Sketches for Blockchains

Ori Rottenstreich
Technion

Abstract—Blockchains suffer from a critical scalability
problem where traditionally each network node maintains all
network state, including records since the establishment of the
blockchain. Sketches are popular hash-based data structures
used to represent a large amount of data while supporting
particular queries such as on set membership, cardinality
estimation and identification of large elements. Often, to achieve
time and memory savings, sketches allow potential inaccuracies
in answers to the queries. The design of popular blockchain
networks such as Bitcoin and Ethereum makes use of sketches
for various tasks such as summarization of transaction blocks
or declaring the interests of light nodes. Similarly, they seem
natural to deal with the size of the state in blockchains. In this
paper, we study existing and potential future applications of
sketches in blockchains. We first summarize current blockchain
use cases of sketches. Likewise, we explore how this coupling
can be generalized to a wider range of sketches and additional
functionalities. In particular, we explain how sketches can detect
anomalies based on efficient an summary of the state or traffic.

I. INTRODUCTION

The blockchain technology recently received huge public
attention as a distributed secure ledger for cryptocurrencies
with no central authority behind it. It became popular as the
technology behind Bitcoin [1], a trust-free cryptocurrency,
and since then has been expanded to other areas of
applications such as supply chain communications, online
voting, advertising and medical informatics.

A blockchain is a decentralized ledger, structured as an
immutable chain of data blocks. Starting from the first
block, the genesis block, each block includes the output of a
cryptographic hash function computed over the content of the
previous block, making it impossible to alter a block without
changing all subsequent blocks. Blocks are appended to the
chain and become available for read-only and (typically)
cannot be deleted or modified. Blocks are lists of transactions,
ledger updates, that are bundled together due to the high cost
of consensus protocols and the block meta-data overhead.

Sketches often represent data structures and algorithms
used for summarizing massive data sets while enabling
answering queries on the data [2]. Typically the sketch
allocated memory is much smaller than the memory of the
original data (e.g., logarithmic in its size). Accordingly, an
error is permitted in the query answers and a tradeoff exists
between the accuracy and memory efficiency. A sketch is
designed for answering a particular query or a range of them.

Sketches can be a natural fit to support an increasing
state size and transaction rate in a blockchain network. For
instance, the processing of a new proposed block requires
transaction validation based on the network state as implied
by previous blocks. While it can be impractical to go over

all previous blocks in each block validation, a sketch can
be used as a summary for the historical data or as an
indication for particular that are required. Similarly, sketches
can summarize network state so that it is easy to verify that
particular information is part of it. In this paper we explore
applications of sketches for blockchains. We study various
existing applications implementing different functionalities
in multiple blockchains. Likewise, we describe additional
blockchain applications in which we envision sketches can be
useful in the near future. Our focus is on anomaly detection
for which we are not aware of existing sketch-based solutions.
Paper organization: In Section II we overview counting
tasks and existing sketches that solve them. We begin with
the relatively simple task of set representation and continue
with more advanced tasks. Then, in Section III we overview
applications in blockchain of the mentioned sketches. In
Section IV we discuss potential advanced future applications
of sketches in blockchain, focusing on anomaly detection.
We also refer to recent advances in the field of sketches
and describe how they be used to enhance their blockchain
applicability. Conclusions can be found in Section V.

II. FUNCTIONALITY AND COUNTING TASKS

In this section we describe fundamental counting tasks
and their solution bases on sketches. Later in the paper,
we explain their various use cases in existing blockchain
implementations. We start with the simple task of set
representation and present sketch data structures that refer
to sets while supporting various functionality. We then
generalize the discussion to more advanced counting tasks
and overview existing solutions to each of them.

A. Set Representation

Definition 1 (Set Representation). For a set S be a set.
Representation of S as a sketch can support one or more
of the following tasks:

o Insertion (addition) of an element x to S

e Deletion (removal) of an element x € S

o Answering for an element x a membership query of the
form x € S?

o Listing the elements in S

e Proving to a sketch holder for an element x that x € S

We overview existing sketch data structures for set
representation and refer to the various tasks they support.

Bloom filter. The Bloom filter [3] is a popular
data structure widely used in many networking device
algorithms [4, 5], in fields as diverse as packet classification,
routing, filtering, caching, and accounting, as well as beyond



networking in areas like verification and spell checking. The
Bloom filter is used for set representation, supporting element
insertion and answering membership queries. There are two
kinds of errors in membership queries: a false positive (when
an element = ¢ S is reported as a member of a represented set
S) and a false negative (when an element x € S is reported
as a nonmember of .S).

