Small Leaks Sink a Great Ship: An Evaluation of
Key Reuse Resilience of PQC Third Round
Finalist NTRU-HRSS

Xiaohan Zhang!:?3, Chi Cheng!:?3, and Ruoyu Ding!2-3

1 School of Computer Science, China University of Geosciences, Wuhan, 430074,
China, chengchi@cug.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China,
3 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic
Technology, Guilin 541004, China.

Abstract. NTRU is regarded as an appealing finalist due to its long
history against all known attacks and relatively high efficiency. In the
third round of NIST competition, the submitted NTRU cryptosystem is
the merger of NTRU-HPS and NTRU-HRSS. In 2019, Ding et al. have
analyzed the case when the public key is reused for the original NTRU
scheme. However, NTRU-HRSS selects coefficients in an arbitrary way,
instead of fixed-weight sample spaces in the original NTRU and NTRU-
HPS. Therefore, their method cannot be applied to NTRU-HRSS. To
address this problem, we propose a full key mismatch attack on NTRU-
HRSS. Firstly, we find a longest chain which helps us in recovering the
following coefficients. Next, the most influential interference factors are
eliminated by increasing the weight of targeted coefficients. In this step,
we adaptively select the weights according to the feedbacks of the oracle
to avoid errors. Finally, experiments show that we succeed in recovering
all coefficients of the secret key in NTRU-HRSS with a success rate of
93.6%. Furthermore, we illustrate the trade-off among the success rate,
average number of queries, and average time. Particularly, we show that
when the success rate is 93.6%, it has the minimum number of queries
at the same time.

Keywords: Post-quantum cryptography - Lattice based cryptography
- NTRU - Public key reuse - Key mismatch attack.

1 Introduction

Under the threat of rapid development of quantum computers [16], the current
public key algorithms which base their security on number theoretic problems
will no longer be safe. For example, the RSA and DH algorithms relying on
integer factorization and discrete logarithm problems could be broken as shown
in Shor’s pioneer paper [30]. To thwart attacks from quantum computers, the
cryptography community has prompted to look for a new cryptosystem, which
is called post-quantum cryptography (PQC) [7].

2 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

The National Institute of Standards and Technology (NIST) has started a
project to select and evaluate PQC algorithms against both classical and quan-
tum computers ever since 2016 [22]. The second round NIST PQC standardiza-
tion process has been completed on July, 2020 [I]. On the finalists, the lattice-
based public key encryption (PKE) or key encapsulation mechanism (KEM)
algorithms draw significant attention, since there are 3 out of 4 candidates, KY-
BER [3], SABER [12], and NTRU [6]. NIST aims to standardize at most one of
them when the third round ends. Among them, NTRU has been regarded as a
compelling one due to its long history against known attacks and relatively high
efficiency [I].

Currently, it can be noted that in the widely adopted Internet standards,
the key reuse mode is commonly used. For example, in the released Transport
Layer Security (TLS) 1.3 [29], the key pair in the pre-shared key mode is reused.
However, key reuse may cause attacks in lattice-based key exchange [19]. In
general, key reuse attacks can be divided into signal leakage attacks [8 [13] and
key mismatch attacks [I0]. The main reason for the signal leakage attack is that
if the key is reused, the relevant signal information used for key recovery leaks
the relevant information of the secret key. Meanwhile, the key mismatch attack
is to query the two communication parties whether the shared keys match or
not, analyzing the feedbacks to recover the secret key.

Nowadays, a series of key mismatch attacks have been successively proposed.
In [10], a key mismatch attack was proposed by Ding et al. on the one pass case
of [II], in which no information leaked by the signal function was used. Later,
Bauer et al. [5] proposed a key mismatch attack against a PQC second round
candidate NewHope [2]. In [24], Qin et al. showed that the recovery in Bauer et
al. was incomplete, and then proposed an effective key recovery scheme. Okada
et al. followed closely, and in [23] they further improved Qin et al.’s method.
Later, the work of [15] gave a key mismatch attack on another PQC second
round candidate LAC. In [25], a key mismatch attack is proposed against Kyber.
Baetu et al. proposed a classical key mismatch attack as well as a quantum key
recovery [4]. In [26] Qin et al. gave a systematic approach to find bounds of key
mismatch attacks against all the NIST candidate KEMs.

Unlike the protocols based on Ring Learning with Errors (RLWE) problem
[21] or Modular Learning with Errors (MLWE) problem [20], the NTRU cryp-
tosystem submitted to the NIST [6] is operated in a different polynomial ring
which modulo ™ — 1. Therefore, these attacks proposed by Ding et al. [10],
Qin et al. [24] or Okada et al. [23] cannot be directly applied to the NTRU
cryptosystem [6]. The main reason is that NTRU lacks the structure of affine
transformation, making it difficult to recover the secret key using the previous
method.

In 2019, Ding et al. [9] proposed a key mismatch attack on the original NTRU
scheme [I7]. As we know, the coefficients of the secret key in NTRU belong to
{-1,0,1} and there is a longest chain of consequent coefficients that consists
of either consecutive 1s or consecutive -1s of a secret key at least. With the

A Key Mismatch Attack on NTRU-HRSS 3

longest chain, they proposed an elegant method, which is claimed to recover all
the coefficients in the secret key.

