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Abstract. The problem of solving explicitly the equation Pu(X) :=
X9t 4 X +a = 0 over the finite field Fg, where Q = p", ¢ = p* and p is
a prime, arises in many different contexts including finite geometry, the
inverse Galois problem [1], the construction of difference sets with Singer
parameters [9], determining cross-correlation between m-sequences [12]
and to construct error correcting codes [4], cryptographic APN functions
[5, 6], designs [26], as well as to speed up the index calculus method for
computing discrete logarithms on finite fields [13,14] and on algebraic
curves [23].

Subsequently, in [2, 15,16, 5, 3, 20, 8,24, 19], the Fg-zeros of P,(X) have
been studied. In [2], it was shown that the possible values of the number
of the zeros that P,(X) has in Fg is 0, 1, 2 or p¥°4(™*) 1 1. Some criteria
for the number of the Fg-zeros of P,(z) were found in [15,16, 5, 20, 24].
However, while the ultimate goal is to explicit all the Fg-zeros, even in
the case p = 2, it was solved only under the condition ged(n, k) = 1 [20].

In this article, we discuss this equation without any restriction on p and
ged(n, k). In [19], for the cases of one or two Fg-zeros, explicit expres-
sions for these rational zeros in terms of a were provided, but for the case
of pged(mk) 4 1 Fq— zeros it was remained open to explicitly compute the
zeros. This paper solves the remained problem, thus now the equation
xP'H + X + a = 0 over Fpn is completely solved for any prime p, any
integers n and k.
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1 Introduction

Let n and k be any positive integers with ged(n, k) = d. Let Q = p™ and ¢ = p*
where p is a prime. We consider the polynomial

Py(X):=X"""+ X +a,a € F,.

Notice the more general polynomial forms X9t +7X9+ sX +t with s # r? and
t # rs can be transformed into this form by the substitution X = (s—rq)éXl —7.
It is clear that P,(X) have no multiple roots.

These polynomials have arisen in several different contexts including finite
geometry, the inverse Galois problem [1], the construction of difference sets with
Singer parameters [9], determining cross-correlation between m-sequences [12]
and to construct error correcting codes [4], APN functions [5,6], designs [26].
These polynomials are also exploited to speed up (the relation generation phase
in) the index calculus method for computation of discrete logarithms on finite
fields [13, 14] and on algebraic curves [23].

Let N, denote the number of zeros in F¢ of polynomial P, (X) and M; denote
the number of a € F, such that P,(X) has exactly i zeros in Fg. In 2004, Bluher
[2] proved that N, takes either of 0, 1, 2 and p? + 1 where d = ged(k,n) and
computed M; for every i. She also stated some criteria for the number of the
Fo-zeros of P,(X).

The ultimate goal in this direction of research is to identify all the Fg-zeros
of P,(X). Subsequently, there were much efforts for this goal, specifically for
a particular instance of the problem over binary fields i.e. p = 2. In 2008 and
2010, Helleseth and Kholosha [15, 16] found new criteria for the number of Fan-
zeros of P,(X). In the cases when there is a unique zero or exactly two zeros
and d is odd, they provided explicit expressions of these zeros as polynomials
of a [16]. In 2014, Bracken, Tan, and Tan [5] presented a criterion for N, = 0
in Fon when d = 1 and n is even. In 2019, Kim and Mesnager [20] completely
solved this equation X 2414 X 4q =0 over Fon when d = 1. They showed that
the problem of finding zeros in Fon of P,(X), in fact, can be divided into two
problems with odd k: to find the unique preimage of an element in Fo» under
an Miiller-Cohen-Matthews polynomial and to find preimages of an element in
Fy» under a Dickson polynomial. By completely solving these two independent
problems, they explicitly calculated all possible zeros in Fon of P, (X), with new
criteria for which N, is equal to 0, 1 or p® + 1 as a by-product.

