
Toward Practical Autoencoder-based
Side-Channel Analysis Evaluations

Servio Paguada1,2[0000−0003−4665−7457], Lejla Batina1[0000−0003−0727−3573], and
Igor Armendariz2[0000−0002−5055−455X]

1 Digital Security Group, Radboud University, Nijmegen, The Netherlands
servio.paguadaisaula@ru.nl, lejla@cs.ru.nl

2 Ikerlan Technology Research Centre, Arrasate-Mondragón, Gipuzkoa, Spain
{slpaguada,iarmendariz}@ikerlan.es

Abstract. This paper introduces a practical evaluation procedure based
on autoencoders for profiled side-channel analysis evaluations. An au-
toencoder is a learning model able to pre-process leakage traces improv-
ing in this way the guessing entropy. Nevertheless, this learning model’s
design should aim to code the leakage distribution to avoid relevant in-
formation being removed. For this reason, we propose an autoencoder
built upon dilated convolutions. When using these learning models, the
evaluation produces new assets, e.g., new versions of the dataset and new
models based on learning algorithms. Our procedure comprises meaning-
ful metrics and visualization techniques, namely signal-to-noise ratio and
weight visualization, to evaluate those assets’ effectiveness. After apply-
ing our procedure and our new autoencoder architecture to the ASCAD
random key database, our results outperform state-of-the-art.

Keywords: profiled attacks · side-channel analysis · dilated convolu-
tions · autoencoders · convolutional neural network

1 Introduction

Side-Channel Analysis (SCA) comprises a set of techniques to exploit informa-
tion buried in signals (named leakage traces) that becomes available from the
devices in the form of sound, heat, electromagnetic radiation, or power consump-
tion. An adversary is someone that uses this information to steal devices’ secrets,
such as cryptographic keys.

In a booming market of the Internet of Things, device manufacturers invest
huge resources to prevent this kind of attacks. Scientists are, at the same time,
working on new ways for protection of embedded devices. These latter initiatives
start with a detailed analysis of the attacks’ effectiveness on countermeasures
(against SCA).

These efforts have led to discovering new SCA types of attacks; among them,
profiled attacks introduced new ways to conduct SCA. The procedure of eval-
uating this attack’s effectiveness implies identifying a target device from which
an adversary wants to steal secrets. He/she gets an access to a hardware clone of

2 Servio Paguada, Lejla Batina, and Igor Armendariz

the target device and then uses it to collect side-channel information. By using
this information, the adversary builds a model aimed to attack the target device.

Profiled attacks were first introduced in the form of Template Attacks [1]. A
decade or so later, a new wave of profiled attacks based on machine and deep
learning arose [2–4].

The whole procedure to conduct profiled SCA changed ever since, advertis-
ing that just a single learning model is enough to conduct the procedure, for
example, using Multi-Layer Perceptron (MLP) [4] and, more recently, Convolu-
tional neural network (CNN) [5,6]. Moreover, it was argued that pre-processing
steps such as noise reduction and feature selection, i.e., locating points of interest
(PoIs), are no longer required.

Nevertheless, relying on one single model does not reduce the uncertainty of
an SCA evaluation [7]. Also, pre-processing steps are still conducted to reduce
a learning model’s complexity as well as improving its performance [8].

So, instead of taking a single learning model as a standalone solution that
does not use any pre-processing for SCA evaluation, we take another approach.
We combine those two in a procedure based on autoencoders. Some of these
learning model’s applications could not discard but rather substitute pre-processing
steps for SCA evaluation, not only for noise reduction but also for locating PoIs.

More generally, this type of neural network (NN) could derive other types
of attack based on semi-supervised and unsupervised NN models. To our best
knowledge, they have not received enough attention yet.

Researchers have used autoencoders to conduct attacks and filter out coun-
termeasures [9, 10]. Contrary to those works, we aim to develop a more general
procedure to improve SCA evaluation with alternative deep learning models.
Building the foundation for autoencoders will be useful for other researchers
that might look into those.

Part of our motivation for building a procedure is the lack of one that uses
autoencoder in it. Current profiled SCA procedures and methodologies are not
focused on using pre-processing steps since they rely on a single NN model to do
the SCA evaluation. Nevertheless, the suggestions on designing a single model
for SCA [11–13] are applicable for autoencoders.

In this sense, we increase the potential of a profiled SCA evaluation by dis-
tributing the analysis of its assets, namely the dataset, the profiling model (re-
garding its feature selection performance), into separate tasks. In this way, the
procedure systematically generates information early for the evaluator, helping
him/her to reduce the uncertainty in this already challenging area that SCA is.

In addition to the new procedure, we also proposed an autoencoder archi-
tecture that uses dilated convolutions. First used in [13] the authors show how
this type of convolutions could boost the effectiveness of a CNN-based SCA
evaluation because of its feature selection performance. To apply dilated convo-
lutions, we extend the criteria addressed in [13] to be used with autoencoder’s
architecture.

Our experiments demonstrate the proposed procedure with two types of con-
volutional autoencoders (CAEs); one is our dilated CAE (D-CAE), and the sec-

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 3

ond one is a normal CAE (N-CAE). We qualify the assets generated by each
autoencoder through the procedure. Finally, we observe how the side-channel
attack’s effectiveness differs according to those assets. We have tested our result
in commonly used datasets for benchmarking, namely, ASCAD [11] (fixed and
random key).

Contribution

This work has several contributions as follows:

1. We have derived a novel SCA evaluation procedure based on autoencoders.
The procedure comprises of three main tasks, and through them, the eval-
uator monitors the assets of the evaluation. This ensures that each task’s
assets are evaluated with well-known metrics.

2. To extend the autoencoder’s comprehension in the field, we explain how vi-
sualization techniques can be used (with autoencoders) to depict automated
feature selection.

3. We introduce a dilated convolution-based autoencoder to use in profiling
SCA. To do so, we suggest some criteria concerning autoencoders architec-
ture’s design that keeps a significant amount of side-channel information as
possible in the latent space.

4. We have tested the procedure and the D-CAE architecture in ASCAD dataset
(random key), outperforming previous state-of-the-art results.

Paper organization

Paper is organized as follows. Sect. 2 details theoretical aspects of topics used
for this work. Sect. 3 discusses related works. Sect. 4 gives information about
datasets used for our experiments. Sect. 5 describes our proposed evaluation
procedure. In Sect. 6 we present the extension of the criteria about dilated con-
volution to be used with autoencoders. Sect. 7 shows results of our experiments
and Sect. 8 concludes the paper.

2 Background

Through this section, we contextualize the paper by explaining profiled attacks
and CNN architectures. We introduce some theoretical aspects of normal and
dilated convolutions, we explain autoencoders, and finally we mention metrics
and visualization techniques that we use in the remainder of this work.

2.1 Profiled attacks

Profiled attacks belong to a special type of a side-channel attack where an adver-
sary has under control a device, which is a clone hardware of the actual device
he/she wants to attack, which allows us to execute a customized firmware. The

4 Servio Paguada, Lejla Batina, and Igor Armendariz

device owned by the adversary is called a profiling device, and he/she uses it to
implement a crypto algorithm, draw leakage traces, and train a model (profiling
phase). The second phase (called attack phase) uses that model to attack the
actual device.

After its introduction as Template Attacks [1], profiled attacks have received
a lot of attention from the research community. Early improvements involve pro-
cedures increasing its portability through devices and algorithms about choosing
points of interest (PoIs) [14,15] to achieve better SCA results.

When profiled attacks got took on the machine learning twist, a wave of new
evaluations came into place [16,17]. It has had such an impact, so that certifying
entities demand today that a device under test (DUT) must be evaluated using
machine learning-based SCA before being certified and launched into the market.

Machine learning-based profiled attacks’ effectiveness highly depend on the
feature selection process [8]. When the model is not able to learn from the most
representative features, its capability decreases considerably.

Researchers have studied the impact of preprocessing leakage traces to re-
move as many irrelevant features as possible and improve model effectiveness.
Methods like PCA and LDA [18] aim to compress the input signal, keeping the
most amount of relevant information as possible in the compressed version. They
usually fail in figuring out the function that correctly estimates the distribution
of data, which has negative repercussions in the compressed space later on.

There exist implementations of cryptographic algorithms with countermea-
sures, to protect against profiled attack (or any other side-channel attack). They
can be grouped into two categories; masking and hiding countermeasures [19,20].
In this work we are considering masking implementations.

The masking’s fundamental concept relies upon minimizing the dependency
of the leakage and the sensitive values (secret dependent). Usually, these sensitive
values are outputs of some non-linear function in the cryptographic algorithm
(see Eq. (9)) of interest, e.g. the S-box computation

If the side-channel attack is effective enough, it can minimize the countermea-
sure’s effect after several algorithms’ executions. So, the sensitive values become
accessible for the classifier. In the SCA context, the numbers of executions maps
to the number of leakage traces.

Usually, masking implementations are also combined with desynchronization,
which is achieved by implementing random delays into the DUT software code.
With this combination, the machine learning model used to attack them becomes
more complex. This fact motivates researchers to look into new methods that
allow evaluators to conduct more effective analysis [12,13,21,22].