However, their method cannot be directly applied to the current whole NTRU
cryptosystem [6]. The NTRU cryptosystem submitted to the third round of NIST
competition[6] is a merger of NTRU-HPS [I7] and NTRU-HRSS [I8]. One of
the most important differences is that they compute on cyclotomic polynomials
& =x—1and ®, = 2" ! +2" 2 + ... + 1, instead of 2™ — 1 in the original
NTRU. Another important difference is that NTRU-HPS is similar to the original
NTRU scheme, which still selects coefficients from fixed-weight sample spaces.
While NTRU-HRSS selects coefficients in an arbitrary way. Therefore, Ding et
al.’s method still works for NTRU-HPS, but cannot be applied to NTRU-HRSS.

Contributions. In this paper, we propose a complete key mismatch attack
on NTRU-HRSS. The main contributions of this paper include:

1. We investigate the resilience of the NTRU-HRSS KEM under a misuse case:
we assume that the same key is reused for multiple key establishments and
an attacker can use a key mismatch oracle.

2. Unlike the direct recovery of secret key in Ding et al’s method, we recover
the product of a secret key and a cyclotomic polynomial, which is also the
reason why Ding et al.’s method cannot be applied directly. Specifically, we
first find a longest chain. After that, we increase the weight of targeted coef-
ficients to eliminate the most influence of disturbances. Considering that the
introduction of weight may lead to the errors in the recovery, we adaptively
select the weights according to the feedbacks of the oracle to avoid errors.

3. As verified by the experiments, our improved method can recover all the
coefficients in the secret key with a probability of 93.6%. Moreover, by eval-
uating the trade-off between the success rate and average number of queries,
we can achieve minimum number of queries with a success rate of 93.6%
at the same time. Furthermore, as shown in [28], we can utilize side-channel
assisted our proposed method to attack the CCA-secure NTRU-HRSS KEM.

Organization of this paper. In Section 2, we introduce the basic notions
and describe the NTRU-HRSS KEM. In Section 3, we propose an improved
key mismatch attack on NTRU-HRSS KEM. We give the experimental results
and illustrate the trade-off among the success rate, average number of queries,
average time in Section 4. Finally, the conclusion is given in Section 5.

2 Preliminaries

2.1 Notations

In NTRU, n, p and g are coprime integers. We denote the i-th cyclotomic poly-
nomial by ®;. Specifically, ®, = 2" ' +2" 24 ... +1, ®; = z — 1, and
®, P, = 2" — 1. Z, represents the integer ring modulo ¢g. Let Z,[x] represent a
polynomial ring, in which all polynomial coefficients are selected from Z,.

We further define the polynomial rings R, = Z,[x]/ (2" —1), R} = Zy[x]/(®4),
and R, = Zy[z]/(®,). Here, all polynomials are in bold. A polynomial P in R,

4 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

is of degree at most n — 1 with coefficients in Z,. If a polynomial P’ belongs
to Ry, it is a polynomial of degree of n — 2 with coefficients P’[i] belonging
to the set Z,, where P'[i] (0 < i < n — 2) represents the ith coefficient of the
polynomial P’. P and P’ can also be represented as a vector with n and n — 1
coordinates, respectively. For a real number x, the operation [x] represents the
smallest integer not less than z.

NTRU was originally presented as a probabilistic public key encryption
(PPKE) scheme in [I7]. In the third round NTRU submission, PPKE is replaced
with the deterministic public key encryption (DPKE) scheme and all aspects of
the designs are unified except for the use of fixed-weight sampling. Specifically,

the probability of occurrence of -1, 0 and 1 are %, %, %, and we can easily

7
sample them from (3 2°b;) mod 3. Here b; is randomly selected from {0, 1}.
i=0

2.2 NTRU-HRSS KEM

Table 1. The CPA version of the NTRU-HRSS KEM

Alice Bob

feF,,gecF,

f, < f'eR,

£, f'eRr,

h < pg®.f, € Ry

h, < h'eR, —" sreR,, meR,
a+—cfeR, +—%— ¢ <+ rh+ Lift(m) € R,

m’ « af, € R,
r’ + (c — Lift(m'))hy € R,
if (r',m’) € R}, x R,
Return(r’,m’, 0);
else
Return(0,0,1);

The most important definitions in the NTRU-HRSS KEM are shown as be-
low.

Definition 1. The Lift function Lift: R;, — Ry is defined as P =Lift(m),
P = m(®; ! mod (p, ®,))®;. (1)
Definition 2. Non-negative-correlation:

F, ={PcR,: (zP,P)>0}. (2)

A Key Mismatch Attack on NTRU-HRSS 5

In NTRU-HRSS, n = 701, ¢ = 8192, and p = 3 are employed. It consists of
three parts:

(1) Alice selects f and g uniformly at random from F . Then she computes
the inverses of f in R and R}, as f; and f,. Next she computes the public key
h « pg®:f; and the inverse of h in R . Finally, she sends h to Bob.

(2) After receiving h, Bob selects r and the shared key m uniformly at random
from R;,. Then he calculates the ciphertext ¢ <— rh + Lift(m). Subsequently, he
sends ¢ to Alice.

(3) When Alice receives c, she calculates a < cf, m’ < af, and r' «
(c — Lift(m’))h,. In the end, she checks whether (r',m’) in message space or
not.

