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Abstract. We present a secure multiparty computation (MPC) protocol based on garbled circuits
which is both actively secure and supports the free-XOR technique, and which has communication
complexity O(n) per party. This improves on a protocol of Ben-Efraim, Lindell and Omri which only
achieved passive security, without support for free-XOR. Our construction is based on a new variant
of LPN-based encryption, but has the drawback of requiring a rather expensive garbling phase. To
address this issue we present a second protocol that assumes at least n/c of the parties are honest (for
an arbitrary fixed value c). This second protocol allows for a significantly lighter preprocessing, at the
cost of a small sacrifice in online efficiency. We demonstrate the practicality of our evaluation phase
with an implementation.
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1 Introduction

The last decade has seen an enormous amount of progress in the practicality of actively secure
multiparty computation (MPC), spanning many new designs and implementations of protocols
based on both garbled circuits and secret sharing. Much of the developments have been in the
dishonest majority case, where more than half of the parties can arbitrarily deviate from the
protocol, trying to compromise privacy and correctness of computation. Despite this, there is still
some gap between the complexities one can achieve in theory, and those which can be met by
practical protocols in the real world.

Almost all of the most efficient protocols in the dishonest majority setting are designed in the
so-called preprocessing model, in which parties first produce some input-independent correlated
randomness which can be later used to evaluate the function. In secret-sharing-based protocols, the
main goal of the preprocessing (or offline) phase is to generate secret-shared random multiplication
triples, which are consumed during the online computation to evaluate multiplication gates. In
garbled-circuit-based protocols, the preprocessing generates a one-time garbled circuit which will
be later evaluated on private inputs.

Recent protocols in both of the above paradigms have incredibly fast execution times in their
online phases when the number of parties n is relatively small (say less than 10), see for example
SPDZ-like protocols [DPSZ12, LOS14, KOS16, KPR18] and SPDZ2k [CDE+18, OSV20], for the
case of linear secret-sharing based MPC, and BMR-based protocols [HSS17, WRK17b, YWZ19].
However, when we increase the number of parties this practicality drops off.

Secret-sharing based protocols [GMW87, RB89, BGW88, DN07, DPSZ12], which work for both
binary and arithmetic circuits, require a small amount of communication between (essentially) all
parties for each layer of multiplication gates in the circuit, and hence their round complexity is
linear in the depth of the circuit. This means that these protocols require very low bandwidth,
and can be very efficient in a LAN (Local-Area-Networks) setting, but the large amount of rounds
of communication and high latency make them less suited for the WAN (Wide-Area-Networks)
setting, where the parties are usually geographically far apart from each other. If we consider the
complexity of the online evaluation, secret-sharing based protocols have O(n) complexity per gate
per party5.

Garbled circuit protocols, introduced by Yao [Yao86] in the two-party setting and later gener-
alized to the multiparty case by Beaver, Micali and Rogaway (BMR) [BMR90], mainly work over
binary circuits. In these protocols an “encrypted” version of the circuit is constructed in such a way
that its evaluation does not require any communication beyond parties providing their “garbled”
inputs. These protocols run in a constant number of rounds and are often slower than secret-sharing
based protocols in a LAN setting due to their higher bandwidth requirements. Nevertheless, they
are usually much faster in the WAN setting. For practical multiparty garbled-circuit protocols each
evaluating party has to perform O(n2) operations. Thus the scalability of the online phase of secure
multiparty computation protocols in a WAN setting, as the number of parties increases, is still an
issue.

Theoretically, this is not a problem for multi-party garbled circuits. To achieve a protocol which
has complexity O(n) per party, one can take the standard two-party protocol by Yao [Yao86] and
then compute the garbling function via an n-party actively secure MPC system. The resulting

5 The complexity can be reduced to O(1) for all but one of the parties in SPDZ-like protocols by ‘opening’ being
performed in a king-followers fashion: Followers send their shares to the king, who then replies to all followers with
the reconstructed value (hence O(n) complexity for the king). For more details, see e.g. [DPSZ12].
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garbled circuit will not depend on the number of parties, but the garbling itself will be highly
inefficient as the underlying pseudo-random functions (PRFs) used in Yao’s construction will need
to be evaluated within MPC. Thus, while theoretically interesting, such an approach is unlikely to
ever be practical.

The O(n2) complexity problem for practical BMR-based protocols led Ben-Efraim, Lindell and
Omri [BLO17] to present a passively secure BMR-based protocol whose evaluation is independent
of the number of parties and such that the garbling phase avoids to evaluate PRFs using generic
MPC. This was done by utilizing a specific key-homomorphic PRF, for which two instantiations
were given in the paper, one based on DDH in prime order groups and one based on Learning-
with-Errors. The work of Ben-Efraim et al. provides a large-scale MPC protocol which is almost
practical : their evaluation phase is concretely faster than previous works for large n, but more
research is needed into the offline phase in order to make it practical. The efficiency of online
evaluation is demonstrated through an implementation which shows that, roughly, their protocol
is more efficient than its O(n2) counterpart [BLO16] as soon as 100 parties take part in the MPC.
However, this large-scale protocol suffers from two major drawbacks: firstly, it only deals with the
case of passive adversaries, and secondly their techniques are not compatible with the important
free-XOR optimization introduced by Kolesnikov and Schneider [KS08].

Another relevant large-scale, garbled-circuit based protocol is that proposed by Hazay, Orsini,
Scholl and Soria-Vazquez [HOSS18b]. Their result, which only deals with passive adversaries, short-
ens symmetric keys (as the ones for PRFs in the garbled circuit) in order to speed up computation
and reduce communication. Security is then retained by relying on the length of the concatenation
of all honest parties’ keys, rather than on each of them individually. Such a protocol allows to
evaluate each garble gate with O(n2`/κ) operations, compared to O(n2) of standard approaches,
where κ > ` is the security parameter and ` is the key length. In subsequent work [HOSS18a],
the same authors extended their technique to the active setting, but only for secret-sharing based
protocols, leaving actively secure garbled circuits with short keys as an open problem.

1.1 Our Contribution

In this paper we introduce a new n-party garbling technique and present two almost-practical,
large-scale BMR-style protocols. Both the size and evaluation complexity of the resulting garbled
circuits is O(1), hence resulting in an online phase which has a complexity of O(n) per party6. Our
protocols are actively secure and employ the free-XOR optimization by Kolesnikov and Schneider
[KS08].

Obtaining Free-XOR. Our construction takes inspiration from the work of Ben-Efraim et al.
[BLO17], but instead of basing the construction on key-homomorphic PRFs, we use an encryp-
tion scheme which is both key-homomorphic and message-homomorphic. In order to enable the
free-XOR technique, we further need to restrict ourselves to message and key spaces of character-
istic two. This rules out standard Ring-Learning-with-Errors (RLWE) based encryption schemes,
for which the secret key and message spaces are modulo distinct primes. Instead, we introduce
a new homomorphic encryption scheme based on the Learning-Parity-with-Noise (LPN) problem.
We note that LPN-based encryption was also used by Appelbaum [App13] in order to replace the
random oracle with standard cryptographic assumptions in two-party, free-XOR garbled circuits.

6 This increase in complexity is due to parties still needing to reconstruct the circuit and send their masked inputs
around.
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We would like to stress that the motivation (and also the resulting LPN construction) for our work
is different, as we aim to build practical protocols for a large number of parties rather than a
purely theoretical result related to cryptographic assumptions. A further overview of our new LPN
garbling scheme can be found in the next subsection, and all its details appear in Section 3.

Obtaining Active Security. Our first protocol achieves active security by employing an actively-
secure garbling phase which guarantees that the resulting secret-shared garbled circuit is correct.
While in standard BMR all of the garbling, except the PRFs evaluations, is computed within an
MPC protocol, we instead entirely generate the garbled gates in a distributed manner using an
actively secure full-threshold MPC system. We will refer to this first protocol as “authenticated
garbling”. This terminology resembles the authenticated-garbling technique by Wang, Ranellucci
and Katz [WRK17a, WRK17b] (referred as WRK in the rest of the paper) and more recently by
Yang, Wang and Zhang [YWZ19]. However, while their preprocessing phase is explicitly based on
TinyOT-like protocols [NNOB12, FKOS15], which rely on Message Authentication Codes (MACs),
our preprocessing works with any actively secure protocols.

In our construction each garbled AND gate consists of 4 rather than 4n ciphertexts as in previous
BMR-style protocols. In the online phase, parties only need to broadcast shares of their inputs and
perform a cheap, local computation that requires a single decryption per AND gate. However, this
very efficient online evaluation comes at the price of a rather expensive preprocessing. Thus, whilst
forming a potential bridge from what is theoretically possible to what is practically realisable, this
protocol is only ‘almost’-practical.

Bridging the Gap. To further bridge the gap between theory and practice, we also present a second
construction with a more efficient preprocessing phase. We achieve this by relaxing some of the
requirements in our garbling functionality, which becomes more similar to that described by Hazay,
Scholl and Soria-Vazquez (HSS) [HSS17]. In particular, we allow the shares of the garbled circuit to
be unauthenticated : rather than producing LPN ciphertexts within an actively secure MPC engine,
each party will locally produce additive shares of these ciphertexts. This effectively allows the
adversary to introduce arbitrarily additive errors to corrupted parties’ shares. To maintain active
security, we need to introduce an extra check in the online evaluation, as we explain in Technical
Overview (Section 1.2).

In order to achieve a better performance, this new construction assumes that there are at least
n/c honest parties, for an arbitrarily chosen constant 1 < c ≤ n. Since our goal is constructing
efficient protocols for a large number of parties (typically more than one hundred), it is very
reasonable to assume, in this setting, more than a single honest party.

Experimental Validation. We validate the claim that our protocol is almost-practical by demon-
strating that the evaluation phase is indeed more efficient than other truly practical approaches
when the number of parties is large. Thus, to turn our almost-practical protocol into a fully practical
one, future works only need to concentrate on the garbling phase.

The concrete efficiency of our schemes crucially depends on the LPN parameters and the error
correcting codes used to instantiate the two-key LPN based encryption scheme. We set the security
of the scheme according to the work of Esser et al. [EKM17] and instantiate the cryptosystem with
concatenated codes (see Section 6). We stress that our implementation should be taken more as
a proof of feasibility than an optimized implementation of the proposed constructions. Moreover,
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we believe that using more efficient codes, like LDPC or QC-LDPC, the concrete efficiency of our
protocols would improve significantly.

More concretely, in the full-threshold authenticated garbling case, experiments show that our
evaluation phase will be more efficient than state of the art protocols such as HSS or WRK when
the number of parties exceeds about 100. Notice HSS, WRK and the recent protocol of Yang et al.
[YWZ19] have similar online efficiency, therefore, to concretely validate our claim, we compare the
results of our experiments in the full-threshold case with the running times reported in [WRK17b].
Setting the statistical security parameter to 40, as in [WRK17b], we report a running time for
AES-128 of 1.72 sec (c.f. Table 4 in Section 6), compared to 1.87 sec in a LAN setting and 2.3 sec
in a WAN setting reported in WRK [WRK17b] for 128 parties. These numbers from WRK will
grow quadratically as the number of parties increases, whereas ours will remain constant.

In the scalable protocol by Ben-Efraim et al. [BLO17] –only passively secure and without free-
XOR– the authors also estimate that the cross over point from the O(n2) to the O(n) protocols
comes when n is about 100. Thus we obtain roughly the same cross over point in the case of
active security with free-XOR as Ben-Efraim et al. do for passive security with no free-XOR. When
comparing our protocol to [BLO17] we see that, assuming a circuit consisting solely of AND gates,
our protocol is roughly six times slower than that of [BLO17]. Whilst this penalty for obtaining
active security can be considered too much, one needs to consider the effect over typical circuits, as
our protocols evaluate XOR gates for free. Thus, in practice, our performance penalty to achieve
active security compared to Ben-Efraim et al. is closer to just a 15% of slow down. The details of
our implementation can be found in Section 6.

1.2 Technical Overview

We now proceed to discuss our results and techniques in greater detail. They mainly revolve around
two key ideas: how to use LPN encryption to allow n-party garbling with free-XOR, and how to
achieve active security. We give an overview of these techniques below, more details can be found
in the rest of the paper.

Since our constructions assume a circuit-based representation, we fix some conventions and
notation we adopt across the paper. We consider binary circuits Cf consisting of |C∧| AND gates,
|C⊕| XOR gates, each of which has two input wires, u and v, and one output wire w. We use g to
indicate the gate index. Let W be the set of all wires, Win and Wout be the set of input and output
wires, respectively, we assume |Win| = nin and |Wout| = nout. We denote by Wini the set of input
wires associated to party Pi, and likewise for output wires Wouti .

Background on BMR. Most of the work in multi-party garbled circuits is based on the BMR protocol
by Beaver, Micali and Rogaway [BMR90], which has been recently improved by a sequence of works
[BLO16, HSS17, LPSY15, LSS16, WRK17b] both in the case of passive and active security. In this
paper we follow the approach described in [BLO16, HSS17].

These protocols consist of two phases: an input-independent preprocessing phase where the
garbled circuit is generated, and an online phase where parties locally evaluate the circuit obtaining
the output of the computation. While in Yao’s two-party protocol only one party, the garbler, creates
the garbled circuit, in BMR all parties generate it in a distributed way. This means that, instead
of having a single key associated to each wire of the circuit, in multiparty garbling we have n keys
for each wire, one for each party.
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At the beginning of the preprocessing step, each party Pi chooses a global correlation ∆i ∈ Fk2
to support free-XOR, and, for each wire w that is not the output wire of a XOR gate, samples a
random key kiw,0, associated to the value 0, and sets kiw,1 = kiw,0 ⊕∆i for the value 1. Moreover,

each Pi samples a random wire mask λiw ∈ F2, for all the input wires w ∈Wini and output wires of
AND gates. Therefore the actual wire mask for such wires is given by λw = ⊕i∈[n]λ

i
w.

In this way, XOR gates do not need any additional preprocessed material, as parties simply set
kiw,0 = kiu,0 ⊕ kiv,0, kiw,1 = kiw,0 ⊕∆i and λw = λu ⊕ λv (where u and v are the input wires and w
is the output wire).

Let g be denote an AND gate with input wires u, v and output wire w. Given wire masks
λu, λv, λw and wire keys {kiu,α,kiv,β,kiw,0}(α,β)∈{0,1}2,i∈[n], parties generate a garbled gate corre-

sponding to the AND truth table. It consists of four rows, indexed by the values (α, β) ∈ {0, 1}2
on the input wires. Every row contains n ciphertexts, each of which is encrypted under 2n keys as
follows:

g̃jα,β =

(
n⊕
i=1

Fkiu,α,k
i
v,β

(g‖j)

)
⊕ kjw,0 ⊕∆

j ·
(
(λu ⊕ α) · (λv ⊕ β)⊕ λw

)
, (1)

where j ∈ [n] represents the j-th ciphertext on the (α, β)-row and F is a double-key PRF. Note
that, as free-XOR asks for every pair of keys (kjw,0,k

j
w,1) to be correlated according to ∆j , we

further need F to be a circular 2-correlation robust PRF [HSS17].

In the online phase, these encrypted truth tables, along with the input and output wire masks,
are revealed to all parties so to allow local evaluation of the circuit. More precisely, in the input
phase each party Pi broadcasts values εw = ρw⊕λw, for each w ∈Wini , where ρw is the actual input
and λw the corresponding wire mask provided to Pi with other preprocessed material. In response,
every party Pj broadcasts their key kiw,εw . Upon collecting all the keys and masked inputs, parties
can start evaluating the circuit. At this point, this does not require any interaction. Given complete
sets of input keys (k1

u,εu , . . . ,k
n
u,εu) and (k1

v,εv , . . . ,k
n
v,εv), it is possible to decrypt a single row of

AND garbled gates obtaining (k1
w,εw , . . . ,k

n
w,εw). Note that during evaluation each party decrypts

the entire row, requiring n2 PRF evaluations. Once these output keys are obtained, every party
Pi can check that the i-th key corresponds to one of its keys kiw,0,k

i
w,1 generated in the garbling

phase. This check allows: 1) To determine the masked output value, i.e. if kiw,εw = kiw,0, Pi sets
εw = 0, and εw = 1 otherwise; 2) To ensure active security for the online evaluation.

Notice that, while [LPSY15] uses the actively secure SPDZ protocol [DPSZ12] to create an
authenticated secret-sharing of Equation (1), Hazay et al. [HSS17] show that, in order to obtain an
actively secure BMR-style protocol, it is enough to generate an unauthenticated additive sharing
of the garbled circuit, provided that the values ∆j ·

(
(λu ⊕ α) · (λv ⊕ β)⊕ λw

)
in Equation (1) are

correctly generated.

BMR Garbling with LPN Encryption. We replace the circular 2-correlation robust PRF needed
to allow the free-XOR technique in garbled circuit based protocols with a two-key symmetric
encryption scheme based on LPN. By applying the key and message homomorphism, each garbled
gate contains only a single ciphertext per row instead of n. However to achieve efficiency we need
to modify the LPN encryption used in [App13], as we have n rather than two parties, and prove
that our system still satisfies the Linear Related-Key and Key-Dependent-Message (LIN-RK-KDM)
security needed to support the free-XOR optimization.
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On the other hand, we cannnot naively modify the standard single-key LPN-based encryption
scheme because of the free-XOR technique. Due to the key-homomorphism of LPN, there would be
only two different keys –either ku,0 + kv,0 or ku,0 + kv,0 +∆– encrypting each four-ciphertext gate
entries in every garbled table (more details are in Section 3), essentially allowing the adversary to
always decrypt half of them. We define a new scheme that still takes as input two keys but applies
a permutation σ to the second one. We prove that the newly defined scheme satisfies a related
notion of LIN-RK-KDM security, which we denote by LIN-RK-KDMσ, while supporting the use of
free-XOR in our garbled circuits.

Using our new scheme, we can replace the 4 ·n ciphertexts given in Equation (1) with 4 cipher-
texts of the form

g̃α,β = Enc
(
(kw,εw,α,β , εw,α,β), (g‖α‖β), (ku,α,kv,β)

)
, (α, β) ∈ {0, 1}2, (2)

where the values εw,α,β = (λu ⊕ α) · (λv ⊕ β) ⊕ λw, kw,εw,α,β = kw,0 ⊕∆ · εw,α,β correpond to the
output public-value and output key, respectively.

Obtaining Active Security. We use the garbling technique just described to design our actively
secure BMR protocols with linear online complexity in the number of parties. At a very high level
the approach we follow to obtain active security is the same approach used in HSS, but with some
significant differences.

The first one is clearly in the evaluation phase. In HSS, upon receiving all the input-wire keys
and reconstructing the garbled circuit, parties evaluate the circuit locally by computing, for every
AND gate, n2 PRF evaluations. By subtracting those PRF outputs (see Equation 1), they obtain
the n keys (k1

w,εw , . . . ,k
n
w,εw) corresponding to the AND gate’s output, which can be used to evaluate

subsequent gates. Since, during this operation, each party Pi should recover one of its two possible
output keys, (kiw,0,k

i
w,1), checking whether this condition verifies is enough to guarantee active

security for the online evaluation. In our case this is no longer true, because upon decryption any
party obtains a single unknown output key, kw,εw . For security reasons, such a key needs to remain
unknown to all parties up to this step, therefore, if we just plug-in our new garbling into HSS,
it is no longer possible to check that the keys obtained by evaluating AND gates are correct. We
describe two different ways to overcome this issue.

The first method, described in Section 4 and corresponding to the fully authenticated LPN-
based garbling, proposes to fully authenticate the entire garbled circuit, and not just the wire
mask. This is achieved using any MPC protocol with active security and dishonest majority. In this
way the garbled values opened during the circuit evaluation are guaranteed to be correct, leading to
a very efficient online phase. However, this comes at the price of a rather expensive preprocessing.

In our second protocol, described in Section 5, we improve the practicality of the preprocessing
phase while maintaining almost the same online efficiency. In order to do so, we increase the number
of honest parties to n/c, with c ∈ R and 1 < c ≤ n. The proposed protocol works for any 1 < c ≤ n:
when c ≥ 2 we are in the dishonest majority setting and when c = n we go back to the full threshold
case.