The Bloom filter encounters false positives and has no false
negatives. It is built as an array of bits, where hash functions
are used to map elements to locations in the array. With initial
values of zero bits, the elements of S are first inserted to the
filter, setting all bits pointed by the hash functions. Upon a
query, the bits mapped by the queried element are examined
and a positive answer is returned only when the bits are all
set. The Bloom filter is illustrated in Fig. 1(a).

The probability for a false positive error (ratio of
non-member elements reported as members) decreases when
more memory is allocated for the data structure and increases
when a larger set S is represented. Let m describe the size
in bits of the Bloom filter, k be its number of hash functions
and n be the size of the represented set S. A false positive
occurs when a non-member element maps to k bits which are
all 1 due to other elements. The false positive probability is

k
(1 —(1— %)”"ﬁ such that (1 — --)™* is the probability of
a bit to have a value of 0 after the insertion of the n elements,
each mapped to k bits.

On one hand, increasing the number of hash functions
allows checking more bits in the array but on the other
hand, each inserted element sets more bits to have the value
of 1. The optimal number of hash function is given by
k ~ Z* - In2. This implies a probability of 0.5 for each bit
to have the value of 1 following the insertion of |S| = n
elements. Accordingly, the false positive probability is given
by 0.5% ™2 ~ (0.6185)™/",

The Bloom filter cannot support removal (deletions) of
elements from the represented set. This is since resetting bits
to Os results in forbidden false negatives of all remaining
elements that map to these bits. The Counting Bloom filter
(CBF) generalizes the basic Bloom filter with the support of
element deletions [6]. This is a crucial functionality when
the represented set is dynamic and its size can decrease over
time. The CBF maintains an array of counters instead of an
array of bits. Upon an element insertion, counters mapped by
the hash functions are increased by one and these counters
are decreased upon an element deletion. Upon a query, the
same counters are examined. In case they are all non-zero a
positive answer is returned for the query. In the CBF, besides
the fact whether the counter is positive or not, the exact value
of the counter is not considered during the query process.

Another alternative to the Bloom filter is the Cuckoo
filter [7, 8] in which an element is represented by a signature.
Cuckoo filter answers in constant time membership queries
and supports deletions. The filter is implemented as an array
that can store multiple signatures in each of its buckets. Based
on hash functions, Cuckoo filter derives two potential buckets
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Fig. 1: Illustration of popular sketch data structures for set
representation: The Bloom filter, the Invertible Bloom filter (IBLT)
and the Merkle tree. They support various queries and operations.

for an element and the element can be stored in one of them.
An element is identified as a set member if its signature can
be found in one of its two buckets. If in the insertion both
candidates are occupied, the Cuckoo filter randomly kicks
out a fingerprint in one of the two buckets and reinserts the
victim in its other candidate bucket. This reallocation ends
successfully when a sampled bucket has available space and
fails when the number of such reallocations reaches a given
threshold max. The false positive probability increases with
the bucket size and reduces for longer fingerprints.

Invertible Bloom filter Table (IBLT). In many data
structures, the use of hashing eliminates the option to
recover the identity of the represented elements from the
data structure. The invertible Bloom lookup table (IBLT)
generalizes Bloom filter functionality by supporting not only
element insertion, deletion and membership queries but also
a complete listing of the elements with high probability [9].
The listing property is probabilistic. An IBLT is illustrated in
Fig. 1(b).

Assume that each element is associated with a (unique)
key. The IBLT keeps an array of cells, each with two fields:



(i) xorSum field - stores the cumulative XOR of the keys
mapped to the cell; (ii) count field - stores the number of
entries mapped to the cell. We refer to a pure cell as a cell
with a single inserted element. Such a cell can be identified
based on the count field. The listing procedure of the IBLT
repeatedly looks for a pure cell. Whenever such a cell is
found, an element is identified based on the keySum field
which is necessarily that of the element. Then, we can remove
the element from other cells it is hashed to, thus reducing the
number of remaining elements in these cells. The process
fails if no pure cells can be found in some step, earlier to the
listing of all elements. Its success probability is affected by
the number of inserted elements and the number of cells.

Merkle Tree. The Merkle tree is a known tool in
cryptography, first suggested by Merkle [10] which enables
efficiently proving membership of a data element in a set,
without revealing the entire set. In a Merkle tree, every node
has a Merkle label. For the leaves, this label is the hash of a
data block, and for every non-leaf node this label is the hash
of the concatenation of the labels of its children (or the label
of its child in case it only has one child). The Merkle tree is
illustrated in Fig. 1(c).