2.3 The Key Mismatch Attack Oracle O

Algorithm 1: The Oracle O

Input: c,m

Output: 1or0

a+cfeR,

m’ < af, € R,

r’ « (c — Lift(m'))h,) € Ry

if (v, m') € R, x R;, and m = m’ then
Return 1;

else
Return 0;

B =L BNV V)

In the process of key mismatch attack on NTRU-HRSS, Alice is an honest
server and the adversary A acts as Bob. For convenience, we build the Oracle O
that plays the role of Alice. In addition, we suppose that public key h is reused
and A has access to the Oracle O many times. The inputs of oracle O are ¢ and
m. Afterwards, O calculates a, m’ and r’ as depicted in Algorithm [1] Next, O
first checks whether (r', m’) in the message space and then checks whether m =
m’ holds. If both of them are yes, O outputs 1, and 0 otherwise. That is, when
O outputs 1, m and m’ match, otherwise m and m’ mismatch. By observing
the outputs of O, A can get information about the secret key.

3 Our Proposed Attack

In this section, we propose an attack on NTRU-HRSS KEM. Firstly, we intro-
duce the parameter choices of the adversary, then propose improvements in two
following subsections, finally describe the complete attack.

6 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

3.1 Parameter Choices of the Adversary

We recover G = g®; instead of g in Ding et al.’s method, and we say that A
succeeds if he recovers any equivalent of G, which is denoted as G’.

The equivalent of G. G’ can differ from G by a sign s € {—1,1} and
a shifting of its coefficients. The relationship between G’ and G is shown as
follows, for some integer v € N,

n—1
G =s Z G[(i + v) mod n]z’

=0

n—1

= sa’ Z Gli]z"
i=0

= s2"G.

To launch this attack, A sets m as 0 and selects the proper r. Then, A
calculates c. And ¢ and m are sent to the oracle O.
After receiving the inputs ¢ and m, O first calculates

a=cf (mod q)
= rhf + Lift(m)f (mod q))
= rhf (mod q)
= prg®f,f (mod q).

Since f; € Rfﬁ f,f = (1+1t®,), where t € Z. Further, we have

a=prg®(1+tP,) (mod q)
= prg®, (mod q) (5)
= prG (mod q)
For:=0,1,....,n—1,t € Z, we get

. . . q q
i = { PECT PG € -53] 6
p(rG)[i] — tgq otherwise.

m'[i] = (af},)[i] (mod p)
(al0)f,[i] + - - -a[n — 1]f,[(i + 1) mod n]) (mod p).

Next, if all p(rG)[i] € [~%, 4], the corresponding m'[i] is equal to

m'[i] = p(rQ)[0]f,[i] + - - - p(rG)[n — 1]£,[(i + 1) mod n] (mod p)
=0 (mod p).

Otherwise, if there is one p(rG)[j] ¢ [—%, %}, for j € [0,n — 1], then

A Key Mismatch Attack on NTRU-HRSS 7

m'[i] = —t¢f,[(i — j) modn] Z0 (mod p). (9)

Since we set m = 0, Equation@ means that m’ # m and the corresponding
O outputs 0. Therefore, in order to recover the coefficients of G, we only need to
q g

make p(rG)[j] ¢ [—2,] by setting the proper coefficients of r. Then, according

to the output of O, we can recover G.

3.2 Finding a Longest Chain

After that, the remaining problem is how to recover G according to the output of
O. In NTRU-HRSS, the most crucial issue is finding a longest chain. To illustrate
this issue, we first discuss the range of coefficients in G.

= (gln — 1] - g[0]) + (g[0] — g[1])z + -+ + (gln — 2] — g[n — 1])z" ",
and fori=0,1,...n—1,
L) gln—1]—g[0] ifti=0,
Glil = {g[z —1] —g[i] otherwise. (1)

According to Equation , the sum of d consecutive coefficients in G is

gln—1] —gld — 1] if i =0,

12
gli—1] —gli+d—1] otherwise, (12)

G[i]+~-~+G[i+d—1]:{

where d € [2,n].

For i € [0,n — 1], g[i] € [~1,1], according to Equation (11)), G[i] € [-2,2].
And according to Equation (12)), we can get (G[i]+ -+ G[i+d —1]) € [-2,2].

Specifically, when d = 2, (G[i| + G[i + 1]) € [-2,2]. By simply adding the
two consecutive coefficients, we can draw the first conclusion:

(1) In G, (G[i], G[i + 1]) isn’t in {(1,2), (2,1), (-1,-2), (-2,-1), (-2,-2), (2,2)}.

When d = 3, (G[i]+G[i+ 1]+ G[i+2]) € [-2,2], i.e. (G]i], G[i+1],G[i+2])
cannot be (1,1,1) or (-1,-1,-1). Therefore, we can similarly conclude that:

(2) There are at most two consecutive 1’s or -1’s in G.

By denoting a chain (2,—2,...,2 % (—1)¥~1) with length k the k-chain, we
have the following result.

Theorem 1. When k < 701, the average number of times a k-chain occurs in
G is (22)F (702 — k).
Proof. From the second observation, we cannot find a longest chain consisting
of consecutive 1’s or -1’s. Therefore, a longest k-chain consists of consecutive
coefficients as (2, —2,...,2* (—1)*7!) in G.

According to Equation , fori=0,1,...n—1, we note that when G[i] = 2,
it should be the case that g[i — 1] = 1, g[i] = —1. Corresponding to this, when

8 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

G[i] = —2, we have g[i — 1] = —1, g[i] = 1. Thus, the occurrence probability of
(2,-2,...,2%(—1)k¥"1) in G is the same as that of (—1,1,...,(=1)*"1) in g. As
we mentioned above, the probabilities of occurrences of -1, 0 and 1 are %, %,
%, respectively.