By setting the LPN parameters in the right way, we can design a protocol where each party
locally generates “weak” (in term of security) ciphertexts. Since an adversary will be able to see
only the sum of these ciphertexts, we show that this is enough to obtain a secure protocol. The
balance then has to be drawn to ensure that enough ‘noise’ is added by each party in creating
their own LPN-based ciphertexts in order to ensure privacy, but not too much to still guarantee
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correctness. The garbling we use in this case is unauthenticated, like in HSS, with only few actively
secure MPC operations. Since, as explained before, we cannot rely on the online check used in HSS,
we need to introduce a new additional test. In a little more detail, for each output gate g, with
input wire u and output wire w, we construct a new garbled gate as

g̃α = Enc
(
(ξ1
w,α‖ . . . ‖ξnw,α), (g‖α‖0), (ku,α,0)

)
, α ∈ {0, 1},

where each value ξiw,α is generated by party Pi and then secret-shared among all parties. In the
online phase each Pi decrypts g̃εu , where εu is the public value of g’s input wire, and checks if the
i-entry in the obtained vector correspond to one of the two values ξiw,0, ξ

i
w,1. This extra check per

output gate is sufficient to guarantee active security of our second protocol.

2 Preliminaries

We denote by sec the security parameter. We say that a function µ : N→ N is negligible if, for every
positive polynomial p(·) and all sufficiently large sec, it holds that µ(sec) < 1

p(sec) . We assume that
all involved algorithms are probabilistic polynomial time Turing machines. We let x ← X denote
the uniformly random assignment to the variable x from the set X, assuming a uniform distribution
over X. We also write x ← y as shorthand for x ← {y}. If D is a probability distribution over
a set X, then we let x ← D denote sampling from X with respect to the distribution D. If A is
a (probabilistic) algorithm then we denote by a ← A the assignment of the output of A where
the probability distribution is over the random tape of A. With Berτ we denote the Bernoulli
distribution of parameter τ , i.e. Pr[x = 1 : x← Berτ ] = τ .

Security Model. The protocols presented in this work are proved secure in the Universal Com-
posability framework of Canetti [Can01]. We consider security against a static, malicious adversary
who corrupts a subset I ⊂ P = {P1, . . . , Pn} of parties at the beginning of the protocol.

We assume all parties are connected via authenticated channels as well as secure point-to-point
channels and a broadcast channel. The default method of communication is through authenticated
channels, unless otherwise specified.

Randomized Functions: To describe our garbling technique we follow the same approach used
in [App13] and use the terminology of randomized encodings for garbled circuits [IK00, IK02].

A randomized function f : X ×R −→ Y is a two argument function such that, for every input
x ∈ X, we can think of f(x) as a random variable which samples r ∈ R and then applies f(x; r).
When an algorithm A gets oracle access to a randomized function f we assume A only has control
on the inputs x. We denote the resulting randomized function by Af . We say that two randomized
functions are equivalent, written f ≡ g, if for every input, their output is identically distributed.

A set of randomized functions {fs}s∈{0,1}∗ , indexed by a key s, is called a collection of randomized
functions if fs is a randomized function for every s. In the following we drop the dependency on s.

We say that two collections {fs} and {gs} of randomized functions are computationally indis-

tinguishable, written {fs}
c≡ {gs}, if the probability that an efficient adversary can distinguish

between them, given oracle access to a function in {fs} and a function in {gs}, is negligible.
Let {fs}, {gs}, {hs} be collections of randomized functions, we have the following standard facts

[Mau02]:
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– if {fs}
c≡ {gs} and A is an efficient function then {Afs} c≡ {Ags};

– if {fs}
c≡ {gs} and {gs}

c≡ {hs} then {fs}
c≡ {hs}.

2.1 LIN-RK-KDM Security

We briefly recall the notion of (Linear) Related-Key and Key-Dependent-Message security [App13,
AHI11, BK03, BRS03, CL01] that we need in our constructions: Given a symmetric encryption
scheme E = (Enc,Dec) over the plaintext space M = F∗2 and key space K = Fsec

2 , we define two
families of key-derivation and key-dependent message functions:

ΦRKA = {φ : K → K} and ΨKDM = {ψ : K →M},

such that Related-Key and Key-Dependent-Message (RK-KDM) security can be defined through
two oracles Reals and Fakes, indexed by a key s ∈ K, as follows: for each query (φ, ψ) ∈ ΦRKA ×
ΨKDM, Reals returns a sample from the distribution Enc(ψ(s);φ(s)) and Fakes a sample from the
distribution Enc(0|ψ(s)|;φ(s)).

Definition 1 (RK-KDM secure encryption, [App13]). We say that a symmetric encryption
scheme E = (Enc,Dec) is semantically-secure under RK-KDM attacks with respect to ΦRKA and

ΨKDM if Reals
c≡ Fakes, where s← K.

If both φ and ψ are linear functions over F2, we refer to this notion as Linear Key-Related
and Key-Dependent-Message (LIN-RK-KDM) security. In this case we can rewrite the oracles in a
compact way:

Reals : (δ,m, b) 7−→ Enc( m⊕ b · s, δ ⊕ s )

Fakes : (δ,m, b) 7−→ Enc( 0|m|, δ ⊕ s ),

where m ∈M is a message, s ∈ K a key, b ∈ F2 a bit and δ ∈ Fsec
2 a key-shift. Notice in computing

m⊕b ·s we multiply s by b bitwise, and then pad the result with |m|−k zeros to left before xor-ing
with m.

2.2 Error Correcting Codes

An [`,m, d] binary linear code L is a subspace of dimension m of F`2, where ` is the length of
the code, m its dimension and d its distance, i.e. the minimum (Hamming) distance between any
distinct codewords in L. We denote by G a generator matrix of L, that is any matrix in Fm×`

2 whose
rows form a basis for L. If G has the form [Im|P ], where Im is the m×m identity matrix, G is said

to be in standard form. A parity-check matrix for L is a matrix in F(`−m)×`
2 such that GHT = 0. A

linear code can be uniquely specified either by its generator matrix or its parity-check matrix.

Given an [`,m, d] binary linear code L, we can define a pair of algorithms (Encode,Decode),
where Encode : Fm

2 → F`2 (resp. Decode : F`2 → Fm
2 ) is an encoding (resp. decoding) algorithm, such

that:

1. Linearity: For every pair of messages x1,x2 ∈ Fm
2 we have Encode(x1) ⊕ Encode(x2) =

Encode(x1 ⊕ x2).

10



2. b(d−1)/2c-Correction: The decoding algorithm can correct any error of Hamming weight up to
b(d−1)/2c, i.e., for every message x ∈ Fm

2 and every error vector e ∈ F`2 with at most b(d−1)/2c
non-zero elements, it always holds that Decode(Encode(x)⊕ e) = Decode(Encode(x)) = x.

We will also need the following more general property.

Definition 2 ((`, τ)-Correction:). Let Berτ be the Bernoulli distribution with parameter τ .
Given an [`,m, d] binary linear code L and a pair of efficient encoding and decoding algorithms,
(Encode,Decode), we say that L is (`, τ)-correcting if, for any message x ∈ Fm

2 , the decoding algo-
rithm Decode will, with overwhelming probability, satisfy Decode(Encode(x)⊕e) = Decode(Encode(x)) =
x, where e← Ber`τ is a noise vector, and Ber`τ is the distribution over F`2 obtained by drawing each
entry of the vector e independently according to Berτ .

2.3 LPN-based Encryption

The Learning Parity with Noise (LPN) problem [GKL90, BFKL94] is a well-studied problem in
learning and coding theory, and has recently found many applications in cryptography. In this
section we introduce the decisional version of the LPN problem together with some variants of the
standard LPN-based encryption scheme that we need in our garbling construction.

Definition 3 (Decisional LPN). Let `, k ∈ N and τ ∈ (0, 1/2), the DLPN`,k,τ problem is to
distinguish between the distributions given by{

(C, c) : C ← F`×k2 , s← Fk2, e← Ber`τ , c← C · s ⊕ e
}

and {
(C, c) : C ← F`×k2 , c← F`2

}
.

The decisional and search variants of the LPN problem are polynomially equivalent, they have
been extensively studied and are widely believed to be hard for any τ . The DLPN assumption
has been used to build various cryptographic primitives and, in particular, symmetric encryption
schemes.

Definition 4 (Standard LPN Encryption). Let m, k, ` = poly(sec) be three integers. Let K =
Fk2 be the key space, C = F`×k2 × F`2 the ciphertext space and M = Fm

2 the message space. Let
τ ∈ (0, 1/2) be a parameter defining the Bernoulli distribution Ber`τ . Finally, let G ∈ F`×m2 be a
generator matrix for an [`,m, d] binary linear code L which is (`, τ)-correcting. The (standard) LPN
symmetric encryption scheme consists of the three following algorithms:

– KeyGen1
τ (1sec): Given as input the security parameter sec, sample uniformly at random a secret

key, s← K.

– Enc1
τ (m, s): Given a message m ∈ M and the secret key s ∈ K, sample a matrix C ← F`×k2 ,

noise e← Ber`τ and output

c← C · s ⊕ e ⊕ G ·m.

– Dec1
τ ((C, c), s): Given a ciphertext (C, c) and the secret key s, compute c ⊕ C · s and apply a

decoding algorithm to recover m.
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In [App13], Appelbaum proved that (an extension of) the above encryption scheme is LIN-RK-
KDM secure.

Theorem 1. Assuming DLPN`,k,τ is hard, the encryption scheme (KeyGen1
τ , Enc1

τ , Dec1
τ ) is LIN-

RK-KDM secure according to the above definition of LIN-RK-KDM security.

Assuming the DLPN-problem is hard, it is easy to show that also the following nonce-based
symmetric encryption scheme is IND-CPA, where it is required that a specific nonce is used only
once for each key s.

An eXtendable Output Function (XOF). A XOF is a way to model a random oracle that can
produce outputs of any length. Implementations of such functions can be created from SHA-3 in a
standardized manner [NIS16, BDP+18].

Definition 5 (XOF-Based LPN Encryption). Let m, k, ` = poly(sec) be three integers and
K, C,M as in Definition 4. Let τ ∈ (0, 1/2) and G ∈ F`×m2 be chosen in the same way as there too.
Let a XOF H : {0, 1}∗ −→ F`×k2 be modelled as a random oracle. The XOF-Based LPN symmetric
encryption scheme consists of the three following algorithms:

– KeyGenXOF
τ (1sec): Sample uniformly at random a secret key, s← K.

– EncXOF
τ ((m, nonce), s): Given a message m ∈M, a key s ∈ K and a string nonce, sample noise

e← Ber`τ and compute

C ← H(nonce) and c← C · s ⊕ e ⊕ G ·m.

– DecXOF
τ ((C, c), s): Given a ciphertext (C, c), compute c ⊕ C · s and then apply error correction

to recover m

The above LPN encryption scheme is trivially additively homomorphic in the message space,
and is also key homomorphic if two encryptions with the same nonce value are added together. To
reduce bandwidth and storage requirements, it is possible to define the ciphertext to be (nonce, c)
instead of (C, c).

Looking ahead, we will choose the parameters for our LPN-based encryption scheme based on
recent analysis on the security of the LPN assumption by Esser et al. [EKM17], which implies that
the parameter k in the scheme should be selected to be

k ≥ sec

log2

(
1

1−τ

) , (3)

where sec is the (symmetric-key equivalent) security parameter and τ defines the noise rate. In
what follows one should think of sec as being equal to 128 or 256.

2.4 Functionalities for Secret-shared MPC

Our protocols make use of the functionality FMPC for MPC over binary circuits described in Fig-
ure 1. The functionality is independent of how the values are stored and represented. In particular,
we will need two different implementations of FMPC, one achieving only passive security and the
second achieving active security. Note that any generic MPC protocol can be used to practically
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Functionality Fflag
MPC

The functionality runs with parties P1, . . . , Pn and an adversary A.
It is parametrized by flag ∈ {Auth,UnAuth}. Given a set ID of valid identifiers, all values are stored in the form
(varid , x), where varid ∈ ID .

Initialize: On input (Init) from all parties. The adversary is assumed to have corrupted a subset I of the
parties.

Input: On input (Input, Pi, varid , x) from Pi, with x ∈ F2, and (Input, Pi, varid , ?) from all other parties, with
varid a fresh identifier.

Add: On command (Add, varid1, varid2, varid3) from all parties:
1. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x⊕ y).

Multiply: On input (Multiply, varid1, varid2, varid3) from all parties:
1. The functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Output/Open: On input (Output/Open, varid , i) from all honest parties the functionality retrieves (varid , y),
sends y to the adversary, and waits for a reply. If A answers with Deliver, then do one of the following:
– If flag = Auth: output y to either all parties (if i = 0) or Pi (if i 6= 0).
– If flag = UnAuth: A further specifies an additive error e ∈ F2. The functionality outputs y + e to either

all parties (if i = 0) or Pi (if i 6= 0).
In both cases, if A does not answer with Deliver, output abort.

Figure 1. The ideal functionality for MPC over F2

instantiate FMPC in our constructions. However, since TinyOT-like protocols, that rely on message
authentication codes (MACs) to achieve active security, are currently the most efficient protocols
on binary circuits and are used in previous works like HSS and WRK, we abuse notation and use
FAuth

MPC and FUnAuth
MPC to distinguish between an active and a passive implementation of FMPC. Also

notice that each value in FMPC is uniquely identified by an identifier varid ∈ ID , where ID is a set
of identifiers.

After an Initialize step, the functionality allows the parties to provide their inputs, which can
be added and multiplied using Add and Multiply, respectively. The functionality also provides an
Output/Open command that allows values to be revealed either publicly or privately to a single
party. Note we maintain the double notation Output/Open only to distinguish between output
values and intermediate values that are opened during the execution of the protocol.

Unauthenticated values: We denote 〈x〉 an additive sharing of x over F2 generated by FUnAuth
MPC ,

where x = ⊕i∈[n]x
i with party Pi holding the share xi ∈ F2.

Looking ahead, using such a sharing we can perform arbitrary linear operations, however, upon
opening values, an adversary is able to introduce an arbitrary additive error and reveal incorrect
values. For this reason when we use unauthenticated values to instantiate our LPN-based protocol,
we need to add an new mechanism to prevent these additive errors introducing a security weakness
in the protocol.

Authenticated values: We denote [x] an actively secure additive sharing of x, for example using a
fixed MAC scheme. Addition and multiplication of such elements will be represented by [x] + [y]
and [x] · [y].
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To simplify notation we will use the following shorthands for inputing and outputting values
to/from a party/all parties:

[x]← Input(Pi), x← Output([x], Pi), x← Open([x]),

〈x〉 ← Input(Pi), x← Output(〈x〉, Pi), x← Open(〈x〉),

respectively in FAuth
MPC and FUnAuth

MPC . If the type (authenticated/unauthenticated) of operation is not
obvious from the context we will write InputP ,OutputP ,OpenP for the unauthenticated variant,
with no superscript added for the authenticated variant.

Trivially, from a [x] sharing we can obtain (immediately and with no computation or communi-
cation) a 〈x〉 sharing of the same value. We denote this operation by 〈x〉 ← Convert([x]). Extension
of this notation to act on elements x ∈ Fk2, for various values of k, will be by using [x] and 〈x〉 in
the obvious way.

We can extend the FMPC functionality by a command, which we denote by [x] ← GenBit()
which produces a shared random bit within the MPC engine. This command can be derived from
the base commands by performing:

1. All parties call [xi]← Input(Pi), x
i ∈ F2.

2. Parties compute [x]← ⊕i[xi].

3 Free-XOR Garbling using LPN

We now discuss how to garble a single AND gate using LPN-based encryption while maintaining
the free-XOR invariant. Later on, in Sections 4 and 5, we will show how this technique can be used
in order to build our actively secure garbled-circuit based MPC protocols.

Our garbling method is similar to the one given in Equation (1), with two main differences.
Firstly and most importantly, we have a single ciphertext per row, rather than n of them; sec-
ondly, we replace the circular 2-correlation robust PRF F with a nonce-based, two-key symmetric
encryption scheme based on LPN. Thus we obtain the garbling method given in Equation (2).

To achieve this modification one could naively think of just adapting standard LPN encryption
(c.f. Definition 4) to use two keys, where ∆ =

⊕n
i=1∆

i, and, for t ∈ {u, v, w}, kt,0 =
⊕n

i=1 kit,0 and

kt,1 = kt,0 ⊕∆. Each garbled row (εu, εv) ∈ {0, 1}2 could then be set as:

g̃εu,εv = (C, c), C ← F`×k2 , c← C · (ku,εu ⊕ kv,εv)⊕ e⊕G · kw,εw (4)

This naive solution does not result in a secure garbling method. To see this denote sεu,εv = ku,εu ⊕
kv,εv , then due to free-XOR we would have that sεu,εv = ku,0 ⊕ kv,0 ⊕ (εu ⊕ εv) · ∆, and hence
s0,0 = s1,1 as well as s1,0 = s0,1. This would trivially allow corrupted parties to always decrypt
half of the entries of every garbled gate, breaking completely the security of the scheme. A possible
fix to this problem would be to sample two different matrices Cu, Cv ← F`×k2 and compute c ←
Cu · ku,εu ⊕ Cv · kv,εv ⊕ e⊕G · kw,εw , but this would incur in increased computational costs due
to the sampling of the matrices and the cost of calculating the matrix-vector products.

In order to avoid these issues in our garbling, while still maintaining security, we introduce a
modification to the previously provided nonce-based version of LPN encryption. In particular, our
scheme will take as input two keys in Fk2, but this time a permutation σ ∈ Sk (where Sk is the set
of permutations on k elements) will be applied to the second one.
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Definition 6 (XOF-Based Two-Key LPN Encryption). Let m, k, ` = poly(sec) be three
integers. Let K = Fk2 × Fk2 be the key space, C = F`×k2 × F`2 the ciphertext space and M = Fm

2 the
message space. Let τ ∈ (0, 1/2) be a parameter defining a Bernoulli distribution and σ a permutation
in Sk. Finally, let G ∈ F`×m2 be a generator matrix for an [`,m, d] binary linear code L which is
(`, τ)-correcting (c.f. Definition 2). Let H : {0, 1}∗ −→ F`×k2 be a XOF. A XOF-based, two-key
symmetric LPN encryption scheme EXOF

τ is defined by the following algorithms:

– KeyGen(1sec): Samples (ku,kv)← F2×k
2 at random.

– Encτ ((m, nonce), (ku,kv)): On input of a message m ∈M, a pair of keys (ku,kv) and a string
nonce, compute

C ← H(nonce),

c← C · ( ku ⊕ σ(kv) ) ⊕ e ⊕ G ·m, e← Ber`τ .

– Dec((C, c), (ku,kv)): Compute c ⊕ C · ( ku ⊕ σ(kv) ) and then apply error correction to
recover m.

Note that this scheme is message homomorphic, and it only requires to store nonce rather than
C. In addition, when the same nonce is used, it is also key homomorphic.

Returning to our garbling proposal from the beginning of this section, now the key used to
garble entry (εu, εv) of a given gate g is sεu,εv = ku,εu ⊕ σ(kv,εv). By substituting the free-XOR
correlation, we see that security now relies on the secrecy of

sεu,εv = ku,0 ⊕ σ(kv,0) ⊕ εu ·∆ ⊕ εv · σ(∆), (5)

and hence on four possible (distinct) values of sεu,εv . Nevertheless, the security analysis requires
additional care. As it is always the case when using the free-XOR optimization, we have the problem
that we are encrypting key-dependent messages (where the dependence is the free-XOR correlation
∆), as well as we are using related keys when encrypting the inactive rows of a garbled gate.
Explicitly, given the active row sεu,εv , for (α, β) ∈ {0, 1}2 these inactive rows are:

sεu⊕α,εv⊕β = sεu,εv ⊕ α ·∆ ⊕ β · σ(∆).

Hence, once the parties learn any sεu,εv by evaluating the garbled circuit, security for each of the
three remaining rows is relying, respectively, on the secret values ∆,σ(∆) and ∆⊕σ(∆). To define
an appropriate way of dealing with this RK-KDM problem, we will first define the following variant
of LPN.

Definition 7 (DLPNσ Problem). Let σ ∈ Sk be the set of permutations of k elements and
`, k, τ ∈ N. The DLPNσ`,k,τ problem is to distinguish between the two distributions given by{

(C, c, σ) : C ← F`×k2 , s← Fk2, e← Ber`τ , c← C · (s ⊕ σ(s)) ⊕ e
}

and {
(C, c, σ) : C ← F`×k2 , c← F`2

}
,

where Ber`τ is the Bernoulli distribution with parameter τ .
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Recalling that any permutationon of a finite set can be uniquely expressed as the product of
disjoint cycles, we now show how the DLPN and DLPNσ problems are related to each other by the
following Lemma.

