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Abstract

Sequences of consecutive Legendre and Jacobi symbols as pseudorandom bit generators were proposed
for cryptographic use in 1988. Major interest has been shown towards pseudorandom functions (PRF)
recently, based on the Legendre and power residue symbols, due to their efficiency in the multi-party
setting. The security of these PRFs is not known to be reducible to standard cryptographic assumptions.

In this work, we show that key-recovery attacks against the Legendre PRF are equivalent to solving
a specific family of multivariate quadratic (MQ) equation system over a finite prime field. This new
perspective sheds some light on the complexity of key-recovery attacks against the Legendre PRF. We
conduct algebraic cryptanalysis on the resulting MQ instance. We show that the currently known tech-
niques and attacks fall short in solving these sparse quadratic equation systems. Furthermore, we build
novel cryptographic applications of the Legendre PRF, e.g., verifiable random function and (verifiable)
oblivious (programmable) PRFs.

1 Introduction

Zero-knowledge proofs (ZKP) and secure multi-party computation (MPC) protocols are ubiquitous in cryp-
tography. These advanced cryptographic tools are applied and deployed in many applications, e.g., privacy-
preserving cryptocurrencies, threshold cryptography and secure instant-messaging. The widespread adoption
of ZKPs and MPC protocols necessitates novel symmetric-key primitives [GRR+16]. Traditional symmetric-
key primitives, e.g., AES, cause significant overhead in ZKPs or MPC due to their vast multiplicative com-
plexity.

Therefore, recently, revived interest has been shown towards algebraic symmetric key primitives with
low multiplicative depth [GRR+16]. Lately, several novel algebraic MACs [DKPW12, CMZ14], hash func-
tions [AGR+16, GKR+21] or algebraic pseudorandom functions [Dam88] have been proposed for crypto-
graphic use. New algebraic constructions with low multiplicative complexity are especially attractive due
to their distinguished efficiency properties in ZKPs or MPC protocols. However, this new algebraic design
paradigm possibly opens up new avenues for attacks [AABS+20]. The cryptanalysis of these new symmetric-
key primitives is an active research field with notable published works. For instance, Albrecht et al. conducted
an algebraic cryptanalysis of MARVELlous [AD18] and MiMC hash functions [ACG+19], while Li and Pre-
neel refined interpolation attacks on low algebraic degree cryptosystems [LP19]. One of the most promising
cryptosystems for use in ZKPs and MPC protocols is a pseudorandom function (PRF) that is based on

quadratic and power residue symbols. Recall that if p is a prime, the Legendre symbol

(
a

p

)
is 1 if a is a

square modulo p and −1 otherwise (the symbol of 0 mod p is 0 by convention). In this work, we focus on the
cryptographic security of a PRF family, called the Legendre PRF, and its extensions that are derived from
the evaluation of the Legendre symbol.

There exists vast mathematics literature asserting that Legendre and power residue symbols are partic-
ularly well suited to be applied in pseudorandom functions since they exhibit high pseudorandomness. One
of the first results is due to Pólya and Vinogradov (1918), and later Davenport (1931) cf.[Vin16, Dav31].

They assert that character sums behave like independent fair coin tosses, i.e.,
M+N∑
a=M+1

(
a

p

)
≤ √p log p. In the
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case of Legendre symbols, Peralta extended this result by showing that for any fixed n, n-grams of Legendre
symbols are asymptotically equally distributed [Per92]. Mauduit and Sárközy introduced several metrics to
measure the pseudorandomness of binary sequences and argued that “Legendre symbol sequences are the
most natural candidate for pseudorandomness” [MS97]. Ding et al. confirmed the high linear complexity of
Legendre symbol sequences [DHS98]. Tóth and Gyarmati et al. introduced new pseudorandomness measures
and asserted high values of those in Legendre symbol sequences [Tót07, GMS14].

Related work. In spite of the above results, surprisingly, the security guarantees of the Legendre PRF from
a cryptographic standpoint are poorly understood. The quantum case is settled whenever a quantum oracle
is available for the attacker as polynomial quantum algorithms are known to recover the key of a Legendre
PRF [vDHI06, RS04]. However, if the oracle can only be queried classically, then no efficient quantum
algorithm is known. In concurrent and independent work, Frixons and Schrottenloher [FS21] investigated
the quantum security of the Legendre PRF without quantum random-access to an oracle. While they
presented two new attacks in this setting, both of them remain impractical for key-recovery, strengthening
the security intuition. On the other hand, in the classical setting, only exponential key-recovery algorithms are
known due to Khovratovich [Kho19], Beullens et al. [BBUV20] and Kaluderovic et al. [KKK20]. One might
ask, whether there could be sub-exponential key-recovery attacks on the Legendre PRF. Damg̊ard in 1988
proposed as an open problem to assess the security and complexity of predicting Legendre or Jacobi symbols.
He was contemplating on reducing well-known number-theoretic assumptions to the problem of predicting
Legendre or Jacobi symbol sequences [Dam88]. In this paper, we show connections of the Legendre and
Jacobi sequences to a different branch of cryptography, namely, multivariate quadratic cryptography. This
study is useful in establishing the security of various cryptographic applications derived from the Legendre
PRF, e.g. the digital signature scheme by Beullens et al. [BdSG20].

Our contributions. In this work, we make the following contributions.

Legendre PRF as an MQ instance. We show that key-recovery attacks on the Legendre PRF are equiv-
alent to solving a specific family of sparse multivariate quadratic equation system over a finite field.
Moreover, the weak unpredictability of the PRF is reducible to the decidability of the aforementioned
equation system. These connections naturally extend to higher-degree Legendre PRFs and power
residue symbol PRFs.

Algebraic cryptanalysis. We conduct the first algebraic cryptanalysis on the MQ instance induced by the
Legendre PRF. We find that the Legendre PRF is immune to interpolation, direct (Gröbner basis)
and rank attacks. We also present algebraic geometric arguments to support the complexity of finding
solutions in these sparse MQ instances over a finite field. However, all these standard cryptanalytic
tools from multivariate cryptography do not improve the state of the art key recovery attacks against
the Legendre PRF [Kho19, BBUV20, KKK20]. On the other hand, we find that the induced MQ
instances behave like random MQ instances in terms of degree of regularity, i.e., the corresponding
ideals are semi-regular. This observation might be interpreted as evidence of the difficulty of breaking
the Legendre PRF.

Novel cryptographic applications of the Legendre PRF. Besides assessing the security of the Legen-
dre PRF, we utilise its special properties to apply it in various cryptographic tasks. Expressing the
Legendre PRF as an MQ instance facilitates novel cryptographic applications, i.e., verifiable random
functions. Moreover, we exploit its multiplicativity to construct (verifiable) oblivious (programmable)
pseudorandom functions. Due to their efficiency, these novel extensions can be applied in several
cryptographic protocols, such as state-of-the-art private set intersection (PSI) protocols.

Organisation. This paper is organised as follows. In Section 2, we provide the necessary background on
Legendre symbols and related hard cryptographic problems. In Section 3, we show that key-recovery attacks
against the Legendre PRF are equivalent to solving a specific MQ instance. In Section 4, we analyze the
security of the MQ instance induced by the Legendre PRF. We realize several cryptographic primitives from
the Legendre PRF in Section 5. Finally, we conclude our paper in Section 6 by pointing out future directions.

2 Preliminaries

Notations. Whenever we sample x from set S uniformly at random we write x ∈R S. Let p be an odd
prime and let K ∈R Fp be a secret key. The modular square root algorithm mod p is denoted as sqrtp(·).
Vectors of group elements are denoted in bold. In the following, n,m denote the number of variables and
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equations, respectively. Throughout this work, we will work in the multivariate polynomial ring Fp[x1, . . . , xn]
over a finite field Fp. LT(I) denotes the ideal generated by the leading terms of the ideal I. For the ease of
exposition we use [x] to denote a secret share of the value x ∈ Fp.