Very recently, new criteria for which P,(X) has 0, 1, 2 or p? + 1 roots were
stated by [19, 24] for any characteristic. In [19], for the cases of one or two Fg-
zeros, explicit expressions for these rational zeros in terms of a are provides. For
the case of pged(™*) 1 1 rational zeros, [19] provides a parametrization of such
a’s and expresses the pgd(™*) 4 1 rational zeros by using that parametrization,
but it was remained open to explicitly represent the zeros.

Following [19], this paper discuss the equation XP'H L X +a=0a€ Fpn,
without any restriction on p and ged(n, k). After introducing some prerequisites
from [19] (Sec. 2), we solve the open problem remained in [19] to explicitly



represent the Fg—zeros for the case of p&°d(™*) 1 1 rational zeros (Sec. 3). After

all, it is concluded that the equation X P'+l 4 X 4 =0 over Fpn is completely
solved for any prime p, any integers n and k.

2 Prerequisites

Throughout this paper, we maintain the following notations.

e pis any prime.

e n and k are any positive integers.
e d=gcd(n,k).

e m:=n/d

o g=7p~

e (Q=p".

[ ]

a is any element of the finite field Fg,.

Given positive integers L and [, define a polynomial

L(1—2) pEa=1

TEX) =X+ X"+ + x4 x

Usually we will abbreviate T} () as T;(-). For « € F,, T;(z) is the absolute trace
Trt(z) of z.
In [19], the sequence of polynomials {A,(X)} in Fp,[X] is defined as follows:

Al(X) = 17A2(X) = _17

9 1
Arpo(X) =—A, 1 (X)) = X9A4,(X)? forr > 1. M

The following lemma gives another identity which can be used as an alternative
definition of {A,(X)} and an interesting property of this polynomial sequence
which will be importantly applied afterwards.

Lemma 1 ([19]). For any r > 1, the following are true.

1.
Ar+2(X) = _Ar-i-l(X) - XqTAT(X)- (2)
2. )
Arpr ()T = 4, (X)9A,4(X) = X5 (3)

The zero set of A,.(X) can be completely determined for all r:

Proposition 2 ([19]). For any r > 3,

{erF},AT(:B):O}:{W uewqr\m}.

(u —ug®)atl’



Further, define polynomials

F(X) = Am(X)a
G(X) = —Apy1(X) — X A

m—1

(X).

It can be shown that if F(a) # 0 then the Fg-zeros of P,(X) satisfy a
quadratic equation and therefore necessarily N, < 2.

Lemma 3 ([19]). Let a € Fy,. If Pu(x) =0 for x € Fq, then
F(a)z® 4+ G(a)x + aF%(a) = 0. (4)

By exploiting these definitions and facts, the following results have been got.

2.1 N, <2:0dd p
Theorem 4 ([19]). Let p be odd. Let a € Fg and E = G(a)? — 4aF(a)q+1.
1. N,=01 1)

2. N, =1 if and only if F(a) # 0 and E = 0. In this case, the unique 2ero in
Fq of Po(X) is — Gla)

2F(a) "
3. Ny =

1
1). In this case, the two zeros in Fg of Py(X) are x12 = M;Fizs@, where

E3 represents a quadratic root in Fpa of E.

22 N,<2:p=2

When p = 2, in [19] it is proved that G(z) € F, for any « € Fgm and using it

Theorem 5 ([19]). Let p = 2 and a € Fg. Let H = Tr{ (%’%2‘?) and E =
aF(a)?t!
a2(a)
1. N, =0 if and only if G(a) # 0 and H # 0.
2. Na =1 if and only if F(a) # 0 and G(a) = 0. In this case, (aF(a)i™ 1)z is
the unique zero in Fg of Py(X).
3. Ny, =2 if and only if G(a) # 0 and H = 0. In this case the two zeros in Fg

are x4 = ggz; (%) and To =1 + ggg;, where C S HQ+1 \ {1}

2.3 N, = p?+ 1: Auxiliary results
Lemma 6 ([19]). Let a € Fy,. The following are equivalent.

1. N, =p%+1i.e. P,(X) has exactly p® + 1 zeros in Fq.



2. F(a) = 0, or equivalently by Proposition 2, there exists u € Fgm \ F2 such
that q = (=w) ™
at a = o=
(u—u®)a°+1
(u—ud?)a+t1’
2
—(u+a)? ~
1+ (u—u2)e—1