In order to verify that some data is included in a Merkle
tree 1", one needs to obtain from a trusted source a label
M (T) of the root of the tree, called the Merkle root. A Merkle
proof for the containment of some data v, which corresponds
to a leaf in the tree, consists of the sibling path of the leaf,
which contains the labels of all the siblings of the nodes
in a path from the leaf to the root. This can show that the
known Merkle root M (T') was computed for a set of data
elements with v among them. We assume Merkle trees are
second preimage resistant, making it impossible to reproduce
a Merkle root label. With the labels along the path, the verifier
can compute the label of the Merkle root and check that it is
indeed equal to M (T).

B. Set Synchronization

Definition 2 (Set Synchronization). Let A, B be two hosts
with corresponding sets Sa,Sp, both taken from some
universe U. The symmetrical difference of the two sets is
A = (A\ B)U(B\ A). The goal is to compute the union
of the two sets A U B through deriving elements in the
symmetrical difference. Often, the communication complexity
of the synchronization process is of concern.

A naive solution is through letting each node expresses
its set. This clearly takes communication complexity of
O(|A| + |B|). Interestingly, there are algorithms allowing to
perform set synchronization with communication complexity
of O(IA]) = O(JA\ B| + |B\ 4]).

Guo and Li suggested a scheme based on counting Bloom
Filters (CBFs) [11]. Each host simply represents its set by a
CBF (with common parameters) and transmits the filter to the
other host. Then a host computes the difference of its own
filter and the received filter by computing the difference of
counters in identical locations of the filters. The set difference

is estimated as those elements mapped to non-zero counters
in the computed difference. An outlier counter is defined as
having a value of zero in the difference although different
elements contributed to the identical non-zero values in the
two filters. The scheme suffers from both kinds of potential
errors: (i) false positives - elements identified as belonging to
the set difference A although they appear in both sets or in
none of them. False positives occur when an element maps
to some counters with non-zero values due to other elements
in A. and (ii) false negatives - elements in the set difference
A that are not identified as such. False negatives occur due
to outlier counters. The probability for each kind of error
reduces when more memory is allocated for the filters.

C. Computing Set Similarity

Definition 3 (Set Similarity). Let A, B be two hosts with
corresponding sets Sa,Sp, both taken from some universe
U. The goal is to compute the Jaccard index of the two sets

which is defined as J(A, B) = I£8§}~

Note that the Jaccard similarity of two sets equals 0 when
they are disjoint and 1 when they are equal. It has a value
between 0 and 1 otherwise.

The MinHash scheme (also known as the min-wise
independent permutations locality sensitive hashing scheme)
was suggested by Broder in 1997 [12]. It was initially used
in the AltaVista search engine to detect duplicate web pages
and eliminate them from search results.

The MinHash scheme works as follows. Consider a
hash function % applied on set elements. Let i, (A4) =
min({h(xz)|lx € A}) denote the minimal hash value
computed over the elements of the set A. Let A, (B) be the
corresponding value for the set B. With high probability the
hash function computes distinct values for different elements.
Compare the values A, (A), hinin (B). If they are equal, the
minimal observed hash values appeared for both sets. If the
two values differ the minimal value appeared in only one of
the sets. Thus the indicator variable I(hin(A) = hmin(B))
has a value of 1 with probability of the Jaccard similarity
J(A,B) = }ﬁgg} . Thus the variable is an unbiased estimator
for J(A, B). To estimate J(A, B) with a reduced variance,
each of the two hosts refers to k hash functions hq, ..., hx
and computes a vector of length & based on its set v 4, v With
the minimal values for each function. The two vectors are
compared index by index. Let 1 ~Zf=1 I(va(i) =vp(i)) be
the number of ratio of indices where an equality is observed.
The value serves as an estimator for the Jaccard similarity J.
By Chernoff bound, it can be shown that the expected error

is O(1//k).

D. Count (Streaming model)

Sketches are also used to summarize a stream of elements,
trying to reveal its essence within small memory. Algorithms
have been designed for particular counting tasks, each
keeping its particular sketch and updating it upon the arrival
of stream items. Finally, some computation is performed



over the sketch data to report an estimated answer to the
counting task. While the range of such tasks can be large,
we mention two dominant tasks together with corresponding
popular solutions. Later, in Section IV we explain how such
sketch-based solutions can be the basis for anomaly detection
in a blockchain network. The problems measure the number
of distinct elements in the stream and those elements of the
highest number of appearances.