Let X denote the event that a k-chain (2,—2,...,2 % (—1)*~!) occurs in
G. To calculate the average number of times a k-chain occurs in G, we try to
get the corresponding expectation Ei(X). By dividing X into the subevents X;
i=0,...,n —k, where each X; denotes the event that a k-chain (2,—-2,...,2 %
(—1)*=1) occurs in the i-th position of G. Since Fj(X;) = (£)* and recall that

256
n =701, from the property of Expectation, we have

n—k
Br(X) = 3 By(X) = (%)k £ (702 — k). (13)
1=0

Table 2. The relationship between k and Ej(X)

k 2 3 4 5 6 7
E(X)|77.171|25.587|8.483|2.813|0.933(0.309

In Table we show the relationship between k and Fy (X)), where k is selected
from the set {2,3,4,5,6,7}. As we can see when k = 6, F(X) is near 1. The results
show that we can find a longest chain that consists of consecutive coefficients such
as (2,—2,...,2%(—1)*"1) in G when k = 6 with a high probability. Afterwards,
we use the chain as an anchor to recover G.

3.3 The Selection of Parameter r

In addition, in order to recover G, the adversary A directly sets all coefficients
of r as 0 except for the first few coefficients of r. In NTRU-HRSS, while setting
r, we need to increase the weight of targeted coefficients.

As we stated above, the coefficients of G range from -2 to 2, and there are
many disturbances to prevent us from recovering coefficients of G correctly.
We take two adjacent coefficients of G as an illustration, including 52 = 25
tuples. According to the first conclusion above, the tuples of the set {(1,2),
(2,1), (-1,-2), (-2,-1), (-2,-2), (2,2)} do not exist in G. Then, we can classify
the remaining tuples in accordance with the summation of the two adjacent
coefficients in Table[3] The tuples of equal summation interfere with each other’s
recovery. Concretely, when the summation is -2, the tuples (-2,0) and (0,-2)
disturb the recovery of the tuple (-1,-1). Therefore, we need to make the sum
of these tuples unequal to eliminate the disturbance by increasing the weight of
some coefficients. Obviously, increasing the weight of 0 is useless, and increasing
the weight of 1 or -1 is ineffective since 2 or -2 can get the double weight. Finally,
we can only increase the weight of coefficients 2 and -2, which has proved to be
effective.

A Key Mismatch Attack on NTRU-HRSS 9

Table 3. Different summation of the two adjacent coefficients

Summation|Tuplel|[Tuple2| Tuple3| Tuple4| Tuple5
-2 ('2,0) (07'2) ('L'l)
-1 (-2,1) [(1,-2) [(-1,0) | (0,-1)
0 (-22) [2-2) [(-L,D) [(1,-1) | (0,0)
1 (-1,2) [2.1] (0,1) | (1,0
2 0,2) [(2,0) | (1,1)

Additionally, the tuples of different summation can also interfere each other’s
recovery in Table [4] To recover the coefficients of G correctly, when G[i]=0, if
r[i — 1] > 0, we set r[i] > 0, and if r[i — 1] < 0, we set r[i] <O0.

Table 4. Interference between tuples of different summation

Recovered tuple|Interference tuplel|Interference tuple2
(-2,0) (-2,2) (-2,1)
(0,-2) (1,-2) (2,-2)
(2,0) (2,-2) (2,-1)
(0,2) (-1,2) (-2,2)

For convenience, we define some symbols. Let num; denote the number of
recovered coefficients with absolute value of 1 in G, then nums denote the
number of recovered coefficients with absolute value of 2 in G and w is the
weight of whose absolute value is 2 in recovered coefficients of G. G5 denotes
the weighted sum of recovered coefficients in G, which can be computed as
Gs = 2« numso * w + 1 x num;. r, denotes the unit value of r and r,, > 0.

If w is too large, the mismatch appears prematurely, and if it is too small,
it is not enough to recover the target coeflicients. To take a balance, we set the
initial value of w to 4.

3.4 The Full Attack

In this subsection, we introduce our method to recover G. Recall that we suppose
the length of a longest chain that consists of consecutive coefficients such as
(2,-2,...,2% (=1)F 1) in G is k.

The key mismatch attack consists of three steps. And the adversary A always
sets m as 0 in each step.

Step 1: In this step, the adversary A recovers (G[0],--- ,G[k — 1]) and de-
cides the value of k. For this purpose, he needs to find a longest chain in G.

The parameter selections of r is shown as below.

Forl>2,0<i<l-1, Asetsr = (r[0],...,r[l —1],0,...,0),

10 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

4 if 7 is even,
— ’7210*2[-‘ if ¢ is odd.
Since a = prG (mod q), for i =0,1,...n — 1,
afi] = p(r[0]G[i] + - - - r[n — 1]G[(i 4+ 1) mod n]) (mod q) (15)
= p(r[0]G[i] + - - - r[l — 1]G[(¢ — [4+ 1) mod n]) (mod q).

Note that when [< k, |a[i]| = p = [ﬁ—‘ x 2] > 4

3, which means O outputs

0, and when | = k + 1, [a[i]| = p * [m] % (2k + 1) < ¢, which means O
outputs 1. Therefore, when O outputs 1, A can get k =1 — 1.
Step 2: The adversary A has recovered (G[0],..., G[k — 1]) and he needs to

recover G[k] in this step.

