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Abstract. The hybrid argument is a fundamental and well-established proof
technique of modern cryptography for showing the indistinguishability of distri-
butions. As such, its details are often glossed over and phrases along the line of
“this can be proven via a standard hybrid argument” are common in the cryp-
tographic literature. Yet, the hybrid argument is not always as straightforward
as we make it out to be, but instead comes with its share of intricacies. For
example, a commonly stated variant says that if one has a sequence of hybrids
H0, . . . ,Ht, and each pair Hi, Hi+1 is computationally indistinguishable, then
so are the extreme hybrids H0 and Ht. We iterate the fact that, in this form,
the statement is only true for constant t, and we translate the common approach
for general t into a rigorous statement.
The paper here is not a research paper in the traditional sense. It mainly con-
sists of an excerpt from the book The Theory of Hash Functions and Random
Oracles—An Approach to Modern Cryptography (Information Security and Cryp-
tography, Springer, 2021), providing a detailed discussion of the intricacies of the
hybrid argument that we believe is of interest to the broader cryptographic com-
munity. The excerpt is reproduced with permission of Springer.

1 Introduction
The hybrid argument is a fundamental proof technique and at the heart of many
important cryptographic results. Not surprisingly, this includes a number of results
that we planned on including in our book The Theory of Hash Functions—An Ap-
proach to Modern Cryptograph [MF21] (henceforth the hash book). To our dismay,
after carefully reading a first draft of our chapter on pseudorandomness, we found
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that the way we had captured the hybrid argument was not quite correct.

1.1 An Erroneous Version of the Hybrid Argument

Our blunder on the presentation of the hybrid argument was a good reminder how
easy it is to trip up on formalizing cryptography and how seemingly small details
can have devastating effects. Yet, when researching the literature we found that
we were in good company. For example, consider the presentation of the hybrid
argument as given on Wikipedia (as of 01/01/2021):

Formally, to show two distributions D1 and D2 are computationally in-
distinguishable, we can define a sequence of hybrid distributions D1 :=
H0, H1, . . . ,Ht =: D2 where t is polynomial in the security parameter.
Define the advantage of any probabilistic efficient (polynomial-bounded
time) algorithm A as

Advdist
Hi,Hi+1(A) := |Pr[x←$ Hi : A(x) = 1]− Pr[x←$ Hi+1 : A(x) = 1]|

where the dollar symbol ($) denotes that we sample an element from the
distribution at random.
By triangle inequality, it is clear that for any probabilistic polynomial-
time algorithm A,

Advdist
D1,D2(A) ≤

t−1∑
i=0

Advdist
Hi,Hi+1(A). (1)

Thus there must exist some k s.t. 0 ≤ k < t and

Advdist
Hk,Hk+1(A) ≥ Advdist

D1,D2(A)/t. (2)

Since t is polynomially bounded, for any such algorithm A, if we can
show that its advantage to distinguish the distributions Hi and Hi+1
is negligible for every i, then it immediately follows that its advantage
to distinguish the distributions D1 = H0 and D2 = Ht must also be
negligible.

(Wikipedia, Hybrid argument (Cryptography), 01/01/2021 )

While we concur with Equation (2) the final asymptotic conclusion that for
proving indistinguishability of H0 and Ht it suffices to show indistinguishability of
Hi and Hi+1 for every i, is utterly wrong1 if one allows non-constant t. And yet, this

1Unless, as discussed later, one interprets the statement as that there is a universal negligible
bound for all i, in which case we can indeed show the statement.
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statement not only appears on Wikipedia, but also in this form in many research
papers and cryptographic lecture notes.

Here is a simple counter example to the above asymptotic version of the hybrid
argument. Consider the following sequence (Hi)i∈N of “very deterministic” random
variables, defined as

Hi(λ) =
{

1 if i ≥ λ

0 otherwise.

Individually, each of the random variables Hi eventually becomes 0. In fact, for
each i the random variables Hi and Hi+1 are computationally and even statistically
indistinguishable, because for λ ≥ i + 2 both variables only return 0. If one now
takes t(λ) := λ in Wikipedia’s hybrid argument above, then H0 and Ht would
be indistinguishable as well, although H0(λ) = 0 and Hλ(λ) = 1 are trivial to
distinguish.2

The counter example is easy to generalize from linear functions t(λ) := λ to
arbitrary non-constant functions t(λ) ∈ ω(1) by letting Hi(λ) become 0 if t(λ)
exceeds i. Then all hybrids Hi at some point are 0 and thus pairwise statistically
close, and yet H0(λ) = 0 but Ht(λ) = 1 for sufficiently large λ. This brings up two
questions: The first one is about the situation for constant t (and here we show that
the hybrid argument as above still holds). The other, more important question is
then how the hybrid argument should be stated, because this is essential for results
to hold.

1.2 Stating the Hybrid Argument Correctly

Let us first investigate what goes wrong with the above version of the hybrid ar-
gument. As mentioned before, we are perfectly aligned with the statement above
that for the hybrids D1 = H0, H1, . . . ,Ht−1, D2 = Ht there must be some index k
between 0 and t such that

Advdist
Hk,Hk+1(A) ≥ Advdist

D1,D2(A)/t.

The intuition tells us now that, for a polynomial t, a non-negligible advantage to
distinguish D1 and D2 must yield a non-negligible advantage against Hk and Hk+1.
The problem with this line of reasoning is that this index k may depend on the

2Noteworthy, this straightforward counter example already appears on crypto stack exchange
(crypto.stackexchange.com/questions/64110) for another occasionally encountered false claim
in cryptography. This claim is that the polynomial sum

∑t

i=1 εi(λ) of negligible functions is again
negligible. If we use the 0-1-variablesHi above as probabilities (such that all probabilities eventually
become 0 and are thus individually negligible) it still holds that the sum

∑λ

i=1 Hi(λ) is constantly
1 and not negligible.

3

crypto.stackexchange.com/questions/64110


security parameter λ and may thus change with each security parameter. If we
now have an infinite number of hybrids, we may spread out the infinite number of
“distinguishing indexes” k on the hybrid pairs such that we only have a few indexes
k for each pair Hi and Hi+1.