Lemma 1. Let σ ∈ Sk be a permutation consisting of exactly k̃ disjoint cycles, the DLPN`,k−k̃,τ
problem reduces to DLPNσ`,k,τ problem.

Proof. Our goal is, given a challenge (C, c) for the standard DLPN`,k−k̃,τ , to come up with an

appropriate challenge (Ĉ, ĉ, σ) for the DLPNσ`,k,τ problem. Then, we can apply the distinguisher for
the DLPNσ`,k,τ problem on the resulting challenge. We then argue that this forms a good distinguisher
for the DLPN`,k−k̃,τ problem.

Given a challenge (C, c), where C ∈ {0, 1}`×k−k̃ and c ∈ F`2, construct a challenge (Ĉ, ĉ, σ)
(where σ remains the above fixed permutation) as follows. First, simply set ĉ = c. Second, to
construct Ĉ from C, the basic idea is to add an extra column for every cycle in σ and adjust other
columns that are attributed with this cycle to agree with the added column and with c.

More precisely, for every 1 ≤ j ≤ k̃, denote by σj = ij1, . . . , i
j
`j

the j’th cycle in the representation

of σ, where ij1, . . . , i
j
`j
∈ [k] and σj(i

j
t ) = ijt+1, for 1 ≤ t < `j , and σj(i

j
`j

) = ij1. Assume for simplicity
of presentation and without loss of generality that all cycles in σ are of consecutive indices and in
an increasing ordering, i.e., ijt+1 = ijt + 1, for 1 ≤ t < `j (this could be imposed by a reordering of
the columns in C).

To construct Ĉ from C, for every cycle σj on indices i1, . . . , i`j ∈ [k] (omitting the superscript
j for the sake of clarity), set the columns corresponding these indices as follows. For the last index
i`j = ij`j , set column Ĉi`j ← {0, 1}

`. For every 1 ≤ t < `j , set the column Ĉt = Ct−j+1 ⊕ Ĉi`j . Note

that we indeed defined a matrix C of ` rows and k columns.
To argue that a good distinguisher for the DLPNσ`,k,τ problem makes the above a good distin-

guisher for the DLPN`,k−k̃,τ problem, we show that if (C, c) is sampled according to the first (resp.

second) random variable of Definition 3, then the resulting (Ĉ, ĉ, σ) is sampled according to the
first (resp. second) random variable of Definition 7. To see this, first note that ĉ = c and that if C
is uniformly random, then so is Ĉ.

Now, given s ∈ Fk−k̂2 , define ŝ = ŝ1, . . . , ŝk as follows. Using the same notation as before, for
every σj , let ŝi`j ← Fk2, and proceeding in a decreasing order, fix ŝit = ŝit+1 + sit−j+1 (recall that

the j − 1 long shift in the coordinate of s is needed because we added this number of new elements
for the leftmost j − 1 cycles). Note that if s is uniformly random, then so is ŝ.

It remains to show that Ĉ · (ŝ ⊕ σ(ŝ)) = C · s. Indeed, it suffices to show that for every row
m ∈ [`] and for every cycle σj it holds that

`j∑
t=1

Ĉm,it · (ŝit + σ(ŝit)) =

`j−1∑
t=1

Ĉm,it · (ŝit+1 + sit−j+1 + ŝit+1)r

+ Ĉm,it · (ŝi`j + σ(ŝi`j ))

=

`j−1∑
t=1

Ĉm,it · sit−j+1 + Ĉm,i`j · (ŝi`j + ŝi1)

=

`j−1∑
t=1

(Cm,t−j+1 + Ĉm,i`j ) · sit−j+1
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+ Ĉm,i`j · (ŝi`j + ŝi1)

=

`j−1∑
t=1

Cm,t−j+1 · sit−j+1

The first equality follows by the choice of ŝit and the assumption on σj . The second equality
is true since our computations are done over F2. The third equality holds by the choice of Ĉ.

Finally, the last equality follows since ŝi1 = ŝi`j +
∑`j−1

t=1 sit−j+1 , and hence, Ĉm,i`j · (ŝi`j + ŝi1) =

Ĉm,i`j ·
∑`j−1

t=1 sit−j+1 .

In our construction, the permutation σ will be chosen to map (δ0, . . . , δk−1) ∈ Fk2 to (δ′0, . . . , δ
′
k−1),

where δ′j = δj−1 (mod k). Note that this σ consists of a single cycle of length k and, hence, the security
of DLPNσ is the same as that of DLPN with keys which are one bit shorter.

We are now just one step away from defining the right RK-KDM notion for our scheme. A
detail that was overlooked in Equation (4) is that the key space K = Fk2 and the message space
M = Fm

2 are different, so we cannot write G · kw,εw . Furthermore, as in our protocols nobody will
know neither kw,0 nor kw,1 (a problem which does not come up in previous works, because each Pi
has its own pair of keys kiw,0,k

i
w,1), we need the garbled gate to also encrypt explicitly the external

value εw.
We thus define an injection of the space K× F2 into the message spaceM, which requires that

m ≥ k + 1, via the following linear map:

Ψ :

{
K × F2 −→ M
(k, b) 7−→ A · (k, b)T

for some matrix A ∈ Fm×(k+1)
2 . In order to make the image of Ψ easily recognizable, so that we can

efficiently recover its preimage when decrypting a garbled row, we pick the matrix A in the map Ψ
such that we obtain:

Ψ : (k, b) 7−→ (0m−k−1‖k‖b) =

0(m−k−1)×(k+1)

Ik‖0k×1

01×k‖1

 · (kT

b

)
.

This choice of matrix A also simplifies somewhat the proof of Theorem 2 below.
We can now finally define the relevant notion of RK-KDM security for our scheme defined in

Definition 6 (LIN-RK-KDMσ security), and show how we will use it to garble gates in our protocols.
For security reasons, which will become apparent in the proofs, we need to make the assumption
that the free-XOR correlation ∆ ∈ Fk2 is of the form (1, ∆′, 0).

Let ∆ = (1, ∆′, 0) with ∆′ ← Fk−2
2 be a secret value. Let H the XOF associated with the scheme

(KeyGenXOF, EncXOF
τ , DecXOF) of Definition 5. In the following we think of the encryption scheme

as being defined with respect to three possible keys ∆, σ(∆), and ∆ ⊕ σ(∆) chosen by (α, β).
The variable k is defining a linearly homomorphic relation with respect to one of the keys and b
is defining the linearly homomorphic key-dependent offset Ψ(b ·∆, b). With this understanding we
define the following oracles:

Realσ∆ : (k, α, β,m, b, nonce) 7−→
EncXOF

τ ( (m⊕ Ψ(b ·∆, b), nonce), k⊕ α ·∆⊕ β · σ(∆) )
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The security game GarbleANDSec

This is a game between a challenger and an adversary. The challenger has access to the oracles Fakeσ∆ or Realσ∆,
which we denote by O,

1. The challenger picks three bits εu, εv, εw ∈ {0, 1}, three keys ku,εu ,kv,εv ,kw,εw ∈ Fk2 , a nonce g and bu, bv ∈
{0, 1}.

2. The challenger sets bw ← bu · bv and λt ← bt ⊕ εt, t ∈ {u, v, w}.
3. The challenger sets k← ku,εu ⊕ σ(kv,εv ).
4. The challenger computes the ciphertext

ctεu,εv ← Encτ ( (Ψ(kw,εw , εw), (g‖εu‖εv)), (ku,εu ,kv,εv ) )

5. For α, β ∈ {0, 1}, (α, β) 6= (εu, εv) set

`α,β = (λu ⊕ α) · (λv ⊕ β)⊕ bw.

6. The challenger computes, for (α, β) 6= (εu, εv) the three remaining ciphertexts:

ctα,β ← O( k, εu ⊕ α, εv ⊕ β, Ψ(kw,εw , εw), `α,β , (g‖α‖β) )

7. The ciphertexts (ct0,0, ct1,0, ct0,1, ct1,1) along with the keys values, (ku,εu , εu) and (kv,εv , εv), are returned to
the adversary.

8. The adversary goal is to determine which oracle the challenger is using.

Figure 2. The security game GarbleANDSec

Fakeσ∆ : (k, α, β,m, b, nonce) 7−→ (H(nonce), c), c← C,

where C is the ciphertext space, and forbid the following kind of queries: Let {(ki, αi, βi,mi, bi, nonce)}qi=1

be a sequence of queries under the same nonce. Such a sequence is not allowed if and only if there
exist coefficients c1, . . . , cq ∈ F2, not all zero, such that

∑q
i=1 ci · (αi, βi) = (0, 0). We can now define

our notion of LIN-RK-KDMσ security:

Definition 8 (LIN-RK-KDMσ secure encryption). The encryption scheme (KeyGenXOF, EncXOF
τ ,

DecXOF) is said to be LIN-RK-KDMσ secure if the two oracles Realσ∆ and Fakeσ∆ are computationally
indistinguishable, when we forbid the above queries.

The reason for the forbidden queries is in order to stop the distinguisher D from mounting
a trivial attack. Take for example the simplest forbidden query, where D simply asks once for
(k, 0, 0,m, b, nonce). As none of the three possible secret keys depending on ∆ has been applied,
then D can just decrypt using k and see whether the oracle was implementing Real or Fake. For
longer sequences, the idea is essentially the same, as the key-homomorphism of LPN would otherwise
allow D to mount the same kind of attack simply by computing the linear combination defined by
the ci values.

Theorem 2. Let ∆ = (1, ∆′, 0) with ∆′ ← Fk−2
2 be a secret value, then, assuming that DLPN

is hard, the XOF-Based Two-Key LPN Encryption scheme (c.f. Definition 6) is LIN-RK-KDMσ

secure, i.e. Realσ∆
c≡ Fakeσ∆.

Proof. We let R∆ :M×{0, 1}∗ → F`×k2 ×F`2 denote the randomized function which ignores the key
∆ and is given by R∆(m, nonce) = (H(nonce), c), where c ∈ F`2 is sampled uniformly at random.

The hardness of the XOF variant of the DLPN problem implies that {Enc1
τ ((·, ·), ∆)} c≡ {R∆(·, ·)}
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and that {Enc1
τ ((·, ·), σ(∆))} c≡ {Rσ(∆)(·, ·)}

c≡ {R∆(·, ·)}. Since DLPNσ is also hard (c.f. Lemma 1),

we additionally have that {Enc1
τ ((·, ·), ∆⊕ σ(∆))} c≡ {R∆⊕σ(∆)(·, ·)}

c≡ {R∆(·, ·)}. Hence, we have
that

Enc1
τ ( (·, ·) , α ·∆ ⊕ β · σ(∆) )

c≡ {R∆⊕σ(∆)(·, ·)}
c≡ {R∆(·, ·)} (6)

for all (α, β) ∈ {0, 1}2 \ (0, 0). In order to prove the following Lemma, we need to define matrices
Hα,β,b ∈ Fm×k

2 for α, β, b ∈ {0, 1} with (α, β) 6= (0, 0) such that

Hα,β,b · ( α ·∆ ⊕ β · σ(∆) )T = b · Ψ(∆, b) (7)

It is to enable this that we selected ∆ such that the first bit of ∆ is always equal to one and the
last bit is equal to zero. This means we also can trivially recover ∆ from ∆ ⊕ σ(∆) via a linear
map, and the first element in ∆⊕ σ(∆) is always equal to one.

For the choice of σ given earlier, namely the permutation which rotates the bits ∆ to the right
by one, and the earlier embedding Ψ , we define the matrices Hα,β,b as follows; where we let Pσ
denote the k × k permutation matrix corresponding to the permutation σ.

H1,0,b =

 0(m−k−1)×k
b · Ik

b ‖ 01×(k−1)

 ,

H0,1,b =

 0(m−k−1)×k
b · P−1

σ

b ‖ 01×(k−1)

 ,

H1,1,b =

0(m−k−1)×(k+1)

b ·Q
b ‖ 01×(k−1)

 .

where and Q is the matrix k × k matrix
1 0 0 0 0 . . . 0 0
1 1 0 0 0 . . . 0 0
1 1 1 0 0 . . . 0 0
...

...
1 1 1 1 1 . . . 1 1


Note, these matrices are correct according to equation (7) as we have, for ∆′ = (δ1, . . . , δk−2),

b · Ik ·∆ = b ·∆
b · P−1

σ · σ(∆) = b · P−1
σ · Pσ ·∆ = b ·∆,

b ·Q · ( ∆ ⊕ σ(∆) ) = b ·Q · ( 1 , 1⊕ δ1 , δ1 ⊕ δ2 , . . . , δk−2 )T = b ·∆.

It is to construct these explicit matrices that we selected the specific permutation σ and the specific
embedding Ψ . These matrices allow us to prove the following Lemma.

Lemma 2. Let O∆ denote the oracle machine given by

O∆(α, β,m, nonce′) = Enc1
τ (m, α ·∆ ⊕ β · σ(∆) )
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Note this oracle crucially uses standard LPN encryption, not the XOF variant, thus the nonce is
ignored by the oracle. Then, there exists an efficient oracle machine

F (·) : (k, α, β,m, b, nonce′) −→ (C, c)

such that for all ∆ ∈ Fk2, in the random oracle model, we have

Realσ∆
c≡ FO∆ and R∆ ≡ FR∆ .

Proof. We define F as follows: Given a query (k, α, β,m, b, nonce′) the machine F calls its oracle
with inputs (k, α, β,m, nonce′), which returns a pair (C ′, c′). The machine F now sets C = C ′ ⊕ G ·
Hα,β,b and c = c′ ⊕ C · k, and F then outputs (C, c).

For a fixed key ∆, we aim to first show that FO∆ is distributed identically to Realσ∆. For a
given query to F ’s oracle we obtain (C ′, c′) where C ′ ← F`×k2 as this oracle uses standard LPN
encryption (see Definition 4). It is clear that C is uniformly random since C ′ is uniformly random,
so we program the random oracle used in Realσ∆ to be H(nonce′‖α‖β) = C = C ′ ⊕G ·Hα,β,b. Thus
the matrix C output by F is exactly the same one obtained by calling the RO in Realσ∆. This shift
is indistinguishable by the semantic security of the basic LPN scheme.

We also notice that the value c output by F is equal to, where e← Ber`τ ,

c = c′ ⊕ C · k
= ( C ′ · ( α ·∆ ⊕ β · σ(∆) ) ⊕ e ⊕ G ·m ) ⊕ C · k
= ( C ⊕ G ·Hα,β,b ) · ( α ·∆ ⊕ β · σ(∆) ) ⊕ e ⊕ G ·m ⊕ C · k
= C · ( α ·∆ ⊕ β · σ(∆) ⊕ k ) ⊕ e

⊕ G ·m ⊕ G ·Hα,β,b · ( α ·∆ ⊕ β · σ(∆) )

= C · ( α ·∆ ⊕ β · σ(∆) ⊕ k ) ⊕ e ⊕ G · ( m ⊕ b · Ψ(∆, b) )

= EncXOF
τ ( (m ⊕ b · Ψ(∆, b), nonce′‖α‖β), α ·∆ ⊕ β · σ(∆) ⊕ k ).

Thus we have indeed that Realσ∆
c≡ FO∆ .

The proof that R∆
c≡ FR∆ is (essentially) immediate as the transformation applied by the

machine F is invertible. However, one will notice that the machine F has an oracle which takes
four input values, whilst when writing FR∆ we are supplying an oracle which takes two input values
only; which it does by ignoring any key dependent value which is given by α ·∆ ⊕ β · σ(∆). Thus

by a hybrid argument, and using the fact that {R∆}
c≡ {Rα·∆ ⊕ β·σ(∆)} for all (α, β) 6= (0, 0) the

result follows.

The proof of Theorem 2 now follows from the above Lemma, since we have:

{Realσ∆}
c≡ {FO∆} c≡ {FR∆} c≡ {R∆},

where the middle equality follows from Equation 6

We end this section by showing, intuitively, why the garbling method using our (XOF-Based)
Two-Key LPN Encryption is secure. Consider the garbling game in Figure 2, which models an
adversary that is trying to learn something about a garbled AND gate, given only the pair of
keys and external values for the active path. From our previous discussion, if the LIN-RK-KDMσ

problem is hard then the adversary is clearly unable to win this game. We remark that this game
just provides the intuition around the security of our garbling protocols, which will not explicitly
use it in their respective proofs.
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Protocol ΠGarble

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption scheme, where τ is a parameter of

the scheme. Let K = Fk2 .

Garbling:
1. Each Pi samples ∆i ← Fk−2

2 and calls FAuth
MPC to compute [∆i]← Input(Pi).

2. Set [∆]← (1,0)⊕
⊕

i∈[n](0, [∆
i], 0).

3. For every input wire w ∈Win and output wire of an AND gate, parties do:
– Call FAuth

MPC obtaining a shared random bit [λw]← GenBit().
– Each Pi samples kiw,0 ← K and call FAuth

MPC on [kiw,0]← Input(Pi).
– Set [kw,0]←

⊕
i∈[n][k

i
w,0] and [kw,1]← [kw,0]⊕ [∆].

4. For every wire w in the circuit which is the output of a XOR gate:
– Parties compute the mask on the output wire [λw]← [λu]⊕ [λv].
– Parties compute [kw,0]← [kv,0]⊕ [kv,0] and set [kw,1]← [kw,0]⊕ [∆]

5. For every wire w in the circuit which is the output of an AND gate and for α, β ∈ {0, 1}, parties call
FAuth

MPC to compute
(a) [εw,α,β ]← ([λu]⊕ α) · ([λv]⊕ β)⊕ [λw].
(b) [kw,α,β ]← [kw,0]⊕ ([∆] · [εw,α,β ]).
(c) The encryption (Cw,α,β , [cw,α,β ]), given by

Encτ
(

( Ψ([kw,α,β ], [εw,α,β ]), (g‖α‖β) ), ([ku,α], [kv,β ])
)
,

where g is a unique gate identifier.
(d) Parties call FAuth

MPC to open the values λw ← Output([λw], Pi) corresponding to party Pi’s output
values.

Open Garbling:
1. Parties call FAuth

MPC to open cw,α,β ← Open([cw,α,β ]), α, β ∈ {0, 1}.
2. Set the garbled gates to be g̃w,α,β = (Cw,α,β , cw,α,β) for α, β ∈ {0, 1}.

Figure 3. The protocol for authenticated garbling ΠGarble

4 MPC from Fully Authenticated LPN-Garbling

We use the garbling technique introduced in the previous section to describe our first protocol. As
we said before, we evaluate the entire garbled circuit using a generic, actively secure MPC protocol.

In particular, given a secret shared key [k], message [m], and noise vector [e] (obtained by
calling GenBit() and Mult in FAuth

MPC), the parties can compute a secret shared ciphertext (C, [c]),
where C is in the clear, using a double-key encryption scheme EXOF

τ as described in Definition 6.
Since both the generation and opening of the garbled circuit are done using an active secure MPC
system, the reconstructed garbled circuit is guaranteed to be correct and thus there is no need for
any consistency checks during the evaluation phase. The downside of this simple approach is that
the amount of multiplications required to produce noise vectors [e] with the right distribution could
be prohibitively high in some scenarios.

4.1 Garbling

Our garble protocol ΠGarble, is described in Figure 3. First, the parties produce, in an actively-
secure way, shares of the global key [∆], the wire labels [ki0,w], [ki1,w] and the wire masks [λw] for

the garbled circuit using FAuth
MPC. Then, for each AND gate g with input wires u, v and output wire
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Functionality FPreprocessing

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption scheme, where τ is a parameter of

the scheme. The functionality runs with parties P1, . . . , Pn and a full-threshold adversary.

Garbling: On input (Garbling, Cf ) from all parties, the functionality does as follows:
– Sample a global difference ∆ = (1,∆′, 0) where ∆′ ← {0, 1}k−2.
– Passing topologically through all the wires w ∈W of the circuit:
• If w is an input wire for some Pi:

1. Sample λw ← {0, 1}. If Pi is corrupt, instead receive λw from the adversary.
2. Sample a key kw,0 ← {0, 1}k. Define kw,1 = kw,0 ⊕∆.

• If w is the output of an AND gate:
1. Sample λw ← {0, 1}.
2. Sample a key kw,0 ← {0, 1}k. Set kw,1 = kw,0 ⊕∆.

• If w is the output of a XOR gate, and u and v its input wires:
1. Compute and store λw = λu ⊕ λv.
2. Set kw,0 = ku,0 ⊕ kv,0 and kw,1 = kw,0 ⊕∆.