2.2 Convolutional neural network

CNN is a deep learning model’s architecture type; it comprises a feature learning
part and a classification part (see Fig. 1). The former aims to create abstract
representations called feature maps of the input signal using the most relevant
feature.

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 5

Feature maps pass through a pooling operation ending up with a pooling
feature map. A pooling operation has similar behavior to convolution opera-
tions, and it also uses kernel and a value to control its displacement (i.e., the
stride hyperparameter). It is responsible for granting the CNN model the capa-
bility of dealing with spatial transformations that the input signal could have
e.g., desynchronization produced by random delays. Still, this spatial transfor-
mations increase two possible factors in evaluating the cryptographic algorithm
implementation’s resilience; (1) the CNN model’s complexity and (2) the number
of traces required.

The convolution operation is conducted with sets of kernels. Typically, ker-
nel’s elements (a.k.a weights) are initialized with random values, or by using a
particular weight initialization function e.g. Glorot uniform or He uniform. A
loss function trains the weights; usually, this loss function is chosen according to
the task that the network has to fulfill (e.g., classification or regression).

input
map

3 Kernels

Convolutional
Part

Pooling

Flatten FC
Fully-connected Dense

Feature Learning Classification

Convolutional layer

Fig. 1. Convolutional neural network illustration

Through learning iterations, the loss is back-propagated updating kernels’
elements [23]. When the feature learning part of a CNN model reaches a sat-
isfactory performance, it means that the kernel’s elements are well trained. In
other words, the neural network has learned from the input signal’s features.

From the SCA perspective, the signal’s features should optimally represent
the leakage of sensitive values. So, it is crucial that during the training, the
model automatically chooses those features (the most relevant ones). The SCA
evaluation effectiveness highly depends on that.

Similarly, as happened with SCA based on machine learning, it has been
discovered that for profiled attacks based on deep learning, there are also ways
to guide the model in choosing the crucial features. In recent works e.g., [12,13,21]
the issue on improving this feature selection automatic process to increase CNN
classifier’s effectiveness in SCA has been addressed. Those recent arguments
explain what is in the following summarized:

1. A single convolutional operation has to combine the leak of sensitive values,
namely, the mask and the masked sensitive values [21].

6 Servio Paguada, Lejla Batina, and Igor Armendariz

2. The same convolution should not overuse those sensitive value, neither irrel-
evant points [12] and

3. Since fulfilling the previous two statements is tricky for normal convolutions,
dilated convolution [13] could be used to achieve them.

From this list, one can assume that in order to design a deep learning model
for SCA; an evaluator should know where sensitive value leaks. In white-box
scenarios, this is possible because he/she has more details about the DUT (e.g.,
plaintext, ciphertext, and mask values). A challenging case is a black-box sce-
nario.

Those two scenarios brought up the need to have criteria for designing effec-
tive deep learning architectures for SCA. Moreover, new criteria also open new
research lines in evaluation procedures designs to allow an evaluator to com-
pare different approaches that ensure an effective SCA evaluation (with fewer
false-positives).

We have tested our evaluation procedure in white-box scenarios. Neverthe-
less, it could be also used in black box scenarios.

Our proposed D-CAE brings new criteria as well as constraints about au-
toencoder architectures; we discuss those in Sect. 6 on more details. For now, we
further discuss normal convolution and dilated convolutions to show how dilated
convolution might increase autoencoder’s effectiveness in SCA evaluations.

Normal convolutions We refer to normal convolutions as those that keep
the operation unaltered. Eq. (1) shows a discrete version of the convolution
operation, the same is used for normal CNN models. For explanation purposes,
this version suggests that the whole signal f moves from left to right and passing
by kernel k.

Here, f [·], andk[·] represent a signal’s element and a kernel’s element respec-
tively; the amount of elements a kernel has, defines its length lk (see Eq. (3)).
To explain why this type of convolutions have a pitfall related to the feature
selection process, let us take a signal time sample f [i] and suppose it goes into
the convolution’s kernel.

That sample is used until the kernel’s end; precisely, it is present in each
computation of the kernel with the signal (i.e., lk times). That is when we say the
convolution overuses that sample. Moreover, if the evaluator increases kernel’s
length pretending to fulfill (1) from the previous list; it also increases the times
the same sample is used, which has repercussion in the CNN’s performance [12,
13].

f [x] ~ k[x] =
∑∞

n=−∞ f [x− n] · k[x]
= · · ·+

(f [x− ni] · k[ni]) +
(f [x− ni+1] · k[ni+1])
+ · · ·

where: x, n ∈ Z

(1)

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 7

Dilated Convolutions A dilated convolution is an alteration that consists of
inserting zeros between kernel’s elements. Eq. (2) shows this variant from previ-
ous definition of discrete convolutions in Eq. (1). The hyperparameter dilatation
rate (dr) controls the amount of zeros inserted. Eq. (3) shows the arithmetic
relationship between original kernel length lk and dilatation rate dr.

f [x] ~ kd[x] =
∑∞

n=−∞ f [x− n] · kd[x]
= · · ·+

(f [x− ni] · 0) +
(f [x− ni+1] · kd[ni+1]) +
(f [x− ni+2] · 0) +
(f [x− ni+3] · kd[ni+3])
+ · · ·

where: x, n ∈ Z
kd is a dilated kernel

(2)

Contrary to normal convolutions, when the evaluator increases the kernel’s
length with the same aim as said before, he can do it by increasing the number
of zeros in between, i.e., by tuning the dr instead of the lk hyperparameter.

This action has the same effect of covering a wider section of the signal, but
sample points alternate between being or not nullified because of those zeros.

While in one convolution computation, a sample point is multiplied by a
non-zero kernel’s element, in the following one, it will be. With this alteration,
a CNN model fulfills the aspects of the previous list [13].

l̂k = lk + (lk − 1)(dr − 1) (3)

2.3 Autoencoders

An autoencoder has two parts, an encoder and a decoder [23]. The encoder ends
in a so-called latent space (see Fig. 2). This latter corresponds to a compressed
version of the input signal. Formally said, latent space is an abstract representa-
tion of the input signal; it is the space in which the signal is reduced by taking
its most remarkable features. The encoder does this by figuring out a function
that represents the data’s distribution.

Another way to refer to this process is that the encoder downsamples the
original signal by taking it to a new space with fewer dimensions (dimensionality
reduction). Encoders can also upsample the signals, which is the exact opposite
effect. However, we are not using an autoencoder for that purpose in this paper.

Normally, latent space is taken as part of the encoder, putting the latter as
the important part of an autoencoder. Eq. (4) formulates the latent space s, as
a function of the encoder e whose parameter is the input signal f .

s = e(f) (4)

We want the encoder to take the most representative feature to build the
latent space, which contains useful information needed by further models, like

8 Servio Paguada, Lejla Batina, and Igor Armendariz

CNN’s-based models or any other machine learning-based model. The encoder
job allows those models to make accurate predictions (or classifications) since
several redundant features that contain little or none information were discarded.

There are other implicit benefits in performing dimensionality reduction,
namely, model interpretability, minimization of model’s overfitting, and reducing
the training dataset’s size, which implies reducing training time.

Similarly, the decoder takes its input from the latent space to rebuild the
original input signal; Eq. (5) shows this relation. A loss function L at the de-
coder’s end computes the difference between the original input signal and de-
coder input signal’s version (see Eq. (6)), the output of the loss function is then
back-propagated to tune the network’s weights.

d(s) = f̃ (5)

Using an encoder also has pitfalls. If the encoder is not well trained or cannot
figure out the data distribution, it will also remove relevant features, affecting
further model’s performance. This paper aims to elaborate this statement in
further sections (see Sect. 5 and Sect. 6).

The encoder part is the focus of this contribution. We are inspecting the
effects provoked in an autoencoder when combining dilated convolution. An en-
coder is built by using even multi-layer perceptrons [23] or CNNs.

Our proposed autoencoder uses CNNs. By doing this, the encoder inherits
CNN’s capacity for dealing with displacement or any other spatial transforma-
tion presented in the input signal. Furthermore, when applied dilated CNNs, the
requirements in the previous list are also fulfilled.

Latent Space

Encoder Decoder

Fig. 2. A typical autoencoder illustration. Latent space is where the input signal is
taken by the encoder’s learning process using its most remarkable features. Decoder’s
task consists of re-constructing, as much as possible, the original input signal.

Mean square error (MSE) is a commonly used loss function for training au-

toencoders. It takes two vectors as arguments; namely f , and f̂ , they correspond

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 9

to original leakage trace and predicted leakage trace, respectively (see Eq. (6)).
At the end of each learning iteration (a.k.a epoch), the loss function output is
then back-propagated through the model to tune the autoencoder’s weights.

MSE = L(f, f̃) = 1
m

∑m
i=1 (f [i]− f̃ [i])2

where: m = dim(f)
(6)

MSE could also be represented as a function of the output data’s distribution
p(f |s). as Eq. (7) expresses. From that point of view, the job is to recover the
input distribution given a latent space s. Be aware that we are assuming a
Gaussian distribution here. A suitable encoder is capable of building a latent
space most representative of the data distribution.