To make this tangible, consider once again our running counter example of Hi(λ)
being 0 in case λ > i and 1 otherwise, again with t(λ) := λ. Then we actually know
that for each λ the hybrids Ht−1(λ) = Hλ−1(λ) = 0 and Ht(λ) = Hλ(λ) = 1 are
easy to tell apart for the given parameter λ. But this only holds for the single value
λ, and for all other values λ′ > λ the hybrids Hλ−1(λ′) = Hλ(λ′) = 0 are perfectly
indistinguishable.

An immediate consequence from the considerations above, which we also show
formally below, is that for constant t(λ) the “simple” hybrid argument holds. The
reason is that if we have an infinite number of “distinguishing indexes” k we must
hit at least one of the constant number of neighbored pairs Hi, Hi+1 infinitely often,
yielding a distinguisher against this pair of hybrids.3

Besides the confirmation of the hybrid argument for constant t, and the counter
example for non-constant t, we are still left with the question if and how we should
put the hybrid argument. We argue below that the hybrid argument also holds as
above if we can additionally give a universal negligible bound ε(λ) on the distin-
guishing advantage against any pair of hybrids Hi and Hi+1. In this case we would
have

ε(λ) ≥ Advdist
Hk,Hk+1(A) ≥ Advdist

D1,D2(A)/t(λ).

and the claim now follows from the fact that t(λ) · ε(λ) is negligible for polynomial
t(λ) and negligible ε(λ).

Another approach is to state the hybrid argument as it is usually used in proofs,
namely, by reducing the indistinguishability of the hybrids H0, H1, . . . ,Ht to the
indistinguishability of some random variables X and Y . That is, we assume that we
have a reduction, or transformation, T (1λ, i, z) taking some index i ∈ [0, . . . , t − 1]
and a sample z, either from X(1λ) or from Y (1λ), but where T is oblivious about z’s
origin. The transformation T is such that it generates a sample fromHi(λ) if z stems
from X, and from Hi+1(λ) if z is from Y . If we can represent the hybrids H0, . . . ,Ht

via such a transformation based on random variables X and Y , and X and Y are
3One could now argue that the hybrid argument in general refers to a bound λ′ on the number of

variables in the polynomial t(λ′) which is different from the parameter λ in the security game, and in
this sense constant. But this is not how one usually conducts the hybrid argument in cryptographic
proofs, where the number of hybrids depends on the same parameter λ. For example, consider
the proof that an adversary making multiple encryption queries in a CPA-attack cannot gain a
significant advantage over the single-query setting, such that the number of queries and therefore
the number of hybrids is determined by the adversary and therefore constitutes a polynomial in λ,
too.
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computationally indistinguishable, then so are H0 and Ht for any polynomial t.
This is the formal statement we prove below (Theorem 3.8). We note that the
proof relies on index i being chosen uniformly, such that one can also phrase the
hybrid argument with regard to indistinguishability under uniformly chosen index i.
Theorem 3.8 captures both variants.

1.3 The Hybrid Argument in the Literature

One finds plenty of examples of careful statements about the hybrid argument in
the literature. Alas, at the same time one often also encounters the simplified
reasoning, arguing about indistinguishability of neighbored hybrids and concluding
that the extreme hybrids must also be indistinguishable. Similarly, one occasionally
finds in modern research papers the statement that the polynomial sum of negligible
functions is again negligible.4 We expect these results and hybrid arguments to hold
nonetheless, because usually one could state them in the more rigorous form as we
have done above.

In research publications the hybrid argument is usually merely sketched. In
text books and lecture notes it is often explained by example only, commonly when
stretching pseudorandom outputs and arguing the indistinguishability of the result-
ing generator. This is legit and helps to focus on the important aspects under
considerations (such as the pseudorandomness of the stretched output). It nonethe-
less leaves an uneasy feeling that such a fundamental technique is then often applied
in more general contexts without having a precise reference.

For comparison, induction proofs in advanced math courses are, very often, only
glanced over as well. Analogously to cryptography, basic math courses often explain
the induction proof technique by example, too, without unfolding the full theory of
Peano’s axiom of induction. Yet, scholars are then usually also exposed to pitfalls
when applying the induction technique; one of the most famous alleged induction
paradoxes is that all horses are of the same color. This cautionary treatment does
not seem too common for the hybrid method in cryptography where the idea of
the hybrid argument is often given with an explicit or implicit reference to the false
version (“show that neighbored hybrids are indistinguishable” instead of “neighbored
hybrids are related via a reduction”).

Let us list two examples where the hybrid argument has been put carefully.
Naturally, our list is not exhaustive and we have probably missed some good ex-
amples and references, but the point here is to emphasize that our viewpoint has

4Despite the scientific paradigm to support claims by arguments we have decided not to list
such works explicitly; the readers may check recent publications and cryptographic lecture notes
for such glitches themselves.
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been raised in the literature before. The first example is the lecture notes of Boneh
and Shoup [BS20, Section 3.4.3] in which they argue—once more by the pseudoran-
domness example—that the hybrid method needs to be dealt with cautiously. Their
treatment of the hybrid argument is bound to the example of pseudorandomness,
though. The second example, which comes close to our goal to state a hybrid argu-
ment generally and abstractly, is the work by Brzuska et al. [BDF+18] in the eprint
version [BDLF+18, Appendix B]. They state the hybrid argument abstractly in a
code-based game-playing framework. Our treatment here instead follows the com-
putational setting of random variables. Restricting ourselves to random variables
(instead of games) allows for easier access but still suffices for a large number of
applications.

