
PEGASUS: Bridging Polynomial and Non-polynomial Evaluations in Homomorphic
Encryption

Wen-jie Lu∗, Zhicong Huang∗, Cheng Hong∗, Yiping Ma† and Hunter Qu∗
∗ Gemini Lab, Alibaba Group, † University of Pennsylvania

Abstract

Homomorphic encryption (HE) is considered as one of the most important primitives for privacy-preserving applications.
However, an efficient approach to evaluate both polynomial and non-polynomial functions on encrypted data is still absent,
which hinders the deployment of HE to real-life applications. To address this issue, we propose a practical framework PEGASUS.
PEGASUS can efficiently switch back and forth between a packed CKKS ciphertext and FHEW ciphertexts without decryption,
allowing us to evaluate arithmetic functions efficiently on the CKKS side, and to evaluate look-up tables on FHEW ciphertexts.
Our FHEW → CKKS conversion algorithm is more practical than the existing methods. We improve the computational
complexity from linear to sublinear. Moreover, the size of our conversion key is significantly smaller, e.g., reduced from 80
gigabytes to 12 megabytes. We present extensive benchmarks of PEGASUS, including sigmoid/ReLU/min/max/division, sorting
and max-pooling. To further demonstrate the capability of PEGASUS, we developed two more applications. The first one is a
private decision tree evaluation whose communication cost is about two orders of magnitude smaller than the previous HE-based
approaches. The second one is a secure K-means clustering that is able to run on thousands of encrypted samples in minutes
that outperforms the best existing system by 14 × – 20×. To the best of our knowledge, this is the first work that supports
practical K-means clustering using HE in a single server setting.

I. INTRODUCTION

Homomorphic encryption (HE) is a cryptosystem that enables homomorphic operations on encrypted data and is considered
as one of the most important building blocks for privacy-preserving applications. A potential application of HE is secure
outsourcing [3], [36], where all the data comes from clients. That is, the client(s) encrypts his/her data using HE and uploads
the ciphertexts to the server that performs all the computations over encrypted data. The server then returns the result in the
form of ciphertext to the client that can decrypt to get the computed result. Another potential application of HE is secure
two-party computation. The difference from secure outsourcing is that the server also holds its private databases, and the
clients send encrypted queries to the server. Many applications fall into this setting, e.g., the private information retrieval [42]
and the decision-tree evaluation [37], [51].

Most of the current HE schemes can be categorized into word-wise HE (such as BFV [26], BGV [8] and CKKS [14]) and
bit-wise HE (such as FHEW [24] and TFHE [18]). Each type has particular advantages and disadvantages. Word-wise HEs
support efficient single-instruction-multiple-data (SIMD) style homomorphic operations (i.e., addition and multiplication) by
packing multiple plaintexts into a single ciphertext [49]. However, it becomes difficult to compute non-polynomial functions
such as sigmoid, min/max, and division on the ciphertexts of word-wise HEs. As a compromise, the existing word-wise
HE-based approaches approximate non-polynomial functions using low-degree polynomials [29], [39] or simply avoid them,
e.g. replacing the max-pooling with average-pooling [22]. Moreover, in applications such as K-means clustering, there exist
inevitable non-polynomial functions (i.e., min-index and division) that are hard to approximate via low-degree polynomials.

Contrary to word-wise HEs, bit-wise HEs support arbitrary functions presented as boolean circuits by encrypting each bit
of the plain values using some representatives from their message space. However, as shown in [17], [18], bit-wise HEs are
barely practical for addition and multiplication circuits, especially when the boolean circuit consists of thousands of fan-in
bits and a large circuit depth. For example, [18] took about a half minute to multiply two encrypted 16-bit integers. Also,
the expansion ratio of bit-wise HEs is usually several orders of magnitude larger than the word-wise HEs which could lead
to a higher communication cost.

When applying HEs to real-world applications such as secure neural network inferences [22], [29], the problem is even more
challenging. That is because the inference procedure computes many instances of arithmetic functions such as convolution,
and non-polynomial functions such as sigmoid and max-pooling. It is then natural to ask the following question:

Can we evaluate both polynomial functions and non-polynomial functions on encrypted data efficiently and effectively?
Unfortunately, there are few practical approaches and frameworks that achieve this target.

† Yiping participated in this work as an internship at Alibaba.

1

Table I: Memory cost and computation costs (number of polynomial multiplications) of the repacking algorithms. N (resp.
n) denotes the dimension of RLWE (resp. LWE). q is the ciphertext modulus and ` denotes the number of LWE ciphertexts
to repack. We have 1 ≤ ` ≤ N/2 and N � n.

Space (bit-size) Computation

[7] O(Nn log q) O(n)
[11, §3.4] O(N logN log q) O(`+ log(N/`))

Ours O(N log q) O(min(
√
n,
√
`+ log(dn/`e)))

Table II: Insufficiency of existing approaches. The efficiency in the last column is considered as “high” if the method provides
either a high throughput or a low latency computation.

Support arithmetic
SIMD? Flexibility Key Efficiency

[16] Yes Very limited
(min/max) ≈ 4GB High†

[43] No Limited (LUT on
a small domain) > 5GB High

[7] Yes High (LUT on
large domains) � 10GB Low

Ours Yes High (LUT on
large domains) ≈ 1GB High

† In the sense of amortization.

A. Related Work

Cheon et al. [15], [16] presented an efficient (in the amortized sense) method to compute min/max over the CKKS
scheme. Their method is suitable to compute the min/max on a large batch (e.g., > 216) of encrypted integer pairs, but is
less suitable for a recursive comparison such as sorting an encrypted vector. Moreover, their method is designed specifically
for the min/max operations, and it is not clear how to use it to compute other non-polynomial functions, e.g., square-root
and division.

Micciancio et al. [43] presented a flexible method for non-polynomial functions by evaluating look-up tables (LUT) on
ciphertexts. Indeed, their method uses a learning-with-error (LWE) -based HE scheme. However, their method demands the
plaintext modulus to be a divisor of the LWE dimension, which is usually chosen as a small value (e.g., an integer of
10–12 bits) for the sake of efficiency. As a result, one can not apply their LUT methods to the scenario that requires a large
plaintext domain. Not to mention that LWE-based HE schemes do not support SIMD style arithmetic computations.

The most relevant study is by [7]. They designed the CHIMERA framework to switch between TFHE ciphertexts and
ciphertexts of the torus variant of CKKS/BFV schemes. On one hand, CHIMERA enables to perform SIMD style arithmetic
operations on the CKKS/BFV side, and to compute LUTs with a large domain on the TFHE side. However, their conversion
TFHE→ CKKS/BFV (designated as repacking) is costly in terms of key size and computation costs. Although a concurrent
work from [11] can improve the computation efficiency of CHIMERA, this improvement is limited to a small repacking
size, i.e., ` = Ω(logN). The computation costs of [11, §3.4] are still high when ` ≈ N (see Table I). Moreover, CHIMERA
uses multi-precision floating-point values of hundreds of bits to maintain a proper precision when exporting CKKS/BFV to
the torus. As a result, CHIMERA needs Multi-Precision Fast Fourier Transform (MP-FFT) for the polynomial operations
in its torus variant of CKKS/BFV, which can significantly deteriorate the efficiency of their framework. MP-FFT can be
several orders of magnitude slower compared to their integer counterparts using Number Theoretic Transform (NTT) and
Residue Number System (RNS).

In Table II, we summarize the insufficiency of the current arts for evaluating polynomial functions and non-polynomial
functions on encrypted data. A practical approach that supports SIMD style homomorphic operations and provides high
flexibility for non-polynomial functions is still absent.

B. Contribution

In this work, we present PEGASUS, a highly optimized framework that supports both SIMD style operations and LUT
evaluations on large input domains (i.e., the last row of Table II). Our contributions can be summarized as follows.

1) We ease the constraint in the LUT method [43] to accept a significantly larger input (e.g., > 40 bits) at the cost of
introducing some approximation errors. stress that a such large input domain is sufficient enough for many applications such

2

as privacy-preserving machine learning. We provide empirical and theoretic analyses on the errors.
2) We present a memory-efficient and fast repacking algorithm. In brief, our repacking key consists of one CKKS ciphertext

which is tremendously smaller than that of CHIMERA which consists of thousands of CKKS ciphertexts. We compare our
repacking algorithm with the existing methods in Table I.

3) We implemented PEGASUS using SEAL [47]. Different from CHIMERA, we do not export CKKS to the torus. As
a result, Pegasus can benefit from the efficiency of the underlying optimized NTT/RNS. Our implementations are publicly
available in https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS.

4) We present extensive empirical results including min/max, sorting, division, square-root, and decision tree evaluation on
encrypted data. To further demonstrate the potential of Pegasus, we also implement a viable application that runs K-means
clustering on thousands of encrypted samples in minutes. To the best of our knowledge, we are the first to achieve practical
secure K-means clustering using purely HE in a single-server setting.

II. PRELIMINARIES

A. Notations

For a 2-power number n, we write Rn = Z[X]/(Xn + 1) and Rn,q = Rn/qRn ≡ Zq[X]/(Xn + 1). We use lower-case
letters with a “hat” symbol such as â to represent elements in Rn, and aj to denote the j-th coefficient of â. We use the dot
symbol · such as â · b̂ to represent the multiplication of ring elements. We use bold lower-case letters symbol such as a to
represent vectors, and use a[j] to denote the j-th component of a, and use a‖b to denote the concatenation of vectors. We
use a� k to denote the left-hand-side rotation of the vector components. We use a>b to denote inner product of vectors
and a ◦ b for the Hadamard product of vectors. We use bold upper-case letters such as M to denote matrices, and M[i, j]
to denote the (i, j) entry of M. We denote by 〈n〉 the set {0, · · · , n − 1} for n ∈ N. We use d·c to denote the rounding
function. Function I(P) returns 1 if the predicate P is true, and otherwise it returns 0. All logarithms are to base 2.

B. LWE, Ring-LWE Encryption

We use the notation LWEn,qs (m) to denote the set of the possible LWE encryption of the message m ∈ Zq under the
secret s ∈ Znq . (b,a) = (m + e− a>s,a) ∈ LWEn,qs (m), where a ∈ Znq is chosen uniformly at random, and the error e is
chosen from an error distribution χerr. The decryption formula for the LWE ciphertext is b+ a>s ≈ m.

Similarly, a basic RLWE encryption of a message m̂ ∈ Rn,q under the key ŝ ∈ Rn is given as (b̂, â) = (m̂+ ê− â · ŝ, â) ∈
RLWEn,qŝ (m̂), where â ∈ Rn,q is chosen uniformly at random, and the error ê is chosen by sampling its coefficients from
the error distribution χerr independently. To lighten the notation, we identify the secret key of RLWE as a vector s where
s[j] = sj for all j ∈ 〈n〉, and we write the RLWE encryption of m̂ as RLWEn,qs (m̂) from now on. Also, PEGASUS can work
with an asymmetric RLWE encryption, but we use the notations of symmetric RLWE encryption for the sake of simplicity.