Background on the Legendre PRF. Damg̊ard proposed using the sequence of consecutive Legendre
symbols with respect to a large prime p for “pseudorandom bit generation” [Dam88].

Definition 2.1 (Sequential Legendre PRF) Let p be a prime, depending on the security parameter λ,
then let {a}K denote the following sequence:

{a}K :=

(
K

p

)
,

(
K + 1

p

)
, . . . ,

(
K + a− 1

p

)
.

Damg̊ard conjectured that the sequence is pseudorandom, when starting at a secret K. Sometimes, it is
easier to work with bits, rather than the original Legendre symbols themselves, therefore the Legendre PRF
is defined with Boolean output (for a key- and input-space Fp).

Definition 2.2 (Legendre pseudorandom function) The function LK(x) is defined by mapping the cor-
responding Legendre symbol to {0,1}, i.e.,

LK(x) =
⌊1

2

(
1−

(
K + x

p

))⌋
.

Definition 2.3 (Weak Unpredictability) A pseudo-random bit-generator Xλ(s) : {0, 1}λ → {0, 1}l(λ),
where s is a seed and l(·) is an expansion factor, is next bit unpredictable (sometimes weakly unpredictable)
if for all probabilistic polynomial time algorithm A, there is a negligible function negl(λ) such that

Pr[A(x1, x2, . . . , xl(λ)−1) = xl(λ)] ≤
1

2
+ negl(λ) ,

where the sequence X = x1x2 . . . xl(λ) is generated by Xλ(s) with s ∈R {0, 1}λ.

Assumptions. Grassi et al. formulated the following problem that underpins the security of the Legendre
PRF [GRR+16].

Definition 2.4 (Shifted Legendre Symbol (SLS) Problem) Let K be uniformly sampled from Fp, and

define OLeg to be an oracle that takes x ∈ Fp and outputs

(
K + x

p

)
. Then the Shifted Legendre Symbol

(SLS) problem is to find K given oracle access to OLeg with non-negligible probability.

It is conjectured that no classical adversary running in sub-exponential time could recover the hidden shift
K. One might also consider generalisations of the problem, such as changing the linear polynomial to a secret
degree-d polynomial in the Legendre symbol evaluations or changing the quadratic symbol to an rth power
residue symbol.

Definition 2.5 (Multivariate Quadratic (MQ) problem) Given random quadratic polynomials over a
finite field, i.e., (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ∈ F[x1, . . . , xn]m, find a common zero x ∈ Fn of the
polynomials f1, . . . , fm.

It is well-known that the MQ problem is NP-hard for any choice of finite field F [GJ79]. In cryptographic
applications, F is often F2 or an extension of it. However, throughout this work, we consider MQ problems
over Fp, for some large prime p. The MQ problem is one of the major candidates on which post-quantum
secure cryptosystems can be based. Currently, there are no known sub-exponential algorithms to solve the
MQ problem.

NIZK Arguments. Since in our VRF proposal we make use of non-interactive zero-knowledge (NIZK)
arguments, we recall the relevant syntax following [BFM19] and for the details and exact security requirements
we refer to [BFM19]. NIZK arguments consist of four PPT algorithms that are defined with respect to a
relation generator algorithmR-Gen(1λ) that, upon receiving some security parameter λ, outputs a polynomial
time decidable relationR : {0, 1}∗×{0, 1}∗ for which in our case {(φ,w) ∈ R | φ(w) = 0}, where the statement
φ is a MQ equation system over Fp and a valid witness w is a solution of the system.

• NIZK.Setup(R) → (σ, τ). For the relation R the setup produces a common reference string σ and a
simulation trapdoor τ .
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• NIZK.Prove(R, σ, φ,w) → π. Upon the (φ,w) ∈ R and the common reference string σ, the prover
returns an argument π.

• NIZK.Vfy(R, σ, φ, π)→ {0, 1}. Upon the common reference string σ, the statement φ and an argument
π the verification algorithm returns 0 or 1.

• NIZK.Sim(R, τ, φ) → π. Using the simulation trapdoor τ and statement φ the simulator returns an
argument π.

Definition 2.6 (Perfect NIZK argument [BFM19]) We say that a NIZK is a perfect NIZK argument
for R if it has perfect completeness, perfect zero-knowledge and computational soundness as defined in
[BFM19].

3 The Legendre PRF as an MQ instance

Hereby, we describe how to express the sequential Legendre PRF, cf. Definition 2.1, as a multivariate
quadratic equation system. We remark that in a similar fashion, all the variants (higher-degree) and exten-
sions (power-residue and Jacobi PRF) of the sequential Legendre PRF could be expressed as a suitable MQ
instance. Most of our results and observations can be easily ported to those MQ instances as well. Therefore,
in this work, we solely focus on the sequential Legendre PRF.

3.1 The Ideal

Let us fix an arbitrary quadratic non-residue r ∈ Z∗p. Furthermore, it is assumed that we are given {a}K ,

often a ≈ log(p). Let bi :=

(
K + i

p

)
and xi be the corresponding unknown. We think of the unknown xi

as the square root of K + i if bi = 1, otherwise xi denotes the square root of r(K + i), which is a quadratic
residue. Therefore, for each pair of neighboring Legendre symbols (bi, bi+1), we define a unique quadratic
equation. If bi = bi+1 = 1, then we know that x2i+1 = K + i+ 1 and x2i = K + i, hence

x2i+1 − x2i = 1. (1)

If bi = bi+1 = −1, then we have that x2i+1 = r(K + i+ 1) and x2i = r(K + i), hence

x2i+1 − x2i = r. (2)

Finally if bi = 1 = −bi+1 or bi = −1 = −bi+1 then we obtain the following two quadratic equations:

x2i+1 − rx2i = r, x2i+1 − r−1x2i = 1. (3)

Altogether, this allows us to efficiently transform any Legendre symbol sequence into an equivalent multi-
variate quadratic equation system. If we have n Legendre symbols, then we obtain m = n − 1 independent
equations in n variables, hence the MQ instance is underdefined. Note, that the equation system is extremely
sparse.

Example 1 We consider the following example to illustrate the quadratic equation system induced by the
Legendre PRF. Let p = 0xfffffffffffffffffffdd and K = 0x27aaa97c746c22e12d10. The smallest
quadratic non-residue modulo p is 2. We display the MQ instance induced by the evaluation of the sequential
Legendre PRF, {5}K = (1, 1,−1,−1, 1). Each consecutive Legendre symbol pairs define an equation. The
ideal corresponding to {5}K has the following form:

〈x21 − x20 − 1, x22 − 2x21 − 2, x23 − x22 − 2, x24 − 2−1x23 − 1〉.

Let I := 〈f1, f2, . . . , fm〉 be the ideal generated by the quadratic polynomials defined by Equations 1, 2
and 3. We want to solve simultaneously this equation system, i.e., finding points in the variety V (I). If
the sequence of Legendre symbols is long enough, heuristically O(log p), then there are O(1) solutions in Fp
(only considering solutions where xi ∈ [0, p−12 ] for all i) and one of them corresponds to the secret key K of

the PRF. Note that V (I) might contain additional solutions when considered above the algebraic closure Fp.
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3.2 The Gröbner basis

To better understand the variety V (I), first we describe the Gröbner basis of I [Buc65]. Interestingly, we
can easily compute the Gröbner basis of I regardless of the size of p or the length of the Legendre sequence
{a}K .