Definition 4 (Count Distinct). Let A = ay, ... a, be a stream
of elements. The count distinct task is to measure the number
of unique elements, namely the set size |{ala € A}|.

Common solutions to the count distinct problem are the
Loglog [13] and HyperLogLog [14], [15] algorithms. The
algorithms apply a hash function over an element and
measure the number of leading zeros in the hash value. Since
a repeated element implies the same hash value, the number
of distinct elements can be estimated based on properties of
such measures.

Definition 5 (Element Frequency Estimation). Let A =
a1,...an be a stream of elements. The task includes
estimating for an element a its number of appearances in
the stream ), I(a;, = a) where I is the indicator function.

There can be two possible errors in the estimation
of element frequency: Overestimation and underestimation.
The state-of-the-art data structure for element frequency
estimation is the Count-Min Sketch (CM) suggested by
Cormode and Muthukrishnan in 2005 [16] that can observe
overestimations. The CM relies on a two-dimensional array of
counters initialized to values of 0s. A set of k£ hash functions
are used to map an element to k£ counters, one in each of its
rows. Upon the arrival of an element, each of these counters is
incremented by one. To estimate the frequency of an element,
its k counters are considered and the size is estimated as the
minimal value among the k& counters. Since multiple elements
can contribute to the same counter, the computed value can be
larger than the exact one in case other elements contributed to
all k£ counters implying overestimations. On the other hand,
the CM completely avoids underestimations. A tradeoff exists
between the level of accuracy and the amount of allocated
memory such that more allocated memory reduces collisions
among elements. Similarly, reducing the number of active
elements improves accuracy.

Definition 6 (Heavy Hitters). Let A = a1, ... a, be a stream
of elements. The heavy hitter detection task is to indicate
the frequent elements, namely some top-k elements with the
highest number of appearances or those elements that hold
at least a minimal portion ¢ € (0, 1) of the total traffic.

The Space Saving algorithm [17] solves the heavy hitters
problems by keeping an array of a bounded number of pairs
of key (element id) with its number of appearances. If a
new element appears in the table, its counter is updated.
Otherwise, it replaces the elements with a minimal value in
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Fig. 2: Block summarization. Each block includes besides the hash
of a previous block, a summary of current block often implemented
as a Bloom filter or a Merkle tree.

the table and is initialized with a number of appearances
based on that of the evicted element. Finally, the largest
elements in the table are reported as the estimated most
frequent elements.

III. BLOCKCHAIN APPLICATIONS

In this section we overview existing sketch applications in
blockchain networks. The applications rely on the sketches
ability to support various functionality such as described
earlier in Section II. Table I summarizes such use cases.

Method Block Light Unique Pool | Fairness
summary clients | addresses | sync. enfor.

Bloom filter [1,18,19] [20] [21] [22] [23]

Cuckoo filter - - [24] -

IBLT - - - [22] -

Merkle tree [1] [20] - - -
TABLE 1I: Blockchain applications for sketche-based set
representations.

A. Block summaries

Summarizing block information can be helpful to indicate
whether a particular transaction can be found in a block
or the block as a whole can be skipped in a search for
a transaction. Typically blocks are associated with Bloom
filter for such functionality. Moreover, to verify transaction
output its log can be located. Then, the block transactions are
reexecuted and their output can be compared with the log.
Fig. 2 illustrates block summaries with Bloom filters. The
Ethereum block contains a field called logsBloom holding a
Bloom filter of 2048 bits (256 bytes) [18]. The filter makes
use of £ = 3 hash functions so that each element is mapped
to three bits of the filter. It contains log entries from the
receipt of each transaction of the block. The receipt includes
information such as cumulative gas used in a block till the
transaction and logs created through the execution of the
transaction. Each of three bit selections can be described by
log, 2048 = 11 bits and they are based on the low-order 11
bits of each of the first three pairs of bytes in a Keccak-256
hash (proposed SHA-3 implementation by Bertoni et al. [25])
of the inputs. A similar approach was suggested by Rush for
a general blockchain [19].



B. Bitcoin Simplified Payment Verification (SPV)

The increasing amount of memory required to maintain
the full Bitcoin state (more than 310GB by December 2020)
together with rapid growth in the volume of transactions that
have to be processed imply a large overhead on full Bitcoin
nodes. A light client is a node variant that can verify only
part of a block without locally maintaining the complete
network state through a method called Simplified Payment
Verification (SPV). A light client is connected to a full node.
An implementation for the light client to report its set of
relevant transactions by representing it as a Bloom filter was
described [20].