Algorithm 2: Find-w-1
Input: numi, nums
Output: w

1 Set w =4, Gs = NULL, temp = NULL;
2 fori:=1to 3 do
3 Gs = 2* (numa + 1) x w + nums;
4 temp = [515 1;
. I —tempx(Gs—2%w)*p
5 if temp * (Gs — 2% w) xp> € or [2 oD 1 < 2w then
6 ‘ w=w—1;
7 end
8 else
9 ‘ break;
10 end
11 end

12 Return w

Step 2.1: The adversary A judges whether (G[k], G[k+1]) is (0,2) or (0,-2).

First of all, A sets the proper w in Algorithm 2] In this step, when O outputs
0, which demonstrates that (Glk], G[k + 1]) is (0,2) or (0,-2). Hence, A needs
to keep O output 1 before adding the tuple (0,2) or (0,-2). Also, the absolute
value of the sum of two coefficients in the tuple must be 2. Otherwise, A needs
to decrease w.

Then A computes the value of G. Since the recovered coeflicients of G are
(G[0],G[1],--- ,Glk — 1]), and (G[k],G]k + 1]) is (0,2) or (0,-2). Therefore,
numg =k—+1, num; =0, Gs =2 (k+ 1) xw.

Next, A sets r = (r[0],...,r[k — 1], r[k],r[k + 1],0,...,0). For 0 < i < k —1,

A Key Mismatch Attack on NTRU-HRSS 11

(16)

| L fGl w if GJi] =
rfi] = .

p

- l2p

Specifically, A sets r[k] and r[k + 1] as follows.

(1) When Gk — 1] = =2, (G[K], G[k + 1])=(0.2), x[k] = | 550 |, vl +1] =

Zpac | *w- If O outputs 0, A recovers (G[k], G[k + 1]) as (0,2). Otherwise

(G[k], G[k + 1]) isn’t (0,2).

(2) When Gk — 1] = 2, (G[k], G[k +1])=(0,-2), r[k] = [2p l rlk +1]
— lﬁ-‘ «w. If O outputs 0, A recovers (Glk], Gk + 1]) as (0,-2). Otherwise

(Glk], G[k + 1]) isn’t (0,-2).
When (G[k], G[k+1]) is neither (0,2) nor (0,-2), according to Equation (11,

*GS-‘*w it G[i] = —
+

Glk| = glk — 1] — g[k], (17)

and g[k — 1] is known, so the adversary A recovers G[k] in {-1,0} or {1,0} in
turn. Speciﬁcally, when G[k—1] = 2, glk—1] = —1, g[k] € {-1,0, 1}, according
to Equation (17 , Glk] € {0,—1 —2} Since the length of a longest chain that
consists of consecutlve coefﬁments such as (2, —2,...,2%(—=1)*"1) in G is k, then
Glk] # -2, G[k] € {—1,0}. Similarly, when G[k - 1] = -2, G[k] € {1,0}.

Step 2.2: When (GJk], G[k + 1]) is neither (0,2) nor (0,-2), A recovers G[k]
in {-1,0} or {1,0} in turn.

Algorithm 3: Find-w-2
Input: numi, nums
Output: w

1 Set w =4, G5, = NULL, G,, = NULL;
2 fori:=1 to 3 do
3 Gs, = 2% nums * w + numy + 1;
4 Gsy = 2% numsa * w + numy + 2;
5 if lef*Qpl = lcsj*zpl or [Gsf*zpl *(Gs; —1)*p> £ then
6 l w=w—1;
7 end
8 else
9 l break;
10 end
11 end

12 Return w

Firstly, A sets the proper w according to Algorithm [3] Then A computes the
value of Gy, since the recovered coefficients of G are (G[0], G[1],-- ,G[k — 1]),

12 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

and G[k] € {—1,0} or {1,0}. Therefore, nums = k, num; =1, Gy, = 2kxw + 1.
Next, A sets r = (r[0],...,r[k — 1],r[k],0,...,0). For 0 < i < k — 1, he sets
according to Equation . Afterward, we discuss the parameter selection of
r[k] in cases {-1,0} and {1,0}, respectively.

(1) When Gk — 1] = 2, i.e. G[k] € {—1,0}, r[k] = — [ﬁ] If the output

of O related to the selection of r is 0, G[k] = —1, otherwise G[k] = 0.

(2) When G[k — 1] = —2, then G[k] € {1,0}, r[k] = [ﬁ] It O's output
associated with the selection of r is 0, G[k] = 1, otherwise G[k] = 0.

Step 3: Suppose that A has recovered (G[0],...,G[k — 1], G[k],--- ,Glk +
t — 1]), then A needs to recover G[k + t], where ¢t € [1,n — k — 1].

Recall that (G0],...,G[k — 1]) is denoted as a k-chain, we denote a chain
(G[0],--- ,Glk —1],G[k], - , G[z — 1]) with length z the z-chain, which is the
extension of the k-chain. Here G[k],- -, G[z — 1] can be arbitrary coefficients
and z is a fixed number. Through experiments we find that by setting z = 15
we can get the best results.