Theorem 3.1 Given a Legendre symbol sequence {n}K = (b0, . . . , bn−1) and its corresponding ideal I =
〈f1, f2, . . . , fm〉, where m = n− 1 as defined by the Equations 1, 2 and 3, its Gröbner basis with respect to
the (graded) lexicographic ordering, consists of the polynomials gi, for i ∈ [0, n− 2] such that,

gi =


x2i − x2n−1 + (n− i), if bn−1 = 1 ∧ bi = 1

x2i − rx2n−1 + r(n− i), if bn−1 = 1 ∧ bi = −1

x2i − r−1x2n−1 + (n− i), if bn−1 = −1 ∧ bi = 1

x2i − x2n−1 + r(n− i), if bn−1 = −1 ∧ bi = −1

(4)

Specifically, I = 〈g0, . . . , gn−2〉 and G := (gi)
n−2
i=0 is a reduced Gröbner basis.

Proof: With a case distinction one can show that G generates I. For instance, if bi = bj = bn−1 = 1, then
gi − gj = fi. The other cases are similar. Thus I ⊂ 〈G〉.

By the Buchberger-criterion, we only need to verify that for all i, j, it holds that the S-polynomial S(gi, gj)

divided by the Gröbner basis has no remainder, i.e., S(gi, gj)
G

= 0. This follows from Buchberger’s product
criterion but we include the following simple proof for completeness. We let i < j and hereby solely consider
the case when bi = bj = bn−1 = 1. The rest of the cases result in a similar calculation. By the definition
of the S-polynomials, we have S(gi, gj) = x2jgi − x2i gj . First, we divide S(gi, gj) by gi. We observe that

the remainder of the polynomial division is gj(x
2
n−1 − (n − i)), which is divisible by gj . Therefore, indeed

S(gi, gj)
G

= 0. Hence, the polynomials in G indeed form a Gröbner basis.
G is reduced, since all of its basis polynomials have a leading coefficient one. Moreover, 〈LT(gi)〉 = 〈LT(I)〉

and no trailing term of any gi ∈ G lies in 〈LT(I)〉.

Example 2 The Gröbner basis of the polynomials corresponding to the Legendre symbol sequence {5}K , from
Example 1, consists of the following quadratic bi-variate polynomials:

〈x20 − x24 + 4, x21 − x24 + 3, x22 − 2x24 + 4, x23 − 2x24 + 2〉.

We remark that one can view the resulting equation system as a simultaneous Pell-equation system over
Fp. Each polynomial in the Gröbner basis is quadratic, bi-variate and has p−1 solutions in Fp. Put differently,
seemingly no elimination ideal turns out to be helpful in finding a common zero.

First, we observe that the polynomials in I lack any special internal structure, i.e., the only relations
holding are the trivial ones. More formally, the m = n − 1 multivariate quadratic polynomials of I in n
variables define a regular ideal, i.e., V (I) is a 1-dimensional variety, namely, it contains an infinite number
of solutions in Fp. The proof of the following lemma is in Appendix B.

Lemma 3.2 I is a regular ideal.

3.3 The Field Equations

As we have seen previously the corresponding variety V (I) of the ideal I has dimension 1. However, in the
cryptanalysis of the Legendre PRF, we wish to obtain a 0-dimensional variety that contains the secret key
K of the PRF. As we show, this can be achieved by adding the field equations to the ideal I.

A sequence {n}K can be described with polynomials in Fp[x0, x1, . . . , xn]. Let us define IFE as follows:

IFE = I + {xpi − xi|i ∈ [0, n]}. (5)

Example 3 We illustrate the ideal IFE complemented with the field equations with parameters p = 191 and
{9}45 = (1, 1,−1, 1, 1, 1, 1, 1,−1). The smallest quadratic non-residue is r = 7 mod 191.

IFE = 〈−x20 + x21 − 1,−7x21 + x22 − 7,−x22 + 7x23 − 7,−x23 + x24 − 1,

−x24 + x25 − 1,−x25 + x26 − 1,−x26 + x27 − 1,−7x27 + x28 − 7,

x1910 − x0, x1911 − x1, x1912 − x2, x1913 − x3, x1914 − x4,
x1915 − x5, x1916 − x6, x1917 − x7, x1918 − x8〉.
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The corresponding Gröbner basis has the following form,

〈x20 − 45, x21 − 46, x22 + 53, x23 − 48, x24 − 49, x25 − 50, x26 − 51, x27 − 52, x28 + 11〉.

Note how helpful the Gröbner bases are in obtaining the secret key K. In addition, one can also read off all
the evaluated points from the Gröbner bases. If the variable xi corresponds to a residue, then x2i is one of
the evaluated points in the PRF. Alternatively, if xi corresponds to a non-residue, then r−1x2i mod p is the
evaluated point in the PRF.

Using the intuition of the Example 3, we can show in general the structure of the Gröbner basis of IFE.

Theorem 3.3 Let {n}K = (b0, . . . , bn−1) be a Legendre symbol sequence for which there exists a unique key
K. We consider its corresponding ideal complemented with the field equations IFE = 〈f1, f2, . . . , fm〉, where
m = 2(n − 1) + 1 as defined by Equation 5. Then the Gröbner basis of IFE with respect to the (graded)
lexicographic ordering, consists of the polynomials gi, for i ∈ [0, n− 1] such that,

gi =

{
x2i − (K + i), if bi = 1

x2i − r(K + i), if bi = −1
(6)

Moreover, G := (gi)
n−1
i=0 is a reduced Gröbner basis.

Proof: G generates the ideal IFE, since each fi can be expressed by using the generators gi. The generating
polynomials fi of the ideal I can be expressed as fi = rL0(K+i+1)gi+1 − rL0(K+i)gi. The field polynomials
can be also expressed using the generators of G. Specifically, let us denote the modular square roots of
rL0(K+i)(K + i) as b and c. Then, xpi − xi = giΠa6=b,c(x− a). Hence, IFE ⊂ 〈G〉. By the uniqueness of K, we
also have that 〈G〉 ⊂ IFE, since the corresponding varieties are equal above the algebraic closure.

Next, we verify that the Buchberger-criterion holds for the polynomials in G. In this case, S(gi, gj) =
x2jgi − x2i gj . Depending on the residuosity of bi, bj we have four cases, but for the sake of simplicity we only
consider here the case of bi = bj = 1. The other cases follow similarly. The S-polynomial is divisible by G,
since S(gi, gj) = x2j (x

2
i − (K + i)) − x2i (x2j − (K + j)) = −(K + i)x2j + (K + j)x2i = (K + j)gi − (K + i)gj ,

that is clearly divisible by the polynomials of G.
G is clearly a reduced Gröbner basis as each leading coefficient is one and no monomial of gi lies in

〈LT(G \ gi)〉.
In Section 4, we evaluate empirically the time complexity of computing the Gröbner basis of MQ instances
(the IFE ideal) induced by Legendre PRF sequences. The ideal IFE cannot be regular as it contains more
polynomials than variables. However, the Gröbner basis of IFE allows us to observe easily that in IFE there are
no internal dependencies between the ideal’s generating polynomials. More precisely, we prove the following
lemma in Appendix B.

Lemma 3.4 IFE is a semi-regular ideal, if the conditions of Theorem 3.3 are met.

The asymptotic behavior of the degree of regularity of semi-regular ideals is well understood [BFSY05]. The
degree of regularity dreg of an ideal is a measure to assess the theoretical complexity of computing the
Gröbner basis of an ideal. For a precise definition, the reader is referred to [CLO13]. Finally, we show the
usefulness of IFE in connection with the Legendre PRF.

Lemma 3.5 A successful Legendre key-recovery attack is equivalent in polynomial time to solving the MQ
system defined by the ideal IFE. On the other hand, the weak unpredictability of the Legendre PRF is equivalent
to the decidability of the induced MQ instance over the finite prime field.