The RLWE encryption supports the following homomorphic addition and multiplication operations. We provide the details
of those operations in Appendix B.
• Addition (+). Given RLWE ciphertexts ct0 and ct1, which encrypts ring elements p̂0 and p̂1, the operation ct0 + ct1

results in a ciphertext that encrypts the sum, i.e., p̂0 + p̂1.
• Small Plaintext Multiplication (·). Given ciphertext ct that encrypts a ring element p̂, and given a “small” plain

element r̂, the operation r̂ · ct results in a ciphertext that encrypts r̂ · p̂. Notice that this multiplication can only be used with
a low-norm ring element r̂.
• Arbitrary Plaintext Multiplication (�). In order to support multiplication by arbitrary ring elements, one defines an

extended encryption R̃LWE(·;g) using a gadget vector g ∈ Zd. Given the extended ciphertext c̃t ∈ R̃LWE(p̂;g) and an
arbitrary ring element r̂, the operation r̂ � c̃t results in an RLWE ciphertext that encrypts r̂ · p̂.
• External Multiplication (�). Furthermore, one can define a GSW-like encryption RGSW(·;g) to support multiplication

by RLWE ciphertexts [28]. Given an RLWE ciphertext ct that encrypts a ring element p̂0, and a GSW ciphertext c̈t ∈
RGSW(p̂1;g), the external multiplication ct� c̈t results in an RLWE ciphertext that encrypts p̂0 · p̂1.

Note that the LWE and RLWE encryption include errors whose magnitude will grow along with homomorphic operations
on the ciphertexts. To preserve the precision of the decryption, we need to keep the magnitude of errors relatively small. For
instance, the gadget vector g is used to prevent the noise from growing too large. We defer the concrete choice of gadget
vectors to the full protocol of PEGASUS. Also if the gadget vector g is unimportant or clear from the context, we simply
omit it in the notation.

3

https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS

C. Coefficients and Slots Manipulation

The ring structure of Z[X]/(Xn + 1) allows us to encode a real vector v ∈ R` as a ring element of Rn,q . We use
Ecd(v,∆) ∈ Rn,q to denote the encoding of v with a scaling factor ∆ > 0, and use Dcd(v̂,∆, `) ∈ R` to denote the
decoding of v̂ with a scaling factor ∆ > 0 and a length ` > 0. We introduce the following properties and functions of the
encoding and refer the details to [14], [32].
• Self-repeating. Dcd (Ecd (v‖· · · ‖v,∆) ,∆, `) = v. In other words, the encoding of some self-repeating vectors can be
viewed as the encoding of a single copy.
• Slot-wise Addition and Multiplication. Given the ring elements û and v̂ that encode the vectors u and v, respectively,
the addition û + v̂ (resp. multiplication û · v̂) results in a ring element that encodes the vector u + v (resp. u ◦ v). In the
realm of ciphertexts, this property enables us to perform slot-wise addition and multiplication over encrypted vectors.
• Rotation. Given the RLWE ciphertext ct which encrypts Ecd (v,∆), an integer k ∈ N, and a rotation key RotK, the
operation RotLk(ct;RotK) results in an RLWE ciphertext that encrypts the left-hand-side rotated vector Ecd (v� k,∆).
• Rescale. Given the RLWE ciphertext ct which encrypts Ecd (v,∆), and a factor ∆′ ∈ R, the operation Rescale(ct,∆′)
results in a ciphertext (with a smaller modulus) that encrypts Ecd (v,∆/∆′).
• Slots To Coefficients. Given the RLWE ciphertext ct which encrypts Ecd (v,∆), the operation S2C(ct) results in an
RLWE ciphertext that encrypts a ring element v̂ whose coefficients are vi = ∆v[i] for all possible positions. Indeed, S2C
evaluates the decoding function homomorphically.
• Coefficients Extraction. Given the ciphertext ct = RLWEn,ps (m̂), and an integer k ∈ 〈n〉, the operation Extractk(ct)
results in LWEn,ps (mk), i.e., an LWE encryption of the k-th coefficient of m̂ under the same secret key.

PEGASUS uses the combination of S2C and Extract to convert an RLWE ciphertext of an encoded vector to a set of
LWE ciphertexts of the vector elements.

D. System and Security Model

We give an overview of our desired security properties. We consider three stakeholders: encryptor(s), cloud, and decryptor.
We assume all stakeholders behave semi-honestly and the cloud does not collude with the decryptor. Let x be a private
input of the encryptor and y be a private input of the cloud and f be a known function. If the cloud do not provide any
private input then we simply set y = ⊥. We consider the following model. The encryptor(s) sends the ciphertext Enc(x) to
the cloud for the computation of a particular function f . The cloud operates specified homomorphic operations on Enc(x)
and y and sends the resulting ciphertext Enc(f(x, y)) to the decryptor who decrypts to learn f(x, y) but nothing else. Under
this model, the security against a semi-honest cloud follows from the fact that the view of the cloud consists of ciphertexts
only. Also, even if the decryptor knows x, e.g., the encryptor and decryptor are the same entity, it learns nothing about the
input of the cloud except the result f(x, y).

Recently, Li et al. [41] point out that the approximated decryption results of CKKS can leak additional information of the
decryption keys. They successfully constructed passive attacks that could recover the decryption keys if given access to the
decryption results. We warn that the decryptor in PEGASUS should not reveal the decrypted values of CKKS ciphertexts
to the encryptor and anyone else without doing any counter-measurement such as [13].

In the following descriptions, we describe the computation on the cloud side and omit the decryption phase of the decryptor
and the encryption phase of the encryptor since these operations are either simple or application dependent.

III. BUILDING BLOCKS OF PEGASUS

In this section, we propose PEGASUS, a novel framework that stays in the RLWE form for efficient SIMD computation
(e.g., addition, multiplication, and rotation) and transforms to LWE for evaluating a wide range of other complex functions
via a fine-grained look-up table approximation (e.g., sigmoid, ReLU, max/min). The PEGASUS transformation consists of
four core functions including key-switching (FKS of Fig. 1a), look-up-table evaluation (FLUT of Fig. 1b), linear transform
(FLT of Fig. 1c), and approximated modulo (Fmod of Fig. 1d), which are detailed in this section. It is noteworthy that the
LUT function in PEGASUS is not exact and would introduce some (bounded) approximation errors.

A. Overview

PEGASUS works on a set of (R)LWE-based schemes parameterized by different (R)LWE dimensions and arguments.
Particularly, we use the notations n, n, and n to denote different (R)LWE dimensions and we write the secret keys in these
dimensions as s, s, and s, respectively. Moreover, the “bar” mark is used to indicate the magnitude of them, i.e., n < n < n.
In this section, we use q to denote the modulus of the (R)LWE ciphertexts in a general way, i.e., q might be a large value with
thousands of bits or just a machine word-sized integer. We give the specific value of q in the full description of PEGASUS
in § IV.

4

Function FKS

Input: ctin ∈ LWEn,qs (m).
Output: ctout ∈ LWEn,qs (m) such that n ≤ n.

(a) Key-switching Function FKS.

Function FLUT

Input: ctin ∈ LWEn,qs (d∆mc) of m ∈ R. A look-up table function T (x) : R 7→ R.
Output: ctout ∈ LWEn,qs (d∆T (m)c+ e) with a small approximation error e.

(b) Look-up table Function FLUT.

Function FLT

Input: ctin ∈ RLWEn,qs (Ecd (z,∆)) of z ∈ Rn. A matrix M ∈ R`×n and a vector t ∈ R` such that `, n ≤ n/2.
Output: ctout ∈ RLWEn,q

′

s (Ecd (Mz + t,∆)).

(c) Linear transform Function FLT.

Function Fmod

Input: ctin ∈ RLWEn,q
′

s (ẑ + qê) for a polynomial ẑ ∈ Rn,q and some small norm polynomial ê ∈ Rn.
Output: ctout ∈ RLWEn,q

′′

s (ẑ + ê′) with an approximation error ê of a small norm.

(d) Mod q Function Fmod.

Figure 1: Core functions used in PEGASUS.

PEGASUS can start with an RLWE ciphertext, e.g., ct ∈ RLWEn,qs (Ecd (v,∆)) for v ∈ R`. On a high level, it can be
summarized in a three-step transformation.
1) Extract the elements of the encoded vector and obtains a set of LWE ciphertexts.

ct→ cti ∈ LWEn,qs (∆v[i]) for i ∈ 〈`〉.
2) Evaluate a look-up table T (x) on each LWE ciphertext.

cti → ct′i ∈ LWEn,qs (∆T (v[i])) for i ∈ 〈`〉.
3) Repack the set of LWE ciphertexts to a single RLWE ciphertext that encrypts the encoded vector T (v).

{ct′i}i∈〈`〉 → ct′′ ∈ RLWEn,q
′′

s (Ecd (T (v),∆)).

In practice, we usually switch down the LWE ciphertext of dimension n to a smaller dimension n < n of the same
message before the second step, aiming to reduce the computation cost of the look-up table evaluation. Security is also
guaranteed for the smaller lattice dimension n. The repacking step is used to maintain consistent encoding, taking as input
an encoded vector and outputting an evaluated vector in the same encoding form, supporting further arithmetic operations
seamlessly.

The four functions in Fig. 1 have been investigated by many existing approaches. Particularly, Chen et al. [11, §3.2]
recently presented a key-switching algorithm for LWE ciphertexts of a same lattice dimension. We modify their algorithm
for the key-switching function PEGASUS.KS in which the dimension n > n. The details of PEGASUS.KS are given in
Fig. 9 in Appendix. Also, we adapt the RNS-friendly approach from [33] for the Fmod function.

However, the existing methods for the other two functions are either insufficient to support a wide range of input or
inefficient in terms of computation and memory complexity. Micciancio et al.’s method [43] for FLUT is confined to a
relatively small domain, e.g., |∆v[i]| ≤ 210. Boura et al.’s method [7] for FLT might generate a giant key of hundreds of
gigabytes. In the following, we present more efficient and flexible algorithms for the FLUT and FLT functions. Then we
bring them all together to form the full PEGASUS.

5

Input: (b,a) ∈ LWEn,qs (d∆mc) of a message m ∈ R with a scaling factor ∆ such that |d∆mc| < q/4. Look-up table
function T (x) : R 7→ R. The evaluation key EK is a set of RGSW ciphertexts of the key s ∈ {0,±1}n.

EKj,0 ∈ RGSWn,q
s (I+(s[j])),EKj,1 ∈ RGSWn,q

s (I−(s[j])),

for j ∈ 〈n〉. I+(x) = I(x ≥ 0) and I−(x) = I(x ≤ 0).
Output: A LWE ciphertext ctout ∈ LWEn,qs (·).

1: Let ηk = kq/(2n∆) ∈ R for 1 ≤ k ≤ n/2. Define a polynomial f̂ ∈ Rn,q whose coefficients are

fj =


d∆T (0)c if j = 0

d∆T (−ηj)c if 1 ≤ j ≤ n/2
d−∆T (ηn−j)c if n/2 < j < n

.

2: Let b̃ = d 2n
q bc and ã = d 2n

q ac.
3: Initialize AC0 = (f̂ ·X b̃ mod n, 0) ∈ R2

n,q .
4: for j = 0, 1, · · · , n− 1 do
5: tj = ((X ã[j] mod n − 1) · ACj)� EKj,0 + ACj

ACj+1 = ((X−ã[j] mod n − 1) · tj)� EKj,1 + tj

6: end for
7: Output Extract0

(
ACn

)
as ctout.

Figure 2: Look-up Table Evaluation PEGASUS.LUT

B. Look-up Table Evaluation on a Larger Domain

The existing methods that evaluate a look-up table T (x) on an LWE ciphertext (b,a) ∈ LWEn,qs (m) basically follow [24]
which requires εq = 2n for some positive ε ∈ N. These methods use an RLWE scheme RLWEn,qs (·) to compute the (scaled-up)
LWE decryption function modulo the polynomial degree, i.e., RLWEn,qs (Xεb+εa>s mod n) which equals to RLWEn,qs (Xεm).
Then multiplying a polynomial (constructed according to T (x) and ε) can obliviously bring the evaluation T (m) to the 0-th
coefficient of the resulting polynomial. Finally, the extraction function Extract0(·) gives an LWE ciphertext which encrypts
the result T (m).