3. There exists u € Fg \ Fp2a such that a = Then the p® + 1 zeros

r and Ty = forozE]Fd

in Fo of P,(X) are zp = W

Lemma 7 ([19]). If A,,(a) = 0, then for any x € Fg such that 29 +z4a = 0,
it holds
Apyi(a) = Nri™(z) € Fpa

Furthermore, for any t > 0
Amti(a) = Amya(a) - Ae(a). (5)
In [19], it is remained as an open problem to explicitly compute the p? + 1

rational zeros.

3 Completing the case N, = p¢ + 1

Thanks to Lemma 6, throughout this section we assume F(a) = 0 i.e.
Ann(a) =0.

Let
Lo(X) = X7 + X9+ aX € Fg[X].

Define the sequence of polynomials {B,.(X)} as follows:
Bi(X)=0,B11(X) = —a- A.(X)L. (6)

From Lemma 7 and the definition (1) it follows

Q=

Bi(a) = —aAp_1(a)? = Apyi(a)s € Fpa. (7)
Using (5) and an induction on [ it is easy to check:

Proposition 8.
Bim(a) = Bm(a)l~ (8)
for any integer [ > 1.

The first step to solve the open problem is to induce

Lemma 9. For any integer r > 2, in the ring Fo[X] it holds

X" =3 A (@) - Lo(X)T + Ag(a) - X7+ By (a) - X. 9)



Proof. The equality (9) for r = 2 is X9 = L,(X) — X7 — aX which is valid
by the definition of L,(X). Suppose the equality (9) holds for r > 2. By raising
g—th power to both sides of the equality (9), we get

r—1
xa T — ZAr—i(a)qM Lo(X)T + A (a)?- X9 + B, (a)? - X1
i=1

= Ari1-i(@)?  La(X)T + A(a)? - XT + B,(a)? - X
=2

(r+1)—1 _
= Y As(@ LX)
1=2

—a-A(a)? x4+ B(a)? - X1
(r4+1)—1 _ .
= Z AT+1—i(a)q ’ La(X)q + AT-H(“) - X7+ BT-H(a) - X,

=1

7

T+ Ar(@)? Lo(X) — Ay(a)? - X1

where the last equality follows from the definitions (6) and (1). This shows that
the equality (9) holds also for r + 1 and so for all r > 2. O

For r = m, under the assumption A,,(a) = 0, Lemma 9 gives

i—

m—1
X" =3 Api(@)? - Lo(X)" " + Bul(a) - X.
=1

Now, we define

i—

Fi(X) =X — Bp(a) - X = mi: Ap_i(@)? - Ly(X)" € Fu[X]  (10)

and
Gi(X) = mzl Ap_i(a)? - X7 (11)
i=1
Then, evidently,
Fi(X) = Gy 0 Lo(X). (12)
Furthermore, we can show

Proposition 10.
Fl(X) = La ] Gl(X)

Proof. When m = 3, As(a) = 0 is equivalent to a = 1. Therefore, one has
F(X)=X7T - X =(X1-X)T + (X9— X)4+ (X9— X) =L, 0Gy(X).