1.4 Outline

As remarked earlier, the issues with the hybrid argument are not new and have been
pointed out by other researchers before. We do feel, however, that it is important
to stress the intricacies of foundational results and, in case of the hybrid argument,
stating it as a “helper statement” (rather than explaining it by example) not only
helps understanding but also facilitates proofs based on the hybrid argument. In
the hash book we tried to do just that and Section 3 here is a verbatim excerpt from
the book that we hope may serve as a reference for the hybrid argument to benefit
both learners and practitioners of cryptography. (And if it spikes interest in the
book which has a lot more to offer than just a thorough treatment of the hybrid
argument then, admittedly, that would be a welcome side effect.) In Section 2 of
the paper we briefly introduce relevant notation, definitions and basic facts which
are introduced elsewhere in the book.5

2 Preliminaries
We go by the convention that small letters such as i and j denote natural numbers
and we denote the security parameter by λ. For i ∈ N we denote by [i] the set
{1, 2, . . . , i}. Indexes are 1-based, unless stated otherwise.

Negligible functions. We begin with a definition of negligible functions ε : N 7→ R
for security parameter λ ∈ N and note that, henceforth, we set polynomials such as
p or q in bold face without serifs.

5All definitions and statements are taken from the hash book [MF21]. The text is reproduced
with the permission of Springer.
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Definition 2.1 (Negligible Function). A function ε : N→ R is negligible if for
any polynomial p : N→ R+ there exists an integer Λ such that for all λ ≥ Λ we
have

ε(λ) ≤ 1
p(λ) .

We write ε(λ) = negl(λ) for a not further specified negligible function and give
the following basic properties without proof.

Theorem 2.2 (Basic Properties of Negligible Functions). Let ε, ε′ : N→ R be
negligible functions, δ : N → R be a non-negligible function, and q : N → R+

be a polynomial. Then the following holds:

1. The sum of two negligible functions is negligible:

ε(λ) + ε′(λ) = negl(λ).

2. A polynomial factor still leaves the function negligible:

q(λ) · ε(λ) = negl(λ).

3. Subtracting only a negligible function from a non-negligible one yields a
non-negligible function:

δ(λ)− ε(λ) 6= negl(λ).

4. A function which is bounded by a negligible function is negligible itself:
Let γ : N → R be a function such that there exists Λ with γ(λ) ≤ ε(λ)
for all λ ≥ Λ. Then γ is negligible.

By combining items 1 and 2 we can show that also the sum of constantly many
negligible functions is negligible.

Proposition 2.3. Let εi for i ∈ N be a sequence of negligible functions and
let qi : N → R+ be polynomials. Then for any constant c ∈ N the sum is
negligible:

c∑
i=1

qi(λ)εi(λ) = negl(λ).

Random variables. Let X = (Xλ)λ∈N be a sequence of random variables; one for
each security parameter λ ∈ N. Then we write x ←$ X(1λ) to denote sampling a
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value from distribution Xλ. Giving the security parameter λ as input to X, possibly
in unary, takes on a more algorithmic standpoint such that we can easily switch back
and forth between (efficient) algorithms and distributions. When clear from context
we also often simply speak of a random variable X meaning a sequence of random
variables X = (Xλ)λ∈N indexed by the security parameter. In particular we consider
X, Y , and Z to always be sequences of random variables.
Indistinguishability. The hybrid argument is used to show that two distributions
(resp. two (sequences of) random variables) are indistinguishable. While the hybrid
argument is usually used to argue computational indistinguishability we will also use
perfect and statistical indistinguishability, both of which are based on the notion of
statistical distance.

Definition 2.4 (Statistical Distance). The statistical distance of two sequences
of random variables X = (Xλ)λ∈N and Y = (Yλ)λ∈N is defined as

SDX,Y (λ) := 1
2 ·

∑
z∈{0,1}∗

∣∣∣Pr
[
X(1λ) = z

]
− Pr

[
Y (1λ) = z

]∣∣∣.
With that, we can define the three notions of indistinguishability.6

Definition 2.5 (Indistinguishability). Let X = (Xλ)λ∈N and Y = (Yλ)λ∈N be
two sequences of random variables.

Perfectly indistinguishable. We say that the two random variables are per-
fectly indistinguishable, denoted by X p= Y , if for all λ ∈ N their statistical
distance is 0.

Statistically indistinguishable. We say that the two random variables are
statistically indistinguishable, denoted by X s≈ Y , if their statistical dis-
tance SDX,Y (λ) is negligible.

Computationally indistinguishable. We say that the two random variables
are computationally indistinguishable, denoted by X c≈ Y , if for all effi-
cient algorithms D the advantage

Advindist
X,Y,D(λ) :=

∣∣∣Pr
[
D(1λ, X(1λ)) = 1

]
− Pr

[
D(1λ, Y (1λ)) = 1

]∣∣∣
is negligible.

6Note that our notation for the distinguishing advantage slightly differs from that of the
Wikipedia article that we have used in the introduction. We denote the advantage of distinguisher
D distinguishing samples from distributions X and Y by Advindist

X,Y,D(λ) which would be Advindist
X,Y (D)

in Wikipedia’s notation.
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Finally, we will use the fact that all indistinguishability notions form an equiv-
alence relation.

Proposition 2.6. Let X = (Xλ)λ∈N, Y = (Yλ)λ∈N, and Z = (Zλ)λ∈N be
sequences of random variables. Then for all above indistinguishability notions
≈ ∈ { p=, s≈, c≈} it holds that:

Reflexivity: X ≈ X.

Symmetry: X ≈ Y =⇒ Y ≈ X.

Transitivity: X ≈ Y, Y ≈ Z =⇒ X ≈ Z.

3 The Hybrid Argument (Excerpt from The Hash Book)7

The hybrid argument is a general technique to show that two distributions of a
certain form are (computationally) indistinguishable and is thus often used in game
hopping to show that two adjacent games are negligibly close. To motivate the
technique we revert to random variables. Since games can be viewed as special
cases of random variables our discussion applies to games as well. Assume that we
have two random variables X and Y which are computationally indistinguishable.
Now consider the t-fold repetition X×t of X which is the random variable which on
input 1λ outputs the vector (x1, . . . , xt) of t independent samples xi ←$ X(1λ) of
X. It is convenient to write X×t = (X,X,X, . . . ,X) with the understanding that
each entry corresponds to an independent copy of the random variable X. Define
Y×t analogously. Are these t-fold repetitions also computationally indistinguishable
if X and Y are?