Among the transactions it receives, a full node only
forwards to the light client those transactions that match
the filter, potentially with some false positives (namely
transactions beyond the interest of the light client). Using
the Bloom filter allows the light client not to express in
an exact manner the set of addresses he is interested in.
Together with the particular transactions of interest, the full
node also provides Merkle tree based proofs demonstrating
their inclusion in the block. The length of the filter can be
selected based on a required false positive probability. Fig. 3
illustrates this process.

The privacy of light clients was studied in [26]. Informally,
it can be viewed as the ability to hide addresses in the
sets among other addresses that yield false positives. The
reported Bloom filter by a node certainly leaks information
on the addresses of interest for the light client and one can
guess them based on the filter. On the one hand, a low
false positive rate reduces privacy by allowing one to guess
more accurately the identity of the represented set. On the
other hand, higher false positive rate increases the redundant
transaction information sent by the full node to the light
client. This implies a tradeoff between the privacy and the
communication overhead. The privacy can be measured by a
metric describing the probability to correctly guess multiple
addresses as included in the interest set. Let [V be the number
of addresses of interest for which the filter was computed
and let F' be its number of false positives. The probability to
guess that a single address with a positive indication belongs
to the set is N]X +. For a parameter j, the metric computes this
probability for guessing correctly j such transactions given
by Puy) = Hk(1)N+Fk NAF NPT

Similarly, in [27] a metric called +-deniability was
presented. They refer to a set member = € S as deniable
if for ¢ € {1,...,k} there is a non member y; such that
H(z) = H(y;). Then, a Bloom filter is v-deniable if an
address is deniable with probability +. That work indicates
that in addition to the false positive rate of the Bloom filter,
the privacy is affected by the number of real addresses
as well as by the number of those with a false positive.
Given a false positive probability, the last is of course
determined by the size of address space for the examined
addresses. They describe a method for estimating the number
of active addresses through a linear regression model. A
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Fig. 3: Bitcoin SPV (Simplified Payment Verification) Clients: Light
clients report their set of relevant addresses through a Bloom filter.

similar observation about the efficiency of Bloom filters was
previously described in a more general context [28].

Recently, an alternative method for representing light client
addresses without Bloom filters was suggested by Qin et
al. [29]. The approach leverages Private Information Retrieval
(PIR) to provide deterministic client privacy. This comes with
modest additional overhead in the required bandwidth it takes
the light node to verify a set of transactions.

C. Unique Addresses Checking in DAG-based Blockchains

IOTA is a distributed ledger protocol designed to serve
secure communication and payments among Internet of
Things (IoT) devices [30]. Its core is a Directed Acyclic
Graph (DAG) named Tangle that stores transaction history.
IOTA makes use of the Winternitz One-Time Signature
(WOTS) scheme for signatures [31,32]. Each address should
be used in only a single transaction. Otherwise, information
on a private key associated with the address is observed and
can be used by an adversary to forge a signature for the
address. Privacy is also weakened with by ability to analyze
habits of the participants. Methods for identifying repeating
addresses have been suggested through short summaries of
previously used addresses. This can be challenging due to
the large size of the address space. Wang et al. proposed to
do so based on a Bloom filter [21] and Shafeeq et. al [24]
based on a Cuckoo filter [7] due to its improved accuracy.

D. Efficient Pool Synchronization and Block Declaration

Blockchain protocols implement set synchronization
among nodes for two major objects: (i) Pools of pending
transaction (each can be viewed as a set) of various nodes
so a node can learn about a pending transaction it misses
(ii) Sharing information of new proposed blocks (earlier
as well as following their approval based on the particular
consensus protocol) where such a block is viewed as a set of
transactions. Network performance is affected by the amount
of bandwidth required for these common tasks. It can benefit
from not sending a transaction to a node already aware of
it or avoiding sending the complete block content to a node
familiar with many of the block transactions. An illustration
of a set synchronization protocol is shown in Fig. 4.

A node can synchronize its pool of transactions through
communicating with the other network nodes. Identifying
similar pairs of pools in a blockchain network can be done
through the MinHash scheme described in Section II-C.
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Fig. 4: Set synchronization protocol (illustration) between two
hosts with sets Si1,S52. The required accuracy and the number
of transmitted messages vary among protocols. Synchronization is
typically implemented between two transaction pools or between a
declared block and a local transaction pool.