Now, suppose m > 4. Then, by using Definition (6)

La o G1 (X) =
m—1 ) ) m—1 ) ] m—1 ) )
Z Am,i(a)qHr2 X9y Z Am,i(a)ql+1 SXT 4 Z aAp_i(a)?” Lxda
i=1 i=1 i=1
m ) ) m—1 ) ) m—2 ) )
=S A @ X 4 S Api@” X+ Y adi(@) X
1=2 i=1 =0

= X" -~ B,(a)- X = Fi(X),
where Equality (2) was exploited to deduce the last second equality. a

By (5), from A,,(a) = 0 it follows A;.,;,(a) = 0 for any [ > 1. Therefore, (8)
and (9) for r = Im yield that for any [ > 1

I'm—1
i—1

X"~ Bp(a) - X = 3" Am—i(@)? - Lo(X)7 (13)

Proposition 11. Relation (13) can be rewritten by using F1(X) as follows:

-1
X©" = Bn(a) - X =3 Bn(a) ™' RX). (14)

=0

Proof. If | = 1, the equality is equivalent to the definition of Fy(X). Suppose
that it holds for [ > 2. By raising ¢"™—th power to both sides of (14), we have

1-1
XU = () X =3 Bufa) T RGO
i=0
(I+1)—1 v
_ Z Bm(a)(H—l)—l—i ) Fl(X)‘I"M
i=1
Since
Xq(l+1)m _ Bm(a)l ] qu _ Xq(l+1)m _ Bm(a)l . Fl(X) . Bm(a)l+1 . X,
one has
(1+1)-1
I+1)m 1 m-i
xaom Bm(a)l+1 X = Z Bm(a)(l“)_l—’ - Fy(X)1 —i—Bm(a)l - P (X)
i=1
(I+1)—1 ‘
_ Bm(a)(H—l)—l—i . Fl(X)q"M
i=0
This shows that Equality (14) holds for all [ > 1. O



Define
N :=(p?—1)-m,

Ga(X) = 057 B 20 X9
Since F1(X) and G2(X) are p?—linearized polynomials over F,q, they are com-

mutative under the symbolic multiplication “o” (see e.g. 115 page in [22]). There-
fore, regarding Equation (14) and Proposition 10, one has

X — X =Gy0F(X)=Fi 0Ga(X) = L, 0 Gy 0 Ga(X) (15)

and consequently
ker(Fl) = GQ(]FqN), (16)
ker(Ly) = Gy 0 Go(Fyn). (17)

Since L,(X) = XP,(X?1), here we can state:

Proposition 12. For a € F},),
{z €T, | ™ e 4a=0y={27'|z€G 0 Ga(Fynv)}\ {0} (18)

Our goal is to determine S, = {z € Fq | P,(z) = 0}, the set of all Fg—zeros
to Py(X) =X+ X +a=0,a € Fq.

Remark 13. In order to find the Fg—zeros of P,(X) it is not enough to consider
the Fg—zeros of L,(X). In fact, one can see that B, (a) # 1 in general. However,
it holds:

Proposition 14. L,(X) = 0 has a solution in Fy, if and only if By,(a) = 1.

Proof. 1f L,(x) = 0 for x € Fp, then by (12) Fi(x) = 0 ie. 27" — By, (a) -
x = (1 — Byy(a)) - 2 = 0 and consequently B,,(a) = 1. Conversely, assume
Bp(a) = 1. Then Fi(X) = X" — X = L, 0 G1(X) and ker(L,) = G1(Fym).
Assume G1(Fg) = {0}. Then, since G; is g—linearized, it holds Gi(Fgm) =
G1([Fy,Fgl) = {0} which contradicts to deg(G1) < ¢™. Thus there exists such
a xg € Ff) that Gi(zo) # 0. Then G (7o) € ker(L,) N T,

To achieve the goal, we will further need the following lemmas.

Lemma 15. Let L(X) be any q—linearized polynomial over Fq. If xg_l € Fo,
then L(zo)?™! € Fq.

Proof. If z8™! € Fq i?e. mgfl = X for some A € Fg, then 2§ = Azg and
subsequently zd = H;;}) Nz for every i > 1. Therefi)re, when L(i( ) is a
g—linearized polynomial over Fg, one can write L(zg) = Az for some A € Fg.
Thus, L(zo)7~' = A" '\ € Fo. 0

m__1\. (e _
Lemma 16. Let s = %. If Ay (a) = 0 and o € ker(Fy), then zf €

ker(Fy) and (z§)1 ' € Fg.