Proof: Let us define the variety V and ideal I defined by the Legendre PRF evaluation {n}K . More
precisely, we fix a quadratic non-residue r ∈ Fp. In polynomial-time, we construct V ∗ = {(x0, x1, . . . , xn)|xi =
±sqrtp(rLK(i)(K + i)), i ∈ [0, n− 1]}. The corresponding ideal is denoted as I∗. We show that V ∗ = V (IFE).
First, V ∗ ⊂ V (IFE), because this is how the polynomials in IFE are constructed, such that all the points in
V ∗ vanish on the polynomials of IFE. The other inclusion is trivial by the construction of the polynomials of
IFE. IFE is a radical ideal, since every ideal that contains its field equations is a radical ideal [Ull12, Lemma
2.2.3.]. Hence, IFE is the smallest ideal that vanishes on V ∗.

As for the unpredictability of the Legendre PRF, if the MQ system corresponding to a purported PRF
evaluation is not solvable, then it is sure that the psuedorandom sequence is not obtained by evaluating the
Legendre PRF.

We highlight again the sparsity of the induced MQ instance. This is in contrast with most MQ public-
key cryptosystems, where the MQ instance is generated uniformly at random by the signer or encryptor.
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Typically, a random MQ instance has many non-zero coefficients resulting in large public keys. Contrarily,
in the case of the Legendre PRF, the MQ instances exhibit a specific structure (cf. Example 1, 3) stemming
from the multiplicative group of Fp. Interestingly, if a single coefficient in the Legendre MQ instance became
0, then the whole equation system suddenly would be trivially solvable by “back-substitution”.

In Section 4, we turn our attention to assessing the security of the MQ instance induced by the Leg-
endre PRF. In particular, we assess the complexity of solving the particular equation systems. Accord-
ing to [HLY12], in order to prove the security of a multivariate PRF, it suffices to show that the family
of MQ instances f induced by the PRF is hard to solve. This is because then the distributions D1 =
(f , f(x0, x1, . . . , xn−1)) and D2 = (f , Um) are computationally indistinguishable, where Um is a uniform
distribution over Fmp [HLY12].

4 Security of the Legendre PRF as MQ instances

In this section, we evaluate the complexity of a key recovery attack on the Legendre PRF as an MQ instance.
We find that direct attacks, solvers and other traditional algebraic attacks (interpolation attacks, MinRank
etc.) do not improve on the state-of-the-art classical attack due to Kaluderovic et al [KKK20].

4.1 Algebraic Cryptanalytic Attempts

Interpolation Attacks Interpolation attacks aim to interpolate a cryptosystem’s polynomial without
knowing its secret key [JK97]. In a single party setting, the Legendre PRF is typically evaluated more than
once for a particular key K, i.e., {a}K is used as a pseudorandom bit-string, where a > 0. In these cases,
the resulting bit-string is mapped to integers, for instance, in the following way,

FK(a) =

a−1∑
i=0

2a−1−i(K + i)
p−1
2 mod p (7)

Note that deg(FK(a)) = p−1
2 , i.e., the degree of the polynomial representing the Legendre PRF has almost

full degree over Fp, that is exponential in the security parameter. The polynomial is dense (all possible
monomials appear) and no coefficient is dependent on the key K. These properties make interpolation
attacks infeasible as they would require at least p−1

2 + 1 pairs of keys and pseudorandom field elements to
interpolate FK(a).

Direct Algebraic Attacks Direct algebraic attacks, i.e., computing the Gröbner basis [Buc65], aim to
directly solve the cryptosystem’s underlying MQ instance. The computational complexity of these attacks is
equivalent to that of computing the Gröbner basis [SKI04], which in turn depends on the degree of regularity,
dreg , of the MQ instance at hand. Hence, it is of great interest to compute dreg of an MQ cryptosystem.
However, in many cases, this is not possible without actually calculating the Gröbner basis itself. For m
equations of degree at most d in n variables, the arithmetic complexity of Gröbner basis computation are

22
O(n)

in general and O
(
m ·

(
n+dreg−1

n

)ω)
in case of 0-dimensional regular systems, where 2 ≤ ω ≤ 3 is the

linear algebra constant of matrix multiplication.
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Figure 1: The maximum degree in the Gröbner basis (left) and the exponential time complexity of computing
the Gröbner bases (right) for the ideals IFE defined by the Legendre PRF.
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Figure 2: The maximum degrees in the Gröbner basis of the ideal IFE as a function of the Legendre PRF
sequence length.

m 1 2 3 4 5 6 7 8 9 10

genus 0 1 1 5 17 49 129 321 769 1793

Figure 3: The genus of the algebraic curves containing the solutions corresponding to a Legendre symbol
sequence of length m+ 1.

We empirically evaluated the performance of computing the Gröbner basis for the ideal IFE induced by
the PRF evaluations, see Figure 1. We sampled random small primes with a given bit-length and evaluated
the Legendre PRF for a sequence of length seven and nine. We computed and recorded the time it takes
to compute the Gröbner basis of the corresponding ideal IFE. We repeated the experiment 10 times. We
observe that computing the Gröbner basis takes exponential time in the bit-length of the prime modulus.
We expect that launching key-recovery against the Legendre PRF using Gröbner basis methods is hopeless
for cryptographic parameter sets, i.e., for primes of size ≈ 2128. Attaining lower and upper bounds for dreg
to assess the exact complexity of the Gröbner basis computation of IFE is an interesting open problem.

MinRank Attacks The MinRank attack is a powerful tool in the cryptanalysis of multivariate cryptog-
raphy. MinRank attacks broke numerous multivariate cryptosystems, such as the cryptanalysis of HFE due
to Kipnis and Shamir [KS99] or the cryptanalysis of SRP encryption system [PPST17]. In the following, we
show that the Legendre PRF has high Q-rank, therefore it is immune to MinRank attacks. For the complete
calculation the reader is referred to Appendix E.1.

4.2 Group Structure of the Legendre PRF MQ Instances’ Solutions

We give an algebraic-geometric argument on the security of the Legendre PRF. In Section 3.1, we showed
that the PRF seed lies in the intersection of multiple Pell-conics. The solutions of a single Pell-equation over
Fp form a cyclic Abelian-group [Déc07]. These groups were previously suggested for use in cryptography as
it is believed that the discrete logarithm problem is hard in these groups [Lem03]. A single Pell conic has
genus 0. The intersection of two Pell-conics yields a nonsingular elliptic curve with genus 1. Specifically,
if one wants to find every secret key K that results in a 3-long specific binary sequence produced by the
Legendre PRF, e.g. (1,−1, 1), then every satisfying secret key K is a rational point on a sequence-specific
elliptic curve. However, if one considers longer sequences, then the resulting curve has a genus greater than 1,
cf. Figure 3. Hence, the solutions of those algebraic curves do not have an Abelian group structure equipped
with them. In the following, we compute the genus of the high-degree surfaces induced by the Legendre PRF
in the general case.

We want to calculate the genus of the algebraic curve containing the solutions of a Legendre PRF key-
recovery attack. More formally, we want to compute 1 − P (0), where P (·) is the Hilbert-polynomial of
the curve defined by the intersection of several Pell conics. Let (f1, f2, . . . , fm) be the given Pell conics in
variables x0, x1, . . . , xn and I the corresponding ideal generated by them. Note that n denotes the length
of the given Legendre sequence. For N � 0 , we have that P (N) is the dimension over Fp of the degree-N
homogeneous part of Fp[x0, . . . , xn]/I [Har13]. This is a linear polynomial. Since for all i, j, i 6= j we have
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(fi, fj) = 1, we obtain the following inclusion-exclusion type equation,

Pn(N) = gn(N)−
(
n− 1

1

)
gn(N − 2) +

(
n− 1

2

)
gn(N − 4)− . . . , (8)

where gn(N) denotes the number of N -degree monomials in Fp[x0, . . . , xn]. Therefore, gn(N) =
(
N+n
n

)
.