Consider k£ pools. A baseline method involves running the
MinHash scheme between any pair of nodes so that there are
in total (’2“) computations for the pool similarity between all
pairs of pools. Let P; denote the pool of transactions for
node 7. A node ¢ identifies a node j # ¢ for which the
Jaccard similarity J(P;, P;) is maximized. Then node 4 can
run a pool synchronization protocol with that node j. Since
each node reports the same information to all other nodes,
the process can be simplified through reducing the amount
of transmitted information. A shared process for which each
node reports as multicast the vector of length k& computed
over its set with the minimal value of its pool following the
k hash functions. This again allows each node to find a node
with a pool maximizing the similarity to its local pool. We
are unaware of an existing approach using this tool as a first
step prior to pool synchronization.

Compact blocks [33] is an early approach developed by
Bitcoin Core developer Matt Corallo to reduce bandwidth. It
takes advantage of the fact that a receiving node has chances
to be familiar with some of the block transactions and thus
avoids including in the block declaration the complete 256-bit
hash information for every transaction. As a side effect, the
technique also reduces the block transfer latency. Following
a block declaration, a receiving node sends a request for
the block information in case it is not familiar with the
block. The block issuer then sends only five bytes for each
transaction as its identifier together with the complete version
of some particular transactions it predicts the receiving node
has not obtained yet. Then, the receiving node can send an
additional request for the full information of transactions it
is still missing.

Graphene [22] also tackles the synchronization problem
in block proposal and among pools. It relies on Bloom
filter and the invertible Bloom filter (IBLT) [9] (see
Section II-A). For block proposals, it achieves asymptotically
better performance of reduced bandwidth such that the
relative improvement increases for larger blocks. Graphene
refers to two protocols: The first protocol applies when
transactions of a declared block can all be found in the pool of
the receiver. The second refers to a general scenario where the
block proposal may include transactions that do not appear
in the pool of the receiver. The second protocol starts when
the first lighter protocol fails to synchronize. Let n dentoe the

block size and m the transaction pool size by the receiver.

The highlights of the first protocol are as follows: A sender
node declares on a block and the receiver replies with a
request for the block and an indication of its pool size.
The sender creates a Bloom filter and an IBLT such that
the false positive probability of the Bloom filter is set as
—=—. The parameter a is set such as the IBLT allows with
high probability element recovery (listing) when it holds up
to a* elements for some a* > a. In the last step of the
protocol, the receiver identifies the transactions from its pool
that pass the Bloom filter and computes an IBLT based on
them. It computes the difference between the two IBLTs to
identify redundant elements and finally tries to decode the
IBLT it received using such information. When the second
protocol is in action, the subtraction of the two IBLT fails and
more iterations among the two players follow. Similarly, for
synchronizing transaction pools the protocols are generalized
so that both parties finally computes the union of the two
pools. The two filters here are computed for the pools rather
than a block and based on the symmetric difference of the
filters particular transactions are identified as appearing in
only one of the pools.

E. Block Selection Fairness

When a blockchain network is shared among multiple
applications, they often compete for a higher quality of
service affected by the time it takes transactions to be
included in a block after their issuance. When one among
the nodes proposes a block, it should do that in a fair way
considering other applications [34]-[37]. This can be done
fairly through a random selection of the block transactions
among the set of pending transactions the proposing node is
aware of. On the contrary, a dishonest node includes more of
its transactions at the expense of those of others.

Orda et al. [23] suggested a mechanism to enhance such
fairness through periodical declarations on the transactions
a node is aware of. While reporting the complete list of
transactions can require high amount of communication,
it was suggested to use a Bloom filter for that goal. A
declaration is statistically examined by other nodes through
checking that many of their pending transactions are included
in the declaration. Only nodes with recently approved
declarations can propose a block. Then, upon a block
proposal, fairness is achieved since it is difficult for a node to
ignore transactions of other applications if they were included
in one of its earlier declaration. For a node to claim a
transaction was not part of an early declaration but appeared
to be so due to a Bloom filter false positive, it has to indicate
other particular transactions that yield the false positive.

F. Transaction and State Organization with Merkle trees

Bitcoin organizes block transactions in a Merkle
tree [10, 38] that its root is included in the block header [1].
As was mentioned in Section III-B, this allows proving (e.g.
to light clients) the inclusion of a particular transaction within
a block without the complete information of all the block



transactions. On the other hand, it can be difficult in Bitocin
to prove to light clients the status of a particular account.