L = log(f, s)

= −log
∏m

i=1N (f [i], f̃ [i], σ2)

= −
∑m

i=1 log N (f [i], f̃ [i], σ2)

∝
∑m

i=1 (f [i]− f̃ [i])2 = MSE

where: m = dim(f)

(7)

To better understand how well the learning process went, one common prac-
tice is to derive a validation dataset from the training dataset. Setting this up,
at the end of each learning iteration, samples from the validation dataset are
taken to perform predictions. It does not affect the back-propagation in anyhow;
it is only a collection of early predictions over data that the model has never
seen.

Nevertheless, it helps to visualize the deep learning model’s generalization
capability, more specifically, to visualize whether it is suffering from the so-
called overfitting (or underfitting). In general terms, it brings ideas about which
actions may take place to prune the autoencoder’s architecture in further trials
of this task.

2.4 Metrics in SCA

Guessing entropy (GE) It is one the most well-known metrics in SCA; it has
been studied in [24, 25]. GE defines the average rank of key-value k[·] over all
the key hypotheses k. A GE vector ~g is built from consecutive trials of attacks
with a subset of traces from the attack set.

We evaluate the attack effectiveness by taking the average position of k[·] in ~g
given a number of traces. In that sense, a GE permanently equal to position one
is considered a successful attack; nevertheless, any attack showing a downtrend
is a potential threat.

Signal-to-Noise Ratio (SNR) It defined in [26] and it quantifies the amount of
exploitable information; the higher the SNR is, the easier it is to detect the ex-
ploitable information [19]. Moreover, it helps to emphasize where, in the leakage
traces, are those points that contain relevant information.

10 Servio Paguada, Lejla Batina, and Igor Armendariz

Along with SNR, Correlation Power Analysis (CPA) [27] can also be used
to point out exploitable information; its magnitude’s value is more significant
than SNR, being convenient in situations where SNR is not than discriminative
emphasizing the PoIs. Works such as [28] uses these two metrics to contrast them
with automatic feature selection of a deep learning model.

In Eq. (8), ft corresponds to a noisy observation of the leakage signal f at
time sample t. Z

′
is the value to classify f , namely, group the leakage traces

according to a value or a function, e.g. Z
′
=Z[i] (from Eq. (9)).

SNR = Var[E[ft|Z
′
]]

E[Var[ft|Z′]]

where:

Var is the variance, and

E is the expected value

(8)

A drawback of using SNR to detect PoIs becomes noticeable with the pres-
ence of countermeasures. One of those that disturb the most SNR’s result is
desynchronization; it randomly scatters Z

′
over time sample t. In such a case, a

previous step like re-synchronizing the traces could reduce this pitfall’s effect.

2.5 Visualization techniques

Besides metrics, there exist also feature selection visualization techniques to help
in deep learning model interpretability. Beyond that goal, those techniques are
also used to pin down the time points where the leakage is available in the
algorithm’s execution, which is necessary for a leakage assessment task [29–31].
This means, if the model is considering those, actual leakage points, it is learning
the relevant information.

When a deep learning model is trained, it evaluates what neurons influ-
ence the most in order to generate an efficient classification. Those kernels get
significant values for their weights. The technique tracks down those neurons,
identifying which trace’s sample points the network is taking as the features to
learn from.

In simple terms, visualization techniques plot the most relevant feature from
the input signal used to update kernels’ elements. So, these techniques’ typical
application suggests to compare with metrics plots and visualize how similar they
are. In Sect. 7, we show results when using these techniques and contrasting their
plots against metrics plots to look for similarities.

In [28,30,32,33] the authors have discussed visualization techniques to use in
SCA evaluations. Those techniques are mostly based on input activation gradient
to characterize the automated feature selection, we named them here gradient
visualization techniques.

There are two drawbacks of using those visualization techniques; (1) they
aim to evaluate how the whole network performs in the feature selection. In our
case, it would be the encoder and the decoder, and we are just interested in the
former. (2) some of those techniques require a model’s loss function as a starting

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 11

point; they evaluate the leakage traces’ prediction using that loss function. An
encoder does not have a loss function, so we cannot apply such a visualization
technique.

From all the available techniques, weigh visualization and heatmap suit the
task of visualizing autoencoders’ automated feature selection performance. Weight
visualization aims to visualize the convolutional part of a learning model [34],
and we use convolutions in our autoencoder architecture. At the same time, the
heatmap visualizes each convolutional layer of the convolutional part [12]. We
use these two to contrast them with SNR to look for similarities.

2.6 Evaluation phases of profiling attacks

The procedure we propose in this paper aims to evaluate profiling attacks. As
mentioned in Sect. 2, an adversary (or evaluator) identifies a target device whose
firmware contains a secret aimed to be exploited. To train a learning model3,
the adversary gets an access to a clone from the target device.

While the clone device executes the target algorithm, the adversary draws a
set of traces P from the device using equipment to measure its power consump-
tion. Using those traces, he/she trains the learning model (profiling phase).

To attack the device, the adversary composes a set of traces A from the target
device (normally |A| << |P|), the profiling learning model uses A to output the
guessing entropy. The Fig. 3(a) shows the mentioned phases of the profiled SCA
process.

In this evaluation process, the only feedback the evaluator has is the guessing
entropy at the end of the process. He/she could do another iteration to look for
an improvement in the result. Nonetheless, since it is a single learning model-
based evaluation, it ends up being a process of modifying the learning model,
expecting an improvement.

Overall, what we propose is a pre-processing phase based on autoencoders
(see Fig. 3(b)). In this phase, we also train a learning model, which in our case is
an autoencoder based on dilated convolutions. However, this learning model is
trained using unsupervised learning, meaning we do not need to have information
about the sensitive value aimed to attack.

This learning model aims to remove the information not related to sensitive
values. Besides, it also removes any other aspect that could affect the metric’s
result at the end of the process (e.g., desynchronization).

In this sense, the evaluator has more than one feedback. He/she can evaluate
the traces after being pre-processed for the learning model (we call it assets
evaluations) before proceeding to the profiling phase.

The metrics used in those evaluations are, in a sense, up to the evaluator.
He/she has to decide which metrics best fit the purpose. In this paper, one

3 In general terms, there are different learning models regarding the attack technique
used. For example, template attack, machine learning attack, deep learning-based
attacks

12 Servio Paguada, Lejla Batina, and Igor Armendariz

profiling_phase attack_phase

Learning
Model+

Trained
Learning

Model
+ SCA metric

(Guessing entropy)

CAE+ Assets
Evaluation

pre-processing_phase

Trained
Learning

Model
a)

b)

Fig. 3. Profiling SCA evaluation processes, a) is a usual profiled SCA process, b) is the
profiled SCA process derived from the procedure proposed in this work. P is the traces
dataset to perform the profiling phase, A is the traces dataset to perform the attack
phase. From our proposal, two datasets derived from the previous become available;
Pe is encoder version of P, while Ae is the encoder version of A; both after having
been processed by the encoder.

of those metrics we suggest to use is SNR because it gives us the amount of
exploitable information gained (or lost).

The evaluator uses P to train the autoencoder; after, he/she uses the autoen-
coder to build a compressed version Pe (one of the assets aimed for evaluation)
of P.

Once the pre-processing phase is done, the evaluator conducts the two follow-
ing phases using Pe for the profiling phase and Ae for the attack phase (which
is a compressed version of A).

When the evaluator observes the metric’s results, he can decide to continue or
perform another iteration (see Sect. 5 for more details). This information helps
him/her to reduce the uncertainly in the final guessing entropy result.

3 Related works

The closest work that we can compare with is [10], where authors present a
denoising strategy as their main contribution. Still, it has been specifically de-
signed to fulfill their goals. We have defined our procedure for more general
autoencoder SCA evaluation, and we argue that it could be used on top of the
denoising strategy from [10].

An autoencoder-based SCA evaluation has more assets than commonly used
profiling SCA evaluations. We take this as motivation to define a procedure that
uses this type of unsupervised learning models. About this latter claim, we have
also noticed that unsupervised learning models in SCA have not been studied
extensively; still, there are other recent works on this such as [9, 35].

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 13

Since this is the introduction of our procedure, we have not included some
new trends about using transverse methodologies such as six-sigma and design of
experiments [36,37], like some other works ([7,11,38]), where authors presented
how transverse methodologies could reduce the uncertainty in SCA. Neverthe-
less, we concur that those methodologies could improve this first version of our
procedure, and we will consider them for future works.

To our best knowledge, there are no previous works discussing criteria for
SCA evaluation using autoencoder’s architectures. Nevertheless, since this type
of deep learning architecture shares several aspects with CNNs; the works ex-
plaining criteria to build an effective CNN architecture for SCA are useful for
CAE as well [11, 16].

Recent papers explain how the convolutions of a CNN model should take sen-
sitive values. Some others introduced new techniques to build a convolutional
block that ensures using features that represent sensitive values in its opera-
tion [12,13,21].

Our autoencoder proposal extends the criteria from our previous work [13]
where we introduce the usage of dilated convolution as a way to improve the
performance of the deep learning models based on convolutions for side-channel
attacks.