The hybrid method (or hybrid argument) provides an answer to such questions.
The idea is to consider a sequence of hybrid random variables H0, . . . Ht, such that
H0 corresponds to X×t and Ht to Y×t, and each transition from H i to H i+1 only
corresponds to an indistinguishable change.8 In other words, the sequence H0 to
Ht causes a gradual shift from X×t to Y×t but such that the intermediate steps
are not harmful, implying that the two extreme hybrids must be indistinguishable.
In the case of the t-fold repetitions the hybrids could, starting from the vector
(X,X,X, . . . ,X) of X-samples, step-wise replace one copy of X with Y until all

7The excerpt is taken almost verbatim from Section 3.2.2 of the hash book [MF21]. We adjusted
cross references to be consistent in this paper. Any other alteration is marked in [brackets] and
omissions are marked with an ellipsis [. . .]. The text is reproduced with the permission of Springer.

8While we usually consider indexes to start at 1 it is here convenient to have 0-based indices for
hybrids as this simplifies the writing of sums in later analyses.
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occurrences have been replaced:

H0 = ( X, X, X, . . . X, X )
H1 = ( Y, X, X, . . . X, X )
H2 = ( Y, Y, X, . . . X, X )

...
Ht−1 = ( Y, Y, Y, . . . Y, X )
Ht = ( Y, Y, Y, . . . Y, Y )

Intuitively, since each pair H i and H i+1 only differs in the (i + 1)st entry, namely,
X or Y , and X and Y are computationally indistinguishable, all hybrids should be
close. Our goal is to provide a formal proof for this intuition. To this end, let us
first formalize the statement that we want to prove in this section via the hybrid
argument.

Lemma 3.1. Let X = (Xλ)λ∈N and Y = (Yλ)λ∈N be two sequences of random
variables that are computationally indistinguishable, that is, X c≈ Y . Then
for any polynomial t : N→ N also the t-fold repetitions

X×t := (X1
λ, X

2
λ, . . . , X

t(λ)
λ )λ∈N and Y×t := (Y 1

λ , Y
2
λ , . . . , Y

t(λ)
λ )λ∈N

are computationally indistinguishable. Here all Xi
λ (resp. Y i

λ) are independent
copies of random variable Xλ (resp. Yλ).

Note that in Proposition 2.6 we have shown that our indistinguishability notions
satisfy the properties of an equivalence relation. While we have shown that transi-
tivity holds, that is, if X ≈ Y and Y ≈ Z, then also X ≈ Z, we have also mentioned
that transitivity only holds for a constant number of steps. This implies that the
desired result easily follows for a constant number t of intermediate hybrids. But
for cryptographic applications we often make a polynomially number of hops, such
that we need to make some additional stipulation on the random variables.

In the following we formalize the hybrid argument which extends the constant
transitivity of indistinguishability notions to polynomially many steps under certain
assumptions. The different requirements for the hybrid argument to work can be
subtle, and indeed they are often glossed over in the cryptographic literature. We
will here present four versions of the hybrid argument that can be used in different
situations. Each version comes with different assumptions and conclusions and there
is no strict hierarchy between the various versions.

Remark 3.2. We will present the following sections for computational indistinguisha-
bility as this is usually the setup in which the hybrid argument is used. However, all
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the results can also be shown for statistical indistinguishability. The proofs will be
almost identical except that we consider unbounded algorithms. Furthermore, note
that for perfect indistinguishability the transitivity rule can trivially be applied an
arbitrary number of times.

3.1 Constant Number of Hybrids

We begin with the simplest form of the hybrid argument for a constant number
of hybrids. That is, for a constant t ∈ N we consider sequences of random vari-
ables (or hybrids) H0, H1, . . . ,Ht and show that if any two neighboring hybrids
are indistinguishable, then so are hybrids H0 and Ht. A common example are
game-hopping-based proofs where one often has a constant number of game hops in
the proof. This result for a constant number of hybrids immediately follows from
Proposition 2.6, but it helps to formalize the proof for the upcoming discussions.

Theorem 3.3 (Hybrid Argument for Constant Number of Hybrids).
Let t ∈ N be a fixed integer and let H0, H1, . . . ,Ht be sequences of random
variables (i.e., H i = (H i

λ)λ∈N). Then it holds that

∀i ∈ [t− 1] : H i c≈ H i+1 =⇒ H0 c≈ Ht.

Proof. Let us fix an arbitrary algorithm A that can distinguish distributions H0

and Ht with advantage Advindist
H0,Ht,A(λ):

Advindist
H0,Ht,A(λ) =

∣∣∣Pr
[
A(1λ, H0(1λ)) = 1

]
− Pr

[
A(1λ, Ht(1λ)) = 1

]∣∣∣.
By “adding the overall term of 0” this can be rewritten in a telescoping sum as
follows:

=
∣∣∣Pr
[
A(1λ, H0(1λ)) = 1

]
− Pr

[
A(1λ, H1(1λ)) = 1

]
+ Pr

[
A(1λ, H1(1λ)) = 1

]
− Pr

[
A(1λ, H2(1λ)) = 1

]
+ Pr

[
A(1λ, X2(1λ)) = 1

]
− Pr

[
A(1λ, H3(1λ)) = 1

]
+ . . .

+ Pr
[
A(1λ, Ht−1(1λ)) = 1

]
− Pr

[
A(1λ, Ht(1λ)) = 1

]∣∣∣ .
More compactly:

=
∣∣∣∣∣
t−1∑
i=0

Pr
[
A(1λ, H i(1λ)) = 1

]
− Pr

[
A(1λ, H i+1(1λ)) = 1

]∣∣∣∣∣.
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Finally, applying the triangle inequality |a+ b| ≤ |a|+ |b| we derive

≤
t−1∑
i=0

∣∣∣Pr
[
A(1λ, H i(1λ)) = 1

]
− Pr

[
A(1λ, H i+1(1λ)) = 1

]∣∣∣
=
t−1∑
i=0

Advindist
Hi,Hi+1,A(λ). (3)

By assumption H i c≈ H i+1, and thus the advantages in Equation (3) are negligible
for any PPT adversary A. As a constant sum of negligible functions is negligible (see
Proposition 2.3 [. . .]) it follows that also Equation (3) denotes a negligible function,
which concludes the proof.