– For every AND gate g ∈ C∧, the functionality computes ew,α,β = (λu ⊕ α) · (λv ⊕ β) ⊕ λw and stores
the four entries g̃α,β of the garbled version of g as, for (α, β) ∈ {0, 1}2:

Encτ ( (Ψ( kw,0 ⊕ ew,α,β ·∆, ew,α,β ), (g||α||β) ) ; (ku,α,kv,β) ) .

– Wait for an input from the adversary. If it inputs OK then output λw to Pi for each of its corresponding
circuit-output wires w ∈Wouti . Otherwise, output ⊥ and terminate.

Open Garbling: On receiving (OpenGarbling) from all parties, when the Garbling command has already run
successfully, the functionality sends to the adversary the values g̃α,β for all g ∈ C∧ and waits for a reply.
– If the adversary returns ⊥ then the functionality aborts. Otherwise, if it receives an OK message, it sends

to all parties the garbled circuit g̃α,β for all g ∈ C∧ and α, β ∈ {0, 1}.

Figure 4. The Authenticated Preprocessing Functionality FPreprocessing.

w, and for each α, β ∈ {0, 1}, the parties compute authenticated additive sharing of the values

[εw,α,β]← ([λu]⊕ α) · ([λv]⊕ β)⊕ [λw].

Thus the garbled gate for each AND gate is obtained by calling FAuth
MPC to evaluate the following

encryptions

(Cw,α,β, [cw,α,β]) = EncXOF
τ

(
( Ψ([kw,α,β], [εw,α,β]), (g‖α‖β) ), ([ku,α], [kv,β])

)
where α, β ∈ {0, 1}, g is a unique gate identifier and kw,α,β = kw,0⊕ εw,α,β ·∆. Finally, parties open
the masks for all the output wires of the circuit, so that they will be able to recover the output at
the end of the evaluation phase.

When the garbled circuit is opened, using FAuth
MPC, the parties reconstruct the four values (Cw,α,β, cw,α,β),

α, β ∈ {0, 1}, and set these to be the garbled gates g̃α,β. Note that the first component Cw,α,β of
the ciphertexts in the garbled gates does not need to be stored, as it can be generated on the fly
by applying the XOF to the relevant nonce = (g‖α‖β).

In order to see how the garbling is correct, note that the output of the AND gate is exactly the
value (λu⊕α) · (λv⊕β). Hence, assuming λw = 0, we have two cases: if (λu⊕α) · (λv⊕β) = 0, then
εw,α,β = 0 and kw,α,β = kw,0; otherwise εw,α,β = 1 and kw,α,β = kw,0 ⊕∆. The result is reversed if
λw = 1.

In more formality, we state the following theorem. It has a relatively standard proof, which
follows the pattern of previous works on n-party garbling.
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Protocol ΠEvaluate

Inputs: A circuit Cf computing the function f , which consists of XOR and AND gates. Let W be the set of all
wires in Cf , Wini be the set of input wires for party Pi, and Wout be the set of output wires. Each party Pi has
input {ρw}w∈Wini

. The parties execute the following commands in sequence.

Preprocessing: This sub-task is performed as follows.
– Call Garbling on FPreprocessing with input Cf .
– Each party Pi obtains the λw wire masks for every wire w ∈Wout.

Online Computation: This sub-task is performed as follows.
1. For all input wires w from party Pi with input ρw on this wire, Pi calls FMPC on [ρw] ← Input(Pi). If

this step returns abort then the protocol aborts.
2. The parties call FMPC to compute εw ← Open([ρw]⊕ [λw]) and kw,εw ← Open([kw,εw ]) for all input wires

w. If any of these steps returns abort then the protocol aborts.
3. Parties call Open Garbling on FPreprocessing

4. The gates are now executed as follows in topological order:
(a) For all XOR gates parties locally compute the public values via εw ← εu⊕ εv and the key values via

kw,εw ← ku,εu ⊕ kv,εv .
(b) For AND gates parties perform the following steps:

– Decrypt the ciphertext (Cw,εu,εv , cw,εu,εv ) using the key (ku,εu ,kv,εv ) to obtain a message m.
– Invert Ψ on m to obtain (kw,εw , εw).

5. Each party will obtain a public value εw for every output wire w. From this, the actual output can be
obtained by party Pi by computing yw ← εw ⊕ λw.

Figure 5. The protocol for evaluation in the authenticated garbling case ΠEvaluate

Theorem 3. Let EXOF
τ be a XOF-based two-key LPN encryption scheme with parameter τ . The

protocol ΠGarble, given in Figure 3, UC-securely computes the functionality FPreprocessing (see Fig-
ure 4) in the presence of a static, active adversary corrupting up to n−1 parties in the FAuth

MPC-hybrid
model.

Proof. Let A denote a PPT adversary corrupting a subset I ( [n] of parties. We will construct
a simulator S that plays the roles of the honest parties on arbitrary inputs and interacts with
A. Since most of the protocol consists of interactions with FMPC based on value identifiers, it is
straightforward. The only values sent in the protocol are openings through FMPC.

Description of the simulator S.

– S emulates FMPC on input the corrupt shares provided by A for all parties {Pi}i∈I . For honest
parties, it inputs random values. In this way obtain [∆] and [kw,0] for each input wire and
output wire of AND gates.

– Local computation requires no simulation.

– For each AND gates, emulates FMPC obtaining [εw,α,β], for α, β ∈ {0, 1}, and the corresponding
garbled gates g̃w,α,β.

– Every time a value is opened, emulates FMPC. If the result is abort, then forwards abort to the
functionality and terminates.

Indistinguishability. It is straightforward to see that the transcript of both ideal and real executions
only consist of random values and hence they are indistinguishable.
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4.2 Evaluation

The protocol ΠEvaluate, in Figure 5, describes how parties evaluate the garbled circuit. This protocol
is very similar to that of HSS, where everyone evaluates the garbled circuit obtained in the prepro-
cessing phase by broadcasting their inputs XORed with the corresponding wire mask. The main
difference with HSS is that, as there is a single output key kw,εw for every wire, rather than one such
key per party, parties need to explicitly obtain the masked wire value εw when decrypting g̃εu,εv .
Once the whole circuit has been evaluated, making use of the output wire masks they obtained at
the preprocessing stage, parties can unmask their corresponding outputs and learn their intended
result.

It is important to note that, unlike in HSS and due to the active security of the base MPC
system, all among the garbled circuit, input keys kw,εw and masked inputs εw are guaranteed to be
correct. Since the rest of this phase is purely local computation, this essentially ensures the output
is correct. The security of the protocol, provided by the following theorem, follows from adapting
the proof of our more complex unauthenticated garbling protocol in Section 5. In other words, the
proof of Theorem 4 is just a specialised version of the proof of Theorem 6.

Theorem 4. Let f be an n-party functionality and EXOF
τ a XOF-based two-key LPN encryption

scheme with parameter τ . The protocol ΠEvaluate UC-securely computes f in the presence of a static,
active adversary corrupting up to n− 1 parties in the {FMPC,FPreprocessing}-hybrid model.

4.3 Overall Complexity Fully Authenticated Variant

We let rm denote the number of rounds needed to perform a secure multiplication operation, ri the
number of rounds needed for inputting a value into the MPC engine, and ro the number of rounds
needed to output/open a value. We discuss the complexity, in terms of calls to the underlying base
MPC functionality. As before, we let |C∧| denote the number of AND gates in the circuit, |Ci| the
number of input gates and |Co| the number of output gates.

– Step 1 requires each party to execute k − 2 calls to Input.
– Recall each call to GenBit requires each party to execute one call to Input. Thus the computation

in step 3 require each party to execute (|C∧| + |Ci|) · (1 + k) call to Input. Note the inputs in
steps 1 and 3 can all be performed in parallel, thus this requires ri rounds.

– Step 5a requires |C∧| calls to Mult (in order to compute [λu] · [λv] for every AND gate).

– Step 5b requires 4 · k · |C∧| calls to Mult. The multiplications in steps 5a (resp. 5b) can be
performed in parallel, although the two steps need to be performed sequentially. Thus these two
steps require 2 · rm rounds of communication.

– Step 5c requires 3 · ` calls to GenBit and thus each party needs to execute 12 · ` · |C∧| calls to
Input and 8 · ` · |C∧| calls to Mult. The entire step requiring ri + 2 · rm rounds of communication,
but these can be performed with the previous inputs and multiplications.

– Step 1 requires 4 · ` · |C∧| calls to Open and requires ro rounds.

– Finally, step 5d requires |Co| call to Output, but the rounds cost can be amortized with the
previous outputs.

Note the evaluation procedure can be performed in ri + 2 · ro rounds and requires |Ci| calls to Input
and k · |Ci| calls to Open. Thus in total cost per party of this garbling and the following evaluation
procedure is given in the following table
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Preprocessing Evaluation

Input (k − 2) + (|C∧|+ |Ci|) · (1 + k) + 12 · ` · |C∧| |Ci|
Open 4 · ` · |C∧| (k + 1) · |Ci|
Output |Co| −
Mult (4 · k + 8 · `+ 1) · |C∧| −

Rounds ri + ro + 2 · rm ri + 2 · ro

4.4 Optimizations

The following optimization for circuit evaluation might be useful in the case where the circuit has
many input wires, and relatively few AND gates. It trades the authentication of the input keys in
lines 1-3, with the authentication of the obtained wire labels εw in line 4b.

Thus we replace lines 1− 3 in Figure 5 by the parties executing

1. For all input wires w associated to party Pi, parties call λw ← Output([λw], Pi).
2. For all input wires w associated to party Pi with input ρw on this wire, party Pi executes

broadcasts εw = ρw ⊕ λw.
3. The parties call kw,εw ← Open(Convert([kw,εw ])).

Thus we have replaced |Ci| calls to Input and k · |Ci| calls to Open, with |Ci| calls to Output and
(k − 1) · |Ci| calls to OpenP and Convert. This may be more efficient in some situations.

We still, however, need to authenticate the output for this optimization. To do this we execute
the following check after the garbled circuit has been evaluated. Notice, that parties learn the
signal bits εu, εv on the input to every AND gate, and they also learn the output signal bit εw.
The output signal bit was also computed in the pre-processing, and hence it is authenticated, so
the parties can now execute the underlying authentication of the opening of [εw] to εw, as if it had
been done in the MPC engine. Thus, if the base MPC protocol was based on TinyOT-like protocol
[KOS15, HSS17, WRK17b], then the MAC values would be checked on all signal bits of the outputs
of an AND gate. If the adversary introduced errors in the garbled circuit, then either they were
“unlucky” and do not change the active path through the circuit, or at least one εw is changed,
which is then caught with the authentication.

5 MPC from Unauthenticated LPN-Garbling

Whilst the protocol described in the previous section is intuitive and achieves our goals for the
evaluation phase, the usage of an authenticated garbling functionality incurs a larger number of
oblivious operations in the preprocessing phase. In this section, we turn to use an unauthenticated
preprocessing functionality, in the style of HSS, in order to improve the efficiency of this phase.
Our unauthenticated garbling protocol makes clever use of the homomorphic properties of the LPN
encryption scheme. This turns out to be especially efficient when a large proportion of parties are
assumed to be honest.

Our protocols and functionalities in this section are parametrised by a value c ∈ R that repre-
sents the proportion 1/c of parties that are assumed honest. In other words, our protocols will have
n/c honest parties, with 1 < c ≤ n. Note that when 2 ≤ c, we obtain a protocol which is secure
against a dishonest majority, and by setting c = n we would go back to the case of a full-threshold
adversary. As expected, the value of c greatly affects the performances of our construction. We re-
mark that allowing the possibility of having more than a single honest party is a highly reasonable
assumption in a large scale setting.
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Functionality Fn/cPreprocessing

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption scheme, where τ is a parameter of

the scheme. The functionality runs with parties P1, . . . , Pn and an adversary A corrupting up to (c − 1) · n/c
parties.

Garbling: On input (Garbling, Cf ) from all parties, where Cf is a boolean circuit, denote by W its set of wires,
Win = {Wini}i∈[n] its set of input wires (where Wini corresponds to party Pi), Wout = {Wouti}i∈[n] its set
of output wires (where Wouti corresponds to party Pi) and C∧, Cout its set of AND gates and output gates,
respectively. Then the functionality does as follows:
– Sample a global difference ∆ = (1,∆′, 0) where ∆′ ← {0, 1}k−2.
– Passing topologically through all the wires w ∈W of the circuit:
• If w is an input wire for some Pi:

1. Sample λw ← {0, 1}. If Pi is corrupt, instead receive λw from A.
2. Sample a key kw,0 ← {0, 1}k. Define kw,1 = kw,0 ⊕∆.

• If w is the output of an AND gate:
1. Sample λw ← {0, 1}.
2. Sample a key kw,0 ← {0, 1}k. Set kw,1 = kw,0 ⊕∆.

• If w is the output of a XOR gate, and u and v its input wires:
1. Compute and store λw = λu ⊕ λv.
2. Set kw,0 = ku,0 ⊕ kv,0 and kw,1 = kw,0 ⊕∆.

– For every AND gate g ∈ C∧, the functionality computes ew,α,β = (λu ⊕ α) · (λv ⊕ β) ⊕ λw and stores
the four entries of the garbled version of g as, for (α, β) ∈ {0, 1}2

g̃α,β = Encτ ( (Ψ( kw,0 ⊕ ew,α,β ·∆, ew,α,β ), (g||α||β) ) ; (ku,α,kv,β) ) .

– For every output gate g associated to a set of parties P̂ = {Pi1 , . . . , Pi|P̂|
}, with input wire u and output

wire w, store its entries as, for α ∈ {0, 1}:

g̃α = Encτd

(
( (ξi1w,α‖ . . . ‖ξ

i|P|
w,α ), (g‖α‖0) ), (ku,α,0)

)
– Wait for an input from A. Terminate if it output ⊥. Otherwise, if it inputs OK then output λw to Pi

for each of its corresponding circuit-input and circuit-output wires w ∈ Wini ∪Wouti . Additionally, for
w ∈Win , α ∈ {0, 1}, secret share kw,α =

⊕
i∈[n] k

i
w,α and send kiw,α to Pi for i ∈ [n]. Finally, for i ∈ [n]

and w ∈Wouti , send ξiw,0 and ξiw,1 to Pi.
Open Garbling: On receiving (OpenGarbling) from all parties, when the Garbling command has already run

successfully, the functionality sends to A the values g̃α,β for all g ∈ C∧ and waits for a reply.
– If A returns ⊥ then the functionality aborts. Otherwise, it receives OK and additive errors e =
{{eα,βg }α,β∈{0,1},g∈C∧ , {e

α
g }α∈{0,1},g∈Cout} chosen by A. After receiving these, it sends to all parties the

garbled circuit as g̃α,β ⊕ eα,βg for each g ∈ C∧ and α, β ∈ {0, 1} and g̃α ⊕ eαg for each g ∈ Cout and
α ∈ {0, 1}.

Figure 6. The Unauthenticated Preprocessing Functionality Fn/cPreprocessing
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Protocol Π
n/c
Garble

Let EXOF
τ = {KeyGenτ ,Encτ ,Decτ} be a XOF-based two-key LPN encryption scheme, where τ is a parameter

of the scheme. Let K = Fk2 . Let [x] and 〈x〉 denote respectively an authenticated and unauthenticated additive
sharing of x.

Garbling:
1. Each Pi generates a random value ∆i ∈ Fk−2

2 and call 〈∆i〉 ← InputP (Pi) of FMPC.
2. Set 〈∆〉 ← (1,0)⊕i (0, 〈∆i〉, 0).a

3. For every wire w in the circuit which is either an input wire or the output of an AND gate, parties do
as follows:
– Create a secret random bit [λw]← GenBit().
– Each Pi generates a random kiw,0 ∈ K and calls 〈kiw,0〉 ← InputP (Pi).
– Set 〈kw,0〉 ← ⊕i〈kiw,0〉 and 〈kw,1〉 ← 〈kw,0〉 ⊕ 〈∆〉.

4. For every wire w in the circuit which is the output of a XOR gate (with input wires u and v) parties
locally set:
– [λw]← [λu]⊕ [λv].
– 〈kw,0〉 ← 〈ku,0〉 ⊕ 〈kv,0〉 and 〈kw,1〉 ← 〈kw,0〉 ⊕ 〈∆〉.

5. For every wire w in the circuit which is the output of an AND gate g (with input wires u and v), for
α, β ∈ {0, 1},
(a) Parties call FMPC to compute [εw,α,β ]← ([λu]⊕ α) · ([λv]⊕ β)⊕ [λw],
(b) Parties call the command 〈εw,α,β ·∆〉 ← Bit× String〈∆〉([εw,α,β ]). a

(c) Parties locally compute 〈kw,α,β〉 ← 〈kw,0〉 ⊕ 〈εw,α,β ·∆〉.
(d) Each party Pi computes the encryptions (Cw,α,β , ci,w,α,β) given by

Encτe

(
( Ψ(kiw,α,β , ε

i
w,α,β), (g‖α‖β) ), (kiu,α,k

i
v,β)

)
where g is a unique gate identifier.

(e) For every output gate g associated to a set of parties P̂ ⊆ P, with input wire u and output wire w,
perform the following steps
– Set [λw]← [λu].
– For α ∈ {0, 1}, each Pi ∈ P̂ generates two random values ξiw,α ∈ {0, 1}s and shares them as
〈ξiw,α〉 ← InputP (Pi).

– For α ∈ {0, 1} use the trick from step 5d above to construct the garbled row g̃α = (Cw,α, cw,α)
corresponding to the encryption

Encτd

(
( (ξi1w,α‖ . . . ‖ξ

i|P̂|
w,α ), (g‖α‖0) ), (ku,α,0)

)
6. Reveal to each Pi their input and output wire masks: λw ← Output([λw], Pi), w ∈Wini ∪Wouti .

Open Garbling:
1. Each Pi calls 〈ci,w,α,β〉 ← InputP (Pi). All parties then computes 〈cw,α,β〉 = ⊕i∈[n]〈ci,w,α,β〉 and reveal

the result (using ` calls to OpenP ) so that each party obtains the ciphertext (Cw,α,β , cw,α,β)
2. The garbled gate is g̃w,α,β = (Cw,α,β , cw,α,β) for α, β ∈ {0, 1}.
3. Similarly, in output gates, for α ∈ {0, 1} use the trick from step 1 in Open Garbling to reconstruct

g̃w,α = (Cw,α, cw,α)

a See Remark 1

Figure 7. The protocol for unauthenticated garbling, with n/c honest parties
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5.1 Garbling

In this section we describe how to implement the Fn/cPreprocessing functionality given in Figure 6. As
this is a weaker functionality which allows the adversary to introduce additive errors in the garbled
circuit, our implementing protocol will not need to produce the LPN ciphertexts and keys using a
fully active implementation of FMPC as we did in Section 4.

The main idea of our unauthenticated garbling protocol is to use the homomorphic property of
the LPN encryption scheme, i.e., abusing notation,

Σn
i=1Enc

XOF
τ ((mi, nonce), si) = EncXOF

τ ′ ((Σn
i=1m

i, nonce), Σn
i=1s

i). (8)

However, note that the Bernoulli distribution resulting from the sum has parameter τ ′ > τ . Addi-
tionally, even given only the sum of the encryptions, the adversary can use the above homomorphic
property to “remove” his own encryptions and remain with only the sum of the honest parties’
encryptions. Thus, the sum of the honest parties’ encryptions must still be secure.

We thus proceed as follows: we let each party locally generate a ‘weak’ LPN encryption for
the garbled gates. The garbled gates are computed by summing these ’weak’ encryptions. The
‘weak’ ciphertexts are never seen by the adversary, as the parties compute their sum using additive
secret-sharing. Intuitively, if the adversary cannot learn any information on the keys and messages
from the sum, then this gives the adversary the possibility of (only) an additive attack. Hence, this
scheme works as long as the sum of n ‘weak’ encryptions is decryptable and the sum of n/c ‘weak’
encryptions is secure.

We now look at how to achieve these requirements. We introduce τs to denote the parameter
of the Bernoulli distribution that we want the sum of any n/c ciphertexts to achieve. For the
local, weak encryptions, honest parties will use a parameter τe. Lastly, the sum of all n ciphertexts
will have a Bernouilli distribution with a parameter that we will denote τd. Below we analyse the
relationship between the three τ parameters and give an example of how to select them in practice.
Our analysis makes use of the following lemma [Mat94].