Ethereum makes use of Merkle trees for several purposes:

(i) For each block, transactions are organized in a Merkle
tree and the transactions root (called transactionsRoot) is
included in the block header.

(if) The receipts for the block transactions are also
organized in a Merkle tree and the receipts root (called
receiptsRoot) is also included in the block header.

Ethereum has two kinds of accounts: Externally owned
accounts (EOA) and smart contract accounts. Regular EOA
accounts can send tokens to one another. A contract account
refers to the deployment of a smart contract. Two main fields
in the state of an EOA account are the balance (amount of
Ether) and nonce (number of sent transactions or created
contracts). Two additional trees are used to organize the
Ethereum state:

(iii) A tree holds the global network state such as a
mapping of addresses.

(iv) For each smart contract, a tree is used to organize all
data associated with the contract.

Unlike transaction trees, the state trees frequently change,
e.g. with any change of an account balance or nonce update
as well as with the creation of a new account. In Ethereum
trees are implemented as Merkle-Patricia trees.

I'V. VISION FOR BLOCKCHAIN-SKETCHES ENGAGEMENT

With an eye to the future, in this section we explore
potential sketch applications in the blockchain domain. First,
we explain how particular sketch data structures and count
algorithms can be used for the detection of anomalies of
various types. We also discuss recent developments in the
field of sketches and detail how they can increase the accuracy
and efficiency of blockchain sketch applications.

A. Proposal: Sketches for Network Analysis and Anomaly
Detection

Analyzing network behavior can be crucial towards
its understanding. Such analysis can include identifying
dominant players as well as irregular or suspicious behavior.
The analysis can rely on data available within the blockchain
as part of block information but also on additional
information that can be observed by nodes and is not recorded
on the chain. Suggested tools for fraud and anomaly detection
in blockchain typically take a different approach and rely
on machine learning methods [39]-[44]. For instance, Pham
and Lee in [39] used k-means clustering and Support Vector
Machine (SVM) to detect suspicious users and transactions in
the Bitcoin blockchain network. Ostapowicz and Zbikowski
compared capabilities of Random Forests, Support Vector
Machines and XGBoost classifiers in the detection of
fraudulent accounts in Ethereum [42].

Identifying main players can be based on detecting
accounts with a large number of transactions or with high
total volume, accounts with a large degree making
transactions with many other accounts (potentially

representing exchanges). Typically such values are measured
in a window of time expressing recent history (rather than
since the beginning of network history) and accordingly
can be computed based on information of blocks produced
within that time range. Consider for instance identifying
those accounts with a high amount of traffic. A simple
implementation of that measurement would include
maintaining a counter per each such address and processing
the blockchain while updating counters corresponding to
addresses of each transaction. The number of required
counters can be very large due to many active addresses
although most of such addresses would observe only
small traffic volume. Sketches implementing counting tasks
naturally support such capabilities with the basic counting
tasks detailed in part in Section II-D as building blocks.

As an example, sketch-based solutions for heavy hitter
detection (such as the space saving algorithm) can identify
in high accuracy the k£ most active addresses (top k) while
maintaining a number of counters that grows linearly with k
rather than with the number of active addresses. Similarly,
computing the number of unique active addresses or finding
an address of a high degree can be implemented with the
help of the count distinct algorithms.

For many of the sketches and counting algorithms,
computing values for a whole stream of data can be done
based on the computations for disjoint subsets of the stream
(with the easy to achieve assumption that the separated
computations used the same sketch parameters). For instance,
a Bloom filter computed for the set of elements in a stream
A = ay,...a, can be computed as the bitwise OR of two
Bloom filters (of same lengths and hash functions) computed
for two disjoint stream subsets ai,...a; and a;y1,...an.
This property also holds for the computation of the main array
in the implementation of the HyperLoglLog algorithm [14]
for the count distinct problem. Similarly, in the detection of
heavy hitters with the Space Saving algorithm [17] we expect
dominant values for the whole stream to frequently appear
among values computed for the stream subsets.