3.2 Polynomial Number of Hybrids with a Universal Distinguish-
ing Bound

As discussed earlier, a constant number of hybrids is often not sufficient for cryp-
tographic applications. Instead, we usually require a polynomial number of hybrids
H0, H1, . . . ,Hp(λ) for some polynomial p. Note that in this case we consider random
variables where both the number of hybrids as well as the hybrids themselves depend
on the security parameter. To capture the dependency of the index of the hybrid
from the security parameter we usually consider a function I : N → N which maps
every parameter λ to the index i = I(λ) ∈ {0, 1, . . . , p(λ)} in question. With this we
denote by HI the hybrid given by HI(1λ) := HI(λ)(1λ) which samples according to
the ith hybrid for parameter 1λ, where i = I(λ). We call the function I p-indexing
if I(λ) ∈ {0, 1, . . . , p(λ)− 1} for all λ. It is sometimes also convenient to write HI+1

for the distribution HI(λ)+1(1λ) and Hp for Hp(λ)(1λ).

When attempting to show that H i c≈ H i+1 for all i ∈ {0, 1, . . . , p(λ)− 1} implies
that also H0 c≈ Hp via the proof for the constant number of hybrids we run into
difficulties in the very last step of the proof. Before, in Equation (3), we argued that
the sum of a constant number of negligible functions is negligible. But as we have
seen in [Section 1] the sum of a polynomial number of negligible functions does not
have to be negligible and, consequently, assuming only H i c≈ H i+1 is insufficient for
the polynomial case of the hybrid argument.

We can even show that the hybrid argument of Theorem 3.3 in general fails for
a polynomial number p(λ) of hybrids. To this end let p(λ) = λ be linear and for
any i ∈ {0, 1, . . . , p(λ)} set

H i(1λ) =
{

1 if i ≥ λ
0 else

12



Then for any given i we have H i c≈ H i+1 and even H i s≈ H i+1 since both random
variables eventually become 0, i.e., H i(1λ) = H i+1(1λ) = 0 for all λ ≥ i+ 2. But we
now have a linear number of hybrids, too, such that we can still find a non-vanishing
hybrid for any given security parameter λ. In fact, if one compares H0(1λ) = 0 and
Hλ(1λ) = 1 then it follows that the hybrids H0 and Hp for the growing p(λ) = λ
are clearly not indistinguishable, even though any two neighboring hybrids H i, H i+1

are individually close.

In the following we will see three variants of how we can work around the is-
sue. The easiest is to assume that for each adversary A there exists a single neg-
ligible function ε that upper bounds the distinguishing advantage for any pair of
neighboring hybrids. In this case we can upper bound Equation (3) (translated to
polynomially many hybrids) as

Advindist
H0,Hp(λ),A(λ) ≤

p(λ)−1∑
i=0

Advindist
Hi,Hi+1,A(λ) ≤

p(λ)−1∑
i=0

ε(λ) = p(λ) · ε(λ).

Since a negligible function times a polynomial remains negligible (see Theorem 2.2
[. . .]) we thus obtain a negligible upper bound for advantage Advindist

H0,Hp(λ),A(λ). This
is formalized in the following theorem:

Theorem 3.4 (Hybrid Argument for Universal Distinguishing Bound). Let
p : N → N be a polynomial and let H0, H1, H2, . . . be sequences of random
variables (i.e., H i = (H i

λ)λ∈N). If for adversary A there exists a function
ε such that there exists an integer Λ ∈ N such that for all λ ≥ Λ and all
p-indexing functions I we have

Advindist
HI ,HI+1,A(λ) ≤ ε(λ),

then it holds that
Advindist

H0,Hp(λ),A(λ) ≤ p(λ) · ε(λ)

for all λ ≥ Λ. If ε is negligible then it follows that H0 and Hp are computa-
tionally indistinguishable.

Finding a fixed upper bound for all neighboring hybrids is usually not easy,
and Theorem 3.4 gives no indication of how to go about finding such an ε. Next,
we will discuss sufficient conditions for the hybrid distributions such that we can
immediately bound the distinguishing advantage Advindist

H0,Hp(λ),A(λ). These will yield
the final two variants of the hybrid argument.
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3.3 Polynomial Number of Hybrids: Non-uniform Variant

The following variant is based on the non-uniform model of computation [. . .] in
which an algorithm for each input length (and thus for each different security param-
eter) can have hardwired advice of polynomial length. The idea will be to exploit
such advice to find a non-uniform upper bound on the distinguishing advantage of
distributions H0 and Hp.

Let us go back to the proof for the case of constantly many hybrids and there to
the last step: Equation (3). Translated to polynomially many hybrids here we have
that

Advindist
H0,Hp(λ),A(λ) ≤

p(λ)−1∑
i=0

Advindist
Hi,Hi+1,A(λ).

Now, for each λ ∈ N there must exist an imax ∈ {0, 1, . . . , p(λ)− 1} that maximizes
the distinguishing advantage. This we can capture as a p-indexing function of the
security parameter as

Imax(λ) := arg max
i∈{0,1,...,p(λ)−1}

Advindist
Hi,Hi+1,A(λ)

and with this, we can rewrite the above as

Advindist
H0,Hp(λ),A(λ) ≤

p(λ)−1∑
i=0

Advindist
Hi,Hi+1,A(λ)

≤
p(λ)−1∑
i=0

Advindist
HImax ,HImax+1,A(λ)

= p(λ) · Advindist
HImax ,HImax+1,A(λ). (4)

Note that HImax is a single distribution which, for each security parameter,
“picks” a hybrid from the set of hybrids H0, H1, . . . ,Hp(λ)−1. If we could now
show that HImax c≈ HImax+1, then we have once more found an upper bound on
the distinguishing advantage between distributions H0 and Hp. Showing that
HImax c≈ HImax+1 is, however, not straightforward since the helper function Imax may
not be efficiently computable—it may even be uncomputable. [T]he non-uniform
model of computation [and] non-uniform algorithms with polynomial advice may
allow for “computing” uncomputable functions. It is that property that we will
exploit shortly by hardwiring the function values Imax(λ) into a non-uniform distin-
guisher.