Lemma 3 (Piling Up Lemma). Let X be binary random variable which is equal to one with
probability p = 1/2− ε, where ε is the bias approximation, then we have

Pr[x1 + · · ·+ xn = 1 : xi ← X] =
1

2
− 2n−1 · εn.

Recall we have n parties of which n/c are honest, and in our garbling protocol each honest party
will generate an LPN ciphertext with τ equal to τe, with the adversary producing a ciphertext in
any way it chooses. These ciphertexts are then secret shared, and the sum of all the n ciphertexts
is then released.

As explained, the adversary can determine the sum of the n/c ciphertexts produced by the
honest parties. These sum to a ciphertext whose underlying τ value, τs, can be evaluated by the
Piling Up Lemma. Thus, we have

τs =
1

2
− 2n/c−1 ·

(
1

2
− τe

)n/c
=

1

2
·
(

1− (1− 2 · τe)n/c
)
.

Alternatively this gives us that

τe =
1

2
·
(

1− (1− τs)c/n
)
.
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We also require that, if the adversarial parties follow the protocol, the resulting ciphertext sum can
be decrypted correctly. In other words we need to set τd such that

τd =
1

2
− 2n−1 ·

(
1

2
− τe

)n
=

1

2
· (1− (1− 2 · τe)n) ,

or

τe =
1

2
·
(

1− (1− 2 · τd)1/n
)
.

Note that this gives us

τs =
1

2
·

(
1−

(
1− 2 ·

(
1

2
·
(

1− (1− 2 · τd)1/n
)))n/c)

=
1

2
·
(

1−
(

(1− 2 · τd)1/n
)n/c)

=
1

2
·
(

1− (1− 2 · τd)1/c
)
.

Therefore, we have proved the following fact.

Lemma 4. Let τs, τe, τd be LPN parameters, as described above. For fixed τd the value of τs does
not depend on the number of parties, but only on the proportion c which is honest.

Starting with a τd, a desired security parameter sec and a proportion c, we can derive the LPN
parameters k, τs and τe. First, using τd and c, it is possible to derive τs. Then, given sec and τs,
we can compute k using Equation (3). Finally, τe, that parties use for encryption, is derived from
τs and the number of parties n. For example, if we take τd = 1/8 and a proportion of 20% honest
parties, i.e. c = 5, then we find that τs = 0.02796. For sec = 128 this implies we need to select
k = 3129. For n = 100 parties we then have that the honest parties need to encrypt with parameter
τe = 0.001436. For more examples, consider Table 3 (in Section 6) for sec = {128, 256}.

Using the above observations we define, in Figure 7, the garbling protocol when n/c parties are
honest. Our protocol makes use of an operation, which allows us to compute an unauthenticated
sharing of 〈x ·∆〉 given an authenticated sharing of a bit [x], where ∆ ∈ {0, 1}k is a global shared
value. We denote this operation by

〈x ·∆〉 ← Bit× String〈∆〉([x]).

We could näıvely implement this operation using Tiny-OT, but this would be highly inefficient since
∆ ∈ Fk2 and k is very large as it is the dimension of the secret key space K of the underlying LPN
encryption scheme. For this reason, in Section 7, we show a more efficient bit-string multiplication
protocol, that is still based on Tiny-OT. The new protocol requires that n/c ≥ s, where s is the
statistical security parameter. Since c is a constant, this requirement holds for sufficiently large n.7

We describe in Figure 13 the ideal functionality FBS implemented by our Bit× String protocol.

Remark 1. Note that the way that the Bit× String operation is described in Section 7, the shares
of ∆ are chosen inside the Bit× String protocol. However, this would make the unauthenticated
garbling protocol description in Figure 7 cumbersome. To simplify the presentation, we let the
parties choose their shares of ∆ at the beginning of the unauthenticated garbling protocol; this is
possible since the ∆ shares are used only locally before the Bit× String operation.
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Protocol Π
n/c
Evaluate

Inputs: Each party Pi has input {ρw}w∈Wini
.

Preprocessing: This sub-task is performed as follows.
– Call Garbling on Fn/cPreprocessing with input Cf .
– For every wire w ∈Wini , Pi obtains the wire mask λw. For every w ∈Win = {Winj}j∈[n], Pi obtains the

key shares {kiw,α}w∈Win ,α∈{0,1}.

– For every w ∈Wouti , Pi obtains the wire mask λw and the guard values {ξiw,α}α∈{0,1}.
Online Computation: This sub-task is performed as follows.

1. ∀ w ∈Wini , Pi broadcasts its masked input as εw ← ρw ⊕ λw.
2. Each Pi broadcasts its corresponding key share kiw,εw ∀ w ∈Win .

3. Parties call Open Garbling on Fn/cPreprocessing

4. Each party sets, for every input wire, kw,εw ←
⊕

i∈[n] k
i
w,εw .

5. Each Pi evaluates the garbled circuit as follows:
– For all XOR gates parties locally compute the public values via εw ← εu⊕ εv and the key values via

kw,εw ← ku,εu ⊕ kv,εv .
– For AND gates parties perform the following steps:
• Decrypt the ciphertext (Cw,εu,εv , cw,εu,εv ) using the key (ku,εu ,kv,εv ) and denote the result as

m.
• Invert Ψ on m to obtain (kw,εw , εw), aborting if m /∈ Im(Ψ).

– If an output gate is associated with Pi, do as follows:
• Decrypt the ciphertext (Cw,εu , cw,εu) using the key ku,εu and denote the result as m.
• Look for the string ξiw,εu on its corresponding position in m. If any different string is found

in that position, Pi aborts and notifies every other party. Otherwise, Pi sets this output to be
εu ⊕ λw.

Figure 8. The protocol for evaluation in the unauthenticated garbling case Π
n/c
Evaluate
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Compared with the evaluation phase of [HSS17], we cannot rely on individual pairs of keys,
kiw,0,k

i
w,1, in order to let a party Pi decide whether to abort or not in the presence of errors in the

garbled circuit. This is because only the sums of individual keys, kw,0,kw,1 are revealed, and these
need to be hidden from all parties. Instead, we perform a check in the output gates as follows: given
a set of parties P̂ ⊆ P who receive an output of Cf on wire w, a garbled output gate g, with input
wire u and output wire w, consists of the two following entries (one for each α ∈ {0, 1}):

gα ← EncXOF
τ

(
( (ξi1w,α‖ . . . ‖ξ

i|P̂|
w,α), (g‖α‖0) ), (ku,α,0)

)
where ξiw,α ∈ {0, 1}s is a secret random value chosen by party Pi.

8

The security of our garbling protocol is then given by the following theorem.

Theorem 5. Let EXOF
τ be a XOF-based two-key LPN encryption scheme with parameter τ . Let

FBS (Figure 6) be implemented by the Bit× String operation. The protocol Π
n/c
Garble described in

Figure 7 UC-securely computes Fn/cPreprocessing (Figure 6) in the presence of a static, active adversary
corrupting up to (c− 1) · n/c parties in the {FMPC,FBS}-hybrid model, provided n/c > s (where s
is the statistical security parameter).

Remark 2. By implementing the Bit× String operation in the näıve way, using TinyOT as in [HSS17],
we could prove Theorem 5 in the {FMPC,FTinyOT}-hybrid model, without the n/c > s requirement.

Proof. We describe a simulator S such that for any adversary A who corrupts a subset I ( P
of parties, and any environment Z that chooses parties’ inputs and sees all outputs, Z cannot
distinguish between a real execution of the protocol between A and honest parties or a simulated

execution of the protocol between S and the ideal functionality Fn/cPreprocessing.

Description of the simulator S. This simulator is very similar to the one described in the proof of
Theorem 3.

The main difference is that here the garbled table per AND gates are not computed through
FMPC. Instead the simulator first emulates FMPC to provide the adversary with its shares of [εw,α,β].
Then, the simulator proceeds to emulate FBS, receiving from the adversary its shares of ∆ and a
subset S ⊂ L×H and corresponding errors 0 6= E`,j ∈ {0, 1}sec for (`, j) ∈ S.

The simulator chooses random elements χj` ∈ {0, 1}
sec for (`, j) ∈ S and gives them to the

adversary. The adversary needs to guess
⊕

(`,j)∈S b
j
` ·χ

j
` · E`,j . After receiving the adversary’s guess,

the simulator sends it back the (correct) value
⊕

(`,j)∈S b
j
` · χ

j
` · E`,j , and proceeds as follows.

If the adversary A guessed incorrectly, then the simulator sends an abort message to the
functionality. If the adversary guessed correctly, then we consider two cases: (i) If |S| ≥ n/c > s,
then the simulator halts (admitting failure). We note that this event occurs with probability at
most 2−s. (ii) Otherwise, the simulator continues to provide the adversary with its output (i.e.,
gives the adversary its shares of b` ·∆). In this case, the simulator also computes the additive error
to send to the functionality in the Open Garbling phase. These errors are computed by the noise

7 If the requirement does not hold, then this operation needs to be done using Tiny-OT directly as in [HSS17].
Hence, this optimization is mainly for large-scale MPC.

8 For simplicity, we assume the message space is at least |P̂| · s bits long. If the message space was only of |P̂| · s/r
bits, one would compute r ciphertext, each of them with the ξi values of |P̂|/r parties.
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sent by the adversary A to the simulator, together with the shares bj` chosen for the honest parties
by the simulator.

Note that the simulator can compute and store the corrupt parties’ shares of the garbled circuit
g̃w,α,β, for i ∈ I, as it has all the necessary values to compute these values from the messages it
received in the previous steps (emulating FMPC and FBS for the adversary A). After this, S sends to
A honest shares of g̃w,α,β by emulating the Open command in FMPC. If A sends abort, it forwards
abort to the functionality, otherwise receives corrupt shares of the garbled circuit.

Finally, S simulates the final check as follows: run Input emulating FMPC with the input
provided by A, and repeat the same steps as for garbling AND gates, to compute the garbled rows

g̃α, α ∈ {0, 1}. After this, it receives the output wire masks λw from Fn/cPreprocessing and forward these
values to the A. Hence it forwards to the functionality abort, if A sends abort and terminates. This
concludes the simulation.

Indistinguishability. It follows by inspection that given that the adversary did not guess the chal-
lenge correctly with |S| ≥ n/c, ideal and real executions are indistinguishable. In particular, the
honest parties’ shares are identically distributed in both worlds because they are either uniformly
random or cithertexts obtained by the LPN-based encryption scheme E . Since the above event
occurs with probability at most 2−s, the theorem follows.

5.2 Evaluation

We can now give the evaluation procedure in Figure 8. This involves no operations with respect
to the MPC functionality, but it requires two rounds of broadcast. The security of our evaluation
protocol is given by the following Theorem.

Theorem 6. Let f be an n-party functionality and EXOF
τ a XOF-based two-key LPN encryption

scheme with parameter τ . The protocol Π
n/c
Evaluate described in Figure 8 UC-securely computes f

in the presence of a static, active adversary corrupting up to (c − 1) · n/c parties in the {FMPC,

Fn/cPreprocessing}-hybrid model.

Proof. Along the proof, we let W∧ ⊂ W denote the set of output wires of AND gates (set C∧) in
the boolean circuit Cf . In the same fashion, let Wout ⊂ W denote the set of circuit-output wires,
i.e., the output wires of the output gates (set Cout).

Let A be a PPT adversary corrupting a subset of parties I ⊂ [n], and let Ī denote the set of
honest parties. We prove that there exists a PPT simulator S with access to an ideal functionality
F that implements f , that simulates the adversary’s view.

Description of the simulator S.

1. Initialization. S incorporates the adversary A, who controls the set of corrupt parties I, and

internally emulates an execution of the honest parties running Π
n/c
Evaluate with A:

2. Garbling. S emulates the garbling phase of functionality Fn/cPreprocessing on input (Garbling, Cf )
from the adversary as follows:

– For every w ∈ {Wini}i∈I , S receives from A a share of the input-wire key kiw,0 ∈ {0, 1}sec

and a wire mask λw ∈ {0, 1}.
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– For each output gate g ∈ Cout, with input wire u and output wire w, S samples a random
mask λw ∈ {0, 1} and sets λu = λw. Additionally, for corrupted parties i ∈ I with output
wires w ∈Wouti , it receives from A the guard values ξiw,0 and ξiw,1. For honest parties i ∈ Ī
with output wires w ∈Wouti , it samples at random the guard values ξiw,0 and ξiw,1.

– Upon receiving OK from A, send λw to A for each w ∈ {Wouti}i∈I .
3. Online computation. The simulator interacts with A in the online phase and generates a

simulated garbled circuit, as follows.

– For each w ∈ {Wini}i∈Ī , S samples a random public value εw ∈ {0, 1} and sends this to A.

– For each w ∈ {Wini}i∈I , S receives from A a public value εw and computes xw = εw⊕λw. S
sends the extracted inputs {xw}i∈I,w∈Wini

to the ideal functionality computing f , receiving
the output y = {yw}w∈Wout .

– S samples at random the honest parties’ shares of the input wire keys {kiw,εw}i∈Ī,w∈Win
, and

sends these to A. It receives back the adversary’s shares of the input keys {k̂iw,εw}i∈I,w∈Win

(which may be different to the shares received in the garbling phase).

– Active path: External values. In this step the simulator generates the remaining ex-
ternal values for the active path that parties will follow when evaluating the garbled circuit.
Let Wfinal−∧ ⊂ W∧ denote the output wires of AND gates g where no successor of g is an
AND gate.

• For each w ∈Wout, let εw = yw ⊕ λw and εu = εw.
• For each w ∈W∧ \Wfinal−∧, sample εw ∈ {0, 1}.
• For all wires w ∈ Wfinal−∧ which are not the input of an output gate, sample εw at

random subject to the constraint that these form a satisfying assignment to the circuit
with outputs {εw}w∈Wout .

9

– Active path: Ciphertext generation. In this step the simulator computes the sequence
of keys and ciphertexts that will be observed by the adversary when following the external
values of the active path.

• AND gates: For every g ∈ C∧, with input wires (u, v) and output wire w, let S honestly
generate the garbled row (εu, εv) by sampling kw,εw ← {0, 1}k and computing:

g̃εu,εv ← Encτ ( (Ψ(kw,εw , εw), (g‖εu‖εv), (ku,εu ,kv,εv) )

For (α, β) 6= (εu, εv), set the three remaining garbled rows as g̃α,β = (H(g‖α‖β), cα,β),
where cα,β ← {0, 1}`.
• XOR gates: For every XOR gate with input wires (u, v) and output wire w, S sets

kw,εw = ku,εu ⊕ kv,εv .
• Output gates: For every g ∈ Cout, with input wire u and output wire w, let S honestly

generate the garbled row εu by computing:

g̃εu ← Encτd

(
( (ξi1w,εu‖ . . . ‖ξ

i|P|
w,εu), (g‖εu‖0) ), (ku,εu ,0)

)
For the inactive garbled row ε̄u, set g̃ε̄u = (H(g‖ε̄u‖0), cε̄u), where cε̄u ← {0, 1}`.

Importantly, notice that in the description above S never uses any inactive key kw,ε̄w in
order to generate any of the garbled gates.

9 This is needed to ensure that, for instance, if an output wire w comes from the XOR of two previous AND gates
with output wires (u, v), then the public values εu, εv are chosen to satisfy εw = εu ⊕ εv, as required.

33



The Flip event

Flip happens whenever A succeeds in making honest parties deviate from the active path without aborting and,
additionally, any of the two following events occur:

(F1) There exists an AND gate g ∈ C∧ such that honest evaluating parties obtain the inactive wire key k̂w,ε̄w for
the output wire w of g.

(F2) There exists an output gate g with input wire u and output wire w such that at least one honest party Pi
with w ∈Wouti , when evaluating the garbled circuit, obtains guard value ξiw,ε̄u .

Figure 9. The Flip event that would break security.

– The simulator hands the adversary the complete garbled circuit. In case the adversary
aborts, the simulator sends ⊥ to the ideal functionality and aborts. Otherwise, the simu-
lator obtains additive errors e = {{eα,βg }α,β∈{0,1},g∈C∧ , {eαg }α∈{0,1},g∈Cout

} and computes the

modified garbled circuit as g̃α,β ⊕ eα,βg for each g ∈ C∧ and α, β ∈ {0, 1} and g̃α ⊕ eαg for
each g ∈ Cout and α ∈ {0, 1}.

– Fail or not fail: Finally, the simulator evaluates the modified circuit using the input wire
keys k̂w,εw =

⊕
i∈I k̂iw,εw ⊕

⊕
j∈I kjw,εw for w ∈ Win and checks whether the honest parties

would have aborted. Namely, for every w ∈ {Wouti}i∈Ī , it determines whether any honest

Pi will find or not the guard value ξiw,εu it is expecting on that wire,using the key k̂w,εw . If
this check fails, then the simulator outputs fail and aborts.

Indistinguishability. Let HYB
Fn/c

Preprocessing

Π
n/c
Evaluate,A,Z

(1sec, z) denote the output distribution of the adver-

sary A and honest parties in a real execution with Π
n/c
Evaluate and let IDEALF,S,Z(1sec, z) denote

the output distribution of S and the honest parties in an ideal execution. We now prove that

HYB
Fn/c

Preprocessing

Π
n/c
Evaluate,A,Z

(1sec, z)
c≡ IDEALFn/c

Preprocessing
,S,Z(1sec, z).

We start by considering an execution ˜IDEAL where a simulator S̃ produces a view that is
identical to the view produced by S in IDEAL. Namely, the adversary’s view is simulated exactly
as in IDEAL by a simulator S̃ with the exception that S̃ further picks the global difference ∆
and computes inactive keys kw,ε̄w = kw,εw ⊕∆ for w ∈ W \Wout (which are never defined by S).
Moreover, the event for which S̃ outputs fail and aborts is modified to also include whenever the Flip
event happens (as described in Figure 9). Note that this event is well-defined, since so are all the

wire keys in ˜IDEAL. Hence, the only difference between IDEAL and ˜IDEAL is the event that S
aborts whereas S̃ does not abort, i.e. when Flip happens. We next show (Lemma 5) that this occurs

at most with probability 2−s, which implies that IDEAL and ˜IDEAL are indistinguishable.

The rest of the proof consists in showing that in HYB (Lemma 7), Flip would also occur only
with negligible probability. Then, we show that as long as Flip does not happen, no environment
can distinguish between the ideal and real worlds by reducing to the LIN RK-KDMσ security of
(KeyGenXOF, EncXOF

τ , DecXOF) (Lemma 6).

Lemma 5. The probability that Flip occurs in ˜IDEAL is no more than 2−s.

Proof. Recall first that the simulated garbling in IDEAL involves only generating a single key
kw,εw per wire, and thus the simulator does not even need to choose a global difference ∆ in order
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to complete the garbling. The simulator in ˜IDEAL does generate this extra value, but it never uses
∆ for garbling the circuit. In other words, the simulated garbled circuit given to A is completely
independent of ∆.

First, we prove that Flip can only happen with negligible probability.

Condition (F1): First, consider the problem with the two following simplifying assumptions:
(F11) The external values on g’s input wires u and v obtained by honest parties are the right ones,

i.e. εu and εv.
(F12) The keys for g’s input wires u and v obtained by honest parties are the right ones, i.e. ku,εu

and kv,εv .
Let bw ∈ {0, 1} be a bit of A’s choice, which decides whether he wants to change εw to ε̄w or
not. Then, the active row of the garbled gate has to be

ĝεu,εv = Encτd ( (Ψ( kw,0 ⊕ ε̄w ·∆, εw ⊕ bw ), (g||εu||εv) ) , (ku,εu ,kv,εv) ) ,

for which the adversary needs to introduce an error eεu,εvg into the original row g̃εu,εv of the
garbled gate given by:

eεu,εvg = ĝεu,εv ⊕ g̃εu,εv = G · Ψ(∆, bw)⊕ ẽ⊕ e,

where G is the encoding matrix of the error correcting code associated with Encτ , ẽ is the original
LPN error sampled to produce the ciphertext g̃εu,εv and e is a possible additional adversarially
chosen error. We can rewrite eεu,εvg as v = G · m̂⊕E, where E = ẽ⊕ e and m̂ = Ψ(∆, bw). We
can see that the adversary can:
– Either guess ∆, which happens with probability 2−k+2

– Or guess one of the value vm̂ = Gm̂ + E, where m̂ is fixed and unknown, and such that
Decode(G · m̂ + E) = m̂. If Decode is a minimum decoding algorithm and L is the [`,m, d]
linear code used in the encryption scheme, we can bound the number of vectors that satisfy

this relation by
∑b d−1

2
c=t

i=0

(
`
i

)
= V2(`, t). Since 2m ·V2(`, t) ≤ 2`, we have that the probability

of a successful guess is bounded by 2−m. We assume m ≥ k > sec, thus this probability
is negligible. More generally, given a linear code L that is (`, τ)-correcting in the LPN
encryption scheme, we have that V2(`, τ`)/2` ≤ 2η`, where η = (H2(τ)− 1) and H2(·) is the
binary entropy function. So this probability is negligible for any reasonable choice of L in
the LPN-based encryption scheme.