4 ASCAD dataset

We chose this dataset since it contains the traces of implementations protected
by a masking countermeasure, which also feature desynchronization.

ASCAD dataset was introduced in [11]. Leakage signals were collected from
an Atmega8515 8-bit microcontroller. The algorithm is AES-128 [39] software
implementation and the masking [20] countermeasure was used to protect it
against first-order leakage4.

During the acquisition process, an oscilloscope with the EM sensor sampled
the signal at 2 GS/s. Conveniently, the storage points are a trim of the leak-
age signals, including only the relevant section of the cryptographic algorithm’s
execution, specifically the third masked Sbox in the first round.

Since this dataset was conceived to conduct SCA using neural networks, the
file’s structure allocates traces into two groups; profiling traces contains traces to
perform the profiling phase and attack traces, which contains traces to perform
the attack phase.

The dataset has two versions, collected traces with fixed key encryption and
collected traces with random key encryption; due to these key characteristics,
ASCAD random version represents a challenging way to conduct a profiled at-
tack. Table 1 and Table 2 contain a summary of main characteristics from these
two version.

Traces can be desynchronized by applying a threshold (N) that moves traces
around the x-axis. The typical values to perform the benchmarking are N=0,

4 This dataset is publicly available at https://github.com/ANSSI-FR/ASCAD

14 Servio Paguada, Lejla Batina, and Igor Armendariz

Table 1. Values of the training stage for synchronized traces

ASCAD Fixed Key version

Profiling traces 50 000
Attack traces 10 000
Trace length 700

Key characteristic Fixed

N=50, and N=100. For the first experiment, we have used ASCAD fixed key
N=0; further experiments include the analysis over ASCAD Random key with
N=0 and N=100; we concurred on using N=100 evidence enough the feasibility
as well for N=50.

Table 2. Values of the training stage for synchronized traces

ASCAD Random Key version

Profiling traces 200 000
Attack traces 100 000
Trace length 1 400

Key characteristic Random

These datasets have no first-order leakage unless the masks leak. Sensitive
value has the model represented by the Eq. (9); leakage traces are labeled using
Z value. The byte that is intended to exploit is the third value (i = 3). The p
represents the plaintext, and k is the possible key hypothesis, while p[·] and k[·]
represent one single byte of the plaintext and key, respectively.

Z[i] = Sbox[p[i]⊕ k[i]] (9)

For deep learning training purposes, all the samples were standardized and
normalized between 0 and 1 to accelerate the learning process [23]. We have
used Keras [40] as a backend of Tensorflow [41] to build and train all the deep
learning models. Details of the architecture used in each experiment are included
in Sect. 7.

5 Autoencoder-based SCA procedure

This section explains our proposed procedure that allows us to evaluate our au-
toencoder architecture’s effectiveness. We framed it with three tasks, namely (1)
autoencoder training, (2) profiling dataset compression, (3) key classification.
Those tasks would be commonly done by an evaluator working with an autoen-
coder for SCA (of course, it is skipping the inclusion of some other crucial tasks,
e.g., acquisition setup).

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 15

The key classification task is here named as such considering it as an SCA
specific issue; see Fig. 4 where this task is depicted as a usual profiled attack.
Nevertheless, other scenarios where the goal is not key recovery but some other
classification problems, or even using another supervised learning like classical
template attacks, could also be considered.

The aim of dividing the procedure into three tasks is generic. We identified
all the assets and grouped them into tasks that the evaluator does sequentially.
We evaluate each task’s asset using already defined metrics, quantifying their
reliability before that asset goes for being used in further tasks. In this sense,
we can compare them between different SCA evaluation trials, making early
hypotheses about what could be changed to outperform the previous one.

By structuring a procedure as we did in this paper, we prepare the road
for further steps on this perspective, like combining the tasks with crosswise
methodologies similar to the one used in [7, 38]. Since we consider this as a
possible improvement, we set this up for future works.

The experimental result section (see Sect. 7) is an example of our procedure;
we used it to compare the effectiveness of two autoencoders’ architectures (N-
CAE and our proposal D-CAE).

Fig. 4 illustrates the overall picture of the procedure. As preparation, we set
up the procedure’s inputs, which are the original traces dataset and the deep
learning architectures.

Trained
CAE

Set

Evaluate
SNR

Visualization
technique

Compare to
see any

conguence

+ Set

Evaluate
SNR

Gained
or lost
SNR

Autoencoder
training

Profiling dataset
compression Key classification

Profiling
Model+

Learning
Model

Trained
CAE +

Set

Set

+

SCA metric
(GE)

Visualization
technique

Compare to
see any

conguence

profiling_phase/attack_phasepre-processing_phase

Fig. 4. Evaluation procedure illustration, each task has at least one metric to evalu-
ate its output. Feature selection visualization techniques are used to contrast metrics’
results graphically.

16 Servio Paguada, Lejla Batina, and Igor Armendariz

Table 3. Input and output assets of Autoencoder training task

Input/output assets

Inputs Outputs

1 Profiling traces dataset Trained autoencoder
2 Untrained autoencoder

5.1 Autoencoder training task

We seek a fine-tuned autoencoder model, so we should find ways to evaluate
its effectiveness before the model goes to further tasks. The matter here is to
evaluate the autoencoder as a whole and the autoencoder’s minimal parts (e.g.,
the encoder).

MSE:
The autoencoder training task’s primary concern is the latent space; by now,

we only have information from the autoencoder’s training process. As we said,
an encoder should figure out the function that correctly estimates the data’s
distribution (leakage traces). How representative is that estimation reflects in
the quality of the latent space. The decoder (the second part of the autoencoder)
would do the opposite job in rebuilding what the encoder condensed.

Notice, our interest is to measure the differences between signals at the au-
toencoder’s input with those at the autoencoder’s output. It corresponds to an
evaluation of the two functions (i.e., encoder and decoder), which gives us an
overall idea of how representative the latent space is.

From that point of view, we use the output of the MSE to observe how
the autoencoder manages to fit the leakage traces. If there is overfitting (or
underfitting), it represents that the autoencoder was unable to find a function
that correctly estimates the data.

For explanatory purposes, let us assume a hypothetical scenario where an au-
toencoder struggles to fit the data correctly, meaning it has problems in figuring
out the data distribution. In straightforward terms, this ends up with a latent
space that poorly represents that data, so that compressed traces datasets will
be arguable useless. The fact of having a well-tuned model reduces uncertainty
in the whole process.

Nevertheless, we do not forget the autoencoder is aimed for SCA evaluation
in further tasks. Let us go back to the learning process; if the training and
validation collide, that does not necessarily mean we have a useful model for
conducting the SCA evaluation.

The autoencoders are filters, meaning that we can also damage the leakage
in the process because the model just took the wrong points to build the latent
space. That is why evaluate aspects such as; type of convolution used, feature
selection performance, and learning process have crucial importance.

Remark 1: MSE should be considered just for determining whether the au-
toencoder is doing well in fitting the data. On the other hand, weight visualiza-
tion might evidence whether the model is feasible for SCA.

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 17

SNR:

SNR is meaningful for the autoencoder training task since it contrasts the
amount of noise we removed from the original dataset. In other words, we can
depict a before and after of the information related to side-channel.

According to this first task’s purpose, we have two concerns; (1) where in
x-axis the leakage points arise aimed to find similarities with the visualization
technique used in this first task. It will give us information about the leakage
trace’s features taken as relevant for the classification. (2) SNR’s magnitude will
be required for the second task of the procedure; we use it to contrast the amount
of relevant information we gained or lost.

The SNR’s application is up to the evaluator. For example, if the evaluator
wants to contrast the mask leakage’s exploitable information, he/she defines
an SNR over this sensitive value. Similarly, for any sensitive value function of
his/her interest. Furthermore, the chosen SNR criterion applies to the rest of
the assets evaluated using this metric.

Remark 2: SNR in this task fulfill two purposes; emphasize PoIs to contrast
with feature selection visualization technique. Then, in the profiling dataset com-
pression task, it contrasts with the SNR from the compressed dataset to observe
the amount of exploitable information remaining there.

Weight visualization:

We have observed that most techniques rely on the deep learning model’s
predictions; they require a loss function usually placed at the end of the model.
That would not be a problem if we are pretending to evaluate the whole autoen-
coder using the visualization technique; however, we are not.

The visualization technique should only evaluate the encoder part because it
is the one that has a direct connection with the latent space. The encoder does
not have a loss function at its end (but rather the decoder).

As we previously mentioned, weight visualization is suitable because it does
not require computing the prediction at the end of the model, which implies
having a loss function.

Moreover, weight visualization was designed to visualize the convolutional
part, being meaningful for us because our convolution-based model

Nevertheless, this technique gives plots that do not match the actual length of
the leakage traces. It is because the x-axis of a weight visualization corresponds to
the output of a convolutional block. It is arguable one of the less intuitive feature
selection visualization because of. The evaluator has to look for similarities when
comparing with plots produced by the mentioned metrics.

Here, we consider visualizing features taken by the encoder, from the first
fully-connected layer after the flatten vector to the encoder’s input. In this sense,
we visualize the encoder as a convolutional neural network, ending up with plots
like in Fig. 6. From the perspective of our contribution, we are evaluating how
beneficial the chosen convolution is to build the autoencoder’s architecture.