For concreteness and as an example let us consider the case of four intersecting Pell-conics, i.e., Legendre-
sequences of length five. We have the following expression for the Hilbert-polynomial, when n = 4:

P4(N) =

(
N + 4

4

)
− 3

(
N + 2

4

)
+ 3

(
N

4

)
−
(
N − 2

4

)
. (9)

By substituting N = 0, we have that P4(0) = −4, namely the arithmetic genus is 1− P4(0) = 5. We obtain
the following closed formula for the Hilbert-polynomial:

Lemma 4.1 Pn(N) = 2(n−1) ·N − (n− 3) · 2(n−2).

Proof: The proof is enclosed in Appendix E.2

5 Extensions of the Legendre PRF

In this section, we construct various extensions of the Legendre PRF and compare them with other state-of-
the-art constructions. We build verifiable random functions in Section 5.1, oblivious pseudorandom functions
(OPRF) in Section 5.2 and verifiable OPRF in Appendix G.

5.1 Verifiable Random Functions from the Legendre PRF

Verifiable random functions (VRFs) are natural extensions of PRFs [MRV99]. In a VRF, the PRF evaluator
can produce a publicly verifiable proof about the correct evaluation of the PRF FK(x) given the PRF input
x, the output FK(x) = y and a public verification key, without revealing anything about the secret key K. In
many applications, in addition to the efficient production of pseudorandom strings, one also needs to prove
the correctness of those pseudorandom bits, e.g., proof-of-stake consensus algorithms [GHM+17].

An advantage of the Legendre PRF arithmetization as an MQ instance, is that it allows to model the
PRF as a low-degree polynomial equation system. This arithmetization easily facilitates the construction
of efficient Legendre VRFs. By contrast, if one models the Legendre PRF as a high-degree p−1

2 univariate
polynomial by Euler’s criterion, then it hinders applying efficient proof systems for the correct evaluation
statement. Building on this observation and using NIZK with the Legendre PRF (following the high-level
approach sketched in [MRV99]), we propose a new VRF that admits post-quantum secure instantiations with
comparable performance to the state of the art.

Syntax and Security of VRFs

Definition 5.1 A verifiable random function is comprised of the following four polynomial-time algorithms
VRF = (VRF.PPGen,VRF.Gen,VRF.Eval,VRF.Vfy) with the following functionality:

• VRF.PPGen(1λ) → ppvrf . Upon the security parameter λ, the algorithm samples the public parameters
ppvrf .

• VRF.Gen(ppvrf)→ (sk, vk). Upon ppvrf , the algorithm samples secret and verification keys (sk, vk).

• VRF.Eval(ppvrf , sk, X)→ (Y, π). This algorithm evaluates a PRF F : {0, 1}λ × {0, 1}λ → {0, 1}λ using
the public parameters ppvrf , secret key sk and PRF input X and outputs the PRF value Y and a proof
of honest evaluation π.

• VRF.Vfy(ppvrf , vk, X, Y, π)→ {0, 1}. Upon the public parameters ppvrf , verification key vk, PRF input-
output pair X,Y and proof π, the verification algorithm either outputs 1 (accept) or 0 (reject).

Furthermore, the following requirements must hold:

1. Correctness: ∀λ ∈ N, ppvrf ←$VRF.PPGen(1λ), input X ∈ {0, 1}λ, keys (vk, sk)←$VRF.Gen(ppvrf), and
(Y, π)←$VRF.Eval(ppvrf , sk, X) it must hold that VRF.Vfy(ppvrf , vk, X, Y, π) = 1.
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2. Trusted1 computational2 unique provability: ∀λ ∈ N, X ∈ {0, 1}λ and PPT adversary A, there exists
a negligible function negl(λ) s.t.

Pr

VRF.Vfy(ppvrf , vk, X, Y0, π0) =
VRF.Vfy(ppvrf , vk, X, Y1, π1) = 1

∣∣∣∣∣∣∣
ppvrf ←$VRF.PPGen(1λ)

(vk, X, Y0, Y1, π0, π1)←$A(ppvrf)
Y0 6= Y1

 ≤ negl(λ) (10)

3. Pseudorandomness: Let A = (A1,A2) be an attacker with oracle access to VRF.Eval(ppvrf , sk, ·) in the
following pseudoramndomness game:

GVRFA (1λ)

ppvrf ←$VRF.PPGen(1λ)

(vk, sk)←$VRF.Gen(ppvrf), ρA ←$ {0, 1}λ

(X∗, st)←$AVRF.Eval(ppvrf ,sk,·)
1 (ppvrf , vk, ρA)

(Y0, π) := VRF.Eval(ppvrf , sk, X
∗)

Y1 ←$Y
b←$ {0, 1}
b′ := AVRF.Eval(ppvrf ,sk,·)

2 (Yb, st)

return b == b′

Denoting the oracle queries of A in the game with Q = (X1, . . . , XQ), we say that A is legitimate if for
any random coin choices ρA ∈ {0, 1}λ of A, there exists no i ∈ [Q] for which Xi = X∗ would hold. We
say that a VRF is pseudorandom, if for all legitimate A, its advantage in game GVRFA (1λ) is at most
negligible, i.e.,

∣∣Pr
[
GVRFA (1λ) = 1

]
− 1

2

∣∣ ≤ negl(λ) .

5.1.1 Construction.

We proceed with the construction of the Legendre VRF.

Intuition. We face two challenges in creating a Legendre VRF. First, we need a verification key vk. For
sk = K ∈R Fp, we let vk = {c · log p}K . Heuristic arguments imply that a long enough symbol sequence is
unique if its length is roughly log p [Per92]. Hence, a unique symbol sequence acts as a “commitment” to
sk. Second, we need to verify efficiently the correct evaluation of the Legendre PRF. We can leverage NIZK
argument systems, since we can express the correct PRF evaluation statement as a low-degree polynomial
equation system.

• VRF.PPGen(1λ) → ppvrf . On receiving the security parameter 1λ, the public parameter generation
algorithm runs (R, aux)← R-Gen and (σ, τ)← NIZK.Setup(R) and output ppvrf = (σ,R).

• VRF.Gen(ppvrf) → (vk, sk). Using the public parameters ppvrf , the key generation algorithm samples
random sk = K ∈R Fp, compute the Legendre sequence vk := {c·log p}K that serves as a “commitment”
to K (for a fixed constant c).

• VRF.Eval(ppvrf , sk, X) → (Y, π). The evaluation of the VRF takes the public parameters ppvrf , the
secret key sk = K and an input X to the PRF. Let Y be λ consecutive Legendre symbols, i.e.,
Y = {λ}K+Xλ, so that for all X we evaluate the symbol on disjoint intervals (we constrain X ≤ p/λ).
Disjointness is used to ensure the pseudorandomness of the VRF, see the proof in Appendix F. Let
π ← NIZK.Prove(R, σ, φ,w), where the witness w = sk and φ corresponds to a MQ equation system
that consists of

– quadratic equations corresponding to the evaluation of the Legendre PRF as defined in Section 3.1.
For an illustrative example, the reader is referred to Figure 4.

1Unique provability requires uniqueness to hold even when all the values are maliciously generated by the adversary.
[PWH+17] proposed the relaxation of requiring uniqueness to hold only when some values are assumed to be generated hon-
estly. While we use this approach, it is important to emphasize that we only assume that public system parameters (ppvrf) are
generated honestly, while e.g., [PWH+17] assumed this for the verification key that is a stronger assumption than ours.

2 We say that the unique provability requirement holds unconditionally if the probability in the requirement is equal to zero
even if A is not computationally bounded. The relaxation we use is due to [CL07] and it was first formulated by [GNPR16].
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– Similar equations showing the relation of sk and sk+Xλ, i.e., the ith bits of vk and Y correspond
to Legendre symbols of values with distance Xλ. For instance, in case of two quadratic residues,
we have x2i − x2vki = Xλ, cf. Equation 1. The equations corresponding to the other cases can be
similarly adapted from the quadratic equations of Section 3.1.

The algorithm outputs (Y, π).