The will to simplify such advanced computations motivates
us to suggest considering including within blocks additional
sketches in addition to the Bloom filter which is already
available in Ethereum blocks. Since such sketches can
be slightly more memory intensive, we can include them
periodically once in a multiple blocks so that they serve as an
approximated summary of recent blocks since the last block
with a corresponding sketch. The allocated memory for a
sketch and the frequency it appears can be based on the
importance and required accuracy in a particular counting
task. Moreover, we can balance this additional memory over
multiple blocks. An illustration is shown in Fig. 5 where
in addition to the Bloom filter that appears every block the
chain includes two additional sketches for particular tasks.
The first sketch shown in circles appears once in two blocks
and is computed for data of two blocks. The second sketch
is shown in diamonds and appears only once in four blocks
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Fig. 5: Advanced Block summarization. In addition to the simple
block summary in a Bloom filter, multiple consecutive blocks are
summarized by periodic advanced sketches.

since it is more memory intensive or since it is useful for a
task where lower accuracy is satisfying.

The occurrence of anomalies expressed as unusual
transactions or a special network state can express undesired
network phenomena. For instance, repeated time differences
between transactions (of the same wallet) can express
non-human behavior executed by bots [45]. Likewise, sharp
peaks in the transaction volume can reveal DDoS (distributed
denial of service) attacks while jumps in the transaction
confirmation time can reflect double spending attacks [43].

B. Recent Sketch Advances with Blockchain Applicability

We detail some recent developments in the field of sketches
and discuss their potential usecases to improve or extend
some of the above-mentioned blockchain applications.

Sketches for multiple tasks - Typically, a sketch serves
a particular counting task (such as those presented in
Section II-D). UnivMon [46] and Elastic sketch [47] are
recent approaches trying to provide stream summaries which
are general and answers to a wide range of counting tasks
can be computed over them. For a stream of elements
A = ay,...a, let f1,..., fr be the element frequencies
(number of appearances) where k is the number of distinct
elements. Several functions can be computed by summing
the results of some function g computed over the frequencies
Zle g(f:). For instance, the count distinct value is obtained
with a function g(z) = 2% and the stream length with
g(x) = z. UnivMon identifies particular elements with a
dominant contribution to the frequency vector as the stream
summary and relies on them to estimate with high accuracy
multiple counts.

Accordingly, the proposal from Section IV-A to attach
blocks periodically with summaries of various sketches for
anomaly detection can be enhanced through including a
general summary based on such computations that can be
helpful in computing multiple counting tasks.

Accurate Bloom filters - A recent approach [48,49]
presented the notion of the Bloom filter false positive free
zone which enhances a Bloom filter to completely avoid false
positives when the number of set elements taken from a finite
universe is at most a given bound d. The filter construction is
applicable when the universe U is by nature small and makes

use of simple carefully-designed hash functions while relying
on prime numbers and their properties. The insertion and
lookup operations are similar to those in the original Bloom
filter. An m bit array is composed of segments, each in the
length of a prime number. Functions map an element (exactly)
once to each of the segments. Each function simply calculates
the modulo of an element with the prime of each segment.
For a finite universe, the required filter length to completely
avoid false positives is affected by the universe size and the
maximal set size that still avoids false positives. Namely, a
limited size filter implies a tradeoff and can describe without
false positives larger sets of elements from a small universe
or alternatively smaller sets selected from a large universe.
This approach can be used for accurate block summaries
such that false positives are avoided and in order to find a
particular transaction a deep lookup within a block is required
only in the single block in which the transaction appears.
Learned Bloom filters - A recent learn-based model
suggests an alternative perspective for Bloom filters [50,51].
Correct answers to membership queries can be learned as a
binary function and use a Bloom filter to avoid undesired
types of errors such as false negatives. If the sets of elements
are not selected arbitrary and for instance most of them
are selected from a small range of values then it can
be characterized by the learned function. Higher accuracy
can then be achieved by reducing Bloom filter length and
allocating that memory to representing the learned model.
This approach can improve some of the Bloom filter
blockchain use cases. In particular, if the set of addresses
relevant to an SPV Bitocoin client can be easily characterized,
the full node can hold an alternative data structure composed
of a Bloom filter and a learned model to further improve
accuracy and reduce the redundant traffic sent to a light client.

V. CONCLUSIONS AND FUTURE WORK

Data sketches are memory-efficient tools for high-speed
computations over massive datasets. In many existing
blockchain  implementations sketches serve  various
functionalities such as block summary, light client
representation and synchronization of transaction pools.
We expect increase of their popularity in the blockchain
context due to the growing memory and processing demands
of popular blockchains and presented relevant wider sketch
functionalities. In particular, we explained how sketches can
be helpful in network analysis and anomaly detection. We
also discussed how recent main advances in sketches can be
applicable to blockchains.
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