As we have mentioned, the Ducas-like methods demand q|2n and commonly use a small q, e.g., q = 29 was used in the
implementation [43]. This constraint limits the usability of the Ducas-like LUT methods for applications that involve large
integers or fixed-point values of proper precision. For example, the HE-based privacy-preserving machine learning [29],
[38], [39] use a scaling factor ∆ > 230 to preserve the precision of fixed-point values before the encryption, demanding a
larger modulus q > ∆.
Our Solution via Approximate Decryption. The LWE decryption formula b+ a>s is computed in modulo q but we can
only perform modulo n in the RLWE scheme. To use a larger ciphertext modulus q � n for larger plaintexts, our insight is
to use an approximate LWE decryption formula which is computed in modulo n. To do so, we first scale down the modulus
from q to ε̃n, i.e., b̃ = d ε̃nq bc and ã = d ε̃nq ac for some even value ε̃ ∈ N such as ε̃ = 2. Then the approximate decryption
formula is defined as:

b̃+ ã>s mod n ≈ dε̃nm/qc. (1)

We also need to modify the look-up table as T̃ (x) = T (qε̃nx) to take inputs from the range x ∈ [−n/2, n/2)∩Z. By doing so,
the origin LUT T (·) can be homomorphically evaluated within a subset of the wider range [−q/2ε̃, q/2ε̃). The approximation
error is bounded by Lq/(2ε̃n) where L > 0 is the smoothness of the function T (·) (e.g., Lipschitz continuity). Some works
have shown that such modification has only a slight effect when T (x) is smooth enough [6]. Also, in our applications of
private decision tree and K-means clustering, we do not observe a large precision loss due to this approximation.

Our algorithm for FLUT is shown in Fig. 2. The major cost of this algorithm lies in the 2n ciphertext multiplications (�)
The size of the our evaluation key EK is O(|g|nn log q) bits. Note that in the algorithm, RGSW is used to simply encrypt
binary values which can be viewed as degree-0 polynomials. Given a complex function G(x) to be evaluated, we can
discretize the domain of x to small intervals and map each interval [u, v] to the function value G(u+v

2). Fig. 2 builds a

6

Complex function: �(t) = 1
1+exp(�t)

Look-up index: i = b̃ + ã>s mod n 2 [�4, 4)(n = 8).

Look-up polynomial:
f̂ = �(0) + �(�1)X + �(�2)X2 + �(�3)X3 + �(�4)X4 � �(3)X5 � �(2)X6 � �(1)X7

�4 �2 0 2
0

0.5

1

t

�
(t

)t �4 �3 �2 �1
T (t) 0.018 0.047 0.119 0.269

t 0 1 2 3
T (t) 0.5 0.731 0.881 0.953

1

Ouput: �fn�i if i > 0 else output f|i|

Figure 3: Look-up table example.

Table III: Computation complexity of different methods for the transform function.

Method #Rotation Depth

` < n

[30] O(
√
n) 1

[38] O(d`n/ne+ log(n/n)) 1
[10, §3.4] O(ε+ d`n/(εn)e log(n/ε))† 2

Ours O(
√
`+ log(n/`)) 1

` ≥ n [30] O(
√
`) 1

Ours O(
√
n) 1

† 1 ≤ ε ≤ ` in [10].

plain look-up polynomial f̂ whose coefficients are the function values corresponding to the intervals, whereas the decryption
b̃ + ã>s mod n serves as a look-up index to select the appropriate coefficient (function value). A toy example is given in
Fig. 3 to illustrate the process.

Theorem 1: Given the input ctin ∈ LWEn,qs (d∆mc) and for any ternary secret s ∈ {0,±1}n, Fig. 2 outputs ctout ∈
LWEn,qs (d∆T (m)c+ elut) with a bounded error elut ∈ R.

The upper bound of the error elut depends on the noise of the input ciphertext, the concrete choice of gadget vector and
the smoothness of the function T (·). We will introduce the concrete choice of gadget vectors used by PEGASUS in the next
section. We defer the correctness proof of Theorem 1 and give a detailed noise analysis of elut to Appendix.

C. More Efficient Repacking

PEGASUS keeps consistent encoding by repacking a set of LWE ciphertexts, i.e., from Fig. 2, to an RLWE ciphertext
that encrypts an encoded vector of the LUT evaluations. One advantage of this consistency is that, the existing approaches
that uses CKKS can benefit from the capability of PEGASUS. For example, PEGASUS can replace the activation function
in EVA [21] and keep other parts unchanged.

The basic idea of repacking {cti ∈ LWEn,qs (mi)}i to ct ∈ RLWEn,q
′

s (Ecd (m0, · · ·)) consists of two steps. First we
homomorphically evaluate the partial LWE decryption and obtain ct′ ∈ RLWEn,q

′

s (Ecd (m0 + qr0, · · ·)), given the secret
key s in some form of encryption. Then we can evaluate modulo q homomorphically using the methods such as [4], [9],
[33].

CHIMERA suggest to perform the partial decryption step using a repacking key that consists of n R̃LWE ciphertexts,

that is {RKi ∈ R̃LWE
n,Q

s (s[i];g)}i∈〈n〉 (Q � q′ ≥ q). As a result, the size of this key is O(2|g|nn logQ) bits which can
be tremendously large. For instance, the size of their repacking key can be more than 80 gigabytes for a parameter set that
n = 216, n = 210, |g| = 7, and logQ ≈ 735.
Our Solution via Linear Transform. We present a faster and memory-efficient algorithm for the partial decryption step.
The insight is that the partial LWE decryption of a batch of LWE ciphertexts can be written as a linear transform As + b
where the i-th row of A ∈ Z`×nq comes from an LWE ciphertext. Instead of encrypting elements of s separately, we suggest
to use encoding and export the repacking key as a single RLWE ciphertext RK ∈ RLWEn,qs (Ecd (s,∆r)). The scaling factor
∆r is used to preserve the precision because the secret key s is commonly a low-norm vector. Our repacking key is about
O(2n log q) bits (cf. Table I), e.g., about 12 MB for the same parameter set n = 216, n = 210, and log q ≈ 735. Also, the
LWE dimension n � n is fixed in advance but the repacking size ` can change within the range 1 ≤ ` ≤ n/2. In other
words, we need to evaluate the linear transform As+b, given the ciphertext of the encoded vector Ecd (s,∆r) and “plain”
value of A and b such that the matrix A can be a “tall” matrix (i.e., ` > n) or a “short” matrix (i.e., ` < n).

7

(a) “Tall” matrix. ` = 4 and n = 2.

Tiling Diagonals BSGS
Sum

Columns

* =

(b) “Short” matrix. ` = 2 and n = 4.

Figure 4: Examples of PEGASUS.LT. Dotted cells would be omitted in the tiling step.

There are some existing approaches to the linear transform function FLT. Their efficiency greatly depends on the shape
of the matrix A . As shown in Table III, the diagonal encoding method of Halevi et al. [30] using O(

√
max(`,n))

homomorphic rotations is thus more suitable for square matrices. Juvekar et al. [38] improved [30] especially for “short”
matrices. Chen et al. [10] further improved the efficiency of [38] at the cost of more multiplicative depths. These existing
approaches are not sufficient to cover both “tall” and “short” matrices efficiently. We now present a new algorithm for the
FLT function in Fig. 5 which is faster and more flexible than the existing approaches.

Theorem 2: On the input ctin ∈ RLWEn,qs (Ecd (z,∆r)), a plain matrix M ∈ R`×n such that `, n < n, and a vector
t ∈ R`, Fig. 5 outputs an RLWE ciphertext ctout ∈ RLWE

n,q/∆r

s (Ecd (Mz + t,∆′r)).
As the example shown in Fig. 4, the main idea in Fig. 5 is first to convert, conceptually, the rectangular matrix M to a

square matrix by repeating the rectangular matrix itself (called tiling). We said “conceptually” because, we only use a subset
of the diagonals of the tiling matrix, which are constructed in Step 1 by looping through the rows and columns of M. This
tiling is always possible without zero-padding because the number of rows and columns of M is always a power-of-2 value.
The baby-step-giant-step (BSGS) technique [31] in Step 2 aims to sum up some products of plaintext–ciphertext with a
specific offset of homomorphic rotations. Indeed, Step 2 results a ciphertext c̃t that already encrypts the result vector Mz for
the “tall” case. On the other hand, when ` < n, intuitively, c̃t can be viewed as a ciphertext that encrypts a matrix of ` rows
and (n/`) columns where the sum of the column vectors equals to Mz (see Fig. 4). The post-possessing from Step 6 to Step 7
aims to sum up the encrypted columns, resulting in ctγ that encrypts a self-repeating vector Ecd (Mz‖· · · ‖Mz,∆r∆

′
r). It

can just be viewed as Ecd (Mz,∆r∆
′
r) according to the property of the encoding function. Finally, we use Rescale(·,∆r)

to reach the specified scaling factor ∆′r, and then we add t at the end. The proof of Theorem 2 is deferred to Appendix C.
We compare the computation complexity of Fig. 5 with the existing approaches in Table III. It is worthy to note that the

computation costs of our method are independent of the repacking size ` when ` ≥ n. In other words, we can repack a large
amount of LWE ciphertexts to an RLWE ciphertext without introducing extra overheads, which is confirmed empirically in
§VI.

Remark: Fig. 5 can also be used for other interests. For example, the matrix M can also be given in the form of encryption
as long as it follows the tiling-style encoding. Indeed, in our secure K-means clustering application (§V), we reuse Fig. 5
to compute the product of an encrypted matrix and encrypted vectors.

IV. OUR FRAMEWORK

The full algorithm of PEGASUS includes many specific optimization techniques that are already investigated in previous
work. We briefly introduce these techniques here.

A. Optimizations

1) RNS and NTT: A well-known technique to optimize the integer polynomial arithmetic on Rn,q is to use a full RNS by
taking the modulus q as the product of distinct and machine-word-sized primes, i.e., q =

∏
i∈〈L〉 qi. One can achieve up to

L× improvement in polynomial arithmetic according to the ring isomorphism Rn,q →
∏
i∈〈L〉Rn,qi .

2) Gadget Vectors: The products (� and �) use a gadget vector to keep the noise magnitude small. Particularly, we use two
types of gadget vectors in PEGASUS, i.e., the digit decomposition gadget gdigit and RNS decomposition gadget grns. Given
the decomposition base B > 1 and d = dlogB qe, the gdigit is given as gdigit[i] = Bi. The RNS gadget takes advantage of
the RNS representation and the special modulus technique [27]. The grns vector is given as grns[i] = qq′

qi
((qqi)−1 mod qi)

8

Input: ctin ∈ RLWEn,qs (Ecd (z,∆r)). Rotation key RotK. A scaling factor ∆′r > 0. A plain matrix M ∈ R`×n such
that `, n < n. A vector t ∈ R`.
Output: An RLWE ciphertext ctout ∈ RLWE

n,q/∆r

s (·).

1: Tiling and Diagonals. Let n̈ = max(`, n) and ñ = min(`, n). Define ñ vectors {m̃j}ñ−1
j=0 by going through the

rows and columns of M
m̃j [r] = M[r mod `, r + j mod n] for r ∈ 〈n̈〉.

2: Baby-Step. Let g̃ = d
√
ñe. For g ∈ 〈g̃〉, compute cg = RotLg(ctin).

3: Giant-Step. Let b̃ = dñ/g̃e. Compute

c̃t =
∑
b∈〈b̃〉

RotLbg̃

 ∑
g∈〈g̃〉

Ecd
(
m̃bg̃+g � bg̃,∆′r

)
· cg

 .

