211 212 213 214 215 216 217 218 219

220 221 222 223 224 225 226 227 228 229

230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249

For clarity again, instead of turning the cell ’off’, the divisor
Starting with q1 = 2, the first value divisible by 2 will be equivalent to

h ≡ h1 mod 2 and greater than or equal to 200: i.e. 201. Sieving out the

17

values divisible by q1 = 2 gives:

200 2 202 2 204 2 206 2 208 2
210 2 212 2 214 2 216 2 218 2
220 2 222 2 224 2 226 2 228 2
230 2 232 2 234 2 236 2 238 2
240 2 242 2 244 2 246 2 248 2

For q2 = 3, h ≡ 2 mod 3, which is 200. Sieving out the values divisible by
q2 = 3 gives:

3 2 202 2,3 204 2 3 2 208 2,3
210 2 3 2 214 2,3 216 2 3 2
220 2,3 222 2 3 2 226 2,3 228 2
3 2 232 2,3 234 2 3 2 238 2,3

240 2 3 2 244 2,3 246 2 3 2

sieving out those divisible by q3 = 5, the smallest value greater than or equal
to 200 and equivalent to 1 mod 5 is 201:

3 2,5 202 2,3 204 2 3,5 2 208 2,3
210 2,5 3 2 214 2,3 5 2 3 2
220 2,3,5 222 2 3 2 5 2,3 228 2
3 2,5 232 2,3 234 2 3,5 2 238 2,3
240 2,5 3 2 244 2,3 5 2 3 2

For q4 = 7, the starting value must be equivalent to 5 mod 7. This starting
value is 201 ≡ 5 mod 7.

3 2,5,7 202 2,3 204 2 3,5 2 7 2,3
210 2,5 3 2 214 2,3,7 5 2 3 2
220 2,3,5 7 2 3 2 5 2,3 228 2,7
3 2,5 232 2,3 234 2 3,5,7 2 238 2,3

240 2,5 3 2,7 244 2,3 5 2 3 2

Finally, the starting value for q5 = 11 must be equivalent to 4 mod 11. This

18

starting value is 202.

3 2,5,7 11 2,3 204 2 3,5 2 7 2,3
210 2,5 3 2,11 214 2,3,7 5 2 3 2
220 2,3,5 7 2 3,11 2 5 2,3 228 2,7
3 2,5 232 2,3 234 2,11 3,5,7 2 238 2,3

240 2,5 3 2,7 244 2,3 5,11 2 3 2

This leaves 10 remaining h values between 200 and 249. Six of these h-values
generate prime numbers The other six are divisible by primes greater than
11.

19

A Pocklington’s theorem and corollaries

The properties, given below, can be found in elementary number theory
books such as [16].

Definition A.1 (Order of elements): Let P and g be integers such that the
gcd(P, b) = 1. The order of g modulo P is the smallest positive integer d

such that gd ≡ 1 mod P .

Fact: If d is the order of an integer modulo a prime p then d divides
p− 1 (p− 1 = dx for some integer x). If the order of g is d in Fp and
gx ≡ 1 mod p, then d divides x or x = dy for some integer y.

Theorem A.2 (Pocklington, 1914): Let P, h,R be integers with

P = hR+ 1

R =
t∏

k=1

rmk
k

(7)

where rk are distinct prime integers. If there exists an integer g with

ghR ≡ 1 mod P (8)

gcd
((

g
hR
rk mod P

)
− 1, P

)
= 1 for all 1 ≤ k ≤ t (9)

then all prime factors of P are congruent to one modulo R.

Proof. Let q be a prime divisor of P and d be the multiplicative order of
g mod q. Equation (8) gives us that d |hR and equation (9) gives us that
g

hR
rk ̸≡ 1 mod q. Together this implies that rmk

k |d for all k and that R |d .
Since d |(q − 1) and R |d , we have R |(q − 1) and q ≡ 1 mod R.

If an integer passes the Pocklington’s tests (equation 7) and either h ≤ R

(theorem A.3) or h < R2 and a related integer is not a perfect square
(theorem A.4), then P is prime.

20

Corollary A.3 (Provable Primality Test): Let P be defined as in equation
(7) with and assume that equations 8, 9 hold for all 1 ≤ i ≤ t. If h ≤ R

then P is a prime integer.

Proof. From theorem A.2 we know that any prime q dividing P satisfies
q ≡ 1 mod R. Assume that P is composite with q |P .

1. Since q ≡ 1 mod R and qP
q = P ≡ 1 mod R ∴ P

q ≡ 1 mod R and

q = h0R+ 1

P

q
= h1R+ 1

for some h0, h1 > 0.

2. Multiplying these two equations out gives:

q
P

q
= (h0R+ 1)(h1R+ 1)

= (h0h1R+ (h0 + h1))R+ 1

= hR+ 1

Therefore, since h0, h1 > 0,

h = h0h1R+ h0 + h1

h > R

3. The third assumption of the proof states that h ≤ R, which contradicts
the assumption that P was composite.

Therefore P is prime.