We can now look at the problem without its simplifying assumptions.
If we remove (F11), i.e. if we allow for external values (εu ⊕ bu, εv ⊕ bv) where (bu, bv) 6= (0, 0),
we know from the simulation that the row parties will try to decrypt is the ciphertext

ĝεu⊕bu,εv⊕bv = (H(g‖εu ⊕ bu‖εv ⊕ bv), cεu⊕bu,εv⊕bv ⊕ eεu⊕bu,εv⊕bvg ),

where cεu⊕bu,εv⊕bv ← {0, 1}`. It is easy to see that, after ‘decryption’ of the uniformly random

value cεu⊕bu,εv⊕bv⊕e
εu⊕bu,εv⊕bv
g , parties would obtain exactly the inactive key kw,ε̄w = kw,εw⊕∆ ∈

{0, 1}k sampled by S̃ with probability at most 2−k. This is irrespective of whether we also remove
(F12) or not.
If we only remove (F12), i.e. if we allow for any pair of keys ku,εu + eu,ku,εv + ev but parties
hold εu, εv, it follows that the error the adversary needs to introduce in the original garbled row
would now be of

eεu,εvg = ĝεu,εv ⊕ g̃εu,εv = G · Ψ(∆, bw)⊕H(g||εu||εv) · (eu ⊕ σ(ev))
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which does not help A in comparison with the simple scenario, as he is just introducing a further
additive error of H(g||εu||εv) · (eu ⊕ σ(ev)).

Condition (F2): This case can be further broken down into two. In the first one, we assume that
honest parties hold the right external value εu for the input wire u of the output gate. Applying
the same reasoning as for Condition (F1) with the assumption (F11), the only chance for A is
to guess the honest parties’ guard values he tries to flip.

In the second case, A has introduced an error in the circuit which wrongly convinces honest
parties that the external value for the input wire u of the output gate is ε̄u. We show that A
cannot furthermore change the honest guard values with noticeable probability. It is easy to see
we have two different cases:

Parties hold ku,ε̄u: This implies Condition (F1) of Flip has been satisfied, which only happens
with probability 2−k+2 < 2−s as we have just shown.

Parties hold ku,ε̄u + eu, where eu 6= 0: In this case, we know from the simulation that the
row parties will try to decrypt is ĝε̄u = (H(g‖ε̄u‖0), cε̄u +eε̄ug ), where cε̄u ← {0, 1}`. It is easy
to see that, after ‘decryption’ of the uniformly random value cε̄u + eε̄ug , Pi would obtain the
exact string ξiw,ε̄u ∈ {0, 1}

s in the right position with probability at most 2−s.

This concludes the proof of the lemma.

We prove that the ideal and real (hybrid) executions are indistinguishable, conditioned on the

event Flip not occurring. Recall that the difference between both executions are that in ˜IDEAL,
the three inactive rows of every gate are uniformly random, whereas in HYB they are computed

according to Fn/cPreprocessing.

Lemma 6. Conditioned on the event Flip, the following two distributions are computationally in-
distinguishable:

– {HYB
Fn/c

Preprocessing

Π
n/c
Evaluate,A,Z

(1sec, z)}sec∈N,z∈{0,1}∗

– { ˜IDEALF ,S̃,Z(1sec, z)}sec∈N,z∈{0,1}∗

Proof. We begin by defining a slightly modified experiment H̃YB, which we need in order to prove
the above result by contradiction. More concretely, we want to construct a distinguisher for the LIN

RK-KDMσ security game of (KeyGenXOF, EncXOF
τ , DecXOF). H̃YB is identically distributed to the

real execution HYB, but differs in two ways. Firstly, we move the creation of the garbled circuit
from the preprocessing stage to the online computation stage, after the parties have broadcast their
masked inputs. Secondly, we modify the creation of the wire keys so that on receiving the parties’
inputs {xw}w∈Win

, we first evaluate the circuit Cf , computing the actual bit `w to be transferred
through each w ∈W , where W is the set of wires of Cf . We then choose, for all i ∈ Ī, two key shares
kiw,0,k

i
w,1 for w ∈Win and a random bit λw for w ∈Wini ∪Wouti . The rest of this hybrid is identical

to the real execution. Note that the garbled circuit is still computed according to Fn/cPreprocessing, and
the rest of the protocol is identical to HYB, which induces the same view for the adversary.

Let H̃YB
Fn/c

Preprocessing

Π
n/c
Evaluate,A

(1sec, z) denote the output distribution of the adversary A and honest

parties. Assume by contradiction the existence of an environment Z, an adversary A and a non-
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negligible function p(·) such that

∣∣Pr[Z(H̃YB
Fn/c

Preprocessing

Π
n/c
Evaluate,A,Z

(1sec, z)) = 1]− Pr[Z( ˜IDEALF ,S,Z(1sec, z)) = 1]
∣∣ ≥ 1

p(sec)

for infinitely many sec’s. We show how to then construct a distinguisher D′ which would break the
LIN RK-KDMσ security of LPN, which would be in contradiction with Theorem 2. Distinguisher
D′ receives the environment’s input z and internally invokes Z and simulator S, playing the role
of functionality FMPC. It interacts with an oracle O which implements either Realσ∆ or Fakeσ∆, for a
∆ = (1, ∆′, 0) such that ∆′ ∈ {0, 1}k−2 is secret. D′ runs the following algorithm:

– It receives from Z the honest parties’ inputs {xw}i∈Ī,w∈Wini
.

– D′ emulates the communication with the adversary (controlled by Z) in the initialization,
preprocessing and garbling steps as in the simulation with S̃.

– For each wire u, let `u ∈ {0, 1} be the actual value on wire u. Note that these values, as well
as the output of the computation y, can be determined since D′ knows the actual input of all
parties to the circuit (where the adversary’s input is extracted as in the simulation with S̃).

– It next constructs the garbled circuit as follows. For each wire w ∈W∧, it computes the public
value εw and samples the keys kw,εw as S̃ would. Using the internal values `w, we can also
compute the masks λw = `w ⊕ εw.

– For each wire that is the output of an XOR gate with input wires u and v and output wire w,
the distinguisher sets εw = εu ⊕ εv and kw,εw = ku,εu ⊕ kv,εv .

– For each gate g ∈ C∧ with input wires u, v and output wire w, the distinguisher computes the
four ciphertexts of the garbled gate as follows:

• First, the entry in the (εu, εv)-th row is computed as

g̃εu,εv ← Encτ ( (Ψ(kw,εw , εw), (g‖εu‖εv), (ku,εu ,kv,εv) )

• Next, for for all (α, β) ∈ {0, 1}2 such that (α, β) 6= (εu, εv) the distinguisher sets `α,β = 0 if
(α⊕ λu) · (β⊕ λv) = `w, and sets `α,β = 1 otherwise. D′ can then use the oracle to compute
the inactive rows (α, β) 6= (εu, εv) as:

g̃α,β ← O
(

ku,εu ⊕ σ(kv,εv), εu ⊕ α, εv ⊕ β, Ψ(kw,εw , εw), `α,β, (g‖α‖β)
)

– Finally, for each output gate, with input wire u and output wire w, the distinguisher sets εw as
in the simulation and computes the two ciphertexts of the garbled output gate as follows:

• The active entry (i.e. the εu-th row) is computed as

g̃εu ← Encτd

(
( (ξi1w,εu‖ . . . ‖ξ

i|P|
w,εu), (g‖εu‖0) ), (ku,εu ,0)

)
• The inactive entry is set as

g̃ε̄u ← O
(

ku,εu , 1, 0, (ξ
i1
w,ε̄u‖ . . . ‖ξ

i|P|
w,ε̄u), 0, (g‖ε̄u‖0)

)
– D′ hands the adversary the complete description of the garbled circuit and concludes the exe-

cution as in the simulation with S̃.
– D′ outputs whatever Z does.
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Note first that D′ only makes legal queries to its oracle. Furthermore, if O = Realσ∆, then the
view of A is identically distributed to its view in the real execution of the protocol on the given
inputs. On the other hand, if O = Fakeσ∆ then A’s view is distributed identically to the output of S̃
described previously. Hence, as a distinguishing Z implies breaking the LIN RK-KDMσ security of
(KeyGenXOF, EncXOF

τ , DecXOF) and this contradicts Theorem 2, we conclude this is impossible.

The following lemma completes the proof.

Lemma 7. Flip only happens in HYB with negligible probability.

Proof. First, we note that if Condition (F1) of Flip is not satisfied then the only option for A to
check Condition (F2) is to guess the guard value ξiw,ε̄u , which can be done only with negligible
probability. Hence, we restrict our attention to Condition (F1) for the rest of the proof. We proceed
by showing that if Flip occurs in the real execution with a non-negligible probability, then we can
leverage this distinguishing gap in order to break the LIN RK-KDMσ assumption.

More formally, assume towards contradiction that

Pr[Flip occurs in HYB] ≥ 1

q(sec)

for some non-negligible function q(·) and infinitely many sec’s. We construct our distinguisher D
as follows.

1. Distinguisher D is identically defined as the distinguisher in the proof of Lemma 6, externally
communicating with an oracle O that either realizes the function Realσ∆ or Fakeσ∆, while inter-
nally invoking A.

2. Upon receiving the modified garbled circuit from A, D evaluates the circuit on the parties’
inputs and compares every active key k̂w,εw that is revealed during the execution with the
actual active key kw,εw that was created by D in the garbling phase. If these are different for

some w ∈W , then D stores such k̂w,εw for the upcoming step.

3. Next, D queries its oracle as follows:

ĉ← O(k̂w,εw , 0, 1, 0, 0, noncew)

c← O(kw,εw , 1, 1, 0, 0, noncew)

for some unique nonce noncew. Given these outputs, D tries to decrypt ĉ ⊕ c, if the result is
zero, then then D outputs Realσ∆.

4. Upon concluding the execution so that D did not output Realσ∆, it returns Fakeσ∆.

Clearly, whenever O = Realσ∆ then the view of A is as in HYB, so Flip occurs with probability
at least 1/q(sec). On the other hand, as in the claim made in Lemma 6, when O = Fakeσ∆ then
the adversary’s view is as in IDEAL, so the probability that Flip occurs is negligible, and thus D
outputs Realσ∆ only with negligible probability. This implies a non-negligible gap with respect to
the event occurring in the two executions and concludes the proof of the lemma.

This lemma also concludes the proof of the theorem.
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5.3 Overall Complexity Unauthenticated Variant

Just as in Section 4, we discuss the overall complexity in terms of calls to the underlying base MPC
functionality.

– Step 1 requires each party to execute k − 2 calls to InputP .
– Recall, each call to GenBit requires one party to call Input, note this is the actively secure input

procedure. Hence, Step 3 requires (|C∧|+ |Ci|) calls to Input and k · (|C∧|+ |Ci|) calls to InputP .
All these inputs can be performed in parallel thus they require ri rounds to complete.

– Step 5a requires |C∧| calls to Mult (in order to compute [λu] · [λv] for every AND gate). This
requires only rm rounds as all multiplications can be done in parallel.

– Next steps consist of completely local operations, bar the one round of communication needed
to execute 5b. Note, 4 · |C∧| can all be performed in parallel, meaning this only costs us one
round of communication in total.

– Step 1 requires 4 · ` · |C∧| calls to OpenP and calls to for FZero (which we discount as they are
non-interactive in nature).

– Step 5e requires |Co| · ` calls to OpenP . Step 1 and 5e can be performed in parallel, and hence
they require together ro rounds of communication.

Thus the cost per party of this garbling and evaluation procedure is given in the following table.
We easily see that the cost of generating the garbled circuit is potentially less in this case than in
the authenticated garbling variant. The number of actively secure multiplications only depends
on the circuit size and not on the LPN parameters. In terms of evaluation it would appear that
this variant is more efficient, no MPC sub-procedures are needed to execute the evaluation phase.
However, in our current implementation, the parameters required for the codes in order to avoid
decryption failures are very big. We investigate this relationship more in the following section.

Preprocessing Evaluation

InputP (k − 2) + |Ci|+ |C∧|+ ` · |Co| −
Input k · (|C∧ + Ci|) −
OpenP 4 · ` · (|C∧|+ |Co|) −
OutputP |Ci|+ |Co| −
Mult |C∧| −

Bit× String 4 · |C∧| −
Rounds ri + rm + ro + 1 2 Broadcast

5.4 Communication Complexity

Given the previous analysis, we estimated the communication complexity of our preprocessing pro-
tocol, consisting of a function-independent phase that we instantiate with a TinyOT-like protocol,
and a function-dependent phase (garbling). As in previous works, we moved the garbled circuit
opening to the preprocessing to have a simpler online evaluation.

We consider the protocol in Section 5, with c = 5 and different number of parties. In particular,
we assume n ≥ 200, so that the number of honest parties h is larger than 40, which allows us to
apply the bit/string product optmization described in Section 7.

We compare our results with YWZ [YWZ19], running with n− h+ 1 parties. Figure 10 reports
the communication estimates for secure evaluation of AES-128, with 6400 AND gates. Note that
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Fig. 10. Preprocessing communication estimates for AES-128 evaluation with our protocol and YWZ. Cost is the
maximum amount of data sent by each party, per execution. The security parameters are set to sec = 128 and s = 40

[YWZ19] proposes several optmizations for the preprocessing phase of BMR-style protocols like
HHS and WRK. While some of these are not directly applicable to our constructions, e.g. the half-
gates technique, other, like the improvements on the authenticated bits generations, can be also
used in our protocols.

We can see that our garbling becomes cheaper as soon as n ≥ 300, but our function independent
step is always more expensive than in YWZ. This is because we have to compute on values over Fk2
rather that Fsec

2 , where k � sec.
One way to improve the efficiency of this function-independent preprocessing, when the number

of parties is bigger than 200, would be to run the protocol by smaller committees of parties.
In any case, the efficiency of both garbling and function-independent preprocessing are heavily

influenced by the underlying error correcting code used in the LPN encryption, namely by the
values ` and k. Finding a better code would imply an immediate improvement in the efficiency
both in terms of communication and computation.

6 Implementation and Experimental Results

To demonstrate the practicality of our design, we implemented the circuit evaluation step for both
of our protocols, and tested them on a number of ‘standard’ test circuits, given in Table 1. For the
preprocessing phase, we give an estimation of the communication complexity in Section 5.4 and
compare it with the recent work of Yang et al. [YWZ19].

The test circuits consisted of a combination of AND, XOR and INV gates. The SHA-256 and
SHA-512 circuits implemented the compression function f only for a single block message m.
Further, we compare our results with existing work at the end of this section.

The hash function H used to define our nonce-based LPN encryption function (Definition 6) is
implemented using three variants. The first variant is based on the AES-KDF from NIST [NIS18].
This is very fast but it is not indifferentiable from a random oracle, and thus not strictly a true
XOF. The second variant is based on the SHA-3 based XOF derived from KMAC128 and KMAC256
given in [NIS16]. The third variant is based on the Kangaroo-12 XOF from [BDP+18], which is
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Circuit No. ANDs No. XORs No. Invs

AES-128(k,m) 6400 28176 2087
AES-192(k,m) 7168 32080 2317
AES-256(k,m) 8832 39008 2826
Keccak-f(m) 38400 115200 38486

SHA-256-f(H, f) 22573 110644 1856
SHA-512-f(H, f) 57947 286724 4946

Table 1. Standard Test Circuits

also based on SHA-3 which provides 128-bits of security. For our two SHA-3 variants we used the
library provided by the Keccak team https://keccak.team/. For the AES based KDF variant we
used code using the Intel AES-NI instructions.

Code Instantiation. The codes we propose are based on the concatenation of L = Lo ◦ Li over
F2. Using the standard notation for error correcting codes, let Lo be a [`o,mo, do] outer code (or
big code) for the F2f alphabet:

Lo : Fmo
2f
→ F`o

2f
.

Let Li be a [`i,mi, di] inner code (or small code) for the binary alphabet:

Li : Fmi
2 → F`i2 .

The resulting concatenation code is

L = Lo ◦ Li : Fmimo
2 → F`i`o2 .

Note that the inner code encodes one field element in F2f into `i bits. So we set f to mi since
|F2f | = 2mi . In other words, the dimension of the inner code is equal to the number of bits in the
field element of the outer code.

Decoding is done by first decoding the inner code, mapping each `i bits into one mi bit field
element. Then decoding the outer code, mapping `o field elements into mo field elements. Note that
typically the inner code can only correct a small number of erroneous bits, therefore it decodes
incorrectly with non-negligible probability. As long as the number of incorrect decodings can be
handled by the outer code, the original message is correctly recovered.

In our work we consider an efficient concrete concatenated code where the outer code is based
on Reed-Soloman, and the inner code is taken from a list of best-possible linear error-correcting
codes in small dimension.

Outer Code (based on Reed-Soloman): Reed-Solomon (RS) codes work over a finite field Fq (q = pf

where p is a prime). An RS code encodes Lo : Fmo
q → Fq−1

q and can correct up to b q−mo2 c erroneous
field elements. Note that mo here is the number of field elements in the message, also known as the
dimension. We select the parameter based on the message size and the inner code. We use p = 2
to match the inner code. The field size f is set to be mi as mentioned above. Then we can fix the
code length `o = 2f − 1 which is typical for RS codes and the dimension mo = dk/fe so that we
can have enough dimension to encode the whole message; where k above is a parameter from the
LPN cryptosystem from Section 2.3 that represents the original dimension. Decoding is done using
the standard way, i.e., via the Berlekamp–Massey algorithm [Mas69].
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sec τ k ≥ m s [`i,mi, di] [`o,mo, do] ` rate Prfail

128 1
8

664 672 > 40 [28, 8, 11] [255, 84, 172] 7140 0.094 2−51

128 1
16

1374 1376 > 40 [19, 8, 7] [255, 172, 84] 4845 0.284 2−58

256 1
8

1328 1332 > 40 [29, 9, 11] [511, 148, 364] 14819 0.09 2−98

256 1
16

2750 2754 > 40 [17, 9, 5] [511, 306, 206] 8687 0.317 2−45

128 1
8

664 672 > 80 [35, 8, 15] [255, 84, 172] 8925 0.075 2−120

128 1
16

1374 1376 > 80 [25, 8, 9] [255, 172, 84] 6375 0.093 2−81

256 1
8

1328 1332 > 80 [29, 9, 11] [511, 148, 364] 14819 0.090 2−98

256 1
16

2750 2754 > 80 [20, 9, 7] [511, 306, 206] 10220 0.270 2−153

Table 2. Concatenated code parameters for the authenticated garbling variant.

Inner Code (linear code for the binary alphabet): Our outer RS code encodes words over a finite
field to correct erroneous field elements. However, our added error for the LPN security requires
adding an error independently on each bit (more details in Section 2.3). Therefore, after encoding
using the outer RS code, we encode each field element (i.e., every f or mi bits) using Li. This
ensures that the added errors to the bits of the final code translate, after decoding the inner code,
to few erroneous field elements on the RS-encoded message. These few erroneous field elements are
then corrected by the outer RS code resulting in the original message. The concrete inner code is
flexible. Thus we search over all available codes from Code Tables10 to find the optimal one. We
give concrete details below for various parameters.

The decoding algorithm depends on the parameters. For codes that are small, we can use
syndrome decoding with pre-computed syndrome table, which is fast and easy to implement. The
tables have size 2`i−mi which must fit into the computer memory. Otherwise, the Berlekamp–Massey
algorithm [Mas69] is used if code happens to be a BCH code.

Instantiations: Finding concrete instantiations of Li and Lo can be stated as an optimization
problem. Given the LPN dimension k and the bit-error probability τ , maximize (mi · mo)/(`i · `o)
in the concrete instantiations of Li and Lo such that the decoding error probability is less than
some target, e.g., 2−s, where s = 40 or s = 80. In other words, we maximize the rate while keeping
the decoding error probability low. We also require the code to be big enough to encode the LPN
message, i.e., we want the dimension m = mi ·mo to satisfy m ≥ k+ 1. The problem is solved using
the following strategy.