Proof. For x¢g = 0, the statement is trivial. Therefore, we can assume xg # 0.
Then, zy € ker(Fy) implies

1

m _1). Q-
Bu(a) = a8 71 = (ag) V1 (19)

Since By, (a) € Fpa, therefore (z§)?~* € Fy.
Now, we will show
B,,(a) = Bp(a)®.

Since P,(X) has p? + 1 rational solutions when A,,(a) = 0, there exists such a
non-zero x; that
Lo(z1) = 0,277 € Fg.

Then (12) gives Fy(x1) =0 i.e.

and on the other hand
20" = (Nagie , (@371)" = (Neype, (2171)" = (@) = Buula)?,

where the second equality followed from the fact that NrglF, 4 (y) = Ne,omr, (v)
for any y € Fg. Thus, By, (a) = By, (a)®.
Hence, (z5)7" ! = (27 ~')* = B,,(a)® = Bp(a) ie. Fy(z5) = 0. O

Now, take any xo € ker(F}). The definition (10) and Lemma 16 shows
xg - Fo = {z5-a| a € FG} C ker(F1) = Ga(Fpn~)
and
(z§-F5) ' C Fo.
Subsequently, Lemma 15 and Equality (18) prove
Gi(zf-F5)™" C S,

In order to avoid the trivial zero solution, we need

Gi(zg - Fg) # {0}

In fact, this is the case. Really, if we assume G1(xzj - F)) = {0}, then Gi(zj -
Fym) = {0} (because G, is F,—linear, and Fym is generated by Fy and Fg) which
contradicts to deg(G1) < ¢™.

Next, in order to explicit all p? + 1 elements in S,, we need to deduce the
following lemma.

Lemma 17. Let A,,(a) =0 and zg be a Fo—solution to P,(X) = 0. Then, %
is a (¢ — 1)—th power in Fg. For B € Fg with 397! = %2],

wq —

wt g =0 (20)



has ezactly p solutions in Fg. Let wy € Fg be a Fg—solution to Equation (20).
Then, the p? + 1 solutions in Fg to Py(X) =0 are xq, (wo + a)?~1 - 2o where «
runs over Fpa.

Proof. We substitute = in P,(x) with ¢ — x to get
(xg — )T + (zg—x) +a=0

or

1
2 — poxt —adr —x + 2l 2o +a=0

which implies
2T — zox? — (28 + 1)z =0,

or equivalently,
a
rT — pox? + —x = 0.
xg
Since * = 0 corresponds to zy being a zero of P,(X), we can the latter
equation by 227! to get

iyq —zoy+1=0 (21)
o

where y = % Now, let y = tw where

Then, Equation (21) is equivalent to

1
q_ L

wd —w+ toe 0. (23)
If ¢ is a solution to Equation (22), then the set of all ¢ — 1 solutions can be
represented as to - ;. For every A € F;, when wy is a solution to Equation (23)
for t = to, Awp is a solution to Equation (23) for ¢ = to/\. By the way, (to,wo)
and (tg/A, Awp) give the same yg = to - wy = to/A - Awp. Therefore, to find all
Fo—solutions to Equation (21) one can consider Equation (23) for any fixed
solution ¢¢ of Equation (22).

Now, we will show that any solution ty to Equation (22) lies in F, - Fg :=
{a-B | ae€F,B € Fg}. In fact, we know that Equation (23) has p? solu-
tions w with y = wty € Fg. Let’s fix a solution wg with yg = woty € Fg of
Equation (23). Then, the set of all solutions to Equation (23) can be written
as wo + ;. Therefore, it follows that there exist pd > 2 elements A € F; with
(’u}o + )\)to S FQ. As woty € ]FQ and (wo + /\)to S FQ, we have Mty € FQ i.e.
to € %FQ CF, -Fg.