The above discussion tells us where to look for the designated breaking point
(via Imax), but does not yet give any hint on how to exploit this point. The idea for
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using the breaking point will be to take a “reductionist” approach. Usually when
one aims to apply the hybrid method the indistinguishability of the extreme hybrids
is related to the indistinguishability of two simpler random variables X and Y . A
concrete example is our introductory question about the indistinguishability of the
t-fold repetitions X×t and Y×t of X and Y . The indistinguishability of the hybrids
H0 = (X,X, . . . ,X) and Ht = (Y, Y, . . . , Y ) should somehow follow from X

c≈ Y
in the sense that any successful distinguisher against H0 and Ht should allow us to
build a successful distinguisher against X and Y . In our common terminology this
is a reduction, or viewed vice versa in light of constructions of random variables, we
transform X and Y into the hybrids.

More formally, we start with two random variables X and Y for which we can
show that X c≈ Y . In addition we require the existence of an efficient (possibly
non-uniform) transformation T such that T (i,X) p= H i and T (i, Y ) p= H i+1. That
is, if T receives the index i = I(λ) and is given a sample from X(1λ) it implements
the ith hybrid, and if given a sample from Y (1λ) it implements the (i+ 1)st hybrid.
Below we use the shorthand T (I,X)(1λ) := T (1λ, I(λ), X(1λ)).

Note that we require the transformation T to be identically distributed to the
hybrids. If we required only statistically indistinguishability, then the theorem would
not hold anymore. Namely, consider once more the efficient hybrids H i(1λ), which
are 1 if i ≥ λ and 0 else. Each hybrid itself is statistically close to the constant
0 function, and any neighboring hybrids are statistically close to each other. For
these hybrids the constant transformation T (i, z) = 0 would be statistically close
to any hybrid (for arbitrary random variables X,Y ), and yet the extreme hybrids
H0(1λ) = 0 and Hλ(1λ) = 1 would be easy to distinguish.

Example 3.5. As an example transformation consider once again our opening
example of a t-fold repetition of variables X and Y (page 9) for efficiently sam-
pleable X and Y . Here, the ith hybrid was defined as (Y×i, X×t−i) and we can
thus define the transformation T as

T (i, z) := (Y1, Y2, . . . , Yi, z,X1, X2, . . . , Xt−i−1),

where values Yj (for j ∈ [i]) and Xk (for k ∈ [t− i−1]) are independent samples
of random variables Y and X, respectively. Note that for this we need to assume
that distributions X and Y are efficiently sampleable. Now if value z is sampled
from X(1λ) then T (i, z) p= H i and, similarly, if z is drawn according to Y (1λ)
then T (i, z) p= H i+1.

For each λ ∈ N the value of the p-indexing function Imax(λ) is an integer from
the set {0, 1, . . . p(λ)− 1} and thus clearly polynomially bounded in its size. If we
consider a non-uniform algorithm we can thus embed the function value Imax(1λ) in
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its advice for security parameter λ. With this, we can now construct a non-uniform
adversary B as follows. Non-uniform adversary B will have the index function value
Imax(λ) hardwired in its advice for parameter λ, and we write B[Imax] to make this
explicit. In addition the algorithm B will use the efficient transformation T and the
(efficient) adversary A (from Equation (4)) in a black-box way such that

Advindist
HImax ,HImax+1,A(λ) = Advindist

X,Y,BA,T [Imax](λ). (5)

Since, by assumption, distributions X and Y are computationally indistinguishable
we have that the right-hand side is negligible, which yields the desired bound on
distributions H0 and Hp(λ):

Advindist
H0,Hp(λ),A(λ) ≤ p(λ) · Advindist

HImax(λ),HImax(λ)+1,A(λ)

= p(λ) · Advindist
X,Y,BA,T [Imax](λ)

= p(λ) · negl(λ).

It remains to construct efficient non-uniform adversary BA,T [Imax] which plays to
distinguish distributions X and Y internally using transformation T and adversary
A and which has function value Imax(1λ) hardcoded as part of its non-uniform advice.
Adversary BA,T [Imax] gets as input a value z which is either drawn from X or from
Y for parameter 1λ. It proceeds as follows:

BA,T [Imax](1λ, z)
1 : i← Imax(λ) // Read out value from advice

2 : z∗ ←$ T (1λ, i, z)
3 : b′ ←$A(1λ, z∗)
4 : return b′

If value z was sampled from distribution X(1λ), then by the definition of transfor-
mation T we have that z∗ is sampled according to hybrid HImax(λ)(1λ). If instead z
came from Y (1λ), then z∗ is sampled according to hybrid HImax(λ)+1(1λ). Adversary
B thus perfectly simulates the distinguishing experiment for adversary A, thereby
establishing the equality in Equation (5).

Remark 3.6. Using the above variant of the hybrid argument yields a non-uniform
reduction, and [. . .] it is not always clear how to interpret such reductions [see, for
example, [KM12, KM13, BL13] or Section 1.3.3.2 of the hash book]. We thus here
do not formulate a theorem statement for the non-uniform case, but instead discuss
how we can obtain a uniform version of the above.
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Remark 3.7. Above we asked from transformation T that it is such that T (I,X) p=
HI and T (I, Y ) p= HI+1 for two distributions X and Y . In fact, it is sufficient that

Advindist
HImax(λ),HImax(λ)+1,A(λ) ≤ Advindist

T (Imax(λ),X),T (Imax(λ),Y ),A(λ)

which is necessarily the case if T (I,X) p= HI and T (I, Y ) p= HI+1. However,
exploiting the non-uniformity of B and thus T we can also derandomize the trans-
formation and fix the best possible coins as part of the advice such as to maximize
the distinguishing probability. This technique is also known as coin fixing: Instead
of using random choices we use a (precomputed) sequence of choices that maximizes
the advantage and which is embedded in the non-uniform advice. With this, the
non-uniform version of the hybrid argument can be used to, for example, show that
the t-fold repetition of random variables X and Y is computationally indistinguish-
able given that X c≈ Y even if X and Y are not efficiently sampleable. Here note
that in Example 3.5 above we required X and Y to be efficiently sampleable. With
coin fixing we could instead define transformation T as

T (i, z) := (y1, y2, . . . , yi, z, x1, x2, . . . , xt−i−1),

where yi and xi are part of the advice and chosen such that the distinguishing ad-
vantage is maximized. However, as mentioned above it is not clear how to interpret
such a result in practice, which is why we do not pursue the matter of coin fixing
and non-uniform hybrid arguments further.