Step 3.1: A needs to determine whether (Glk +t], G[k+t+1]) is in the set
{(0’2)’ (270)7 (0"2)7 ('250)}'

Firstly, A selects the proper w in Algorithm [2] and computes the value of G
according to G = 2 *x nums * w + numy. Then, according to Equation ,

G+ = gk +t— 1] — glk +1], (18)

and g[k +t — 1] is known, thus A can recover (G[k +t], G[k +t + 1]) in the set
{(0,2), (2,0)} or {(0,-2), (-2,0)}, respectively.
Specifically, when g[k +t — 1] = —1, (G[k + t], G[k + t + 1]) is in the set
{(0,-2), (-2,0)}. When glk+t—1] =1, (G[k+t], G[k+t+1]) is in {(0,2), (2,0)}.
After that, A sets r = (r[0],...,r[z—1],0,...,0,r[k+¢t],r[k+t+1],0,...,0).
For0<i<z-1,

q Gli] : 0
2% C. *wx — it |G[i]| =2,
[g] , . ,
f =1
o 5% C. * G[i] if |Gl ,
rfij=4¢ - - (19)
q . . .
= —1]>
2% G if G[¢) =0 and r[i — 1] > 0,
q PR o
LP* Gs—‘ if G[i) =0 and r[i — 1] < 0.

And A sets r[k + t] and r[k + ¢t + 1] as follows.
(1) When glk +t — 1] = —1, (G[k +], G[k + ¢ + 1]) is in {(0,-2), (-2,0)}.
Firstly, A sets r[k 4 t] and r[k +t + 1] as:

1) (200 xlk+ 1] = = [i | e, el + e+ 1] = = [%]
2) (0:2): rlk+] = = [| xll+ £+ 1] = = [2 | 5w,

A Key Mismatch Attack on NTRU-HRSS 13

A recovers (G[k +1t], G[k +t+1]) as (-2,0) if O’s output associated with the
first choice of r is 0, otherwise A continues to set in the order. If the output of O
associated with the second choice of r is 0, A recovers (G[k +t], G[k +t +1]) as
(0,-2). Finally, if O does not output 0, which demonstrates (G[k+t], G[k+t+1])
is neither (-2,0) nor (0,-2).

(2) When glk+t—1] =1, (G[k + 1], Gk + ¢+ 1]) is in {(0,2), (2,0)}. At the
outset, A sets r[k +t] and r[k + ¢ + 1] as:

1) (0,2): tlk + 1] = [ﬁ] r[k+t+1] = [QP;IGJ % w,

2) (20): 1k +1] = [0 |+ w, el +t+1] = [2]

Similarly, A sets r[k + t] and r[k 4+ ¢ + 1] in the order and when O outputs
0, A recovers G[k + t], G[k + t + 1] as the corresponding tuple. In the end, if O
does not output 0, (G[k + t], G[k + t + 1]) is neither (0,2) nor (2,0).

Step 3.2: When (G[k +t], G[k +t +1]) isn’t in {(0,2), (2,0), (0,-2), (-2,0)},
A recovers G[k + t] in {0,-1,-2}, {1,0,-1} or {2,1,0} in turn.

Table 5. The two outputs of O corresponding to Gk + t] in three sets

Glk+\O
(0,0)[(0,1)|(1,1)|(1,0)
Set
0127 |2 |-1]0
{1,0-1} T [1]0]-1
{2,1,0} 210
Specifically, when g[k +¢ — 1] = -1, g[k +t] € {-1,0,1}, according to

Equation (18), G[k+t] € {0, -1, —2}. When g[k-+t—1] = 0, G[k+t] € {1,0,—1}.
And when glk +t—1] =1, G[k +t] € {2,1,0}.

Next, we discuss the parameter selections of r in cases {0,-1,-2}, {1,0,-1} and

{2,1,0}, respectively. The two outputs of O corresponding to Gk + t] are shown
in Table Bl

(1) When g[k +t — 1] = —1, then G[k +t] € {0,—1,—-2}. A first selects w
according to Algorithm [3] Then A computes G5 = 2 * numg * w + numy + 1.
Next, A sets r = (r[0],...,r[z — 1],0,...,0,r[k +¢],0,...,0), for 0 <4 < z — 1,

he sets according to Equation 1] and rlk +t] = — 2]/)+G .

Afterward, A sets r = (r[0],...,r[z — 1],0,...,0,r[k + ¢],0,...,0], for 0 <
1< z-—1,

14 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

| e < it |G[i]| = 2
" _Qp*(Cq?S—‘,—l)_ x Gi] if |Gi]| =1, o0
m if G[i] =0 and r[i —1] >0,
_ {%*(qu‘Jrl)] if G[i] = 0 and r[i — 1] < 0.
and rlk + 1] = — [t],

If the only output of O related to the first choice of r is 0, G[k + t] = —1.
And if both of the two outputs of O are 0, G[k + t] = —2. Then if both of the
two outputs of O are 1, G[k + ¢] = 0.

(2) When glk +t — 1] =1, G[k + t] € {2,1,0}. Similarly, A first selects the
proper w and calculates G4. Then, for 0 < ¢ < z — 1, A sets r according to

Equation and r[k +t] = {21)*#6‘5—‘ Subsequently, for 0 < i < z — 1, A sets

r according to Equation and r[k +t] = {m—‘ If the only O’s output
associated with the first choice of r is 0, G[k +¢] = 1. And if O outputs 0 twice,
Glk 4 t] = 2. Then if O outputs 1 twice, G[k + t] = 0.

(3) When gk +t—1] = 0, G[k +t] € {1,0,—1}. A similarly selects w
according to Algorithm [3| except judging whether fG51q*2p] = [Gspr] holds.
Then A computes the value of G4 by G5 = 2 x numsg *x w + numy + 1. Next, A
sets r = (r[0],...,r[z — 1],0,...,0,r[k + t],0,...,0), for 0 < i < z — 1. After
that, he sets r[k +t] = — | 50|

If the only O's output related to the first choice of r is 0, G[k +t] = 1. And
if O only outputs 0 on the second choice of r, G[k +t] = —1. Then if O outputs
1 twice, G[k + t] = 0. In addition, if O outputs 0 twice, which demonstrates
there are at least two chains of length z in G. In order to recover the unique G,
A simply assigns G[k + t] as 1, and he sets r[k + ¢] in recovering the remaining
coefficients of G later.