Hence, we can write tg = - 3, where a € F, 8 € Fg, and it follows that the
set of all solutions to Equation (22) are F - 3. This means that Equation (22) has

2
% js a (¢—1)—th power in Fg. Moreover,

p? —1 solutions (i.e. F;d -B)inFq, ie.,
Equation (20) has exactly p? solutions in Fg (because Equation (21) has exactly

10



p? solutions y = wB in Fg). When wg € Fq is such a solution, the set of all p?
solutions in Fq is wg + Fpa. Since Equation (23) yields y = wt = (1_w1

= H)zo
% =x — (1 — w9 )2y = witxy. The proof is over. O

we

have g — x = 2o —
Finally, all discussion of this section are summed up in the following theorem.

m_ g\ (d_
Theorem 18. Assume A,,(a) = 0. Let N = m(p? — 1), s = %,

G1(X) = S A1 _i(a)? ™ X9 and Go(X) = S0 2 B, ()" =21 X9 It
holds Gl(GQ(F;N)S'FZ~F22)q_1 # {0}. Take a o € G1(Ga(Fiy)*-F;-Fy))? '\ {0}.

P q
2
% s a (¢ — 1)—th power in Fg. For § € Fg with 971 = =0,

>

1
wl—w+ —=0 (24)

has exactly p® solutions in Fg. Let wy € Fg be a Fg—solution to Equation (20).
Then, the p® + 1 solutions in Fg of Pu(X) are x¢, (wo + )i~ - xo where a runs
over Fpa.

Note that one can also explicit wy by an immediate corollary of Theorem 4
and Theorem 5 in [25].

4 Conclusion

In [2,15,16,5,3,20,8, 24, 19], partial results about the zeros of P,(X) = X+
X+a over IF» have been obtained. In this paper, we provided explicit expressions
for all possible zeros in Fyn of P,(X) in terms of a and thus finalize the study
initiated in these papers.

Acknowledgement

The authors deeply thank Professor Dok Nam Lee for his many helpful sugges-
tions and careful checking.

References

1. S.S. Abhyankar, S.D. Cohen, and M.E. Zieve. Bivariate factorizations connecting
Dickson polynomials and Galois theory. Transactions of the American Mathemat-
ical Society, 352(6): 2871 — 2887, 2000.

2. A'W. Bluher. On 2% + az + b. Finite Fields and Their Applications, 10(3) pp.
285 — 305, 2004.

3. A.W. Bluher. A New Identity of Dickson Polynomials. ArXiv:1610.05853
[math.NT], 2016.

4. C. Bracken andT. Helleseth. Triple-error-correcting BCH-like codes. in: IEEE Int.
Symp. Inf. Theory, pp. 1723 — 1725, 2009.

11



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

C. Bracken, C.H. Tan and Y. Tan. On a class of quadratic polynomials with no
zeros and its application to APN functions. Finite Fields and Their Applications,
25: pp. 26 — 36, 2014.

L. Budaghyan and C. Carlet. Classes of quadratic APN trinomials and hexanomials
and related structures, In IEEE Trans. Inform. Theory 54 (5), pp. 2354-2357, 2008.
S. D. Cohen and R. W. Matthews. A class of exceptional polynomials. Transactions
of the American Mathematical Society, 345(2), pp. 897 — 909, 1994.

B. Csajbdk, G. Marino, O. Polverino, and F. Zullo. A characterization of linearized
polynomials with maximum kernel. Finite Fields and Their Applications, 56, pp.
109 — 130, 2019.

J. Dillon and H. Dobbertin. New cyclic difference sets with singer parameters.
Finite Fields Appl., 10, pp. 342 — 389, 2004.

H. Dobbertin. Almost perfect nonlinear power functions on GF(2"): the Welch
case. IEEE Trans. Inform. Theory, 45, pp. 1271 — 1275, 1999.