18 Servio Paguada, Lejla Batina, and Igor Armendariz

Table 4. Input and output assets of Profiling dataset compression task

Input/output assets

Inputs Outputs

1 Trained autoencoder
Compressed profiling

traces dataset

5.2 Profiling dataset compression task

In this task, the encoder is used to build compressed leakage traces from the
original profiling dataset. The SNR’s magnitude from this new dataset gives
evidence about exploitable information remaining in the latent space.

We have to point out that an additional purpose for SNR in this second
task is to visualize where PoIs fall in the x-axis of the compressed traces. This
information will be used in the key classification task.

SNR is feasible in proving how well the encoder did in estimating the distri-
bution. We measure that by looking at the amount of exploitable information
in the compressed profiling dataset. Moreover, since we have a new x-axis ar-
rangement, the SNR’s limitation (when desynchronization is present) becomes a
problem with less concern. The ability of the CNN models to deal with spatial
transformation in the signal helped to this fact.

From this point, an evaluator might decide to conduct another iteration of
the autoencoder training task if the SNR’s magnitude improves doing it. An
example of this can be drawn from Sect. 7, if the reader takes the two SNR plots
from D-CAE and N-CAE architectures as two iterations of the first and second
tasks.

Bear in mind that the SNR magnitude from latent space could be less than
the original profiling traces. The result has a strong relationship with the amount
of noise in the original traces and the encoder’s performance; recall that this
latter could have filtered out not only noise but relevant information.

Although we do not consider it here, there is a potential asset; we named it
clean profiling traces dataset, not generated from the encoder but rather from
the whole autoencoder model. This dataset could represent another source of
experimentation so that we reserve that idea for further contributions.

5.3 Key classification task

This task is explicitly related to side-channel attacks. The strategies to conduct
this task vary according to the approaches that an evaluator decides to apply,
for example, template attack or machine/deep learning-based SCA. Moreover,
he can also consider denoising strategies like the one defined in [10]. Notice,
the task is strongly related to the classification experiment’s purpose that the
evaluator wants to fulfill with the side-channel information.

In any case, by having conducted the autoencoder SCA process with this
evaluation procedure, we now have more information about the aspects that

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 19

Table 5. Input and output assets of key classification task

Input/output assets

Inputs Outputs

1
Compressed profiling

traces dataset
Key classification report

lead to a result in SCA obtained in this task. The global objective concerning
SCA key recovery is to maximize the certainty about the secure implementation
of a crypto algorithm, minimizing false positives.

In this opportunity, we decide to apply deep learning-based SCA, and we
appeal to the approaches available now from [13], and [12] to define the deep
learning architectures for the training and attack phases. The metric used to
measure the effectiveness of the attack is the guessing entropy.

In this task, the selection of visualization techniques is flexible. We said that
it is up to the evaluator to choose the strategy to conduct the side-channel
attack, so it is the visualization technique that best suit that strategy. We chose
gradient visualization because of our.

This technique gives information about what time samples influence the most
in the classification; when those time samples are compared with those in the
SNR plots, one can evaluate how well the neural network extracts the essential
features.

Since the whole model has a loss function at its end, we can proceed with
confidence; we used the SNR plots from profiling dataset compression task to
compare with gradient visualization and see how each plot matches.

6 Dilated CAE criteria

This section discusses the criteria and constraints that we follow to build our
autoencoder architecture proposal. Those criteria are intrinsically related to the
model architecture’s hyperparameter values; nevertheless, since there are many
of them, we mention the most related to our proposal. Recall that our model is
built upon dilated convolution criterion [13], so we are adding up criteria to use
them in autoencoder-based SCA evaluation.

6.1 Convolutional block criterion

To an autoencoder based on convolutions applies all criteria related to CNN-
based SCA. Usually, a convolutional block (primary parts of CNN) comprises
convolution operation and pooling operation; both use kernels to conduct their
operation, as well as stride and kernel length hyperparameters.

A criterion to fulfill is that each convolutional block implemented using pool-
ing operation should be consistent on not overuse features from the convolution
operation’s feature map.

20 Servio Paguada, Lejla Batina, and Igor Armendariz

Meet this requirement implies to control the value of the stride hyperpa-
rameter. This value determines how many signal sample points a kernel moves
between two successive convolutions. If such a value is small enough, the same
feature could be used several times, nullifying how the convolution operation
did the feature selection process. Usually, a pooling stride value (sp) equal to a
pooling kernel (lpk) length is a possible solution (sp = lpk).

6.2 Encoder downsampling criterion

Even if a CAE’s architecture is similar to a CNN, the learning model’s purpose
changes. The encoder aims to build a latent space, which means that it has
to downsample the original traces to a less dimension space. It is called the
downsampling process.

The downsampling process is achieved even by modifying convolution strides
values or applying pooling operations, and since we are modifying the CAE’s
autoencoder using dilated convolutions, we have to know what the implications
are.

When combining with dilated convolutions, the encoder can only use pooling
operations, so we cannot modify stride value to change how many sample points
the convolutions move.

This fact makes sense; stride hyperparameter could nullify the effect of di-
latation rate hyperparameter. Take the case when a stride hyperparameter has
a value big enough to move the same amount of zeros that the dilatation rate
inserts into the kernel.

In any case, suffer from this constraint could depend on the software frame-
work used to build the model5. We recommend checking the framework’s doc-
umentation before choosing approaches (e.g., normal or dilated convolutions).
Moreover, some frameworks allow the evaluator to customize the neural network
layers, suggesting a possibility to overpass the constraint.

Regarding the upsampling process in which the decoder is in charge, it is done
by transpose convolutions blocks [23]. In simple words, transpose convolutions
are the inverse operation of convolutions. The common practice is to configure
its hyperparameters with the same values as their counterparts. In these blocks,
the evaluator can use stride value to perform the actual upsampling.

A final transpose convolutional block is used to map (one to one) the au-
toencoder’s output with the original signal shape. So, its hyperparameters are
set to 1.

6.3 Latent space criterion

The latent space dimension of an autoencoder is a crucial hyperparameter. This
value implies that the encoder’s job finding the data distribution function would
be more challenging if the dimension is significantly small compared with the

5 Keras-tensorflow, Caffe, Pytorch, and others

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 21

original input trace. In other words, the compression level becomes more de-
manding with fewer values of length than others with a dimension close to the
original.

Theoretically, when the level of compression is demanding, the encoder tries
hard to find the best feature so that the latent space would be best. To the
evaluator, this would imply to redefine the encoder’s architecture to achieve the
desired level of compression. The encoder will most likely need to have more
convolutional blocks (as well as more dense layers).

As the reader notices, this is another argument for comparing dilated con-
volution and normal convolution capability. If a convolutional block did well
enough in the feature selection process, it implies that the whole autoencoder
would need a fewer number of those blocks. It also implies that the model reduces
its complexity and so the learning time.

Bear in mind, pushing a large trace into a small latent space could end with
an encoder extremely overfitted, meaning not being able to generalize. Conduct
a tradeoff could be a possible solution; for example, choose proportions of the
latent space based on the signal original length, like some implementation of
PCA or LDA. In [10] authors defined a mathematical model using the desirable
output length.

7 Experimental result and discussions

In this section, we use our proposed evaluation procedure to conduct a profiling
SCA evaluation using autoencoders. We have organized each experiment in sec-
tions named by the dataset used. Also, we recall that the evaluation procedure
needs as primary inputs, the dataset, and the architecture used. So, we included
in each section the respective architecture.

7.1 ASCAD fixed key N=0:

One could conclude that by applying our procedure with this dataset without
noise, no desynchronization in traces, and with a fixed key for profiling and at-
tacking, we overkilled the evaluation. However, this experiment should be taken
as an example of two autoencoders used to perform a profiling SCA evaluation;
it represents two iterations of our proposed procedure.

In the second experiment, we deal with a more challenging dataset (ASCAD
random key N=100) and show how our procedure outperforms current results.

Autoencoder’s architecture

This dataset has traces without desynchronization, which implies that SNR met-
rics would be feasible in showing PoIs in the first task. The criterion for SNR is
to evaluate its magnitude related to the mask used for the masking countermea-
sure6. Moreover, since the key is constant in both groups of traces (i.e., profiling

6 this is possible because, in this evaluation scenario, we have access to those values

22 Servio Paguada, Lejla Batina, and Igor Armendariz

and attack groups), the deep learning model used in key classification task will
only deal with random values of the mask.

The autoencoder’s architecture built upon dilated convolutions (D-CAE) is
in Table 6. In the same Table 6 it is the normal convolution (N-CAE) with an
equivalent architecture; they only differ in the value of the dilatation rate.