• VRF.Vfy(ppvrf , vk, X, Y, π)→ {0, 1}. On receiving the public parameters ppvrf = (R, σ), verification key
vk, a VRF input-output pair X,Y with a proof π, the verification algorithm first determines φ based
on vk, X, Y , and |Y | = n, then runs NIZK.Vfy(R, σ, φ, π) and returns its output.

The following theorem, which we prove in Appendix F, formalizes the security of the Legendre VRF.

Theorem 5.2 Assuming the hardness of the SLS problem (Definition 2.1) the Legendre VRF is secure
according to Definition 5.1, if the underlying NIZK argument fulfils the perfect completeness, perfect zero-
knowledge and computational soundness requirements (defined in [BFM19]).

x0x0x1x1x2x2x3x3x4x4

×××××

2× 2×
−−−−

1222

Figure 4: Arithmetic circuit representation of the ZKP statement that proves the relation RPRF = {{5}K =
(1, 1,−1,−1, 1),K} from Example 1 where 2 is the least quadratic non-residue. Applying our Legendre PRF
arithmetization, the PRF evaluator proves that it knows the zeros of the following polynomials (2x24 − x23 =
2, x23 − x22 = 2, x22 − x21 = 2, x21 − x20 = 1). Secret input nodes are colored with yellow, while public output
nodes are colored with green. Nodes with 2x denote a multiplication gate, where one of the inputs is the
constant quadratic non-residue 2. Note, that for any Legendre PRF statement R∗PRF the arithmetic circuit
has a constant multiplicative depth of two.

5.1.2 Instantiations and Performance.

We instantiate our VRF with the state of the art succinct NIZK [Gro16]. However, it does not provide post-
quantum security. Another proof system family of zero-knowledge succinct transparent arguments of knowl-
edge (zkSTARK) was pioneered by the work of Ben-Sasson et al. [BSBHR18]. STARK proof systems provide
post-quantum security and does not rely on trusted setups. The performance evaluation of [BSBHR18] shows,
that the proof of a Legendre PRF statement with 221 multiplication gates, i.e., verifying ≈ 219 Legendre
symbols, can be generated in less than a second, while can be verified in 100ms. The proof size is ≈ 50KB.
An even more efficient VRF instantiation can be obtained by applying the NIZK of Beullens and Delpech
de Saint [BdSG20]. In Table 5.1, we compare the proposed VRF to the state of the art. The Legendre VRF
is a potential contender for being the most efficient post-quantum secure VRF in terms of proof size, prover
and verifier complexity.

5.2 Oblivious PRFs from the Legendre PRF

An oblivious PRF (OPRF) [NR97, FIPR05] is a two-party secure computation protocol (2PC) to evaluate
a PRF F (·, ·) in an oblivious fashion. Specifically, it allows a sender and a receiver with inputs K and
x, respectively, to compute F (K,x) such that the sender does not learn anything new from the protocol
messages, while the receiver can output F (K,x) without obtaining information about the used key K. In
this section, we show how to build an OPRF relying on the hardness of the SLS problem and also extend
this result to two variants of OPRFs, namely to programmable and to verifiable OPRFs (denoted as OPPRF
and VOPRF respectively).

These protocols are extensively used in various tasks. A non-exhaustive list of OPRF applications include
secure keyword search [FIPR05], private set intersection (PSI) [HL10, JL09, KKRT16, KLS+17], secure
deduplicated storage [KBR13], password-protected secret sharing [JKKX16], password-authenticated key
exchange [JKX18]. OPPRFs were used to build two-party PSI [PSTY19, KK20], multi-party PSI [KMP+17]
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Proof size Time complexity
|π| (λ = 128) Prove Verify Assumption

[GNP+15] 1G 0.34KB 1H + 1G 1H + 1G Factoring
[PWH+17] 1G + 2Fp 768 bits 3H + 2G 3H + 4G EC-DDH
[BGLS03] 1G 377 bits 2H + 1G 1P co-DH

[DY05] 1G 377 bits 1G + 1Fp 2G + 2P q-DBDHI
[LBM20] 1G 377 bits 1G 1P q-DDHE

[EKS+20]† O(k + l) 5KB O(kl) O(kl) Module-SIS

[BDE+21] (SL-VRF) Õ(|C|) 40KB O(|C|) O(|C|) LowMC, ROM
§5.1+SNARK 3G 209 bytes 9nG nG + 3P SLS, KEA
§5.1+STARK O(log(n))G ≈ 50KB O(n log(n))G O(log(n))G SLS, ROM

§5.1+ [BdSG20] O(n) ≈ 30KB O(n) O(λ) SLS, ROM

Table 5.1: Overview of various VRF constructions. Hashing, group operations, exponentiation and pairings
are denoted as H,G,Fp, P , respectively. Note that [EKS+20] only provides a few-time VRF. Module-SIS
and module-LWE ranks are denoted as k and l, respectively. |C| denotes the number of AND gates of the
LowMC [ARS+15] PRF applied in [BDE+21]. Here n is the length of the Legendre symbol sequence being
proved. Assumptions written in green are post-quantum secure, while those written in red are not.

and circuit-PSI that enables secure function evaluation on the intersection of sets [CGS22]. Finally, VOPRF
is the cornerstone of Privacy Pass, a privacy-preserving lightweight authentication mechanism [DGS+18] and
password-protected secret sharing [JKK14]. The importance of (V)OPRF is also indicated by the ongoing
effort to standardize them [DFHSW21].

5.2.1 The Legendre OPRF

Motivated by the wide range of applications, our goal is to present a novel pathway to the realization of
OPRFs that we formally define in Figure 5a.

Functionality FOPPRF

Participants: sender S, receiver R.
Parameters: a PRF F : K×X → {0, 1} for key-space K input-space X , the number of programmed points n.
Input: - S: K ∈ K, x′1, . . . , x

′
n ∈ X and y′1, . . . , y

′
n ∈ {0, 1},

- R: x ∈ X .
Output: - S obtains nothing,

- R obtains F (K,x) that is y′i if x = x′i ∀i ∈ {1, . . . , n}.

(a) The ideal OPRF functionality. Together with the extensions in blue, we get
the OPPRF ideal functionality.

Functionality FPrep

RandSquare: Sample s ∈R Fp and output shares [s2].

RandSquare′: Sample 0 6= s ∈R Fp and output shares
[s2].

TripleGen: Sample a, b ∈R Fp and output shares
[a], [b], [ab].

(b) Ideal preprocessing functionality.

Figure 5: Ideal functionalities.

We observe that the distributed protocol for evaluating the Legendre PRF of [GRR+16] yields an OPRF.
For completeness, we include their protocol presented in the language of OPRFs. The key ingredient – that
was used in [GRR+16] for the secure computation of the Legendre PRF in the multi-party setting – is that the
key of the PRF can be masked without changing the PRF value by utilizing the multiplicative property of the
Legendre symbol. Namely, if we choose a random square and multiply it with some number, the Legendre
symbol of the resulting value will be equal to the symbol of the original number. This fact gives rise to
the arithmetic sharing-based3 OPRF protocol ΠOPRF

Legendre, depicted in Figure 6a. The protocol is divided into
online and offline parts. In an offline preprocessing phase the parties can compute the shares of the previously
mentioned random square and a so-called Beaver multiplication triple [a], [b], [ab] (for some random a, b) both
of which operations are entirely independent of the inputs of the participants. For simplicity, we abstract
away the underlying details of preprocessing and use the necessary operations in a black-box manner through
the ideal functionality of Figure 5b. The realization of FPrep is possible using a 2PC framework in the semi-
honest model, such as ABY by [DSZ15].