H. Dobbertin. Kasami power functions, permutation polynomials and cyclic differ-
ence sets. in: A. Pott, P.V. Kumar, T. Helleseth, D. Jungnickel (Eds.), Difference
Sets, Sequences and their Correlation Properties, Proceedings of the NATO Ad-
vanced Study Institute on Difference Sets, Sequences and their Correlation Prop-
erties, Bad Windsheim, 2-14 August 1998, Kluwer, Dordrecht, pp. 133 — 158, 1999.
H. Dobbertin, P. Felke, T. Helleseth and P. Rosendhal. Niho type cross-correlation
functions via Dickson polynomials and Kloosterman sums. IEEE Transactions on
Information Theory, 52(2): pp. 613 — 627, 2006.

F. Géloglu, R. Granger, G. McGuire and J. Zumbréagel. On the function field sieve
and the impact of higher splitting probabilities application to discrete logarithms
in Fyiom1 and Fysi64. R. Canetti and J.A. Garay (Eds.): CRYPTO 2013, Part II,
LNCS 8043, pp. 109 — 128, 2013.

F. Gologlu, R. Granger, G. McGuire and J. Zumbrégel. Solving a 6120-bit DLP
on a desktop computer. Cryptology ePrint Archive 2013/306

T. Helleseth, and A. Kholosha. On the equation 22+ 4 2+ a over GF(2%). Finite
Fields and Their Applications, 14(1), pp. 159-176, 2008.

T. Helleseth, and A. Kholosha. g2+ + x 4+ a and related affine polynomials over
GF(2%). Cryptogr. Commun., 2, pp. 85 — 109, 2010.

T. Helleseth, A. Kholosha and G.J. Ness. Characterization of m-sequences of
lengths 2% —1 and 2% — 1 with three-valued crosscorrelation. IEEE Trans. Inform.
Theory, 53(6), pp. 2236 — 2245, 2007.

T. Helleseth and V. Zinoviev. Codes with the same coset weight distributions as
the Zs-linear Goethals codes. IEEE Trans. Inform. Theory, 47(4), pp. 1589 — 1595,
2001.

K.H. Kim, J. Choe and S. Mesnager. Solving X9™' + X + a = 0 over finite
fields. Finite Fields and Their Applications. To appear (Cryptology ePrint Archive
2019/1493, arXiv:1912.12648).

K.H. Kim and S. Mesnager. Solving g2+ + 2+ a = 0 in Fon
with ged(n,k) = 1 Finite Fields and Their Applications, 63: 101630
2020 (https://doi.org/10.1016/j.ffa.2019.101630 and Cryptology ePrint Archive
2019/307).

R. Lidl, G.L. Mullen and G. Turnwald. Dickson Polynomials, Pitman Monographs
in Pure and Applied Mathematics, Vol. 65, Addison-Wesley, Reading, MA 1993.
R. Lidl and H. Niederreiter, Finite Fields, volume 20 of Encyclopedia of Mathemat-
ics and its Applications, Cambridge University Press, Cambridge, second edition,
1997.

12



23.

24.

25.

26.

M. Massierer. Some experiments investigating a possible L(1/4) algorithm for
the discrete logarithm problem in algebraic curves. Cryptology ePrint Archive
2014/996

G. McGuire and J. Sheekey. A characterization of the number of roots of linearized
and projective polynomials in the field of coefficients. Finite Fields and Their
Applications, 57, pp. 68 — 91, 2019.

S. Mesnager, K.H. Kim, J. H. Choe and D. N. Lee. Solving Some Affine Equations
over Finite. Finite Fields and Their Applications, 68: 101746 , 2020. (Cryptology
ePrint Archive 2020/160)

C. Tang. Infinite families of 3-designs from APN functions. Journal of Combinato-
rial Designs Vol 28, Issue 2 Pages 97-117, 2020 (arXiv preprint arXiv:1904.04071,
2019).

13