Table 6. D-CAE architecture for experiments using ASCAD fixed key. N-CAE has the
same values with a dilatation rate of 1. AF stands for activation function, KI kernel
initializer, BN Batch normalization, OCP is One cycle policy to tune the learning rate
value through learning process and loss. Lenght of 560 represents 80% of input shape.
Pooling type: average

Hyperparameter set Value

Input shape (700, 1)

Conv block 1
Nº of kernels 4
Kernel length (lk) 16
Dilation rate (dr) 6 (1 for N-CAE)
AF, KI SeLU, He uniform
Regulatization BN
Pooling (lpk=sp=2)

Flatten

Latent space dimension 560

Transpose conv block 1
Nº of kernels 4
Kernel length (lk) 16
AF, KI SeLU, He uniform
Stride value 2

Transpose conv block 2
(mapping)
Nº of kernels 1
Kernel length (lk) 1
AF Sigmoid

Model’s output setup
Optimizer RMSprop
Loss MSE
Learning rate 0.005 (and OCP)
Epochs 50
Batch size 256

Performing autoencoder training task:

After training N-CAE and D-CAE, we have the result of MSE in Fig. 5a and
Fig. 5b. Both MSE from training and validation dataset through the epochs.
According to validation MSE, the model presented a struggle in generalizing its

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 23

learning from 5th to 30th iterations. However, it shows the same tendency as
training MSE until reaching the end of the learning process.

0 10 20 30 40 50
Number of Epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

M
SE

Normal Conv
MSE
mse
val_mse

(a)

0 10 20 30 40 50
Number of Epochs

0.002

0.004

0.006

0.008

0.010

0.012

M
SE

Dilated Conv
MSE
mse
val_mse

(b)

Fig. 5. (a) Training and validation MSE of N-CAE : (b) Training and validation MSE
of D-CAE

Notice, both autoencoders do well for the MSE metric. From there, we can
ensure that both autoencoders figured out a data’s distribution function. How-
ever, it does not necessarily mean that the coding made by those two encoders
is related to the leakage of exploitable information.

The visualization techniques show in Fig. 6 how N-CAE did worst than D-
CAE in the feature selection job. It is expecting that there will be some differ-
ences in information in the latent space.

To explain how Fig. 6 is interpreted, recall that we have the SNR metric, and
for the autoencoder training task, we are interested in where the leakage points
arise. The third and fourth plot in Fig. 6 corresponds to SNR of the unmasked
sensitive values and the mask value, respectively (since we are in control of the
input data that the DUT encrypts.)

Observe that the resemblance between D-CAE weight visualization and the
third SNR plot is higher than N-CAE weight visualization. Beyond their x-axis
do not match, some trending patterns can be depicted. Observe at the end of both
plots; there are higher picks than in the rest of them. Then at their beginning,
there are smaller picks but big enough to locate the interval. Contrary to the
N-CAE weight visualization, its more significant picks are in the middle.

Performing profiling dataset compression task:

This task uses the encoder from the first task to build a compressed version of
the original dataset’s profiling group. We applied the SNR metrics to observe
the amount of information that both autoencoders left over the latent space. As
we previously said, in this task, we are interested in the SNR magnitude rather
than the location of the picks.

24 Servio Paguada, Lejla Batina, and Igor Armendariz

0 50 100 150 200 250 300 350
0.05

0.10

0.15

0.20

DC
on

v
0 50 100 150 200 250 300 350

0.075

0.100

0.125

0.150

0.175

0.200

NC
on

v

0 100 200 300 400 500 600 700
0

2

4

6

8
SN

R

0 100 200 300 400 500 600 700
0.00

0.05

0.10

0.15

SN
R

Fig. 6. Separated weigh visualization of N-CAE and D-CAE. The resemblance between
CPA and D-CAE is higher than N-CAE

Fig. 7 shows the magnitude level of the mask value. The D-CAE SNR magni-
tude is higher than N-CAE, which reflects the performance of each autoencoder
chosen in the first task. Nevertheless, the information from N-CAE represents
useful information for the key classification task.

0 100 200 300 400 500
Sample Points

0.00

0.02

0.04

0.06

0.08

0.10

0.12

SN
R

m
as

k
by

te
 (m

[3
])

Normal Conv

0 100 200 300 400 500
Sample Points

Dilated Conv

Fig. 7. SNR of mask byte. D-CAE SNR magnitude is higher than N-CAE

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 25

Performing key classification:

As we said, the evaluator decides the techniques to use for attacking the com-
pressed traces. Here we apply dilated CNN-based SCA [13]. We based our choice
by looking at the SNR plots in the second task, the mask leaks in different sample
points, suggesting that we have to deal with irrelevant points in between.

As we explain in previous sections, dilated convolution is a good option in
these scenarios. Moreover, another option is the approach described in [12]; the
author uses a convolutional block with kernel length of 1, which also avoids
overusing relevant and irrelevant points.

Do not discard the possibility of using a Multi-Layer Perceptron neural net-
work; it is a worthy option because there is no desynchronization in the latent
space; moreover, a convolutional NN could overkill the solution in some scenar-
ios.

We first tried using the model’s architecture suggested in [13], but as we
expected, the model is too complex for these compressed traces. By applying
an autoencoder against this dataset, we filtered out several features from the
original signal, which implies to derive a new architecture, and most likely a less
complex one.

The new model’s architecture that we used is built upon the proposed archi-
tecture from [13], and it is shown in Table 7.

Obtaining less complex learning models for a compressed dataset is usual
when using autoencoders. Notice we have also reduced the number of iterations
of the training process (which also reduces the training time). Table 8 shows the
differences in number of iteration and complexity7 between our model and the
model from [13].

Fig. 8 depicts the attack’s guessing entropy. This result confirmes our as-
sumptions about overkilling the evaluation; both autoencoders minimized the
leakage magnitude. Moreover, since the dataset is very clean, useful features
were filtered out. For this use case, N-CAE did worst in keeping the exploitable
information than D-CAE; both guessing entropy curves reflect that.

By visualizing the gradient in Fig. 9a and Fig. 9b we ensure that this result
relies mostly in the autoencoders we used and their differences in performance.
By comparing gradient visualization and the SNR from the second task, we
match the relevant points that the model in Table 7 is using as the most relevant
ones.

D-CAE highlights points 100, 200, 300, 450 and 560 similar points are de-
picted in SNR plot. Similarly, the most relevant points of N-CAE are between
300 and 500; both gradient and SNR are similar over those points. Additionally,
D-CAE gradient visualization suggests that the model struggles less with com-
pressed traces than N-CAE, which is also a sign of using dilated convolutions.

As the reader might notice, our guessing entropy results require more traces
than the work [13], such a result is expected. We have preprocessed the traces
using an autoencoder, and since the dataset we used is one with a very few
amount of noise, not only irrelevant features were filtered out.

7 In number of parameters

26 Servio Paguada, Lejla Batina, and Igor Armendariz

Table 7. Dilated CNN to attack compresses traces of ASCAD fixed key. OCP was
applied, pooling type: average

Hyperparameter set Value

Input shape (560, 1)

Convolutional block 1
Nº of kernels 4
Kernel length (lk) 10
Dilation rate (dr) 3
AF, KI SeLU, He uniform
Regulatization BN
Pooling (lpk=sp=2)

Flatten

Fully-Connected 1 2
Nº of neurons 10
AF, KI SeLU, He uniform

Fully-Connected 3
Nº of neurons 256
AF Softmax

Model’s output setup
Optimizer Adam
Loss Cross Entropy
Learning rate 0.005
Epochs 12
Batch size 100

Table 8. Number of training iteration and NN complexity of the model from [13] and
our model.

Model from [13] New model

Epochs 50 12
Complexity 17 020 14 196

0 200 400 600 800 1000
Number of Traces

0

20

40

60

80

100

120

Gu
es

sin
g

En
tro

py

Conv type
Dilated Conv
Normal Conv

Fig. 8. Guessing entropy after attacking compressed traces from D-CAE and N-CAE

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 27

0 100 200 300 400 500
Sample Points

0.05

0.10

0.15

0.20

0.25
Gr

ad
ie

nt

From N-CAE

(a)

0 100 200 300 400 500
Sample Points

0.05

0.10

0.15

0.20

Gr
ad

ie
nt

From D-CAE

(b)

Fig. 9. Gradient visualization, from the model in Table 7 using compressed traces from:
(a) N-CAE and (b) D-CAE

The SNR from the first and second tasks emphasize the differences in mag-
nitude about the exploitable information we filter away. Nevertheless, we have
demonstrated that the procedure gives information about what we should expect
in the process and that our autoencoder architecture proposal leads to better
results. Additionally, We have reduced the training time, and the complexity in
the model aimed to attack.

7.2 ASCAD random key N=100:

After addressing the autoencoder’s feasibility with dilated convolutions, we now
apply our procedure where the traces have more noise to deal with. ASCAD
random key N=100 dataset represents a more challenging scenario; its traces
were collected when the microcontroller was processing both random key and
random mask values. Moreover, its traces are desynchronized, which also qualify
as noise.

In advance, we would like to describe the goal we achieved in this use case.
We designed the autoencoder to have a latent space with a similar dimension
as the previous experiment. Because we looked for using a CNN with similar
complexity as the one used in key classification task of the previous experiment,
showing the feasibility of reusing attack architectures.

We ended up with a CNN architecture like Table 7 with slight changes in
its first convolutional block and with an additional fully-connected layer. With
these two changes, we achieved a better GE result for this dataset than [13].