Finally, A repeats Step 3 until all the coefficients of G are recovered.

3.5 Attacking CCA-secure NTRU-HRSS KEM using side channel
information with proposed method

In the above results, we focus on CPA-secure NTRU-HRSS KEM, and the CCA
version induces some differences with the previously discussed scheme, which
deserves being analyzed. In a CCA-secure NTRU-HRSS KEM, by applying
the Fujisaki-Okamoto (FO) transformation [I4], Alice first decrypts and then
re-encrypts the result of decryption, checking whether the re-encrypted result

matches the received ciphertext to reject the malicious ciphertext. Thus our
proposed attack cannot directly work on CCA-secure NTRU-HRSS KEM.

A Key Mismatch Attack on NTRU-HRSS 15

However, Ravi et al.[28] showed that side channel attack could gain useful
information from decryption of chosen ciphertexts, and they utilized these infor-
mation to successfully attack some CCA-secure KEMs. In addition, the key idea
of their chosen ciphertexts attack is almost identical to key mismatch attack,
apart from that the adversary A actively accesses to real-world devices used for
decapsulation, obtaining the match or mismatch information depending on side
channel attack. Therefore, our proposed method can be directly applied to attack
CCA-secure NTRU-HRSS KEM with the help of side channel information.

In [27], Ravi proposed a method against Streamlined NTRU Prime, and the
method is also applicable to NTRU-HRSS. In the method of Ravi, recovering a
single coefficient needs 4 chosen-ciphertext queries, that is, 4 side-channel traces,
and n = 701, thus the total number of traces for NTRU-HRSS is 2804. By
applying our improved method to the side channel-assisted attacks against CCA-
secure NTRU-HRSS KEM, we only need 1844 traces on average, decreasing the
number of traces by 34.23%.

4 Experiments and Analysis

In this section, we introduce our experiments and the results show the correctness
and efficiency of our proposed attack. We run our code on an Intel Xeon E5-2620
at 2.1 GHz and a 64 GB RAM. Our code is made publi(ﬂ

To make our experiments more convincing, we generate 10,000 secret keys
using the code submitted to NIST [6] by the designers of NTRU-HRSS. Re-
call that z denotes the length of z-chain, and w is the weight whose abso-
lute value is 2 in recovering coefficients of G. In NTRU-HRSS, the parameters
(n,q,p) = (701,8192,3). Then we implement our proposed method to recover
all coefficients of the secret key in NTRU-HRSS, where we try different z in the
set {5,7,9,11,13,15,17,19}.

Table 6. Performance comparison when increasing the value of z

z |Success rate(%)|Average #queries|Average time (s)
5 50.0 1884 12.652
7 70.0 1879 11.744
9 90.0 1855 11.471
11 92.4 1866 11.586
13 92.9 1856 11.853
15 93.6 1844 11.983
17 92.7 1867 11.858
19 90.0 1945 11.965

4 https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs/tree/master/
ntruhrss701_key_mismatch_attack

https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs/tree/master/ntruhrss701_key_mismatch_attack
https://github.com/AHaQY/Key-Mismatch-Attack-on-NIST-KEMs/tree/master/ntruhrss701_key_mismatch_attack

16 Xiaohan Zhang, Chi Cheng, and Ruoyu Ding

The results are shown in Table [6] where we illustrate the trade-off among
the success rate, average number of queries, and average time. We also represent
the relationship between the success rate and z in Figure [1| It is notable that
our proposed attack can achieve the success rate of 93.6% when z = 15. The
results show that among 10,000 secret keys, all coefficients of 9360 secret keys
can be recovered. Meanwhile, when z = 15, it also represents the least number
of queries. Therefore, we choose z = 15 in the final.

90+ T
85 .
80 - .
75)]
70]
65 - .
60 - .
55|]

0575 10 125 15 175

z

The success rate(%)

Fig. 1. The relationship between z and the success rate

And when z > 15, we need to set a smaller weight w, which prevents us from
distinguishing some coefficients. Thus, the success rate continues decreasing as
depicted in Figure |1} In addition, when the weight w = 1, we cannot continue
decreasing w as required in Algorithm [2| or Algorithm |3] Otherwise the value of
w is 0, which is the reason why the success rate cannot be 100%.

5 Conclusion

In this paper, we propose a key mismatch attack on NTRU-HRSS KEM. Fur-
thermore, we illustrate the trade-off among the success rate, average number of
queries, and the average running time. As a result, we can achieve minimum
number of queries with a success rate of 93.6% at the same time. NTRU-HRSS
KEM submitted to NIST is CCA-secure, so our proposed key mismatch attack
does not harm the NTRU-HRSS designers’ security goals. However, as shown in

[28], we can further combine our proposed method with side-channel attacks to
attack the CCA-secure NTRU-HRSS.

Acknowledgments

The authors would like to thank Yue Qin for her valuable suggestions and help.
The research in this paper was partially supported by the National Natural

A Key Mismatch Attack on NTRU-HRSS 17

Science Foundation of China (NSFC) under Grant no. 61672029, and Guangxi
Key Laboratory of Trusted Software (no. KX202038).