1. For every linear [`i,mi, di] code from Code Tables do the following.

(a) Use the linear code as Li.

(b) Compute the decoding error probability p = Pr(X ≥ bd−1
2 c) of Li using τ as the probability

of a bit-flip.

(c) Fix the outer RS code [`o = 2mi − 1,mo = dk/mie, do = `o −mo + 1].

(d) Tail bound the decoding error probability Pr(X ≥ bdo−1
2 c) of Lo using p as the probability

of an incorrect field element.

2. Remove the codes that have a decoding error probability greater some target (e.g., 2−80) in the
outer code.

3. Output Li and Lo with the largest rate (mi ·mo)/(`i · `o).

10 http://www.codetables.de/
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sec τd c τs k s m [`i,mi, di] [`o,mo, do] ` rate Prfail

128 1
8

2 0.06699 1280 > 40 1287 [29, 9, 11] [511, 143, 369] 14819 0.087 2−103

128 1
8

5 0.02796 3130 > 40 3140 [30, 10, 11] [1023, 314, 710] 30690 0.102 2−143

128 1
8

10 0.01418 6213 > 40 6220 [39, 10, 15] [1023, 622, 402] 39897 0.156 2−50

256 1
8

2 0.06699 2560 > 40 2565 [37, 9, 15] [511, 285, 227] 18907 0.136 2−65

256 1
8

5 0.02796 6259 > 40 6260 [39, 10, 15] [1023, 626, 398] 39897 0.157 2−48

256 1
8

10 0.01418 12426 > 40 12430 [40, 11, 15] [2047, 1130, 918] 81880 0.152 2−126

128 1
8

2 0.06699 1280 > 80 1287 [29, 9, 11] [511, 143, 369] 14819 0.087 2−103

128 1
8

5 0.02796 3130 > 80 3140 [30, 10, 11] [1023, 314, 710] 30690 0.102 2−143

128 1
8

10 0.01418 6213 > 80 6215 [31, 11, 11] [2047, 565, 1483] 63457 0.098 2−260

256 1
8

2 0.06699 2560 > 80 2565 [42, 9, 17] [511, 285, 227] 21462 0.12 2−82

256 1
8

5 0.02796 6259 > 80 6270 [31, 11, 11] [2047, 570, 1478] 63457 0.099 2−256

256 1
8

10 0.01418 12426 > 80 12430 [40, 11, 15] [2047, 1130, 918] 81880 0.152 2−126

Table 3. Choices of LPN parameters and codes for various security levels and choices of c, for the unauthenticated
garbling variant.

Using the strategy above, we obtain some possible codes in Table 2 for our authenticated
garbling variant. Note that we set the error probability 2−s to be 2−40 in the first four rows and
2−80 in the last four. We only use τ = 1

8 or 1
16 because when the denominator is a power of 2 then

then it is easy to to generate the error vector in MPC.

The codes for the unauthenticated garbling variant is in Table 3, again for both s = 40 and
s = 80. We only use τd = 1

8 because it offers a good balance between the code size and decodability.

Online Implementation Results. The expensive parts of the algorithms are the lines in Step 4
of Figure 5 in the authenticated garbling method, and the lines in Step 5 of Figure 8 for the
unauthenticated garbling method; thus these were the parts of the algorithm we timed. Experiments
were run on a Intel i7-7700K CPU 4.20GHz machine with 32GB of RAM.

Execution Time (sec)
128-bit Security 256-bit Security

Circuit AES-KDF KMAC128 Kangaroo KMAC256

AES-128(k,m) 1.72 6.64 4.04 35.4
AES-192(k,m) 1.92 7.41 4.51 39.9
AES-256(k,m) 2.35 9.13 5.58 48.9
Keccak-f(m) 10.2 39.7 24.3 214

SHA-256-f(H, f) 6.02 23.3 14.3 128
SHA-512-f(H, f) 15.6 60.0 36.8 327

Table 4. Evaluation (in sec) of various circuits in the authenticated garbling case. Setting sec = 128 and s =
40, the LPN parameters are (k,m, `, τ) = (664, 672, 7140, 1/8) and we use the error correcting given by (Lo =
[255, 84, 172], Li = [28, 8, 15]). For 256 bit security, the LPN parameters are (k,m, `, τ) = (1328, 1332, 14819, 1/8) and
the error correcting code is given by (Lo = [511, 148, 364], Li = [29, 9, 11]). Details of these codes are given in Table 2.

For the authenticated garbling (resp. unauthenticated garbling) variant of our algorithm, we
obtained the run-times presented in Table 4 (resp. Table 6) with decryption failure s = 40. For
equivalent runtimes when s = 80 see respectively Table 5 and Table 7. In these tables the security
level refers to the security of the underlying LPN function. Observe that the choice of the underlying
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Execution Time (sec)
128-bit Security 256-bit Security

Circuit AES-KDF KMAC128 Kangaroo KMAC256

AES-128(k,m) 3.10 9.19 5.96 35.4
AES-192(k,m) 3.42 10.3 6.67 39.9
AES-256(k,m) 4.21 12.7 8.21 48.9
Keccak-f(m) 18.3 55.1 35.7 214

SHA-256-f(H, f) 10.9 32.4 21.9 128
SHA-512-f(H, f) 27.6 82.3 54.2 327

Table 5. Evaluation of various circuits in the authenticated garbling case. Setting sec = 128 and s = 80, the LPN
parameters are (k,m, `, τ) = (664, 672, 8925, 1/8) and the error correcting code is given by (Lo = [255, 84, 172], Li =
[35, 8, 15]). Setting sec = 256 and s = 80, the LPN parameters are (k,m, `, τ) = (1328, 1332, 14819, 1/8) and we use
the error correcting code given by (Lo = [511, 148, 364], Li = [29, 9, 11]).

Execution Time (s)
128-bit Security 256-bit Security

Circuit c = 2 c = 5 c = 10 c = 2 c = 5 c = 10

AES-128(k,m) 10.5 50.4 77.5 16.9 80.2 538
AES-192(k,m) 11.7 56.3 86.7 18.9 89.3 602
AES-256(k,m) 14.4 69.1 106 23.4 110 742
Keccak-f(m) 64.4 309 474 104 490 3333

SHA-256-f(H, f) 36.7 176 271 59.5 284 1899
SHA-512-f(H, f) 94.0 451 692 152 725 4848

Table 6. Evaluation of various circuits in the unauthenticated garbling variant, using the AES-KDF, and s = 40.
For the parameters for the LPN scheme, and the associated error correcting code we used those given in Table 3.

method to generate the LPN matrix has a key effect on the performance of the system, with an
AES based KDF being the most efficient. For the unauthenticated garbling variant, we only present
runtimes using the efficient AES based KDF function. Concretely, when using AES-KDF, a majority
(81%) of the CPU time is spent in decoding. When using KMAC128, the majority (84%) of the
time is spent on KMAC128. Thus, the performance bottleneck varies with the choice of H.

We compare our scheme with some related work. In the authenticated garbling case, and the
fastest implementation using an AES-KDF based for the function H, we obtain a throughput of
roughly 266 microseconds per AND gate for s = 40. The experiments from [BLO17], i.e. in the
passive case, with no free-XOR, has a throughput of roughly 45 microseconds per gate (also with

Execution Time (sec)
128-bit Security 256-bit Security

Circuit c = 2 c = 5 c = 10 c = 2 c = 5 c = 10

AES-128(k,m) 10.5 50.4 304 20.3 304 538
AES-192(k,m) 11.7 56.3 341 22.8 341 602
AES-256(k,m) 14.4 69.1 417 27.7 418 742
Keccak-f(m) 64.4 309 1858 124 1859 3333

SHA-256-f(H, f) 36.7 176 1059 70.8 1062 1899
SHA-512-f(H, f) 94.0 451 2727 181 2714 4848

Table 7. Evaluation of various circuits in the unauthenticated garbling case, using the AES-KDF, and s = 80. The
parameters for the LPN scheme, and the associated error correcting code we used are given in Table 3.
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s = 40). Ignoring the fact we can perform free-XOR, this gives a cost of a factor of six for using
our actively secure variant. However, this cost decreases when we look at typical circuits. For
example the AES-128 circuit has 34, 675 AND and XOR gates, thus the protocol in [BLO17] would
take around 1.5 seconds, compared to our runtime of 1.72 seconds. Thus, the ability to cope with
free-XOR means we only pay an extra 15% in performance for active security.

As a means of comparison with ‘traditional’ n-party garbled circuits via actively secure BMR
with free-XOR, we extrapolated known run times of evaluating AES-128 using the HSS protocol. It
would appear that our algorithm will provide a faster evaluation stage when the number of parties
exceeds about 100 in the authenticated garbling case. This is confirmed by a comparison with
[WRK17b] that reports an online running time of 2.3 sec for AES with 128 parties in the WAN
setting.

7 Instantiation of 〈b ·∆〉 ← Bit× String〈∆〉([b]) via Tiny-OT

We first note that the functionality FAuth
MPC can be efficiently implemented using an n-party TinyOT-

like protocol, see [BLN+15, KOS15, FKOS15, HSS17, WRK17b] for the basic blueprint and various
optimizations. In particular, these protocols produce the authenticated value [x] as follows:

[x] = {xi, ∆̄i, {mi,j ,ki,j}j 6=i}i∈[n], mj,i = ki,j ⊕ xj · ∆̂i,

where each party Pi holds the n−1 MACs {mi,j} ∈ {0, 1}sec on xi, as well as the keys ki,j ∈ {0, 1}sec

on each xj , for j 6= i, and a global key ∆̄i ∈ {0, 1}sec.

As noticed by Hazay et al. [HSS17], assuming ∆ = ⊕i∆̄i ∈ Fk2 has been fixed, TinyOT authen-
tication allows to efficiently compute unauthenticated sharing of 〈x ·∆〉 given a sharing of a bit [x].
We denote this operation by

〈x ·∆〉 ← Bit× String〈∆〉([x])

The problem with using the solution of [HSS17] for the Bit× String operation in our protocol,
is that to get the most efficient base TinyOT protocol we select sec to be the desired (symmetric)
security level. Thus, one can think of sec as being equal to 128 or 256. However, in our protocols
we require k, the length of ∆, to be very large, as it corresponds to the dimension of the secret key
space for an LPN encryption scheme. Hence, the problem is that we have k � sec.

Näıvely, one could use the above solution for Bit× String by running TinyOT with keys of length
k. However, this would increase the cost of oblivious operations. It turns out that when the number
of honest parties is bigger than the statistical security parameter s, as in the setting of our second
variant when the number of parties is large, there exists a significantly more efficient solution.

We thus give an efficient method for stretching TinyOT authenticated bits (with global keys
∆̄i ∈ {0, 1}sec) to enable the Bit× String operation above, with a global ∆ value in {0, 1}k, for any
desired value of k. The functionality associated with our method is slightly different than standard,
in order to increase efficiency based on the specific needs of our protocol. In particular, we allow the
adversary to do an additive attack (i.e., add errors to the output as long as the errors do not depend
on sensitive information), which is later caught in our main protocol. Additionally, the protocol
might leak a few of the shares of the honest parties of the secret-shared bits. However, we show
that by assuming the number of honest is greater than the statistical security, this leakage is not a
security concern in our protocol. The formal description of the functionality is given in Figure 13.
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Main step of 〈b ·∆〉 ← Bit× String〈∆〉([b])

Setup: The parties had run TinyOT on L shared bits 〈b`〉L`=1, where L � sec is the number of Bit× String
operations to be performed.
Denote by ki,j` , resp. mj,i

` , the key corresponding to zero, resp. the received key, for parties Pi as sender and
Pj as receiver on the ` bit, and by ∆̄i the TinyOT global key offset of party Pi.

Compute: 1. Each party Pi chooses a random ∆i ← {0, 1}k. Denote ∆ =
⊕n

i=1 ∆
i.

2. For every shared bit b`, ` ∈ [L], each pair of parties Pi,Pj performs:
(a) Pi sends to Pj the value ui,j,` ← PRG(ki,j` ) ⊕ PRG(ki,j` ⊕ ∆̄i) ⊕ ∆i.
(b) Pj sets x`

j,i
1 ← PRG(mj,i

` ) ⊕ bj` · ui,j,`.
(c) Pi sets x`

i,j
2 ← PRG(ki,j` ).

Output: The parties run the MACCheck protocol in Figure 12. If no abort happened, each party Pi outputs
⊕j 6=i(x`i,j1 ⊕ x`

i,j
2 )⊕ bi∆i for each ` ∈ [L].

Figure 11. Protocol 〈b ·∆〉 ← Bit× String〈∆〉([b]), main step

The method consists of two parts: the main part computes the Bit× String operation in the
FTinyOT-hybrid model and the MACCheck enables malicious security. The communication com-
plexity for computing a Bit× String operation is essentially each party sending a single message
of length k to every other party, with an additional small overhead created by the MACCheck.
Computationally, our MACCheck protocol is slightly heavier than similar MACCheck protocols
(e.g., in [BLN+15, KOS16, KPR18]) and requires approx. n multiplications for each Bit× String
operation.

To perform Bit× String, we use a key-correlation-robust11 pseudo-random generator

PRG : {0, 1}sec → {0, 1}k.

We can now define the operation of the function Bit× String〈∆〉([b]). We let {bi}i∈[n] ∈ F2 be the

additive shares of [b], and we define ∆ = ⊕∆i to be a global random constant with ∆i ∈ Fk2 a
uniformly random bit-string known only to party Pi. Clearly, if we can produce an additive sharing
〈b ·∆i〉, we can obtain 〈b ·∆〉 by summing these values. Thus, the idea is as follows:

1. Party Pi sends to party Pj the value ui,j ← PRG(ki,j) ⊕ PRG(ki,j ⊕ ∆̄i) ⊕ ∆i.

2. Pj sets xj,i1 ← PRG(mj,i) ⊕ bj · ui,j .
3. Pi sets xi,j2 ← PRG(ki,j).

This gives us

xj,i1 ⊕ xi,j2 = PRG(mj,i) ⊕ bj · ui,j ⊕ PRG(ki,j)

= bj ·∆i.

Thus, the sharing 〈b ·∆〉 is given by each player Pi using the value ⊕j 6=i(xi,j1 ⊕ xi,j2 ) ⊕ bi∆i (note
that each party performs the above step with each other party both as sender and receiver). The
formal protocol is given in Figure 11.

This suffices in the semi-honest model. In order to achieve malicious security (see Proposition 1)
the parties run the MACCheck protocol at the end of the protocol, after the parties executed Step
2 for all the shared bits and additional sec shared bits [rh]. These additional bits are used in order

11 By key-correlation-robust PRG we mean that for random k1, . . . , k`, the outputs PRG(k1), . . . ,PRG(k`) remain
computationally random to a distinguisher that is given the keys k1 ⊕ ∆̄, . . . , k` ⊕ ∆̄ for a fixed global random ∆̄.
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MACCheck for 〈b ·∆〉 ← Bit× String〈∆〉([b])

3. The parties call Frand to obtain nL random elements χ1
1, . . . , χ

n
L ∈ F2sec

4. Each party Pj computes, over F2sec , the value

Cj =

L⊕
`=1

χj` · b
j
` ⊕

sec⊕
h=1

Xh−1 · rjh.

Denote C =
⊕
Cj .

5. The parties rerandomize their additive share Cj of C to obtain new additive shares C̃j (i.e., C =
⊕
Cj =⊕

C̃j)a

6. Each party Pj broadcasts C̃j .
7. Each party Pj computes the value

Zjj =
⊕
i 6=j

L⊕
`=1

χj`x`
j,i
1 ⊕

⊕
i 6=j

sec⊕
h=1

Xh−1 · xhj,i1 ⊕ (Cj ⊕ C̃j) ·∆j (9)

and, for each i 6= j, computes the value

Zij =

L⊕
`=1

χi`x`
j,i
2 ⊕

sec⊕
h=1

Xh−1 · xhj,i2 ⊕ C̃i ·∆j (10)

Denote Zj := Zjj +
⊕

i 6=j Z
i
j and Z =

⊕n
j=1 Zj .

8. The parties rerandomize their additive share Zj of Z to obtain new additive shares Z̃j .a
9. Each party Pj commits to the value Z̃j .

10. The parties open their commitments and check that
⊕n

j=1 Z̃j = 0.

a This step can be done non-interactively, see, e.g., [HSS17].

Figure 12. Protocol for 〈b ·∆〉 ← Bit× String〈∆〉([b]), MACCheck part

to mask the linear combination
⊕n

j=1

⊕L
`=1 χ

j
` · b

j
` . This is done by multiplying each bit rh with a

string containing ‘1′ only in the (h − 1)th bit, denote this string by Xh−1, and then XORing the
results. The MACCheck protocol is formally given in Figure 12. It uses the standard functionalities
Frand for generating common random elements and Fcommit for commitment, see, e.g., [BLN+15]
for more details and protocol descriptions.

It is important to note that the MACCheck in Figure 12 differs from standard MACChecks in
similar protocols (e.g., [BLN+15, KOS16, KPR18]), because the parties generate a different random
element χj` for each share bj` , whereas in [BLN+15, KOS16, KPR18] the same random element is
used for all the shares of the same shared bit [b`]. While this difference increases the computational
complexity of the MACCheck (O(n) field multiplications instead of (1) per Bit× String), it is crucial
for security in our case – if the same random element is used for all the shares of the same shared
bit [b`] in the MACCheck below, the adversary can mount a selective failure attack and learn some
of the shared bits with non-negligible probability, see Remark 4

Before proceeding to prove security of the protocol, we make a few observations and notation.
The corrupt subset is denoted by A ⊂ [n] and the honest subset by H := [n] \ A, the view of the
adversary in the above protocol is denoted viewA. The outputs of the protocol in an honest/malicious
execution are denoted by by out and ôut, respectively, and the error by err, i.e., err = ôut⊕ out. We
further denote ∆A :=

⊕
i∈A∆

i and ∆H :=
⊕

i/∈A∆
i (of course, the adversary may choose by itself
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∆i for each i ∈ A, and, additionally, the adversary may also try to use different ∆i’s with different
parties and/or for different b`’s in Step 2 as we explain below).

We note that if no cheating has occurred, then in Step 10 it holds that

n⊕
j=1

Z̃j =

n⊕
j=1

Zj =

n⊕
j=1

Zjj +
⊕
i 6=j

Zij

 =

n⊕
j=1

Zjj +

n⊕
j=1

⊕
i 6=j

Zij

=

n⊕
j=1

Zjj +

n⊕
j=1

⊕
i 6=j

Zji =

n⊕
j=1

Zjj +
⊕
i 6=j

Zji


=

n⊕
j=1

(Cj + C̃j)∆j ⊕
⊕
i 6=j

((
L⊕
`=1

χj`b
j
` ⊕

sec⊕
h=1

Xh−1 · rjh

)
∆i + C̃j∆i

)
=

n⊕
j=1

(Cj + C̃j)∆j ⊕
⊕
i 6=j

(
Cj∆i + C̃j∆i

) = C∆⊕ C∆ = 0

We further observe that in the main part of the protocol (Step 2), each party only sends a
single message to each other party . If Pi is honest, then Pj has only one of {ki,j ,ki,j ⊕ ∆̄i}.
Thus, intuitively, assuming a key-correlation-robust PRG is used, PRG(ki,j) ⊕ PRG(ki,j ⊕ ∆̄i) is
indistinguishable from random to an adversary corrupting Pj (and any other party other than Pi)
and, therefore, so is ui,j .

We note that viewA consists of:

1. The randomness of Pi for i ∈ A,
2. The messages ui,j,`’s from Step 2, for every i /∈ A and j ∈ A.

3. The random bits χj`s, the linear combination C, and the sum of the commitments Z.

The view also contains shares of the honest parties, e.g., C̃j , Z̃j for every j /∈ A, but these leak
no additional information and are independent of everything else, so we usually implicitly ignore
them. Additionally, observe that Z 6= 0 implies that the honest parties abort.

Next, we list the possible deviations from the protocol by the adversary.12

1. Choose by itself ∆̂i 6= ∆i for each i ∈ A,
2. For each corrupt Pi and honest Pj , send incorrect ûi,j,` = ui,j,` + ei,j,` in Step 2a.

3. Broadcast erroneous Ĉi = C̃i + ECi for corrupt Pi in Step 6.
4. Commit to erroneous Ẑi = Z̃i + Ei for corrupt Pi in Step 9.
5. Output shares x̂i,j1 6= xi,j1 and x̂i,j2 6= xi,j2 , for i ∈ A.