Additionally, to enforce the evidence of reproducibility and repeatability, we
performed our procedure six times; each time, we composed a subset of randomly
chosen traces from the dataset; about 40 000 traces where approx. 37 000 are for
training the D-CAE and approx. 3 000 for validating it.

28 Servio Paguada, Lejla Batina, and Igor Armendariz

Autoencoder’s architecture

Table 9 shows the autoencoder’s architectures. Due to the noise in this dataset,
the D-CAE architecture has an additional convolutional block.

Table 9. D-CAE architecture for the experiments using ASCAD random key N=100

Hyperparameter set Value

Input shape (1400, 1)

Conv block 1, 2
Nº of kernels (32, 64)
Kernel length (lk) (64, 25)
Dilation rate (dr) (3, 1)
AF, KI SeLU, He uniform
Regulatization BN
Pooling (lpk=sp=2,=25)

Flatten

Latent space dimension 560

Transpose conv
block 1, 2
Nº of kernels (64, 32)
Kernel length (lk) (25, 64)
AF, KI SeLU, He uniform
Stride value (25, 2)

Transpose conv
block 3 (mapping)
Nº of kernels 1
Kernel length (lk) 1
AF Sigmoid

Model’s output setup
Optimizer RMSprop
Loss MSE
Learning rate 0.005 (OCP)
Epochs 100
Batch size 256

.

Performing autoencoder training task:

Fig. 10 shows the average of MSE after six trials. This result tells us that any
random desynchronization in the leakage traces does not overfit (or underfit) the
network. Nevertheless, it does not evidence that all the latent spaces from those
six autoencoders have properly coded the exploitable information. We should
wait until we have more evidence from other assets’ evaluation.

Due to the heavy desynchronization in this dataset, the SNR magnitude
does not depict large picks indicating PoIs. Nevertheless, it is still worthy of

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 29

0 20 40 60 80 100
Number of Epochs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

M
SE

Avg MSE
mse
val_mse

Fig. 10. Average of training and validation MSE from 6 experiments

0 200 400 600 800 1000 1200 1400
Sample Points

0.0011

0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

SN
R

m
as

k
by

te
 (m

[3
])

SNR ASCAD random key desynch100

Fig. 11. SNR of ASCAD random key N=100.

0 5 10 15 20 25
0.058

0.060

0.062

0.064

0.066

0.068

0.070

W
ei

gh
ts

Weight visualization ASCAD random key desynch100

Avg Weight Vis

Fig. 12. Weight visualization from six trials, 2nd Convolutional block output

performing it. It will be useful in the second task for comparison. Fig. 11 and
Fig. 12 shows the SNR magnitude of the mask value and weight visualization to
contrast (see A for additional visualization plots using heatmaps).

Performing profiling dataset compression task:

Fig 13 shows SNR magnitude from compressed dataset. We observed that the
SNR magnitude from compressed datasets is bigger than SNR from the original

30 Servio Paguada, Lejla Batina, and Igor Armendariz

dataset. This result is because the encoder has already mitigated the effect of the
desynchronization. Nevertheless, the evaluator might perform another iteration
to look for changes in the SNR magnitude value if required.

0 100 200 300 400 500
Sample Points

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

SN
R

m
as

k
by

te
 (m

[3
])

SNR Compressed traces

Fig. 13. SNR compressed traces from a random chosen autoencoders between all trials.

Performing key classification:

Table 10 summarizes the CNN’s architecture to attacks the compressed traces.
As we said, we modify the CNN architecture from 7 to came across a model with
similar complexity. We applied the criterion of using kernel length of 1 because
the separation between leaks in the compressed traces is overly small (comparing
against the first experiment). Also, the leakage of masked sensitive values might
share sample points with the mask used for those. Finally, the compressed traces
are synchronized, meaning that the leakage position is constant, so that we do
not need a long kernel receptive field.

Table 11 compares the complexity of the model used to attack ASCAD ran-
dom key N=100 after applying our procedure using autoencoder and the result
from [13].

Finally, Fig. 14a shows the GE result from the third task over 6 experiments.
Our procedure outperforms the baseline GE from [13] attacking ASCAD ran-
dom key N=100 (see B for plots of gradient visualization). Fig. 14b shows the
confident interval of 99% from the experiment; less than 3000 traces are required
to get a guessing entropy convergence of 0 with 99% confidence.

Notice, we have outliers in the GE trials. One explanation of this is that
we have used the same CNN for the six compressed datasets. It is likely that a
straightforward modification in the CNN architecture to adapt it to that specific
compressed dataset would fix that outlier.

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 31

Table 10. CNN to attack compressed traces of ASCAD random key. OCP was applied,
pooling type: average

Hyperparameter set Value

Input shape (560, 1)

Convolutional block 1
Nº of kernels 4
Kernel length (lk) 1
AF, KI SeLU, He uniform
Regulatization BN
Pooling (lpk=sp=2)

Flatten

Fully-Connected 1 2 3
Nº of neurons 10
AF, KI SeLU, He uniform

Fully-Connected 3
Nº of neurons 256
AF Softmax

Model’s output setup
Optimizer Adam
Loss Cross Entropy
Learning rate 0.005
Epochs 100
Batch size 100

Table 11. Differences in number of training iteration and in complexity of the model
from [13] and our model. The attack target is ASCAD random key N=100

Model from [13] New model

Epochs 100 100
Complexity 96 975 14 270

8 Conclusion and perspectives

In this paper, we have proposed an evaluation procedure based on autoencoders.
To achieve proper effectiveness by using these unsupervised learning models, we
have defined the criteria for designing an autoencoder based on dilated convolu-
tions.

We have observed good performance in a dataset with heavy desynchroniza-
tion. Nevertheless, we aim to use our procedure with more challenging datasets
with traces of other microcontroller architectures.

Our procedure could be used for evaluating profiling SCA, mostly when the
noise represents a significant obstacle for the evaluation. Moreover, it can be
applied to compare new approaches in autoencoders architecture.

The procedure involves metrics and visualization techniques, helping to re-
duce the uncertainty of the side-channel evaluations. When the evaluation im-

32 Servio Paguada, Lejla Batina, and Igor Armendariz

0 1000 2000 3000 4000 5000
Number of Traces

0

20

40

60

80

100
Gu

es
sin

g
En

tro
py

Guessing entropy for ASCAD random key desynch100
Avg GE
Baseline GE from [13]

(a)

0 1000 2000 3000 4000 5000
Number of Traces

20

0

20

40

60

80

100

Gu
es

sin
g

En
tro

py

Confident interval 99%
Avg GE

(b)

Fig. 14. (a) Guessing entropy from 6 experiments using our proposal procedure : (b)
Confident interval of 99% from the six experiments.

plies fulfilling specific goals, some metrics could be replaced with others to eval-
uate the task’s assets according to those goals.

For further publications, we will consider other metrics that might fit into
the evaluation procedure like the one published in [42]. Moreover, we concur that
our procedure could be improved by combining it with traverse methodologies
like [7, 38].

References

1. S. Chari, J. R. Rao, P. Rohatgi, Template Attacks, in: B. S. Kaliski, ç. K. Koç,
C. Paar (Eds.), Cryptographic Hardware and Embedded Systems - CHES 2002,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 13–28.

2. G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, J. Vandewalle, Ma-
chine Learning in Side-Channel Analysis: A First Study, Journal of Cryptographic
Engineering 1 (4) (2011) 293.

3. T. Bartkewitz, K. Lemke-Rust, Efficient Template Attacks Based On Probabilistic
Multi-class Support Vector Machines, in: International Conference on Smart Card
Research and Advanced Applications, Springer, 2012, pp. 263–276.

4. Z. Martinasek, J. Hajny, L. Malina, Optimization Of Power Analysis Using Neu-
ral Network, in: International Conference on Smart Card Research and Advanced
Applications, Springer, 2013, pp. 94–107.

5. H. Maghrebi, T. Portigliatti, E. Prouff, Breaking Cryptographic Implementations
Using Deep Learning Techniques, 2016, pp. 3–26. doi:10.1007/978-3-319-49445-6 1.

6. E. Cagli, C. Dumas, E. Prouff, Convolutional Neural Networks with Data Aug-
mentation Against Jitter-Based Countermeasures - Profiling Attacks Without Pre-
processing, in: Cryptographic Hardware and Embedded Systems - CHES 2017 -
19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceed-
ings, 2017, pp. 45–68.

7. U. Rioja, S. Paguada, L. Batina, I. Armendariz, The uncertainty of Side-Channel
Analysis: A Way to Leverage from Heuristics, arXiv preprint arXiv:2006.12810
(2020).

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 33

8. S. Picek, A. Heuser, A. Jovic, L. Batina, A. Legay, The secrets of profiling for
side-channel analysis: feature selection matters, IACR Cryptol. ePrint Arch. 2017
(2017) 1110.

9. K. Ramezanpour, P. Ampadu, W. Diehl, SCAUL: Power Side-Channel Analysis
With Unsupervised Learning, IEEE Transactions on Computers 69 (11) (2020)
1626–1638. doi:10.1109/TC.2020.3013196.