4: if ` ≥ n then
5: Output Rescale(c̃t,∆r) + Ecd (t,∆′r) as ctout.

B c̃t ∈ RLWEn,qs (Ecd (Mz,∆r∆
′
r))

6: else B Sum Columns
7: Let γ = log(n/`) and ct0 = c̃t.
8: Update iteratively for 1 ≤ j ≤ γ

ctj = RotL`2
j

(ctj−1) + ctj−1.

B ctγ = RLWEn,qs (Ecd (Mz,∆r∆
′
r))

9: Output Rescale(ctγ ,∆r) + Ecd (t,∆′r) as ctout.
10: end if

Figure 5: Linear Transform PEGASUS.LT

where q′ is a special modulus. One advantage of grns against the digit gadget is that grns can render faster multiplications
� and �. However, grns requires a larger modulus, which demands a larger lattice dimension to guarantee the security of
the encryption scheme. Particularly, we use gdigit in the LWE switching key (i.e., SwK in Fig. 6) and use grns in the LUT
evaluation key (i.e,. EK in Fig. 6).

B. Full Algorithm of PEGASUS

Now we present the full description of PEGASUS in Fig. 6. PEGASUS uses L > 0 moduli for the RNS representation and
one special modulus q′ for the gadget vector. Notice that our gadget vectors gdigit and grns only involve the first modulus
q0. Indeed, PEGASUS performs the key-switching (Fig. 9) and the LUT evaluation (Fig. 2) over the ring R∗,q0 for a various
lattice dimension but a fixed modulus q0 (reasons see below).

The input RLWE ciphertexts of PEGASUS are given in the RNS representation with l many moduli. PEGASUS first
evaluates the slots-to-coefficients function S2C, followed by Extract to obtain the encoded elements as a set of LWE
ciphertexts (Step 1 and Step 2). As a result, it requires l > 1 since S2C itself might consume 1 or 2 ciphertext moduli. The
computational costs of the following LUT evaluation and repacking depends on the modulus size of the LWE ciphertexts.
To lighten the computation, PEGASUS drops all RLWE moduli but keeps the first one q0 before Step 3. As a result, the
following key-switching (Step 4 and Step 6) and LUT (Step 5) take as the input of LWE ciphertexts from LWE∗,q0(·) with
a varying lattice dimension but a fixed modulus. Also by using the smallest number of moduli, it renders smaller switching
keys and LUT evaluation keys (cf. Table IV). The independent LUT evaluations on LWE ciphertexts from Step 4 to Step
5 can be easily parallelized by multicores. Finally, PEGASUS repacks a set of LWE ciphertexts to an RLWE ciphertext by
simply using the implementations of the FLT and Fmod (Step 9-10).

The main computation errors in Fig. 6 come from the key-switching in Step 4 and Step 6, and the LUT evaluation in
Step 5. We defer the error analysis of these two functions to Appendix due to the space limit.

Remark: The very recent work from [11] provides a different primitive for the repacking function. Briefly, given
the LWE ciphertexts {cti ∈ LWEn,qs (mi)}`−1

i=0 , they first convert them to an RLWE ciphertext ct ∈ RLWEn,qs (m̂) that
encrypts a polynomial such that m̂ =

∑
imiX

i. Then they homomorphically evaluate the encoding function and get
ct′ ∈ RLWEn,q

′

s (Ecd (m0,m1, · · · ,m`−1)). Indeed, their conversion part needs O(`+ log(n/`)) homomorphic rotations (cf.

9

Public Parameters:
• Ciphertext moduli q0, q1, · · · , qL−1 and a special modulus q′. Define Qi =

∏
l∈〈i〉 ql for 1 ≤ i ≤ L.

• Digit decomposition gadget vector gdigit = [1, Bks, · · · , Bdksks] for some Bks, dks > 0 and Bdksks ≥ q0.
• RNS decomposition gadget vector grns = [q′ mod q0].
• Rescaling factors 0 < ∆,∆r,∆

′
r < q0.

Public Keys:
• Switching key SwKs→s is a vector of RLWE encryption of s under the key s where the j-th ciphertext is

R̃LWE
n,q0

s

(∑
l∈〈n〉 s[jn+ l]X l;gdigit

)
for j ∈ 〈n/n〉. The switching key SwKs→s is defined in a similar way.

• LWE evaluation key EK is a set of GSW encryption of the elements of s under the key s where

EKj,0 ∈ RGSWn,q′q0
s (I+(s[j]);grns),EKj,1 ∈ RGSWn,q′q0

s (I−(s[j]);grns) for j ∈ 〈n〉.
Specifically, I+(x) = 1{x ≥ 0} and I−(x) = 1{x ≤ 0}.

• Repacking key RK ∈ RLWEn,QL

s (Ecd (s,∆r)).
• Rotation key of the CKKS scheme RotK.

Input:
• A level-l RLWE ciphertext (l > 1) of an encoded vector v ∈ R`, i.e., ctin ∈ RLWEn,Ql

s (Ecd (v,∆)).
• A look-up table function T (x) : R 7→ R.

Output: A RLWE ciphertext ctout ∈ RLWE
n,QL′
s (Ecd (T (v),∆)), i.e., the evaluation of T (x) on the elements of v.

1: Slots to coefficients and drop moduli. ct′ = S2C(ctin) B ct′ ∈ RLWEn,q0s (∆v̂)
2: Extract Coefficients. cti = Extracti(ct′) for each i ∈ 〈`〉. B cti ∈ LWEn,q0s (∆v[i])
3: for i ∈ 〈`〉 do B parallel
4: Switch from n to the smaller dimension n. ċti = PEGASUS.KS(cti,SwKs→s).

B ċti ∈ LWEn,q0s (∆v[i])

5: Evaluate the look-up table. c̈ti = PEGASUS.LUT(ċti,EK, T (x)). B c̈ti ∈ LWEn,q0s (∆T (v[i]))
6: Switch from n to the smaller dimension n.

...
cti = (bi,ai) = PEGASUS.KS(c̈ti,SwKs→s).

B
...
cti ∈ LWEn,q0s (∆T (v[i]))

7: end for
8: Define b = [b0, · · · , b`−1] and A ∈ Z`×nq0 where the i-th row of A is ai. B As + b mod q0 = Ecd (T (v),∆)
9: Evaluate the linear transform c̃t = PEGASUS.LT(RK,RotK,∆′r,A,b). B c̃t ∈ RLWE

n,QL−1

s (Ecd (As + b,∆′r))
10: Evaluate the modulo q0 on c̃t via Fmod and output the result as ctout. B ctout ∈ RLWE

n,QL′
s (Ecd (T (v),∆))

Figure 6: PEGASUS, Full Protocol

Table I), and they might need O(
√
`) more rotations for the encoding step. On the other hand, the number of homomorphic

rotations used in PEGASUS.LT (Step 9) is about min(
√
n,
√
` + log(n/`)) which is independent of the largest lattice

dimension n. Also, the complexity of our instantiation of Fmod from [33] is independent of the repacking size `. In
conclusion, our method is more computation-efficient than [11] when ` is large, e.g., ` > n.

C. Advanced Features of PEGASUS

For the sake of simplicity, we describe PEGASUS with one LUT as input in Fig. 6. PEGASUS can provide much more
flexibility. We now introduce its advanced features.
1) Multiple LUTs: We can repeat Step 5 and Step 6 to evaluate a sequence of LUTs. Also, we can perform additions and
subtractions over the LWE ciphertexts before and after Step 5. Indeed, one of our application that computes the index of the
minimum value of an encrypted vector (described in the following section) needs some basic LWE additions and subtractions
between two LUT evaluations.
2) Customizable Encoding Layout: Moreover, we can rearrange the layout of encoding in Step 9 by just reordering the rows
of A and b. This property is very useful for many HE-based applications, in which different types of encoding layout are
usually mixed for better performance. For instance, [38] used two encoding layouts for the secure evaluation of convolution
layers and fully-connected layers. To switch between different layouts, [38] needs to decrypt ciphertexts in the middle with

10

random maskings. On the other hand, such switching of encoding layouts is almost free in PEGASUS without interactions
with the decryptor.
3) Tunable Output Level: The number of moduli (denoted as L′) of the resulting ciphertext from Step 10 depends on the
number of moduli used for constructing the repacking key RK. This parameter can be changed to a smaller one as long as it
provides enough depths for the Fmod, to tune a best repacking performance for the specific application. For instance, L′ = 3
might be enough for secure convolution network inference since the polynomial operations (i.e., convolution) between two
non-polynomial operations (e.g., activation and pooling) consume only one multiplicative depth.

To wrap up, the size of the repacking key of PEGASUS is significantly smaller than CHIMERA’s repacking key. Also, our
repacking approach demands O(min(

√
n,
√
`+ log(n/`))) homomorphic rotations which is much lighter than the repacking

method of CHIMERA that needs O(n) rotations. Moreover, Pegasus can leverage the optimized NTT/RNS for the underlying
arithmetic that is significantly faster than its Torus counterpart used by CHIMERA.

V. APPLICATIONS

In this section, we present some useful applications of PEGASUS. Specifically, we compute some statistical functions
such as reciprocal, min/max, max-pooling, and sorting. Also, we propose a private decision tree evaluation and a secure
K-means clustering algorithm using PEGASUS.

A. Application I: Basic Non-polynomial Functions

We show some use cases for computing a wide range of common functions using the look-up tables evaluation of
PEGASUS. Particularly, we compute the following functions on LWE ciphertexts.
• sigmoid/ReLU/sqrt/reciprocal. Many useful functions can be evaluated via one LUT, for instance sigmoid, ReLU,

square-root and reciprocal. These functions are commonly used in machine learning algorithms.
• min/max The min/max of two values m0 and m1 can be computed as follows

min(m0,m1) = 0.5(m0 +m1)− 0.5|m0 −m1|,
max(m0,m1) = 0.5(m0 +m1) + 0.5|m0 −m1|.

Thus, we can use two LUTs T0(x) = 0.5x and T1(x) = 0.5|x| to compute the min/max on LWE encrypted values.
Also, we can find out the min/max of an array by a min/max-tree. For example, the max of 4 values m0, · · · ,m3 can be

computed as max(max(m0,m1),max(m2,m3)). To find out the min/max of t encrypted elements, in general, we need to
evaluate O(2t) LUTs.
• max-pooling. Max-pooling is a famous operation of deep learning. Although the average-pooling is more HE-friendly,

it has been proved that the max-pooling can perform better in many image classification tasks [35]. Also, we notice that
the number input t is usually very small for max-pooling, e.g., t = 4. As long as the scaled maximum value still follows
the range constraint of Algorithm 2, i.e., |t ·max(m0,m1, · · · ,mt−1)| < q0/(4∆), we can use a smaller number of LUTs
to compute the max-pooling. Indeed, we replace each max-operation in the max-tree with the scaled-max max′(m0,m1) =
m0 + m1 − |m0 −m1|, resulting a t-scaled value. The factor t can then be removed by one extra LUT T2(x) = x/t. In
total, we can compute the max-pooling within O(t) LUTs for a relatively small t.
• sorting. We adapt the bitonic sorting [2] which is data independent and can be parallelized easily. A bitonic sorting

network uses two types of swap, i.e., ascending swap and descending swap

ASwap(m0,m1) = min(m0,m1),max(m0,m1)

DSwap(m0,m1) = max(m0,m1),min(m0,m1).