3.4 Polynomial Number of Hybrids: Uniform Variant

In order to adapt the above non-uniform argument to the uniform case we need
slightly stronger requirements, namely that transformation T is uniform and efficient
(i.e., a PPT algorithm). As before, we will use transformation T together with
adversary A to construct an adversary B that distinguishes distributions X and Y .
Of course, now B needs to be uniform and we thus can no longer hardcode the index
function value Imax(λ). Instead of trying to find the two hybrids that maximize the
distinguishing advantage of adversary A for each security parameter, the idea now
will be to simply guess the right hybrids. Why and how this works is best seen in
the proof of the statement which we will describe comprehensively next.

While specifying a transformation T can in certain cases make proofs simpler,
in other cases it is not quite clear how to choose the underlying distributions X and
Y . For these cases we show that it also suffices to prove that

HU c≈ HU+1, (6)
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where U(λ) is a random variable distributed uniformly in {0, 1, . . . , p(λ)− 1}. Choos-
ing the hybrids uniformly at random might look strange at first. Note however, that
Equation (6) simply translates to advantage

Advindist
HU(λ),HU(λ)+1,A(λ) :=

∣∣∣Pr
[
A(1λ, HU(λ)(1λ)) = 1

]
− Pr

[
A(1λ, HU(λ)+1(1λ)) = 1

]∣∣∣,
being negligible for all efficient adversaries A, where U+1 describes the (dependent)
random variable which outputs the same as U , incremented by 1. Here, adversary A
gets as input a sample chosen as follows: First we choose i←$ {0, 1, . . . , p(λ)− 1} to
then sample a value from hybrid H i(1λ) on the left or a value H i+1(1λ) on the right.
If we can show that the advantage is negligible for any efficient adversary A then we
can also argue that distributions H0 and Hp are computationally indistinguishable.
This is formalized as item 2 of the following theorem. For item 1 recall that a
function I : N 7→ N is p-indexing if I(λ) ∈ {0, 1, . . . , p(λ)− 1} for all λ.

Theorem 3.8 (The Hybrid Argument (uniform case)).
Let p : N→ N be a polynomial and let H0, H1, H2, . . . be sequences of random
variables (i.e., H i = (H i

λ)λ∈N).

1. Assume that there exist random variables X and Y with X c≈ Y . As-
sume further that for any PPT algorithm A there exists a PPT algo-
rithm T such that T (I,X) p= HI and T (I, Y ) p= HI+1 for all p-indexing
functions I. Then H0 and Hp are computationally indistinguishable. In
particular, for any PPT distinguisher A there exists a PPT distinguisher
B with

Advindist
H0,Hp(λ),A(λ) ≤ p(λ) · Advindist

X,Y,B(λ).

2. Let U(λ) denote the random variable distributed uniformly in {0, 1, . . . ,
p(λ)− 1}. Then, for any PPT distinguisher A it holds that

Advindist
H0,Hp(λ),A(λ) ≤ p(λ) · Advindist

HU(λ),HU(λ)+1,A(λ).

Remark 3.9. Note that the transformation T in the first item may depend on algo-
rithm A. [. . .]

Remark 3.10. The statement in the second point provides the hybrid samples as
input to the adversary. [One can consider a more general version of this claim]
where the hybrids are given as oracles and the adversary may interact with the
corresponding hybrids. Inspecting the proof below one sees that this version follows
the same line of argument.
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Proof of Theorem 3.8. We will first prove item 1, the hybrid argument with a trans-
formation T . The first part of the proof is identical to the proof for constantly many
hybrids (Theorem 3.3), and we here thus only provide the abbreviated version. Let
us fix an arbitrary algorithm A that can distinguish distributions H0 and Hp with
advantage Advindist

H0,Hp(λ),A(λ):

Advindist
H0,Hp(λ),A(λ) =

∣∣∣Pr
[
A(1λ, H0(1λ)) = 1

]
− Pr

[
A(1λ, Hp(λ)(1λ)) = 1

]∣∣∣.
By again “adding the overall term of 0” this can be rewritten as

=

∣∣∣∣∣∣
p(λ)−1∑
i=0

Pr
[
A(1λ, H i(1λ)) = 1

]
− Pr

[
A(1λ, H i+1(1λ)) = 1

]∣∣∣∣∣∣. (7)

We next build our algorithm BA,T which tries to distinguish inputs z produced either
from random variable X or from random variable Y . Algorithm BA,T internally uses
adversary A and transformation T (which in turn may depend on A) as follows:

B(1λ, z)
1 : i←$ {0, 1, . . . , p(λ)− 1}
2 : z′ ←$ T (1λ, i, z)
3 : b′ ←$A(1λ, z′)
4 : return b′

Assume for the moment that i has been chosen already in line 1 and is fixed. If value
z is a sample from X(1λ) then z′ ←$ T (1λ, i, z) corresponds to a random sample from
T (i,X) for parameter 1λ and is thus distributed as H i(1λ) by assumption about T .
It follows that B’s output in this case has the same distribution as A(1λ, H i(1λ)).
If, on the other hand, for the same i the input z stems from Y (1λ), then T (i, z)
is a random sample according to T (i, Y ) and thus distributed as a sample from
H i+1(1λ). In this case B’s output has the same distribution as A(1λ, H i+1(1λ)).
Hence we have∣∣∣Pr