10. L. Wu, S. Picek, Remove some noise: On Pre-processing of Side-channel Measure-
ments with Autoencoders, IACR Transactions on Cryptographic Hardware and
Embedded Systems (2020) 389–415.

11. E. Prouff, R. Strullu, R. Benadjila, E. Cagli, C. Canovas, Study of Deep Learn-
ing Techniques for Side-Channel Analysis and Introduction to ASCAD Database,
IACR Cryptology ePrint Archive 2018 (2018) 53.

12. G. Zaid, L. Bossuet, A. Habrard, A. Venelli, Methodology for Efficient CNN Ar-
chitectures in Profiling Attacks, IACR Transactions on Cryptographic Hardware
and Embedded Systems Volume 2020 (2019) Issue 1–.

13. S. Paguada, I. Armendariz, The Forgotten Hyperparameter: Introducing Dilated
Convolution for Boosting CNN-Based Side-Channel Attacks, in: International Con-
ference on Applied Cryptography and Network Security, Springer, 2020, pp. 217–
236.

14. C. Rechberger, E. Oswald, Practical Template Attacks, in: Information Security
Applications, Springer, 2005.

15. M. O. Choudary, M. G. Kuhn, Efficient, Portable Template Attacks, IEEE Trans-
actions on Information Forensics and Security 13 (2) (2018) 490–501.

16. J. Kim, S. Picek, A. Heuser, S. Bhasin, A. Hanjalic, Make Some Noise: Unleashing
the Power of Convolutional Neural Networks for Profiled Side-channel Analysis,
IACR Transactions on Cryptographic Hardware and Embedded Systems (2019)
148–179.

17. L. Lerman, R. Poussier, O. Markowitch, F.-X. Standaert, Template attacks versus
machine learning revisited and the curse of dimensionality in side-channel analysis:
extended version, Journal of Cryptographic Engineering 8 (4) (2017) 301–313.

18. I. T. Jolliffe, J. Cadima, Principal Component Analysis: A Review and Recent
Developments, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 374 (2065) (2016) 20150202.

19. S. Mangard, E. Oswald, T. Popp, Power analysis attacks: Revealing the secrets of
smart cards, Vol. 31, Springer Science & Business Media, 2008.

20. J. Blömer, J. Guajardo, V. Krummel, Provably Secure Masking of AES, in: Selected
Areas in Cryptography, Springer Berlin Heidelberg, 2004, pp. 69–83.

21. H. Maghrebi, Deep Learning based Side Channel Attacks in Practice, IACR Cryp-
tology ePrint Archive 2019 (2019) 578.

22. B. Hettwer, S. Gehrer, T. Güneysu, Profiled Power Analysis Attacks Using Convo-
lutional Neural Networks with Domain Knowledge, in: Selected Areas in Cryptog-
raphy - SAC 2018 - 25th International Conference, Calgary, AB, Canada, August
15-17, 2018, Revised Selected Papers, 2018, pp. 479–498.

23. I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
24. F.-X. Standaert, T. G. Malkin, M. Yung, A Unified Framework for the Analysis of

Side-Channel Key Recovery Attacks, in: A. Joux (Ed.), Advances in Cryptology
- EUROCRYPT 2009, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp.
443–461.

25. J. Massey, Guessing and Entropy, in: Proceedings of 1994 IEEE International
Symposium on Information Theory, IEEE, 1994.

34 Servio Paguada, Lejla Batina, and Igor Armendariz

26. R. A. Fisher, On the mathematical foundations of theoretical statistics, Philosoph-
ical Transactions of the Royal Society of London. Series A, Containing Papers of
a Mathematical or Physical Character 222 (594-604) (1922) 309–368.

27. E. Brier, C. Clavier, F. Olivier, Correlation Power Analysis With a Leakage Model,
in: International workshop on cryptographic hardware and embedded systems,
Springer, 2004, pp. 16–29.

28. B. Timon, Non-Profiled Deep Learning-based Side-Channel attacks with Sensitiv-
ity Analysis, IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019 (2) (2019) 107–131.

29. T. Schneider, A. Moradi, Leakage Assessment Methodology, in: T. Güneysu,
H. Handschuh (Eds.), Cryptographic Hardware and Embedded Systems – CHES
2015, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 495–513.

30. F. Wegener, T. Moos, A. Moradi, DL-LA: Deep Learning Leakage Assessment: A
modern roadmap for SCA evaluations, IACR Cryptol. ePrint Arch. 2019 (2019)
505.

31. O. Reparaz, B. Gierlichs, I. Verbauwhede, Fast Leakage Assessment, in: CHES,
2017.

32. L. Masure, C. Dumas, E. Prouff, Gradient visualization for general characteriza-
tion in profiling attacks, in: International Workshop on Constructive Side-Channel
Analysis and Secure Design, Springer, 2019, pp. 145–167.

33. G. Perin, B. Ege, L. Chmielewski, Neural Network Model Assessment for Side-
Channel Analysis, IACR Cryptol. ePrint Arch. 2019 (2019) 722.

34. H. Bischof, A. Pinz, W. G. Kropatsch, Visualization Methods for Neural Networks,
in: 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference
B: Pattern Recognition Methodology and Systems, Vol. 1, IEEE Computer Society,
1992, pp. 581–582.

35. G. Perin, L. Chmielewski, L. Batina, S. Picek, Keep it Unsupervised: Horizon-
tal Attacks Meet Deep Learning, Cryptology ePrint Archive, Report 2020/891,
https://eprint.iacr.org/2020/891 (2020).

36. C.-S. Cheng, S.-C. Lee, P.-W. Chen, K.-K. Huang, The Application of Design for
Six Sigma on High Level Smart Phone Development, Journal of Quality 19 (2012)
117–136. doi:10.6220/joq.2012.19(2).02.

37. D. C. Montgomery, Design & Analysis of Experiments, John Wiley & Sons, Inc.,
USA, 2019.

38. S. Paguada, U. Rioja, I. Armendariz, Controlling the Deep Learning-Based Side-
Channel Analysis: A Way to Leverage from Heuristics, in: International Conference
on Applied Cryptography and Network Security, Springer, 2020, pp. 106–125.

39. J. Daemen, V. Rijmen, The Design of Rijndael, Springer-Verlag, Berlin, Heidelberg,
2002.

40. F. Chollet, et al., Keras, https://keras.io (2015).
41. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems, software available from
tensorflow.org (2015).
URL https://www.tensorflow.org/

42. J. Zhang, M. Zheng, J. Nan, H. Hu, N. Yu, A Novel Evaluation Metric for Deep
Learning-based Side Channel Analysis and Its Extended Application to Imbalanced

Toward Practical Autoencoder-based Side-Channel Analysis Evaluations 35

Data, IACR Transactions on Cryptographic Hardware and Embedded Systems
(2020) 73–96.

A Other visualization techniques

A.1 Heatmaps

Heatmap visualizes the kernel’s mean of a convolutional layer (not to be confused
with convolutional block). It aims to evaluate the kernels through their weights.
Kernels’ elements get activated in the convolutional operation when the network
is confident with the chosen features that correspond with them.

1.0

1.2

1.4

1.6

1.8

2.0

M
ag

ni
tu

de

SNR mean/std

0.02

0.04

0.06

0.08

0.10

0.12

M
ag

ni
tu

de

Trial 1

0 200 400 600 800 1000 1200 1400

0.04

0.06

0.08

0.10

0.12

0.14

M
ag

ni
tu

de

Trial 2

(a)

0.05

0.10

0.15

0.20

0.25
M

ag
ni

tu
de

Trial 3

0.10

0.15

0.20

0.25

0.30

M
ag

ni
tu

de

Trial 4

0.10

0.15

0.20

0.25

0.30

0.35

M
ag

ni
tu

de

Trial 5

0 200 400 600 800 1000 1200 1400

0.10

0.15

0.20

0.25

0.30

M
ag

ni
tu

de

Trial 6

(b)

Fig. 15. Comparison between SNR: mean(profiling traces)
std(profiling traces)

and Heatmap from 1st convo-
lutional layer of all six experiments

These heatmap plots are contrasted with a more typical SNR application,
meaning we apply it to measure both the noise level and the information not
related to the side-channel (see Eq. (10)).

36 Servio Paguada, Lejla Batina, and Igor Armendariz

SNR =
mean(profiling traces)

std(profiling traces)
(10)

Fig. 15a and Fig. 15b show heatmaps visualization of the trials in the second
use case. Observe how the peaks in the SNR plot correspond with those in the
first convolutional layer heatmap.

B Additional plots of the ASCAD N=100 experiment

Fig 16 shows the gradient visualization of the CNNs used to perform each one
of the trials in the second experiment.

0.1

0.2

0.3

M
ag

ni
tu

de

Trial 1

0.2

0.4

0.6

0.8

M
ag

ni
tu

de

Trial 2

0.2

0.4

0.6

0.8

M
ag

ni
tu

de

Trial 3

0.2

0.4

0.6

M
ag

ni
tu

de

Trial 4

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

M
ag

ni
tu

de

Trial 5

0 100 200 300 400 500

0.25

0.50

0.75

1.00

1.25

M
ag

ni
tu

de

Trial 6

Fig. 16. CNN’s gradient visualization of the six experiments