We remark that we have simplified the proof of security because we do not consider here that
in Step 2 the adversary may also try to cheat on the OTs of the rh’s – we explain this in Remark
3.

Option (1) is captured by the functionality – the requirement that ∆ is random remains true
regardless of the ∆i’s of the adversary (since the ∆i’s of the honest parties are random). In the

following, ∆i for i ∈ A will often denote the adversary’s chosen ∆̂i, and ûi,j,` = ui,j,` + ei,j,`, where
ui,j,` is computed using the adversary’s chosen ∆i.

12 We ignore deviations that result in immediate abort, e.g., sending messages of incorrect format.
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Note that Option (5) allows the adversary to add any error of its choice to its output. Addition-
ally, Option (2) might add an error to the honest parties’ output. However, we show that the error
introduced is computationally independent of ∆, ∆̄i for i /∈ A, and b`. The messages in Options
(3) and (4) are used only in the MACCheck and do not affect the output.

Before proceeding to the main part of the proof, we show that Option (3) can in some sense be
ignored, because it causes abort with overwhelming probability. Denote EA =

⊕
i∈AEi, ECA :=⊕

i∈AECi, and eA,j,` :=
⊕

i∈A ei,j,`. We now observe that in order for the check in Step 10 to pass,
it must hold that13

0 =
⊕
j /∈A

Z̃j +
⊕
j∈A
Ẑj = · · · = EA +

⊕
j /∈A

⊕
`

bj` · χ
j
` · eA,j,` + ECA∆H. (11)

Lemma 8. If ECA 6= 0 and ∆H is computationally indistinguishable from random then Equation
(11) does not hold with overwhelming probability.

Proof. If ECA 6= 0 then ECA · ∆H is computationally indistinguishable from random (since ∆H
is), and therefore a computationally bounded adversary cannot choose Ei’s and ei,j,`’s such that
equation (11) holds. To see this, observe that if such an adversary A exists, then there exists such
an adversary A′ that differs from A only in receiving all the {bj`}j /∈A (A′ simply discards these and

acts as A). However, the bj` ’s are random and independent of ∆H, but A′ learns ECA · ∆H (by

computing ECA ·∆H = EA +
⊕

j /∈A
⊕

` b
j
` · χ

j
` · eA,j,`), a contradiction.

We remark that Lemma 8 requires that ∆H is computationally indistinguishable from random,
which we show in the main proof below. We prove that for a malicious adversary deviating from
the protocol without causing the honest parties to abort, both the view of the adversary and the
introduced errors are computationally independent of ∆, the ∆̄i’s for i /∈ A, and the shared b`’s.

More formally, we show that there exists a simulator SBS in the ideal world such that for
every polynomial distinguisher D that receives (viewA, ôut) cannot distinguish between a protocol
execution in the FTinyOT-Hybrid model and a simulated execution in the ideal world.

Proposition 1. Let (viewA, ôut)I be the simulated adversary’s view and the output of the func-
tionality in the ideal world and similarly (viewA, ôut)R is the adversary’s view and the output of
the protocol execution in the {Frand,Fcommit,FTinyOT}-Hybrid model. There exists a simulator SBS
that interacts with the ideal functionality FBS in the ideal world, such that for any polynomial time
distinguisher D, it holds that

D((viewA, ôut)I)
C≡ D((viewA, ôut)R) (13)

Proof. We first describe the simulator SBS that interacts with the ideal functionality FBS in the
ideal world. The simulator simulates the messages of the honest parties by sending random messages
in Steps 2-9 of the protocol, while extracting the set of indices S and corresponding errors from the
messages sent by the corrupt parties. The guess to the challenge is then extracted from error in the
committed values given by the corrupt parties to Fcommit, and opening the commitment is simulated
by XORing the guess and the leakage received from the functionality. The formal description of
SBS is given in Figure 14

13 We slightly simplified the proof by omitting here the possibility for the adversary to cheat in Step 2 on the rh’s,
cf. Remark 3.
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Functionality FBS

The functionality runs with parties P1, . . . , Pn and an adversary A. The adversary is assumed to have statically
corrupted a subset A of the parties.

Input: The functionality receives from all the parties their additive shares of b`.
Adversary’s additional input: The functionality allows the adversary to choose

– Its shares of ∆, i.e., ∆̂i for i ∈ A.
– A subset S ⊂ [L]×H of size |S| = c and corresponding errors 0 6= E`,j ∈ {0, 1}sec for (`, j) ∈ S.a

Challenge: The functionality chooses random elements χj` ∈ {0, 1}
sec for (`, j) ∈ S and gives to the adversary,

and the adversary needs to guess
⊕

(`,j)∈S b
j
` ·χ

j
` ·E`,j . If the adversary guessed correctly then the functionality

continues to the output. Otherwise, the honest parties abort. In both cases, the leakage is given to the
adversary.

Leakage:
⊕

(`,j)∈S b
j
` · χ

j
` · E`,j .

Output: The functionality chooses a random ∆ ∈ {0, 1}k, and gives the adversary its shares of b` · ∆. The
functionality waits for abort or proceed from the adversary. Upon receiving proceed, the functionality gives
the output to the honest parties:
1. Additive shares of ∆,
2. Shares of b` ·∆ with the corresponding errors E`,i for (i, `) ∈ S, i.e., (b` ·∆)i + bi`E`,i,

a We have simplified the functionality/proof, since the adversary may also cheat on the rh’s, which causes
leakage on the bits of C; cf. Remark 3.

Figure 13. The ideal functionality for 〈b ·∆〉 ← Bit× String〈∆〉([b])

Simulator SBS

Setup Simulation: Receives the input shares {b`}`∈L for TinyOT from the corrupt parties and simulates their
output of TinyOT (ki,j , ∆̄i, mj,i).

Protocol Simulation: 1. Receives input and randomness of A.
2. Sends random messages to the adversary for each ui,j,` with i /∈ A, j ∈ A.
3. – Receives from the adversary ûi,j,` for i ∈ A, j /∈ A for every ` ∈ L.

– Computes ∆̂A to be the element that appears the most times in the multiset

{Σi∈A
(
ûi,j,` ⊕ PRG(ki,j` ) ⊕ PRG(ki,j` ⊕ ∆̄i)

)
}`∈L,j∈H (12)

I.e., the ∆A = Σi∈A∆̂
i that results in the least amount of errors.

– For every ` ∈ L, computes the error eA,j,` = Σi∈Aûi,j,`⊕uA,j,`, where uA,j,` is computed using ∆̂A
and the simulated keys from TinyOT. The subset S is the set of indices where eA,j,` 6= 0.

4. SBS gives the chosen subset S and errors E`,j := eA,j,` for (i, `) ∈ S to the functionality.
5. SBS simulates Frand as follows: receive random elements for the challenge indices, {χj`}(j,`)∈S , from the

functionality, then generates random elements for the rest of the indices, {χj`}(j,`)∈([L]×[n])\S .

6. Sends to the adversary random messages C̃i for i /∈ A, receives C̃i for i ∈ A and computes C =
⊕n

i=1 C̃i.
a

7. Simulates Fcommit by receiving Ẑi of corrupt parties.
8. SBS computes EA – observe that EA =

⊕
i∈A(Ẑi ⊕ Zi) =

⊕
i∈A Ẑi ⊕

⊕
i∈A Zi, where Zi is what Pi

should have committed to according to its TinyOT input and output, the messages it sent and received,
and its ∆̂i. Therefore,

⊕
i∈A Zi can be computed by the simulator, assuming ∆̂A was computed correctly.

9. SBS inputs EA to the functionality as the challenge answer, and receives the leakage
⊕

(`,j)∈S b
j
` ·χ

j
` ·E`,j .

10. SBS simulates the opening the commitments by summing the leakage received from the functionality
and the adversary’s guess EA, i.e., opens the value EA ⊕

⊕
(`,j)∈S b

j
` · χ

j
` · E`,j .

a If A tries to cheat here (which can be detected by SBS by calculating), then the simulator outputs a random
element in Step 10 and sends abort to the functionality. By Lemma 8 this is computationally indistinguishable
from a real execution.

Figure 14. The simulator SBS
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Distinguisher D′

Input:
(
D = {Di

1, . . . ,D
i
L}i∈H, d = {di1, . . . , diL}i∈H

)
, where (D = G, d = K) or (D = R, d = r). Additionally, D′

receives the inputs of the honest parties to the protocol on which D can distinguish.
Setup: Sends keys given by tinyOT by sending the adversary d. In the reverse direction (corrupt party acts as

sender), generates random ∆̄i and random keys ki,j and sends to the adversary. If both parties are honest
runs/simulates TinyOT protocol as usual.

Protocol: 1. Receives the input and randomness of the adversary.
2. Chooses random ∆i ∈ {0, 1}k for every i /∈ A.
3. Sends ui,j,` = PRG(di,j` ) + Di,j

` +∆i to A for every i ∈ H, j ∈ A.

4. Receives (possibly erroneous) ûi,j ’s from the corrupt parties, and computes ∆̂A in the same manner as the
simulator does (the ∆A that results in the least amount of errors). Recall that E`,i := Σi∈Aûi,j,`⊕uA,j,`.

5. Calls Frand to generate χj` ’s and computes C,

6. Sends to the adversary random messages C̃i’s for i /∈ A such that C =
⊕n

i=1 C̃i.

7. Receives Ĉi’s of corrupt parties.
8. Calls Fcommit with random messages Z̃i’s of honest parties that sum to

⊕
i/∈A Z̃i.

9. Receives committed Ẑi’s of corrupt parties.
Output: The committed Z̃i’s are opened.

1. If
⊕

i∈[n] Z̃i 6= 0 then abort is output.

2. If
⊕

i∈[n] Z̃i = 0 the output of an honest party Pi is set to be ∆i and ⊕j 6=i(x`i,j1 ⊕ x`
i,j
2 )⊕ bi`∆i, where

for j ∈ A
– x`

i,j
1 = PRG(kj,i + bi∆̄j) + bi · ûj,i,`, and

– x`
i,j
2 =

{
bj` = 0 PRG(di,j` )

bj` = 1 Di,j
`

Figure 15. The Distinguisher D′

We next show that if there exists a distinguisher D that distinguishes between (viewA, ôut)R
in an execution of the protocol in the TinyOT − Hybrid model and (viewA, ôut)I in a simulated
execution of the protocol in the ideal world, then there exists a distinguisher D′ that breaks the
key-correlation-robust PRG assumption. By standard hybrid arguments, it is enough to show that
D′ distinguishes between receiving G = {PRG(ki,j1 ), . . . ,PRG(ki,jL )}i∈H,j∈A and keys K = {ki,j1 ⊕
∆̄i, . . . , ki,jL ⊕ ∆̄i}i∈H,j∈A, for fixed global random ∆̄i’s, or receiving random strings of the same

length R = {Ri,j1 , . . . , Ri,jL }i∈H,j∈A and r = {ri,j1 , . . . , ri,jL }i∈H,j∈A. We assume that D′ knows the

input shares {bj`}`∈L,j∈[n] on which D can distinguish.

Assume that D exists, then D′ builds (viewA, ôut) as follows: it sets the adversary’s output of
TinyOT (as receiver) to be r / K, then builds the adversary’s view, where the ui,j,`’s are computed
using (G,K) / (R, r). The output of the honest parties is computed by running the protocol with
the adversary. The distinguisher D′ feeds this to D, and returns as it does.

The formal algorithm of distinguisher D′ is given in Figure 15. Thus, it remains to show that if
D = G and d = K then (viewA, ôut) distributes as a real protocol execution in the TinyOT-hybrid
model while if D = R and d = r then (viewA, ôut) distributes as a simulated protocol execution
in the ideal world. First note that the leakage distribution is computationally indistinguishable
between a real protocol execution in the TinyOT-hybrid model and a simulated execution in the
ideal world. This is because the leakage depends only on the errors added by the adversary (and
the honest parties’ inputs, which are distributed the same in both worlds), and this error can only
depend on the adversary’s view at this stage (Step 2a), which is only the TinyOT output and the
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messages sent by the honest parties in Step 2a. The latter differs only in using G and R, respectively,
so computationally indistinguishable under the key-correlation PRG assumption.

Claim. If D = G and d = K then, except with negligible probability, (viewA, ôut) distributes as a
real protocol execution in the TinyOT-hybrid model.

Proof. If D = G and d = K then D′ carries out the protocol with A exactly as in the real world,
assuming the output of TinyOT between honest Pi and corrupt Pj are the keys ki,j` ⊕ b

j
`∆̄

i (i.e.,

the global offset of Pi is ∆̄i). Note that these keys are random (since ki,j` are random), and hence
this matches the desired distribution of TinyOT keys.

Claim. If D = R and d = r then, except with negligible probability, (viewA, ôut) distributes as a
simulated protocol execution in the ideal world.

Proof. If D = R and d = r then it is not hard to see that the simulated output of tinyOT (with A
as receiver) and the messages received by A in Step 2 are completely random (XOR with random is

random), matching the messages sent by SBS . In case the adversary does not send errenous Ĉi, the
opening of the commitments is EA+

⊕
j /∈A

⊕
` b
j
` ·χ

j
` · eA,j,`, i.e., matches the simulation of SBS . In

the case that ECA 6= 0, i.e., the adversary sent errenous Ĉi, then the opening of the commitments
is EA +

⊕
j /∈A

⊕
` b
j
` · χ

j
` · eA,j,` + ECA∆H and the simulation by SBS is a random element and

abort. By Lemma 8, except with neg. probability, these are indistinguishable.
We remark that the above assumes that the Σi∈A∆̂

i of the ∆̂i’s chosen by the adversary (and
used in the adversary’s commitments) match the ∆̂A given to the functionality by the simulator.
The simulator chooses the ∆̂A that results in the least amount of errors. If the adversary attempts
to guess the challenge for a subset S′ corresponding to a different ∆′A = Σi∈A∆̂

i 6= ∆̂A, then
|S′| � s, so it is not hard to see that the protocol aborts with overwhelming probability.

For the output, notice that the errors introduced from the ûj,i`s match the errors given by the
functionality. Apart from that, it only remains to show that the sum of the shares (excluding the
errors) of all the parties (including the shares the corrupt parties should output) for each ` ∈ L is
b`∆. The computation works the same as in the protocol, except that PRG(ri,j` + ∆̄i) are replaced

by Ri,j` whenever i ∈ A, j ∈ H.

This concludes the proof of Proposition 1.

We next show that passing the challenge in functionality FBS by the adversary implies that,
except with negligible probability, c < s. I.e., the number of errors is less than the statistical security
parameter.

Claim. If the adversary passes the challenge, then except with negligible probability, c < s.

Proof. There there are 2c possible combinations of the bj` ’s, (`, j) ∈ S, each resulting in a possible
random sum (possibly with duplicates) in {0, 1}sec (where sec is 128 or 256, so significantly larger
than s). To maximize its probability of guessing correctly, the adversary should guess the sum⊕

(`,j)∈S b
j
` · χ

j
` · E`,j that appears the most times (for different combinations of bj`). Denote by M

the maximal number of times that the same possible sum appears (for different combinations of
bj`). Thus, the probability of the adversary correctly guessing the sum is at most M

2c . If c ≥ s, then
M
2c > 2−s (equivalently, M > 2c−s) happens with negligible probability, because the sums are in
{0, 1}sec and sec� s.
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Since |H| ≥ s, it follows that except with neg. probability, (if the honest parties do not abort)
the leakage contains less than |H| of the bj` ’s of the honest parties. In particular, this implies that
there is no leakage on any of the b`’s (and sums of b`’s). Additionally, we see that except with neg.
probability, there is no leakage on ∆ and it remains completely random. We note also that the
errors introduced by the adversary cannot, therefore, be dependent on the b`’s, ∆, or any of the
∆̄i’s of the honest parties.14 If the adversary fails the challenge then the honest parties abort. As
this protocol is run at the offline phase, before the inputs are given, in case of abort by the honest
parties at this stage is not a violation of security regardless of the leakage.

Remark 3. Each party Pj runs Step 2 and additional sec times with random rjh’s; denote rh =⊕n
j=1 r

j
h. These random rh’s are used to mask the bits of C. We note that the adversary may also

try to learn information on the b`’s indirectly, by adding errors to the ui,j ’s in Step 2 for these bits.
Each successful cheating leaks, in this case, a single rh (or a single sum of rh’s), and, consequently,
a single bit of C (or a single sum of bits of C).

However, using similar considerations as in the main proof, the number of errors is bounded by
the statistical security, and furthermore, the possibly leaked bits are chosen before C and the χ’s
are known to the adversary. We next prove that except with negligible probability, the shared bits
b`’s remain random, even leaking up to s bit of C (without leaking anything else).

The full proof of security of our protocol, i.e., modifying the functionality to accommodate also
leakage on the bits of C, is slightly tedious, and deferred to the full version.

Claim. If |H| ≥ s and up to s bits of C are leaked and nothing else, then except with negligible
probability, ∀`, b` is computationally random to the adversary.

Proof. For simplicity, we assume that exactly s bits of C are leaked. Following the main proof, we
may assume that except with negligible probability, without the leakage of the bits of C, all the
bits bj` for j /∈ A are computationally random. So we now show that the leakage from the bits of C
does not leak any information on any shared b`.

Note that since the adversary knows its own shares, this is equivalent to no leakage on any⊕
j /∈A b

j
` . Since the χj` ’s are known to the adversary, we may look at each leaked bit of C as a

Boolean sum of the bj` ’s for j /∈ A, where bj` is in the sum if the corresponding bit in χj` is 1.

Denote by L the total number of unknown bits per party, i.e., the different bj` for fixed j (note
that this number is the same for all the parties). We now observe the following:

1. There are a total of L · |H| ≥ L · s unknown independent random bits.
2. Thus, there are a total of ≥ 2L·s different possible sums of these bits.
3. The leakage from the bits of C is s independently random sums,15 so using linear combinations,

there are a total of 2s sums known to the adversary.
4. There are a total of L unknown b`’s, so there are 2L forbidden sums, i.e., sums that are either
b` or sums of b`’s and learning them breaks security.

5. Thus, the probability of a single random sum being forbidden is ≤ 2L

2L·s
.

6. By taking a union bound on all the known sums, the probability of a known sum being forbidden
is therefore ≤ 2L·2s

2L·s
, which is negligible (i.e., 2L·2s

2L·s
� 2− sec) for standard parameters s and L.

14 This is clearly true in the ideal world. Therefore, in the real world, even if such a dependence exists, no polynomial
time distiguisher can “see” this dependence.

15 Since the cheating is done before C and the χ’s are known, we may assume that a single leaked bit of C is a
random sum.
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Remark 4. To show the necessity of using different random coefficients χj` for each share instead
of using the same coefficient for all the shares of the same shared bit (i.e., as done in [BLN+15,
KOS16, KPR18]), we show here a selective failure attack that succeeds with probability 1

2 and leaks
a shared bit:

Assume the same coefficient is used for all the shares of the same shared bit, i.e., χ1
` = χ2

` =
· · · = χn` . Applying to Equation (11), we see that in order for the check in Step 10 to pass, it should
hold that:

0 = EA +
⊕
j /∈A

⊕
`

bj` · χ
j
` · eA,j,` + ECA∆H = EA +

⊕
`

χ`

⊕
j /∈A

bj` · eA,j,`

+ ECA∆H. (14)

Now, the adversary selects a shared bit b¯̀ that it wants to learn, and sets eA,j,¯̀ = 1 for j /∈ A,
eA,j,` = 0 for ` 6= ¯̀, ECA = 0, and EA = χ¯̀ (note that EA is chosen at Step 9, when the χ’s are
already known to the adversary). Substituting in Equation (14) above, we see that the check passes
if

0 = χ¯̀⊕ χ¯̀

⊕
j /∈A

bj¯̀

 . (15)

Thus, if
⊕

j /∈A b
j
¯̀ = 0 the honest parties abort while if

⊕
j /∈A b

j
¯̀ = 1 the check passes. Since the

adversary knows bj¯̀ for j ∈ A, and learns
⊕

j /∈A b
j
¯̀ from the behaviour of the honest parties, it can

now compute b¯̀ =
⊕n

j=1 b
j
¯̀ .

In other words, the adversary learns b¯̀ in any case, but with probability 1
2 the honest parties do

not abort, breaking security (recall that this protocol is executed in offline phase, before the inputs
are known, so learning the shared bits violates security only if it doesn’t cause abort).
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