The bound on Pocklington’s prime text can be extended ([2], theorem 5
and [10], lemma 2) with a simple computation.

21

Corollary A.4 (Extension to Pocklington’s): Let P,R, g be defined as in
theorem A.2, satisfying equations (8) and (9); define

β ≡ h mod R (10)

γ =

⌊
h

R

⌋
(11)

If R3 ≥ P and
(
β2 − 4γ

)
is not a perfect square, then P is prime.

Proof. 1. From theorem A.2, P =
∏n

k=1 (Rhk + 1) with hk ≥ 1. Since
R3 ≥ P and each factor (Rhk + 1) > R, n < 3. If P is composite,
n = 2 and

P = hR+ 1 = (Rh1 + 1) (Rh2 + 1)

= R (Rh1h2 + (h1 + h2)) + 1

h = Rh1h2 + (h1 + h2) R3 ≥ N = Rh+ 1

R2 > h R > h1h2 (12)

2. h1 + h2 < R (by contradiction):

Assume (h1 + h2) ≥ R, and without loss of generality, that h1 ≤ h2,
with (h1 + h2) = R+ δ with δ ≥ 0. We know

R > h1h2 = h1 (R+ δ − h1)

> Rh1 + δh1 − h21

h21 > R (h1 − 1) + δh1 R > h1h2 ≥ h21

If h1 > 1, then R > h21 > R, which is a contradiction. If h1 = 1,

R2 > h =
(
R2 +Rδ −R

)
+ (R+ δ) ≥ R2,

which is also a contradiction. Therefore (h1 + h2) < R.

22

3. Since h1 +h2 < R, the reduced value β ≡ h mod R is equal to h1 +h2

and γ =
⌊
h
R

⌋
equals h1h2.

4. Knowing the sum and product of h1, h2, we know that

(x− h1)(x− h2) = x2 − βx+ γ

therefore h1, h2 ∈
{(

β ±
(
β2 − 4γ

)1/2)
/2
}

.

5. If
(
β2 − 4γ

)
is a perfect square, then R is composite and we know its

factors. If it is not a perfect square, R is prime.

B Polynomial and Extension Field Arithmetic

• A polynomial f over F2 is a polynomial with all coefficients either
one or zero, and the notation f ∈ F2[x] is used to show that f is a
polynomial. For example, f(x) = x3 + x+ 1.

• Binary polynomials are often stored as binary registers. For example,
the polynomial f(x) = x3 + x+ 1 can be represented as

x3 x2 x1 x0

1 0 1 1

Notice that it takes k + 1 bits to represent a degree k polynomial.

• Polynomials can be added or multiplied in the usual way, but with
operations in F2. For example (in both polynomial and binary nota-
tion): (

x2 + 1
)
+ (x+ 1) = x2 + x [101] + [011] = [110](

x2 + x+ 1
) (

x3 + x2 + 1
)
= x5 + x+ 1 [0111][1101] = [100011]

Figure 2: Binary Polynomial Representation and Operations

23

• If f ∈ F2[x] has degree deg(f) = k > 0, then we can work modulo
f(x) (i.e., in F2[x]/f(x)). Polynomial operations are identical as in
the normal F2 polynomials, but now we have equivalences defined by
f . For example, if f(x) = x4 + x3 + 1 (degree k = 4) then f(x) ≡
0 mod f(x), and x4 ≡ x3 + 1 mod f(x) (remember subtraction is the
same as addition in binary). Every polynomial with degree k or grater
can be reduced by replacing any xk+t with

(
x3 + 1

)
xt.(

x2 + x+ 1
) (

x3 + x2 + 1
)
= x5 + x+ 1

≡ (x3 + 1)x+ x+ 1

≡ (x3 + 1) + x+ x+ 1

≡ [1000] mod [1101]

• A polynomial f ∈ F2[x] is primitive with degree k > 0 if

1. f has no divisors in F2[x] except 1 and itself.
2. Every non-zero element in F2[x]/f(x) can be represented as a

power of x (i.e., x is a generator). For example, f(x) = x4+x3+1
is primitive:

j xj mod f
x3 x2 x1 x0

0 0 0 0 1
1 0 0 1 0
2 0 1 0 0
3 1 0 0 0
4 1 0 0 1

j xj mod f
x3 x2 x1 x0

5 1 0 1 1
6 1 1 1 1
7 0 1 1 1
8 1 1 1 0
9 0 1 0 1

j xj mod f
x3 x2 x1 x0

10 1 0 1 0
11 1 1 0 1
12 0 0 1 1
13 0 1 1 0
14 1 1 0 0

Figure 3: Binary Extension Field Operations

Tables of primitive polynomials can be found in many places; the follow-
ing are but a few examples:

x8 + x5 + x3 + x2 + 1 x10 + x3 + 1

x12 + x11 + x10 + x6 + x3 + x2 + 1 x13 + x12 + x9 + x3 + 1

C Prime Generation Definitions and Comments

Prime integers are irregularly spaced.