In other words, each swap needs two LUTs since the min and max function computes the same LUTs. To sort an array of
t encrypted elements, our bitonic sorting network evaluates O(2t log2

2 t) LUTs.
• min-index/max-index. The min-index (resp. max-index) function takes as input of an array m0,m1, · · · ,mt−1 and

returns a binary sequence (b0, b1, · · · , bt−1) such that bk = 1 iff. mk is the min (resp. max) value of the the array. We first
compute the min (resp. max) value of the array by a min-tree (resp. max-tree). Then, we can compute the min-index (resp.
max-index) using the predicate function T (x) = I(x ≤ 0) evaluated on mi −min (resp. mi −max) with extra O(t) LUT
evaluations. In total the min-index/max-index evaluation needs O(3t) LUTs.
Cheon et al.’s numeric method [16] can also compute the max/min-index but at the cost of a longer latency than PEGASUS
which is confirmed in our experiments.

11

B. Application II: Private Decision Tree Evaluation

Decision tree is a fundamental and popularly used classification algorithm. Many current works have considered a cloud-
based classification service using decision tree evaluation, using HEs to protect the query privacy for the user, and the model
privacy for the cloud [5], [37], [40], [50], [51]. However, these approaches are either interactive, using O(logN) rounds of
communication between the cloud and the user or having a large communication overhead.

On the other hand, we can achieve a single-round and communication-efficient private decision tree evaluation by using
PEGASUS. Consider that each edge of the tree has a binary variable associated to it. The value of the binary zi,j is 0 if,
on the input vector a ∈ Rd, one should go from the node φi to φj , and 1 otherwise. For each leaf node, we write vk to
denote the sum of the binary variables along a path from the root node to the leaf φN+k. We designate vk as classification
predictor as the input is classified in the leaf node φN+k iff. vk = 0. Given the encryption of the input vector, the cloud can
compute the binary values {zi,j} using N LUTs. Then the cloud aggregates the encrypted binary values along each path in
the tree and it obtains the classification predictors. The cloud then calls N distinct LUTs on the classification predictors, i.e.,
Tk(x) = Ck · I(x ≤ 0) where Ck > 0 is the class label in the leaf node φN+k. Finally, the cloud sends a ciphertext of the
sum

∑
k Tk(vk) to the client. The major computation costs on the cloud side is O(2N) LUTs and about O(dd/nen log q0)

bits are sent.

C. Application III: Secure Clustering on Encrypted Data

Rao et al. [45] and Cheon et al. [17] have considered a privacy-preserving K-mean clustering using homomorphic
encryption and two collusion-free servers. We consider the same K-means algorithm but in a single server setting: data
are encrypted and collected to a server which performs all the computation for the clustering. We first introduce the basic
K-means algorithm. Then we show how to perform the K-means clustering on encrypted data using PEGASUS.

Given a dataset of X ∈ RN×d where each row xi is a data point and given an positive integer K � N , the K-means
clustering algorithm aims to find out K centroids {cj ∈ Rd}j∈〈K〉 that minimize the total distances between centroids and
data points, i.e., min

∑
i

∑
j D(xi, cj). We consider the square Euclidean distance D(xi, cj) = x>i cj here. To solve this

optimization problem, iterative algorithms are used. We write c
(t)
j as the j-th centroid in the t-th iteration. Without loss of

generality, the t-th update can be described as follows.
1) The distance between each data point and centroid is computed in a form of matrix D ∈ RN×K such that D[i, j] =

D(xi, c
(t)
j) for each i ∈ 〈N〉 and j ∈ 〈K〉.

2) Compute a matrix B ∈ {0, 1}N×K such that B[i, j] = I(j = argminlD[i, l]). In other words, B[i, j] = 1 means that
the j-th centroid is the closest one of the i-th data point.
3) Update the j-th centroid as c

(t+1)
j = 1∑

i b̃j [i]
X>b̃j , where b̃j ∈ {0, 1}N is the j-th column of B.

Our objective is to perform the above update procedure on encrypted data points. We assume X is already encoded
and encrypted using RLWE encryption. The distance matrix D can be computed easily using the homomorphic operations
of the RLWE encryption. Suppose D is computed as a RLWE ciphertext, we first extract the ciphertexts of the distances
{cti,j ∈ LWEn,q0s (∆D[i, j])}i∈〈N〉,j∈〈K〉. Then we can compute the min-index among the LWE ciphertexts

c̈ti,0, · · · , c̈ti,K−1 ← min-index(cti,0, · · · , cti,K−1). (2)

That is c̈ti,j ∈ LWEn,q0s (∆B[i, j]). Also the reciprocal of counting
∑
i bj [i] can be computed by feeding the sum

∑
i c̈ti,j to

the reciprocal look-up table T (x) = 1/x. Finally, we repack all the computed LWE ciphertexts and obtain RLWE ciphertexts
of the encoded vectors and scalars ctj ∈ RLWE

n,QL′
s (Ecd

(
b̃j ,∆

)
), and ct′j ∈ RLWE

n,QL′
s (d∆/∑i b̃0[i]c) for j ∈ 〈K〉,

which are then used to update the centroid vectors. We stress that the linear transform X>b̃j can be computed using an
similar tiling idea in Algorithm 5 which needs O(

√
K + log2(N/K)) homomorphic rotations on ciphertexts. Also, the

number of clusters K is commonly a small value, e.g., K < 10. This allows us to optimize the complexity of (2) from
O(3K) LUTs to O(2K) LUTs using the same idea in the max-pooling.

VI. EVALUATION

We now report detailed performance of PEGASUS, including micro-benchmarks of the basic operations and the per-
formance of the applications of decision tree and K-means clustering. We have implemented PEGASUS on top of the
SEAL library with extra optimizations including a faster NTT [46] and a faster (�) operator using a lazy-reduction. Also,
we have implemented the S2C and Fmod functionalities based on [32] and [33, §4], respectively. More specifically, our
implementations of S2C and Fmod require 2 and 9 multiplicative depths, respectively. All experiments are performed on a
server with an Intel Xeon Platinum 8269CY CPU (20-cores) at 2.50 GHz, compiled with gcc 7.5.0.

12

Table IV: Proposed parameter sets. Bks is the digit decomposition base. The scaling factors are set as ∆ ≈ 236, ∆r ≈ 245

and ∆′r = 1. The hamming weight of secret keys is set as h = 64. The value logQ denotes the total bits of modulus used
in SEAL (including the special modulus). All parameter sets provide at least 119-bit of security level according to [1].

Encryption Parameters

R̃LWE
n,q0
s (·) n = 210, q0 ≈ 245, σks = 210, Bks = 27, dks = 7

RGSWn,q′q0
s (·) n = 212, q′ ≈ 260, σlut = 210

RLWEn,∗
s (·) n = 216, qi ≈ 245, σckks = 3.19, logQ = 795

Key Size

SwKs→s 2dksn log q0bits ≈ 5.0 MB
SwKs→s 2dksn log q0bits ≈ 315 KB

EK 8nn log(q′q0) bits ≈ 420 MB
RK 2n log(

∏
i∈〈L〉 qi) bits ≈ 12 MB

Table V: Single-threaded micro-benchmarks of PEGASUS. ` denotes the number of slots or the repacking size. We compare
with the implementation of CHIMERA from [19].

KS(s→ s) LUT KS(s→ s)

[19] 4192ms 60s 260ms
Ours 20.14ms 0.93s 1.49ms

Speedup 208× 64× 174×

S2C [32]† LT Fmod [33]†
log ` = 8, 10, 12 log ` = 8, 10, 12

0.78s, 1.28s, 2.02s 16.76s, 44.50s, 44.65s 7.06s
† The performance of our implementations of [32] and [33].

A. Concrete Parameters

We use L = 16 RNS primes for the ciphertext modulus. The first modulus is chosen q0 ≈ 245 and other moduli are
chosen slightly larger than q0. A special modulus q′ ≈ 260 is used. We set the secret distribution as a hamming weight
distribution over the set of ternary polynomials of coefficients in {0,±1} subject to the condition that it has exactly h = 64
nonzero entries. Each coefficient/entry of (R)LWE error is drawn according to the discrete Gaussian distribution centered
at zero with standard deviation σ. Table IV illustrates the parameter sets used in our experiments. For this parameter sets,
the repacked ciphertexts from Algorithm 6 have L′ = 6 moduli left. This enables us to run our secure clustering application
without using the CKKS bootstrapping [12] because we need 2 levels for updating the centroids, 1 level for computing the
distances, and 2 more levels for S2C.

B. Micro-benchmarks for PEGASUS

The single-threaded micro-benchmarks of PEGASUS are given in Table V. We can see that the main-loop (i.e., Step 4 to
Step 6) in Algorithm 6 took about a second. In other words, the LUT evaluation throughput of PEGASUS is about 1 LUT
per second which can be boosted up easily using multicores. To compare, we ran some benchmarks on the same machine
using the open-sourced implementation of CHIMERA from [19]. Basically, we set the dimensions n and n as same as ours
and set other parameters of CHIMERA to match the security level. However, the repacking implementation of CHIMERA is
not provided in [19] so we compared the key-switching functions and the LUT function. Table V shows that our framework
is about two orders of magnitude faster than CHIMERA for these basic functions. Indeed, we adapt the evaluation key idea
from [43] in Fig. 2. This enables us to use a ternary secret whose security is more well studied than the binary secret used
in CHIMERA. Note that, if we use a binary secret key s as the CHIMERA does, the performance of our LUT evaluation
would be accelerated by 2×.

C. Applications Evaluation

1) Basic Non-polynomial Functions: We evaluated the non-polynomials functions described in the previous section. We
measured the throughput and latency (not including the time for encryption) for computing these functions on encrypted
data. We report the performing numbers in Table VI. From this table, we can see that the performance of PEGASUS can
be easily accelerated by using more machine cores. The acceleration efficiency for small fan-in functions e.g., sigmoid and
max-pooling was nearly optimal, i.e., around 0.95. Also, the latency of PEGASUS for the min-index and sorting function is
also superior to the state-of-the-arts. For example, [16] took more than 236s to compute the max-index of t = 24 encrypted
elements using 8 threads, compared to PEGASUS that just took 9.72s. Also, [25] used 4 threads and took about 43 minutes
to sort t = 26 encrypted integers using the bit-wise HE [48], which is about 6.3× slower than ours.

13

Table VI: Benchmarks of some non-polynomial functions on Pegasus. t is the number of LWE ciphertexts. The time for
extraction and repacking were not included.

Throughput

#Threads sigmoid/ReLU/sqrt/reciprocal Max-Pooling
2× 2 4× 4

1 1.06/s 0.25/s 0.07/s
4 3.95s 0.91/s 0.26/s
8 7.95/s 1.97/s 0.50/s

16 15.34/s 3.90/s 0.98/s
20 20.77/s 4.83/s 1.21/s

Latency

#Threads Min-Index Sort
t = 28 t = 27 t = 24 t = 26 t = 25

1 791.84s 395.39s 43.24s 1380.50s 493.30s
4 238.73s 124.60s 176.60s 409.09s‡ 148.88s
8 118.19s 62.57s 9.72s† 199.82s 73.02s

16 66.15s 36.33s 5.17s 104.33s 38.27s
20 44.73s 25.26s 5.17s 84.03s 34.10s

† [16] took about 236s (24×). ‡ [25] took about 43 mins (6.3×).

12 13 14 15

Lattice Dimension log2(n)

100

101

L
U

T
 T

im
e

(s
ec

)

0.97

1.96

4.09

9.05

7

8

9

10

11

12

13

L
U

T
 A

cc
u

ra
cy

 (
b

it
s)

1/(1 + e
-x)

tanh(x)

√|x|

max(0, x)

Figure 7: Trade-off between LUT accuracy and performance in PEGASUS. The LUT Accuracy is given as − log |f(x) −
Tf (x)| for the function f . We demonstrate four functions f(x) = 1

1+e−x , f(x) = tanh(x), f(x) =
√
|x|, and f(x) =

max(0, x) on uniform random messages from x ∈ [−8, 8].