1]

[12]

[13]

Bibliography

Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J.,
Liu, Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status Report on the
Second Round of the NIST Post-Quantum Cryptography Standardization
Process. US Department of Commerce, National Institute of Standards and
Technology (2020)

Alkim, E., Avanzi, R., Bos, J.W., Ducas, L., de la Piedra, A., P6ppelmann,
P.S.T., Stebila, D.: Newhope. Submission to the NIST Post-Quantum Cryp-
tography standardization project, Round 2 (2019)

Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V.,
Schanck, J., Schwabe, P., Seiler, G., Stehlé, D.: Kyber: Algorithm specifi-
cations and supporting documentation, version 2.0, nist pqc round 2. Tech.
rep., en. Tech. rep (2019)

Baetu, C., Durak, F.B., Huguenin-Dumittan, L., Talayhan, A., Vaudenay,
S.: Misuse attacks on post-quantum cryptosystems. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
pp. 747-776. Springer (2019)

Bauer, A., Gilbert, H., Renault, G., Rossi, M.: Assessment of the key-reuse
resilience of newhope. In: Cryptographers Track at the RSA Conference.
pp. 272-292. Springer (2019)

Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck,
J.M., Schwabe, P., Whyte, W., Zhang, Z.: Ntru: algorithm specifications
and supporting documentation (2019)

Chen, L., Jordan, S., Liu, Y.K., Moody, D., Peralta, R., Perlner, R., Smith-
Tone, D.: Report on post-quantum cryptography. US Department of Com-
merce, National Institute of Standards and Technology (2016)

Ding, J., Alsayigh, S., Saraswathy, R., Fluhrer, S., Lin, X.: Leakage of signal
function with reused keys in rlwe key exchange. In: 2017 IEEE International
Conference on Communications (ICC). pp. 1-6. IEEE (2017)

Ding, J., Deaton, J., Schmidt, K., Vishakha, Zhang, Z.: A simple and effi-
cient key reuse attack on ntru cryptosystem (2019)

Ding, J., Fluhrer, S., Rv, S.: Complete attack on rlwe key exchange with
reused keys, without signal leakage. In: Australasian Conference on Infor-
mation Security and Privacy. pp. 467-486. Springer (2018)

Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme
based on the learning with errors problem. ITACR Cryptology EPrint Archive
2012, 688 (2012)

DAnvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F.: Saber: Mod-lwr
based kem (round 2 submission). Tech. rep., Tech. Rep (2019)

Fluhrer, S.R.: Cryptanalysis of ring-lwe based key exchange with key share
reuse. IACR Cryptology ePrint Archive (2016)

[14]

[15]
[16]

[17]

[18]

[19]

[25]

[26]

A Key Mismatch Attack on NTRU-HRSS 19

Fujisaki, E.,; Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In: Annual International Cryptology Conference. pp.
537-554. Springer (1999)

Greuet, A., Montoya, S., Renault, G.: Attack on lac key exchange in misuse
situation. TACR Cryptology ePrint Archive 2020, 63 (2020)

Gyongyosi, L., Imre, S.: A survey on quantum computing technology. Com-
puter Science Review 31, 51-71 (2019)

Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key
cryptosystem. In: International Algorithmic Number Theory Symposium.
pp. 267—-288. Springer (1998)

Hiilsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: Ntru-hrss-kem: al-
gorithm specifications and supporting documentation (2017)

Kirkwood, D., Lackey, B.C., McVey, J., Motley, M., Solinas, J.A., Tuller,
D.: Failure is not an option: Standardization issues for post-quantum key
agreement. In: Workshop on Cybersecurity in a Post-Quantum World. p. 21
(2015)

Langlois, A., Stehl, D.: Worst-case to average-case reductions for module
lattices (2015)

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Cryptology - EUROCRYPT. pp. 1-23 (2010)
Moody, D.: Post-quantum cryptography standardization: Announcement
and outline of nist’s call for submissions (2016)

Okada, S., Wang, Y., Takagi, T.: Improving key mismatch attack on
newhope with fewer queries. In: Australasian Conference on Information
Security and Privacy. pp. 505-524. Springer (2020)

Qin, Y., Cheng, C., Ding, J.: A complete and optimized key mismatch
attack on nist candidate newhope. In: European Symposium on Research
in Computer Security. pp. 504-520. Springer (2019)

Qin, Y., Cheng, C., Ding, J.: An efficient key mismatch attack on the
nist second round candidate kyber. IACR Cryptology ePrint Archive 2019,
1343 (2019)

Qin, Y., Cheng, C., Zhang, X., Pan, Y., Hu, L., Ding, J.: A systematic
approach and analysis of key mismatch attacks on cpa-secure lattice-based
nist candidate kems. Cryptology ePrint Archive, Report 2021/123 (2021)
Ravi, P., Ezerman, M.F., Bhasin, S., Chattopadhyay, A., Roy, S.S.: Generic
side-channel assisted chosen-ciphertext attacks on streamlined ntru prime.
Cryptology ePrint Archive, Report 2021/718 (2021)

Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel
attacks on cca-secure lattice-based pke and kems. TACR Transactions on
Cryptographic Hardware and Embedded Systems pp. 307-335 (2020)
Rescorla, E.: The transport layer security (tls) protocol version 1.3. Tech.
rep. (2018)

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. STAM review 41(2), 303-332 (1999)

	Small Leaks Sink a Great Ship: An Evaluation of Key Reuse Resilience of PQC Third Round Finalist NTRU-HRSS