[
B(1λ, X(1λ)) = 1

]
− Pr

[
B(1λ, Y (1λ)) = 1

]∣∣∣
=

∣∣∣∣∣∣
p(λ)−1∑
j=0

(Pr
[
B(1λ, X(1λ)) = 1 ∧ i = j

]
− Pr

[
B(1λ, Y (1λ)) = 1 ∧ i = j

]∣∣∣∣∣∣
=
∣∣∣∣∣

p(λ)−1∑
j=0

Pr[i = j] ·
(
Pr
[
B(1λ, X(1λ)) = 1

∣∣∣ i = j
]

−Pr
[
B(1λ, Y (1λ)) = 1

∣∣∣ i = j
]) ∣∣∣∣∣.
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Here the first equality is due to marginalizing over all possible choices of index
i ∈ {0, 1, . . ., p(λ) − 1} and the second is due to rewriting the probabilities as
conditional probabilities. By noting that Pr[i = j] = 1

p(λ) for all values of j ∈
{0, 1, . . . , p(λ)− 1} and that, furthermore, by definition of algorithm B we have that
Pr
[
B(1λ, X(1λ)) = 1

∣∣∣ i = j
]

= Pr
[
A(1λ, Hj(1λ)) = 1

]
, we can rewrite the above as

= 1
p(λ) ·

∣∣∣∣∣∣
p(λ)−1∑
j=0

Pr
[
A(1λ, Hj(1λ)) = 1

]
− Pr

[
A(1λ, Hj+1(1λ)) = 1

]∣∣∣∣∣∣.
And, finally, using the presentation as a telescoping sum, we get

= 1
p(λ) ·

∣∣∣Pr
[
A(1λ, H0(1λ)) = 1

]
− Pr

[
A(1λ, Hp(λ)(1λ)) = 1

]∣∣∣.
Note that in case A is efficient then B only performs efficient steps, because

transformation T is PPT by assumption and can be incorporated into the code of
B. Hence, we derive that the advantage of A against H0 and Hp(λ) is at most p(λ)
times the advantage of B against X and Y . Since this advantage is negligible by
assumption so must be the advantage of A. This concludes the proof for item 1.

Proof of item 2. For item 2 (the hybrid argument without a transformation T )
we start once more with an arbitrary algorithm A and rewrite its distinguishing
advantage for hybrids H0 and Hp(λ) as in Equation (7) above:

Advindist
H0,Hp(λ),A(λ) =

∣∣∣Pr
[
A(1λ, H0(1λ)) = 1

]
− Pr

[
A(1λ, Hp(λ)(1λ)) = 1

]∣∣∣,
which can be rewritten in a telescoping sum as

=

∣∣∣∣∣∣
p(λ)−1∑
i=0

Pr
[
A(1λ, H i(1λ)) = 1

]
− Pr

[
A(1λ, H i+1(1λ)) = 1

]∣∣∣∣∣∣.
Noting that we can replace index i with random variable U(λ) and conditioning on
U(λ) = i, we get

=
∣∣∣∣∣

p(λ)−1∑
i=0

Pr
[
A(1λ, HU(λ)(1λ)) = 1

∣∣∣U(λ) = i
]

− Pr
[
A(1λ, HU(λ)+1(1λ)) = 1

∣∣∣U(λ) = i
]∣∣∣∣∣.
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Finally, with the definition of conditional probabilities (Pr[A |B ] = Pr[A∧B]
Pr[B] ) and

noting that, furthermore, for any i ∈ {0, 1, . . . , p(λ)− 1} we have that Pr[U(λ) = i] =
1

p(λ) , the above can be rewritten to yield the desired result:

=p(λ) ·
∣∣∣∣∣

p(λ)−1∑
i=0

Pr
[
A(1λ, HU(λ)(1λ)) = 1 ∧ U(λ) = i

]
− Pr

[
A(1λ, HU(λ)+1(1λ)) = 1 ∧ U(λ) = i

]∣∣∣∣∣
=p(λ) ·

∣∣∣Pr
[
A(1λ, HU(λ)(1λ)) = 1

]
− Pr

[
A(1λ, HU(λ)+1(1λ)) = 1

]∣∣∣
=p(λ) · Advindist

HU(λ),HU(λ)+1,A(λ).

Here the second equality is a simple “demarginalization”[. . .]. This concludes the
proof of item 2 of the theorem.

Remark 3.11. It is instructive to think about where the above proof fails when we
consider super-polynomially many hybrids. Let e : N → N be super-polynomial,
that is, a function such that for all c ∈ N

e(λ) ∈ ω(λc).

Function e could for example be an exponential function such as 2λ. Now, if e is a
super-polynomial then

1
e(λ) · Advindist

H0,He(λ),A(λ)

may be negligible even if Advindist
H0,He(λ),A(λ) is non-negligible. Thus the argument no

longer works.

3.5 Applying the Hybrid Argument

This concludes our discussion of hybrid arguments. To summarize we recall the
steps required in order to show that two distributions A and B are computationally
indistinguishable using Theorem 3.8. In a first step we need to come up with a
path H0, H1, . . . ,Hp(λ) of at most polynomially many hybrids (intermediate distri-
butions) that form a path from A to B. These should be such that the first hybrid
matches distribution A and the last hybrid matches distribution B, i.e., H0 p= A
and Hp p= B. For the second step we now have two possibilities. Either we can
show that hybrids H i and H i+1 are computationally indistinguishable for uniformly
random i (this corresponds to item 2 of the theorem), or alternatively, we can re-
late the hybrids to two computationally indistinguishable distributions X and Y via
some transformation T such that T (i,X) p= H i and T (i, Y ) p= H i+1.
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An example of how Theorem 3.8 can be applied was already given as Exam-
ple 3.5 above where we considered the t-fold repetition X×t and Y×t. Here X×t and
Y×t are the two distributions A and B and the computationally indistinguishable
distributions that form the basis of transformation T are the singular versions X
and Y . [. . .]
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