The algorithms in PEGASUS do introduce errors to the final results, including errors from the (R)LWE encryption, key-
switching, and LUT. These errors can be controlled under a reasonable small value. According to our empirical results, the
key-switching introduces small errors of a magnitude of 2−14. Also, the approximation errors of our LUT can be within
[2−10, 2−7] under the parameters from Table IV. We consider such small errors are acceptable for many applications such
as machine learning and information retrieval. Indeed, the accuracy of our LUT can be improved by using a larger lattice
dimension n at a cost of a longer LUT evaluation time (see Fig. 7).

2) Private Decision Tree Evaluation: We evaluated our private decision tree evaluation algorithm on three real datasets
from the UCI repository [23] that is the Iris, Housing, and Spambase dataset. We trained decision trees on randomly selected
80% of the data points using the scikit-learn library [44], and used the remaining 20% for testing. We measured the execution
time on both sides of the cloud and the client and measured the communication costs counting all the ciphertexts sent by the
client and the cloud. . The results are given in Table VII. We compare with the previous single-round HE-based methods [37],
[51]. The approach [51] uses the bit-wise TFHE to evaluate the boolean circuit representation of the decision tree on inputs
of δ = 16-bit integers, which is sufficient precision for the used datasets. That is, [51] did not introduce accuracy loss on
the classification. On the contrary, PEGASUS introduced about 3% miss-classification on the used datasets. Also, [51] was

14

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Proportion of Closest Assignments

0.5

0.6

0.7

0.8

0.9

T
es

t A
cc

ur
ac

y

baseline

random guess

(a) breast cancer (N = 569)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Proportion of Closest Assignments

0.50

0.55

0.60

0.65

0.70

T
es

t A
cc

ur
ac

y

baseline

random guess

(b) ionosphere (N = 351)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Proportion of Closest Assignments

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t A
cc

ur
ac

y

baseline

random guess

(c) wine (N = 178)

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Proportion of Closest Assignments

0.20

0.25

0.30

0.35

0.40

T
es

t A
cc

ur
ac

y

baseline

random guess

(d) Control charts (N = 600)

Figure 8: Test accuracy of K-means clustering with a proportion of closest assignments. The baseline is obtained by using
the kmeans API from the scikit-learn package [44]. All numbers are averaged from 20 runs of 10-fold cross-validation.

Table VII: Compare the performance of our private decision tree evaluation algorithm with the existing approaches. N is the
number of internal nodes in the tree, d is the number of features, and C is the number of classification labels. Computation
time includes the evaluation time on both sides of the cloud and the client. On the cloud side, 16 threads were used for
these experiments, following the same settings of [37], [51].

Setting Computation Communication Classification Accuracy

Data N d C [37] [51] Ours [37] [51] Ours [37] [51] Ours On Plaintexts

Iris ≈ 10 4 3 0.59s 0.94s 1.87s 1.65 MB 1.19 MB 16.89 KB 97.37% 95.33% 94.74% 97.37%
Housing ≈ 100 13 2 10.27s 6.30s 10.71s 13.12 MB 6.63 MB 16.89 KB 100.0% 98.12% 98.04% 100.0%

Spambase ≈ 60 57 2 6.88s 3.66s 6.75s 11.54 MB 7.36 MB 16.89 KB 87.86% 87.06% 85.03% 87.86%

about 2× faster than ours, not counting the communication time. Indeed, they needs to exchange O(32 · 210 · δ(d + N))
bits of ciphertexts. On the other hand, for d < n, our method sends only one RLWE ciphertext and one LWE ciphertext,
leading to much smaller communication overhead, i.e., about 1% of that of [51]. The method [37] is fast on the cloud side
but it sends O(N) RLWE ciphertexts to the client to decryption, which could lead to a large communication overhead and
a long decryption time when N increases. Also, [37] used 12-bit fixed point values and it might introduce some rounding
errors, e.g., about 2% accuracy loss observed in our experiments.

3) Secure K-means Clustering: We evaluated our secure K-means algorithm on synthesis data X ∈ RN×d where the
values of X were sampled from [−1, 1] uniformly a random. The running time of our algorithm is separated into five sectors
and reported in Table VIII. The O(2KN) LUTs from the Min-Index sector took about 95% of the computation time, which
can be easily accelerated by using more cores. Also, the running time of arithmetic computation, i.e., computing Euclidean
distance (4th column) and updating cluster centroids (8th column) took just a few seconds. The repacking sector converts
N LWE ciphertexts to an RLWE ciphertext.

We can see that the running time of repacking grows in
√
N when N ≤ n, and it stays over 60 seconds for a larger

number of data points n < N < n. We emphasize that our K-means algorithm is faster than the existing HEs-based secure
K-means algorithms. For example, [34] used TFHE for the same K-means clustering problem. However, the boolean circuit
representation of the K-means algorithm could consist of millions of gates which could take a long time to evaluate. To
improve the efficiency, [34] suggested to use an approximate comparison by comparing the highest bits of the encrypted
fixed-point values at the cost of introducing about 5% misclassification rate (cf. Fig 6 of [34]). Nevertheless, their optimized
method could take up to 20× longer time than ours.

Our algorithm introduces approximation errors during the computation. A data point could be assigned to a “wrong”
centroid particularly when two centroids are both close to that data point. In the 3rd column of Table VIII, we counted the
percentage of data points that were properly assigned to the closest centroid. We observed that about ρ ≈ 82% of the data
points were assigned to the closest centroid when using the parameter n = 212. This proportion ρ can be improved to about
95% by using a larger n = 213 at the cost of increasing the time of the Min-Index sector by about 2×.

To study the effects of ρ on the classification accuracy of the K-means, we simulated on four real datasets from [23]. In
brief, in each centrioid update, we randomly chose a proportion of 1−ρ of the training points and independently assign them
to a randomly chosen centrioid, excluding the closest one. From the simulation results shown in Fig 8, the classification
accuracy of K-means seems quite robust. The accuracy did not drop much (within 4% when ρ ≥ 0.8) compared to the
baseline in which all data points were assigned to the closest centroid.

15

Table VIII: Running time of one update of our privacy-preserving clustering algorithm where N and K is the number of
data points and the number of clusters, respectively. Dimension d = 16 and 20 threads were used.

Setting Closest Assign Ratio ρ Break-down Running Time (for n = 212)†

N K n = 212(213) Distance Extract Min-Index & Recip. Repacking Centroid Total [34, §6]‡ Speedup

256
2 82.03%(92.97%) 1.56s 1.83s 51.53s

25.93s
0.35s 1.35min 19.81min 14×

4 83.59%(97.27%) 2.69s 2.60s 107.78s 0.50s 2.33min 39.61min 17×
8 86.72%(94.92%) 3.11s 4.36s 211.31s 0.87s 4.09min 79.23min 19×

1024
2 79.88%(95.41%) 1.58s 5.33s 109.27s

55.22s
0.33s 3.66min 79.23min 21×

4 86.13%(95.80%) 2.79s 8.95s 387.08s 0.45s 7.57min 158.45min 21×
8 86.52%(95.31%) 3.10s 16.31s 844.58s 0.97s 15.34min 316.89min 20×

4096
2 82.10%(94.65%) 1.61s 17.78s 756.33s

60.69s
0.32s 13.95min 316.89min 22×

4 86.33%(96.00%) 2.73s 32.48s 1500.37s 0.45s 26.61min 633.79min 23×
8 88.79%(96.14%) 3.03s 57.04s 3000.85s 1.04s 52.04min 1267.58min 24×

† For n = 213, the runtime of the Min-Index sector (i.e,. 6th column) was increased by about 2× and other sectors were almost unchanged.
‡ By estimation using the provided runtimes per update, per centroid, per data point, per CPU in [34, § 6].

VII. CONCLUSION

In conclusion, this work presents PEGASUS, a highly optimized framework that allows us to efficiently and effectively
perform both polynomial functions and non-polynomial functions on encrypted data. The main technical contribution is
two-fold. We propose a new FHEW → CKKS conversion algorithm achieving better performance and a significantly
smaller key compared to the prior work of CHIMERA [7]. Also, we extend the prior approach for homomorphic look-up
table evaluation [43] to accept a wide range of input. Finally, we showed that PEGASUS can be applied to many real-life
applications, including the private decision tree evaluation on an encrypted query, and secure outsourced K-means clustering
on an encrypted dataset. We consider that PEGASUS is practical for a wide range of privacy-preserving scenarios, especially
for cloud-based applications. One of our future work is to improve the performance of PEGASUS using hard-wares such
as GPGPU and FPGA.

REFERENCES

[1] M. R. Albrecht, R. Player, and S. Scott, “On the concrete hardness of learning with errors,” J. Mathematical Cryptology, vol. 9,
no. 3, pp. 169–203, 2015.

[2] K. E. Batcher, “Sorting networks and their applications,” in American Federation of Information Processing Societies: AFIPS
Conference Proceedings: 1968 Spring Joint Computer Conference, Atlantic City, USA, 30 April - 2 May 1968, pp. 307–314.

[3] J. W. Bos, K. E. Lauter, and M. Naehrig, “Private predictive analysis on encrypted medical data,” J. Biomed. Informatics, vol. 50,
pp. 234–243, 2014.

[4] J. Bossuat, C. Mouchet, J. R. Troncoso-Pastoriza, and J. Hubaux, “Efficient bootstrapping for approximate homomorphic encryption
with non-sparse keys,” IACR Cryptol. ePrint Arch., vol. 2020, p. 1203, 2020.

[5] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning classification over encrypted data,” in 22nd Annual Network and
Distributed System Security Symposium, NDSS 2015, San Diego, USA, February 8-11, 2015.

[6] C. Boura, N. Gama, M. Georgieva, and D. Jetchev, “Simulating homomorphic evaluation of deep learning predictions,” in Cyber
Security Cryptography and Machine Learning - Third International Symposium, CSCML 2019, Beer-Sheva, Israel, June 27-28, 2019,
Proceedings, pp. 212–230.

[7] ——, “Chimera: Combining ring-lwe-based fully homomorphic encryption schemes,” Journal of Mathematical Cryptology, vol. 14,
no. 1, pp. 316 – 338, 2020.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic encryption without bootstrapping,” in Innovations in
Theoretical Computer Science 2012, Cambridge, USA, January 8-10, 2012, pp. 309–325.

[9] H. Chen, I. Chillotti, and Y. Song, “Improved bootstrapping for approximate homomorphic encryption,” in Advances in Cryptology -
EUROCRYPT 2019 - 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part II, pp. 34–54.

16

[10] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key homomorphic encryption with packed ciphertexts with application
to oblivious neural network inference,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pp. 395–412.

[11] ——, “Efficient homomorphic conversion between (ring) LWE ciphertexts,” IACR Cryptol. ePrint Arch., vol. 2020, p. 15, 2020.

[12] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “Bootstrapping for approximate homomorphic encryption,” in Advances
in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I, pp. 360–384.

[13] J. H. Cheon, S. Hong, and D. Kim, “Remark on the security of ckks scheme in practice,” IACR Cryptol. ePrint Arch., vol. 2020, p.
1581, 2020.

[14] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Homomorphic encryption for arithmetic of approximate numbers,” in ASIACRYPT
2017, Hong Kong, China, December 3-7, 2017, pp. 409–437.