3We denote secret shares in square brackets, i.e., [x]1 = r ∈R Fp and [x]2 = x− r so [x]1 + [x]2 = x. For simplicity, we omit
the lower indices denoting the owner of the given secret share, when this does not cause confusion.
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After exchanging secret shares of their inputs, both participants execute the same computation on their
shares in the online phase. While the addition of secret shares is for free, i.e., corresponds to ordinary local
addition, share multiplication, which we denote with �, consumes one multiplication triple and requires one
round of interaction and 2 group elements of communication. Concretely, [x] � [y] = [xy] can be computed
by revealing (x+ a) and (y+ b) (that does not disclose information about x and y, because a, b are random),
then (x+ a) · (y+ b)− (x+ a) · [b]− (y+ b) · [a] + [ab] = [xy] can be evaluated. The resulting online part then
consists of three rounds of interaction and 5 group elements of communication.

Protocol ΠOPRF
Legendre

Participants: sender S, receiver R.
Preprocessing:

1. execute FPrep.RandSquare,
2. execute FPrep.TripleGen.

Input:
– S: K ∈ Fp,
– R: x ∈ Fp.

Evaluation:
1. S, R share [K], [x] with each other,
2. both compute [c] = [s2] � ([K] + [x]),
3. S sends [c] to R,
4. R outputs Lp(c) = Lp(K + x).

(a) Legendre OPRF based on [GRR+16].

Algorithm OPPRF.KeyGen
(
1λ,K, (x1, y1), . . . , (xn, yn)

)
→ p

1. Compute yi(−1)
(p−1)(K+xi−1)

4 =

(
p

K + xi

)
,

2. identify mi ∈ ZK+xi
, s.t.

(
mi

K + xi

)
= yi(−1)

(p−1)(K+xi−1)

4 ,

3. ∀i let Mi =
{
m|m ∈ Zxi

∧ bi(−1)
(p−1)(K+xi−1)

4 =

(
m

K + xi

)}
,

4. ∀mij ∈Mi and i ∈ [1, n] solve the following system of congruences for p using the Chinese-Remainder
Theorem: p ≡ mij mod K + xi.

Output: p.

(b) Programming the Legendre OPRF of Figure 5a by appropriate parameter se-
lection. For ease of exposition, we assume that all the programmed points xi are
primes.

Figure 6: Legendre OPRF and the algorithm to extend it to be an OPPRF.

Theorem 5.3 The protocol ΠOPRF
Legendre securely computes the functionality FOPRF in the FPrep-hybrid model,

if the SLS problem is hard.

For brevity, we omit the proof since it follows the blueprint of the proof of [GRR+16, Theorem 2.]. We note
that ΠOPRF

Legendre is only statistically correct as with probability 1/p = Pr(s2 = 0) the output is necessarily

zero. For perfect correctness, we need to use RandSquare′ in the preprocessing phase to rule out s2 = 0 the
cost of which appears in the round complexity, resulting in expected constant (one) round. Our efficiency
comparisons in Table 5.2 show that in terms of both message size and computational complexity, the Legendre
OPRF is a promising candidate for a post-quantum OPRF since the underlying SLS problem is not known
to be vulnerable to post-quantum attacks.

OPRF
Comm. Complexity Comp. Complexity

Model Assumption
Rounds Msg. Size Concr. eff. Client Server

RSA-OPRF 2 2 G 0.77KB 1H + 2 G 1 G ROM 1-more-RSA-inv
[JKK14] 2 2 G 64 byte 1H + 2 G 1 G ROM/Standard EC-DDH

[KKRT16]† 5 2λ bits 256 bits 1H + 2XOR 2H + 2XOR ROM OT∗

[ADDS19] 2 O(λc) Fp ≈ 1MB O(λc) Fp O(λc) Fp QROM RLWE
Figure 6a 3 5λ G 13.44KB 17λ G 17λ G ROM SLS, OT∗

Table 5.2: Comparing the online costs of various Oblivious PRF protocols. In the columns of communication
and computation complexity G denotes a group element or group operation, while H denotes a hashing oper-
ation. Concrete efficiency of obtaining λ pseudorandom bits with the corresponding OPRFs were computed
with λ = 128 bit-security. (Q)ROM stands for the (quantum) random oracle model. Note, that the PRF
of [KKRT16] is only a relaxed PRF. RLWE is the abbreviation for the ring-learning with errors assumption.
Oblivious transfer (OT) can be instantiated both with classic and post-quantum security. Non post-quantum
secure assumptions are written in red, while assumptions written in green are secure even against quantum
attackers.

5.2.2 OPPRF: Programming the Legendre OPRF

The notion of oblivious programmable PRF (OPPRF) was introduced by Kolesnikov et al. [KMP+17]. A
PRF is an OPPRF if it is in addition to being an OPRF, also allows the sender to program the output of
the OPRF at certain evaluation points (see Figure 5a). Kolesnikov et al. [KMP+17] formulated three generic
OPPRF constructions, that can turn any OPRF into an OPPRF. We follow the terminology of these generic
constructions and introduce two algorithms that aims to turn an OPRF into an OPPRF:

– OPPRF.KeyGen(1λ,P) → (K, hint): Given a security parameter and set of programmed points P =
{(x1, y1), . . . , (xn, yn)} with distinct xi-values, generates a PRF key K and (public) auxiliary informa-
tion hint.
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– OPPRF.Eval
(
F (K,x), hint

)
→ y: Using the hint turns the OPRF output into the OPPRF output y.

We require from an OPPRF the following high-level security notions to hold (for the formal security defini-
tions, the reader is referred to [KMP+17]):

Correctness: TOSC
(x, y) ∈ P ∧

(
(K, hint)←− OPPRF.KeyGen(P)

)
=⇒ OPPRF.Eval

(
F (K,x), hint

)
= y.

(n, t)-security: No efficient adversary is able to distinguish the n programmed points from non-programmed
points given oracle access to the PRF using t queries. Note that this definition implies that unpro-
grammed PRF outputs (i.e., those not set by the input to OPPRF.KeyGen) are pseudorandom.

Programming the Legendre OPRF. We show how one can program efficiently the output of the Leg-
endre PRF by carefully choosing the prime modulus, which defines our OPPRF.KeyGen algorithm. This
strategy already highlights the strength of the resulting OPPRF: it does not require an explicit hint beyond
the prime modulus that is a public parameter anyway. Moreover, the OPPRF.Eval algorithm can simply
return the output of the Legendre OPRF.

The näıve way to program the Legendre PRF would be to generate primes randomly and hope that the
PRF outputs match the desired values yi at the programmed points xi for a given key K. This certainly
works for small number of programmed points, however, this näıve PRF programming method incurs an
exponential time-complexity in the number of programmed points. To circumvent the exponential time-
complexity of the programming, we take a different approach, cf. Figure 6b. The goal of the algorithm is to
find a prime p, such that

i ∈ [0, n) : yi =

(
K + xi
p

)
=

(
p

K + xi

)
(−1)

(p−1)(K+xi−1)

4 .

Without loss of generality, we search p in the form p ≡ 1 mod 4. Moreover, we assume that the programmed
points K + xi are prime numbers. This assumption is natural and eases our exposition. This is because
programming the PRF output at a composite K + xi is reducible to programming the PRF output at the
prime factors of K + xi due to the multiplicativity of the Legendre symbol. For each K + xi the value(

p

K + xi

)
establishes possible residue classes for p mod K + xi. The appropriate modulus p can be obtained

via the Chinese remainder theorem. Therefore, the “programmability” of the Legendre PRF is rather space-
inefficient, since p ≈

∏n
i=1K + xi. Hence, the number of programmed points is somewhat limited with our

algorithm. We note that the main ideas of this programming method were already proposed in a different
context (secure comparison protocols) by Yu [Yu11]. In a similar fashion, one could generalize the approach
of Figure 6b to power residue symbols, i.e., programming power residue symbol PRFs. Such generalization
was shown recently by Cascudo et al. [CS20] who proposed as an open question to find concrete applications
for their protocol. We note that their methods can be applied to program power residue symbol OPRFs.