24

Definition C.1 (Adjacent primes): Two primes pi−1, pi are adjacent if
pi−1 < pi and every integer q with pi−1 < q < pi is composite.

Definition C.2 (Prime Gap): The prime gap Gi for adjacent primes pi−1, pi

is the set of integers between the two primes: G = {k ∈ Z | pi−1 < k ≥ pi }

Prime generation algorithms search for primes, usually choosing a ran-
dom starting point and incrementing until a prime has been found. This
initial guess is in some prime gap Gi, and the prime generated will be the
prime pi. Primes pi with larger prime gaps Gi have a higher probability
of being generated. This prime gap bias is eliminated with the stepping in
the Designer Primes algorithm. The larger the prime gap for a prime, the
higher the probability that the srimes pi with larger gaps Gi have the higher
the probability of a random start occurring in Gi. being generated.

Definition C.3 (Smooth Integers): Smooth integer with respect to bound
B: An integer S is smooth if it is divisible only by small primes q with each
prime q < B. The order of Z/pZ∗ is (p− 1).

References

[1] Cheryl Beaver, Peter Gemmell, Anna Johnston, and William New-
mann, On the cryptographic value of the qth root problem, Proceedings
of the International Conference on Information and Computer Security,
Lecture Notes in Computer Science, Springer, 1999, Sydney, Australia,
pp. 135–142.

[2] John Brillhart, D.H. Lehmer, and J.L. Selfridge, New primality criteria
and factorizations of 2m ± 1, Mathematics of Computation 29 (1975),
no. 130, 620–647.

[3] R. Crandall and C. Pomerance, Prime numbers: A computational per-
spective, second ed., Springer-Verlag, 175 Fifth Avenue, New York, New
York 10010, U.S.A., 2005.

25

[4] , Prime numbers: A computational perspective, second ed.,
ch. 1.1.5, p. 10, in theorem 1.1.4 [3], 2005.

[5] , Prime numbers: A computational perspective, second ed.,
ch. 4.1, p. 175, in theorem 4.1.3 [3], 2005.

[6] D.M. Gordon, Discrete logarithms in gf(p) using the number field sieve,
SIAM Journal on Discrete Mathematics (1993), no. 6, 124–138.

[7] G.H. Hardy and W.M. Wright, An introduction to the theory of num-
bers, fifth ed., Oxford Science Publications, New York, 1979.

[8] Anna Johnston and Peter Gemmell, Authenticated key exchange prov-
ably secure against the man-in-the-middle attack, Journal of Cryptology
15 (2002), no. 2, 139–148.

[9] Anna Johnston and Rathna Ramesh, Prime proof protocol, 2019 paper,
to be published.

[10] Ueli M. Maurer, Fast generation of prime numbers and secure public??
key cryptographic parameters, Journal of Cryptology 8 (1995), 123–155.

[11] William J. Miller and Nick G. Trbovich, Rsa public-key data encryption
system having large random prime number generating microprocessor
or the like, 1982, US Patent assigned to Racal-Milgo Inc; expired 2000.

[12] Henry C. Pocklington, The determination of the prime or composite
nature of large numbers by fermat’s theorem, Proceedings of the Cam-
bridge Philosophical Society, no. 18, University of Cambridge, 1914–
1916, pp. 29–30.

[13] S.C. Pohlig and M.E. Hellman, An improved algorithm for computing
logarithms over gf(p) and its cryptographic significance, Transactions
on Information Theory, no. 24, IEEE, 1978, pp. 106–110.

26

[14] J.M. Pollard, Monte carlo methods for index computation (mod p),
Mathematics of Computation, no. 32, 1978, pp. 918–924.

[15] , Kangaroos, monopoly and discrete logarithms, Journal of Cryp-
tology 13 (2000), 437–447.

[16] Kenneth H. Rosen, Elementary number theory and its applications,
third ed., Addison-Wesley Publishing Co., Reading, Massachusettes,
1993.

[17] Daniel Shanks, Class number, a theory of factorization, and genera,
Proceedings of Symposia in Pure Mathematics 10 (1969), 415–440.

[18] , Five number-theoretic algorithms, Proceedings of the Second
Manitoba Conference on Numerical Mathematics, no. VII, 1972, Uni-
versity of Manitoba, Winnipeg, Manitoba, pp. 51–70.

[19] J. Shawe-Taylor, Generating strong primes, Electronics Letters 22
(1986), 875–877.

[20] H. C. Williams, A p+1 method of factoring, Mathematics of Computa-
tion 39 (1982), no. 159, 225–234.

27

	Change Your Prime!
	Strong Provable Primes

	Pocklington's Theorem and Prime Generation
	Pocklington Test for Primality and Extensions
	Bootstrapping
	Prime Properties
	Probability of finding a prime and maximal R
	Safe is unsafe

	Algorithm Outline

	Algorithm Details
	Incrementing
	Stepping through values with Galois Registers

	Primality test
	Extending Pocklington's Bound
	Sieving for Small Factors

	Pocklington's theorem and corollaries
	Polynomial and Extension Field Arithmetic
	Prime Generation Definitions and Comments