[15] J. H. Cheon, D. Kim, and D. Kim, “Efficient homomorphic comparison methods with optimal complexity,” in ASIACRYPT 2020,
Daejeon, South Korea, December 7-11, 2020, pp. 221–256.

[16] J. H. Cheon, D. Kim, D. Kim, H. Lee, and K. Lee, “Numerical method for comparison on homomorphically encrypted numbers,”
in ASIACRYPT 2019, Kobe, Japan, December 8-12, 2019, pp. 415–445.

[17] J. H. Cheon, D. Kim, and J. H. Park, “Towards a practical clustering analysis over encrypted data,” IACR Cryptol. ePrint Arch., vol.
2019, p. 465, 2019.

[18] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: fast fully homomorphic encryption over the torus,” J. Cryptology,
vol. 33, no. 1, pp. 34–91, 2020.

[19] “CHIMERA Implementation,” https://github.com/DPPH/chimera-iDash2018, 2020, team CEA-EPFL-Inpher: code for the iDash 2018
competition.

[20] A. Costache and N. P. Smart, “Which ring based somewhat homomorphic encryption scheme is best?” in Topics in Cryptology
- CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016, San Francisco, USA, February 29 - March 4, 2016,
Proceedings, pp. 325–340.

[21] R. Dathathri, B. Kostova, O. Saarikivi, W. Dai, K. Laine, and M. Musuvathi, “EVA: an encrypted vector arithmetic language
and compiler for efficient homomorphic computation,” in Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, pp. 546–561.

[22] R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. E. Lauter, S. Maleki, M. Musuvathi, and T. Mytkowicz, “CHET: an optimizing
compiler for fully-homomorphic neural-network inferencing,” in Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, Phoenix, USA, June 22-26, 2019, pp. 142–156.

[23] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available: http://archive.ics.uci.edu/ml

[24] L. Ducas and D. Micciancio, “FHEW: bootstrapping homomorphic encryption in less than a second,” in EUROCRYPT 2015, Sofia,
Bulgaria, April 26-30, 2015, pp. 617–640.

[25] N. Emmadi, P. Gauravaram, H. Narumanchi, and H. Syed, “Updates on sorting of fully homomorphic encrypted data,” in 2015
International Conference on Cloud Computing Research and Innovation, ICCCRI 2015, Singapore, October 26-27, 2015, pp. 19–24.

[26] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” IACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

[27] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the AES circuit,” in CRYPTO 2012, Santa Barbara, USA, August
19-23, 2012., pp. 850–867.

[28] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster,
attribute-based,” in CRYPTO 2013, Santa Barbara, USA, August 18-22, 2013., pp. 75–92.

[29] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. Wernsing, “CryptoNets: Applying neural networks to
encrypted data with high throughput and accuracy,” in ICML 2016, New York City, USA, June 19-24, 2016, pp. 201–210.

[30] S. Halevi and V. Shoup, “Algorithms in HElib,” in Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, USA, August 17-21, 2014, Proceedings, Part I, pp. 554–571.

17

https://github.com/DPPH/chimera-iDash2018
http://archive.ics.uci.edu/ml

[31] ——, “Faster homomorphic linear transformations in HElib,” in CRYPTO 2018, Santa Barbara, USA, August 19-23, 2018, pp.
93–120.

[32] K. Han, M. Hhan, and J. H. Cheon, “Improved homomorphic discrete fourier transforms and FHE bootstrapping,” IEEE Access,
vol. 7, pp. 57 361–57 370, 2019.

[33] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic encryption,” in Topics in Cryptology - CT-RSA 2020 - The
Cryptographers’ Track at the RSA Conference 2020, San Francisco, USA, February 24-28, 2020, Proceedings, pp. 364–390.

[34] A. Jäschke and F. Armknecht, “Unsupervised machine learning on encrypted data,” in Selected Areas in Cryptography 2018, Calgary,
Canada, August 15-17, 2018, Revised Selected Papers, pp. 453–478.

[35] Jianchao Yang, Kai Yu, Yihong Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classification,”
in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 1794–1801.

[36] W. jie Lu, S. Kawasaki, and J. Sakuma, “Using fully homomorphic encryption for statistical analysis of categorical, ordinal and
numerical data,” in 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, USA, February 26 -
March 1, 2017.

[37] W. jie Lu, J. Zhou, and J. Sakuma, “Non-interactive and output expressive private comparison from homomorphic encryption,” in
AsiaCCS 2018, Incheon, Republic of Korea, June 04-08, 2018, pp. 67–74.

[38] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low latency framework for secure neural network inference,”
in USENIX Security 2018, Baltimore, USA, August 15-17, 2018, pp. 1651–1669.

[39] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic regression based on homomorphic encryption,” IACR Cryptol.
ePrint Arch., vol. 2018, p. 74, 2018.

[40] Á. Kiss, M. Naderpour, J. Liu, N. Asokan, and T. Schneider, “Sok: Modular and efficient private decision tree evaluation,” PoPETs,
vol. 2019, no. 2, pp. 187–208.

[41] B. Li and D. Micciancio, “On the security of homomorphic encryption on approximate numbers,” IACR Cryptol. ePrint Arch., vol.
2020, p. 1533, 2020.

[42] C. A. Melchor, J. Barrier, L. Fousse, and M. Killijian, “XPIR : Private information retrieval for everyone,” PoPETs, vol. 2016, no. 2,
pp. 155–174.

[43] D. Micciancio and Y. Polyakov, “Bootstrapping in FHEW-like cryptosystems,” IACR Cryptol. ePrint Arch., vol. 2020, p. 86, 2020.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[45] F. Rao, B. K. Samanthula, E. Bertino, X. Yi, and D. Liu, “Privacy-preserving and outsourced multi-user k-means clustering,” in
Conference on Collaboration and Internet Computing 2015, Hangzhou, China, October 27-30, 2015, pp. 80–89.

[46] M. Scott, “A note on the implementation of the number theoretic transform,” in Cryptography and Coding - 16th IMA International
Conference, IMACC 2017, Oxford, UK, December 12-14, 2017, Proceedings, pp. 247–258.

[47] “Microsoft SEAL (release 3.5),” https://github.com/Microsoft/SEAL, Apr. 2020, microsoft Research, Redmond, WA.

[48] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small key and ciphertext sizes,” in Public Key
Cryptography 2010, Paris, France, May 26-28, 2010., pp. 420–443.

[49] ——, “Fully homomorphic SIMD operations,” Des. Codes Cryptogr., vol. 71, no. 1, pp. 57–81, 2014.

[50] R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow, “Privacy-preserving decision trees evaluation via linear functions,” in
ESORICS 2017, Oslo, Norway, September 11-15, 2017, pp. 494–512.

[51] A. Tueno, Y. Boev, and F. Kerschbaum, “Non-interactive private decision tree evaluation,” in DBSec 2020, Regensburg, Germany,
June 25-26, 2020, pp. 174–194.

18

https://github.com/Microsoft/SEAL

APPENDIX

A. Comparing the Performance of MP-FFT and RNS-NTT

We provide some benchmarks on polynomial multiplication using multi-precision FFT and RNS-based NTT algorithm.
The benchmark results are shown in Table IX. Specifically, we use polynomials with N coefficients and each coefficient is
stored in a t-bit multi-precision floating values or represented by dt/50e RNS moduli. We can see that the performance of
RNS-NTT is more better than the MP-FFT counterparts, i.e., about three orders of magnitude faster.

B. Operations of the RNS Variant of the CKKS Scheme

We give the details of the CKKS operations used in PEGASUS.
• Setup. Dimension n is a 2-power value. L > 0 distinct primes q0, q1, · · · , qL−1. Let Qi =

∏i
k=0 qi for all i ∈ 〈L〉. The

error distribution χerr is defined as the centered discrete normal distribution of standard deviation σckks > 0. The encryption
distribution χenc is defined as the uniform distribution over {0,±1}n.
• KeyGen. Sample the secret key s from {0,±1}n. Set the public key pk ∈ RLWEn,QL−1

s (0), i.e., a RLWE sample of
zero.
• Encryption. On a plaintext m̂ ∈ Rn,QL−1

, computes ct = (m̂+ ê, 0)+ û ·pk ∈ RLWEn,QL−1
s (m̂), where the coefficients

of ê ∈ Rn,QL−1
are sampled from χerr and û ∈ Rn,QL−1

are sampled from χenc.
• Extended Encryption. On a plaintext m̂ ∈ Rn,QL−1

, and a gadget g ∈ Zd, compute a set of RLWE samples

(c0, · · · , cd−1) ∈ R̃LWE
n,QL−1

s (m̂;g)

where ci ∈ RLWEn,QL−1
s (g[i] · m̂) for i ∈ 〈d〉.

• Decryption. On the ciphertext ct = (c0, c1) ∈ R2
n,Ql

for any l ∈ 〈L〉, compute and output c0 + c1 · s ∈ Rn,Ql
.

• Addition. On the ciphertexts (c0, c1) ∈ RLWEn,Ql
s (m̂) and (c′0, c

′
1) ∈ RLWEn,Ql

s (m̂′) for any l ∈ 〈L〉, compute (c0 +
c′0, c1 + c′1) ∈ RLWEn,Ql

s (m̂+ m̂′).
• Multiplication. On the ciphertexts (c0, c1) ∈ RLWEn,Ql

s (m̂) and (c′0, c
′
1) ∈ RLWEn,Ql

s (m̂′) and a relinearization key

RelK ∈ R̃LWE
n,Ql

s (s2;g), for any l ∈ 〈L〉, first compute c̃0 = c0 · c′0, c̃1 = c0 · c′1 + c1 · c′0 and c̃2 = c1 · c′1. Then output
(c̃0, c̃1) + c̃2 � RelK ∈ RLWEn,Ql

s (m̂ · m̂′).

• Rotation. On the ciphertext (c0, c1) ∈ RLWEn,Ql
s (Ecd (m)) and a rotation key RotKk ∈ R̃LWE

n,Ql

s (φk(s);g), for any
l ∈ 〈L〉, compute (φk(c0), 0) + c1 � RotKk ∈ RLWEn,Ql

s (Ecd (m ≪ k)). The automorphism function φk : Rn → Rn is
defined by X 7→ X5k

.

• Operator (�). On any ring element r̂ ∈ Rn,Ql
, and the ciphertext ct = (c0, · · · , cd−1) ∈ R̃LWE

n,Ql

s (m̂;g), to perform
the operation r̂ � ct, first decompose the ring element r̂ =

∑d−1
j=0 g[j]r̂j . Then compute

∑d−1
i=0 r̂j · cj ∈ RLWEn,Ql

s (r̂ · m̂).
• Rescale. On the ciphertext (c0, c1) ∈ RLWEn,Ql

s (m̂), compute c′b = q−1
l · (cb− cb mod ql) mod Ql−1 for b ∈ {0, 1} and

output (c′0, c
′
1) ∈ RLWEn,Ql−1

s (dm̂/qlc).
In addition to the CKKS operations described above, we need some operations from the GSW encryption. The GSW

encryption RGSW(·;g) is defined as a tuple of R̃LWE ciphertexts

RGSWn,q
s (m̂;g) =

(
R̃LWE

n,q

s (m̂;g), R̃LWE
n,q

s (ŝ · m̂;g)

)
.

The � operation multiples a RLWE ciphertext with a GSW ciphertext. Specifically, given (b̂, â) ∈ RLWEn,qs (m̂0) and
(β̂, α̂) ∈ RGSWn,q

s (m̂1), one computes (b̂, â)� (β̂, α̂) as b̂ � β̂ + â � α̂ ∈ RLWEn,qs (m̂0 · m̂1).

Table IX: Comparing the performance of polynomial multiplication between the RNS-based NTT implementation in
SEAL [47] and the multi-precision FFT implementation in CHIMERA [19]. A 2.50 GHz CPU were used for this comparison.

Implementation Polynomial degree N , Bits width t

213, 80 214, 250 215, 500 216, 1000

NTT 0.30ms 1.04ms 4.36ms 18.47ms
MP-FFT 457.07ms 1041.33ms 3175.67ms 12.73s

Speedup 1523× 1000× 728× 689×

19

C. Proofs

The proofs in this section show the correctness of proposed building blocks.
We first prove the correctness of Theorem 1.

Proof: (Theorem 1) Our proof consists of two parts. First, we will prove the following invariant:

ACj ∈ RLWEs(f̂ ·X b̃+
∑

l∈〈j〉 ã[l]s[l] mod n)

for each j ∈ 〈n〉 and any ternary key s ∈ {0,±1}n. Then we prove that the 0-th coefficient of the decryption of ACn is
(approximately) the evaluation of the look up table at point m, i.e., ∆T (m).

We prove the first part using mathematical induction. In the beginning, by definition, AC0 is a trivial RLWE ciphertext of
f̂ ·X b̃, which follows the invariant. Let us assume ACj follows the invariant for any 0 < j < n. Since the key s is ternary,
we now prove for each case, i.e., kj ∈ {0, 1,−1}, ACj+1 also follows the invariant.

1) Suppose s[j] = 0 then ã[j]s[j] = 0. We note that EKj,0 and EKj,1 are both GSW encryption of 1 in this case.

ACj+1 = ((X−ã[j] − 1) · tj)� RGSWs(1) + tj

= X−ã[j] · tj = X−ã[j] ·X ã[j] · ACj = ACj .

2) Suppose s[j] = 1 then ã[j]s[j] = ã[j]. We note that EKj,0 is a GSW encryption of 1 and EKj,1 is a GSW encryption
of 0 in this case.

ACj+1 = ((X−ã[j] − 1) · tj)� RGSWs(0) + tj

= tj = X ã[j] · ACj .
3) Suppose s[j] = −1 then ã[j]s[j] = −ã[j]. We note that EKj,0 is GSW encryption of 0 and EKj,1 is a GSW encryption

of 1 in this case.

ACj+1 = ((X−ã[j] − 1) · tj)� RGSWs(1) + tj

= X−ã[j] · tj = X−ã[j] · ACj .

So it is proved that, for any j ∈ 〈n〉, we have ACj ∈ RLWEs(f̂ ·X b̃+
∑

l∈〈j〉 ã[j]s[j] mod n). In other words, after the iterative
updates, ACn ∈ RLWEs(f̂ ·X b̃+ã>s mod n).

To prove the second part, we argue that

b+ a>s = d∆mc+ εq0 i.e., decryption function

⇒ b̃+ ã>s = δ + 2εn = d2n
q0

(d∆mc)c+ 2εn

where ε ∈ N. In other words, X b̃+ã>s mod n = Xδ mod n. Also it is required that |∆m| < q/4. Thus we have δ ∈
Z ∩ [−n/2, n/2), which means that

Xδ mod n =

{
−Xn−|δ| for δ ≤ 0

Xδ for δ > 0
.

Then the 0-th coefficient of f̂ ·X b̃+ã>s mod n is{
f|δ|X |δ| · −Xn−|δ| = d∆T (−η|δ|)c for δ ≤ 0

−fn−δXn−δ ·Xδ = d∆T (ηδ)c for δ > 0
.

By definition

ηδ =

d2n
q0
d∆mccq0

2n∆
≈ m

(resp. η|δ| ≈ |m|), we have T (ηδ) ≈ T (m) (resp. T (−η|δ|) ≈ T (m) for m ≤ 0). In other words, the 0-th coefficient of the
decryption of ACn is approximately the evaluation of T (x) at point m.

Then we show the correctness of Theorem 2.

20

Input: A LWE ciphertext (b,a) ∈ LWEn,qs (m). The LWE switching key is a set of R̃LWE ciphertexts, that is

SwKj ∈ R̃LWE
n,q

s

∑
l∈〈n〉

s[jn+ l]Xl;g

 for j ∈ 〈n/n〉.

Output: A LWE ciphertext ctout ∈ LWEn,qs (·).

1: Define a set of polynomials {âj}j where âj = a[jn]−∑n−1
l=1 a[jn+ l]Xn−l for j ∈ 〈n/n〉.

2: Compute c̃t =
∑
j∈〈n/n〉 âj � SwKj ∈ R2

n,q.

3: Output (b,0) + Extract0(c̃t) as ctout.

Figure 9: Key-Switch PEGASUS.KS (modified from [11])

Proof: (Theorem 2) After Step 2, c̃t encrypts some vectors u ∈ Rn which consists of products of {m̃j} and z. Indeed,
for any c ∈ 〈n̈/ñ〉 and r ∈ 〈ñ〉, we have

u[cñ+ r] =
∑
j∈〈ñ〉

m̃j [cñ+ r]z[j + cñ+ r]

=
∑
j∈〈ñ〉

M[cñ+ r, j + cñ+ r]z[j + cñ+ r].

Here we omit the modulo in the subscripts to lighten the notation.
If n = ñ then u[cñ+ r] =

∑
jM[cn+ r, j + r]z[j + r], that is the cn+ r-th element of the product Mz. Since cn+ r

loops over 〈`〉, u = Mz in this case.
To simplify the second part of our proof (i.e., ` = ñ), we first define Mc ∈ R`×` as a column-block matrix of M such

that Mc[i, j] = M[i, c`+ j] for i, j ∈ 〈`〉, and write zc = z[c` : c`+ `]. By this definition, we have Mz =
∑
cMczc. Next,

we view u as a column-major matrix U ∈ R(n/`)×` such that U[r, c] = u[c`+ r]. Since ` = ñ, we have

U[r, c] =
∑
j∈〈`〉

M[r, j + c`+ r]z[j + c`+ r],

which equals to (Mczc)[r]. In other words, the c-th column of U is the product vector Mczc. Then to obtain Mz, we the
need to sum the columns of U, which is done in Step 7.

Finally, Rescale(·,∆r) + Ecd (t,∆′r) gives the result, i.e., RLWEs(Ecd (Mz + t,∆′r)).
For the sake of completeness, we present the our key-switching algorithm in Fig. 9. We now show the correctness of our

key-switching in Algorithm 9.
Theorem 3: On the input ciphertext LWEn,qs (m), Fig. 9 outputs a LWE ciphertext ctout ∈ LWEn,qs (m) when n is a 2-power

value.
Proof: (Theorem 3) It suffices to show that the 0-th coefficient of the decryption of c̃t is the inner product of a and s.

c̃t ∈
∑

j∈〈n/n〉
(a[jn]−

n−1∑
l=1

a[jn+ l]Xn−l) � R̃LWEs(
∑
l∈〈n〉

s[jn+ l]Xl)

∈
∑

j∈〈n/n〉
RLWEs

∑
l∈〈n〉

a[jn+ l]s[jn+ l] + r̂j

 ∵ Xn = −1

∈ RLWEs

 ∑
j∈〈n/n〉

∑
l∈〈n〉

a[jn+ l]s[jn+ l] + r̂j


∈ RLWEs

(
a>s + r̂

)
,

where {r̂j}j and r̂ are polynomials that do not contain the constant term. Then Extract0(c̃t) + (b,0) gives a valid LWE
encryption of a>s + b ≈ m under the target key s.

D. Error Analysis

Our analysis follows the widely used heuristic assumption that the coefficients of each polynomial behave like independent
zero-mean random variables of the same variance [20], and central limit heuristic [24]. On the polynomials â, b̂ ∈ Rn whose

21

variances of the coefficients are σ2
a and σ2

b , respectively. Then the variance of the coefficients of the sum â+ b̂ is σ2
a+σ2

b , and
that of the product â · b̂ is nσ2

aσ
2
b . Remind that, PEGASUS uses the digit decomposition gadget gdigit for the key-switching

function, and uses RNS gadget grns in the LUT evaluation function.
1) Key-Switching: We can view the switching key SwKs→s as a (n/n)× dks matrix over RLWEn,q0s (·). The (j, k) entry

of this matrix decrypts to Bkksŝj + êj,k where the variance of the coefficients of the poly êj,k is σ2
ks. The multiplications

(�) in Step 2 of Algorithm 9 will introduce the extra error in the form of
∑
j,k âj,k · êj,k where the coefficients of âj,k

is bounded by Bks due to the digit decomposition gadget. By viewing the coefficients of âj,k as a uniform random over
[0, Bks), its variance is B2

ks/12. As a result, the variance of the extra error is 1
12ndksB

2
ksσ

2
ks.

2) Look-up Table Evaluation: Suppose the input LWE ciphertext of the LUT evaluation decrypts to b+ a>s mod q0 =
∆m + e0 for some error term e0 whose variance is σ2

0 . Our LUT evaluation outputs a LWE ciphertext that decrypts to
∆T (m + e1) + e2. We now analyze the variances of these errors. By scaling down from [0, q0) to [0, 2n), in Step 2 of
Algorithm 2, we obtain b̃ = d(2nb)/q0c and ã[i] = d(2na[i])/q0c for i ∈ 〈n〉. Let define idx = b̃+ ã>s mod 2n. According
to the central limit heuristic [24], idx = d(2n∆m)/q0c+e with the error variance of ((2nσ0)/q0)2 +(‖s‖2+1)/12. The value
idx serves as a look-up index to select the coefficient of f̂ , i.e., ∆T (q0/(2∆n)·idx) which can be viewed as ∆T (m+e′+erd)
with the rounding error erd and an error e′ of a variance (σ0/∆)2 + q2

0(‖s‖2+1)/(48n2∆2). By viewing the message m
as a uniform random over [−q0/4∆, q0/4∆), the variance of erd can be given as q2

0/(48n2∆2). As a result, the variance
of e1 = e′ + erd can be given as (σ0/∆)2 + q2

0(‖s‖2+2)/(48n2∆2). Moreover, the error e2 is accumulated from the 2n
multiplications (�). According to the analysis of special prime technique from [10], the variance of e2 can be given as
4nq0σ

2
lut/q

′.
Suppose T (·) is a L-Lipschitz function. Then the difference between the ground truth T (m) and the approximated result

T (m+ e1) + e2/∆ can be bounded as

6 ·
(
L
√

(σ0/∆)2 + q20(‖s‖2+2)/(48n2∆2) +
√

4nq0σ2
lut/q

′/∆

)
(3)

with high probability.

22

	Introduction
	Related Work
	Contribution

	Preliminaries
	Notations
	LWE, Ring-LWE Encryption
	Coefficients and Slots Manipulation
	System and Security Model

	Building Blocks of PEGASUS
	Overview
	Look-up Table Evaluation on a Larger Domain
	More Efficient Repacking

	Our Framework
	Optimizations
	Full Algorithm of PEGASUS
	Advanced Features of PEGASUS

	Applications
	Application I: Basic Non-polynomial Functions
	Application II: Private Decision Tree Evaluation
	Application III: Secure Clustering on Encrypted Data

	Evaluation
	Concrete Parameters
	Micro-benchmarks for PEGASUS
	Applications Evaluation
	Basic Non-polynomial Functions
	Private Decision Tree Evaluation
	Secure K-means Clustering

	Conclusion
	References
	Appendix
	Comparing the Performance of MP-FFT and RNS-NTT
	Operations of the RNS Variant of the CKKS Scheme
	Proofs
	Error Analysis
	Key-Switching
	Look-up Table Evaluation