Hint size and batch OPPRFs. As our novel programming methods – specifically designed for the
Legendre OPRF – minimize the necessary auxiliary information for the OPPRF evaluation, it outperforms
all existing solutions in this metric. For a detailed comparison, we refer to Table 5.3. Finally, we note that
[PSTY19] uses a so-called “Batch OPPRF” that – informally – invokes independent OPPRF instances with
a total number of programmed points σ (the number of programmed points per instance may vary but has to
remain hidden) and only uses a single hint with size linear in σ. Since the hint size of the Legendre OPPRF
is independent of the number of programmed points, it naturally fulfils the requirement of Batch OPPRFs.

OPPRF
Programming

complexity
Hint size

Online
communication

complexity

Constraint on no. of
programmed points

No. of
evalua-
tions

Lagrange interpol. O(n2) O(n) (n+ kn) G space-efficiency any
Garbled Bloom Filter O(nλBF) nλBF (60n+ kn) G space-efficiency any

Table-based O(n) O(n) (n+ kn) G space-efficiency 1

Legendre (Fig. 6b) O(n log n) 1 O(n) G depends on λ any
Legendre brute-force O(2n) 1 1 G time-efficiency any

Table 5.3: Comparison of the generic OPPRF constructions of [KMP+17] (which can be based on an OPRF,
e.g. that of [KKRT16]) and the Legendre OPRF that was shown to be programmable in Section 5.2.2. The
number of programmed input positions is denoted as n, λBF is the soundness parameter of the Bloom filter,
and k denotes the number of base-OTs, typically k ≈ 4λ.
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6 Future Directions

We perceive three main areas for future work. There is still quite some work to be done on the provable
security part of the Legendre PRF. It would be fascinating to find new connections to other post-quantum
secure cryptographic assumptions, e.g. LWE. For instance, note that the probability distribution of the
coefficients of the quadratic terms in the induced MQ instance follows a discrete Gaussian distribution.
Could one reframe the MQ instance as an LWE instance for a suitable change in the variables? Moreover,
it would be fruitful to establish concrete and asymptotic lower bounds on the degree of regularity of the
Legendre PRF’s MQ instances. That would pave the path for settling the provable security of this PRF.
It is quintessential to improve on existing key-recovery attacks or find new, more performant cryptanalytic
approaches. It would allow us to better estimate the bit-security of the Legendre PRF and other variants. We
foresee many more novel cryptographic applications of the Legendre PRF due to its homomorphic properties
and MPC-friendliness. For instance, it seems accessible to prove the existence of related-key secure PRFs or
key-homomorphic PRFs from quadratic and power residue symbol PRFs.
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iacr eprint server, 2004.
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A Background

For completeness, we define possible generalisations of the Legendre PRF.

Definition A.1 (Higher-degree Legendre PRF) In case of the Higher-degree Legendre PRF with a se-
cret polynomial f ∈R Fp[x], let {a}f denote the following sequence:

{a}f :=

(
f(0)

p

)
,

(
f(1)

p

)
, . . . ,

(
f(a− 1)

p

)
.

Definition A.2 (rth power residue function) Let p ≡ 1 mod r and g ∈ F×p a generator. The rth power

residue function l(r) : Fp → Zr is defined as

l(r)(a) :=

{
k, if a 6≡ 0 mod p ∧ a/gkis an rth power mod p

0, if a ≡ 0 mod p.

Similarly to Definitions 2.1 and A.1, we might introduce the power residue PRF and its higher-degree
variants, relying on the power residue function. Once again, we note that our results and observations can
be generalized to the higher-degree and other variants of the Legendre PRF.
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B Proofs from Section 3

Lemma B.1 I is a regular ideal.

Proof: Let I = 〈f1, . . . , fm〉 be the ideal induced by the Legendre PRF, and we assume that fi forms
a reduced Gröbner basis. For a homogeneous sequence of polynomials (f1, . . . , fm) being regular, we need
to show that if for all i ∈ [1,m] and g such that gfi ∈ 〈f1, . . . , fi−1〉, then g ∈ 〈f1, . . . , fi−1〉. An affine
sequence of polynomials (f1, . . . , fm) is regular by definition, if the homogeneous sequence (fh1 , . . . , f

h
m) is

regular, where fhi is the homogeneous part of fi of highest degree with respect to the (graded) lexicographic
monomial ordering. In our case (fh1 , f

h
2 , . . . , f

h
m) = (x21, x

2
2, . . . , x

2
m).

Since fhi = x2i , in our case for every i, therefore the ideal Ii−1 := 〈fh1 , . . . , fhi−1〉 is a monomial ideal.
If gfhi ∈ Ii−1, then gfhi is divisible by a generator of Ii−1, since Ii−1 is a monomial ideal [CLO13]. Since
(fi, fj) = 1, for every j ∈ [1, i−1], thus it is necessary that g is divisible by some fhj = x2j ∈ Ii−1, for j ≤ i−1.

Namely g = x2jg
′ ∈ Ii−1, for some polynomial g′. This completes the proof.

Lemma B.2 IFE is a semi-regular ideal, if the conditions of Theorem 3.3 are met.

Proof: The proof’s blueprint is the same as that of Lemma 3.2. We consider the generating set for
IFE provided by the Gröbner basis, i.e., IFE = (f1, . . . , fm). By definition, a homogeneous sequence of
polynomials (f1, . . . , fm) is semi-regular if for all i = 1, . . . ,m and g such that gfi ∈ 〈f1, . . . , fi−1〉∧deg(gfi) <
dreg then g is also in 〈f1, . . . , fi−1〉. An affine sequence of polynomials (f1, . . . , fm) is semi-regular if the
sequence (fh1 , . . . , f

h
m) is semi-regular, where fhi is the homogeneous part of fi of highest degree. In our case

(fh1 , . . . , f
h
m)) = (x21, . . . , x

2
m). Previously in the proof of Lemma 3.2, we saw why (x21, . . . , x

2
m) forms a regular

ideal.

C Adding More Polynomials to the Ideal of the PRF

As we have seen in Section 3.3, the Legendre key-recovery attack is equivalent to solving an overtedermined
MQ instance. However, when p ≡ 3 mod 4 or p ≡ 5 mod 8, we might decrease the complexity of solving
the resulting MQ instance by adding new equations. Observe that in these cases, we can express the modular
square roots as follows:

sqrtp(x) : y =

{
±x

p+1
4 mod p, if p ≡ 3 mod 4

±x(2x)
p−5
8 (4x

p−1
4 − 1) mod p, if p ≡ 5 mod 8.

(11)

If p ≡ 1 mod 8, it is not possible to express easily the sqrtp(·) algorithm as a polynomial function, since in
that case the root-finding Tonelli-Shank algorithm is a probabilistic algorithm. Nevertheless, we can obtain
O(log2 p) new polynomials in the other cases, one for each quadratic term xixj :

xixj = sqrtp(x
2
ix

2
j ). (12)

Similarly, we can add new polynomials to the system involving the linear terms of the unknowns for every
i 6= j,

xi = sqrtp(r
L0(xi)−L0(xj)(x2j − rL0(xj)(j − i))). (13)

All polynomials in Equations 12 and 13 have degree ≈ p. Therefore, the addition of each of those
polynomials incur the inclusion of ≈ log p new quadratic equations in ≈ log p new variables in order to break
down the almost full degree polynomials to quadratic polynomials. All in all, we end up with an equation
system in n variables and m = n + k equations, where m,n ∈ O(log3 p) and k ≈ log2 p. We leave it as
future work to analyze the independence of the newly introduced polynomials of Equation 12 and 13 from
the polynomials of the ideal IFE. We suspect that adding these high-degree polynomials to the ideal does
not significantly speed up the Gröbner basis computation. Hence, these new polynomials might not have
cryptanalytic relevance.

D Group Structure of the Solutions of a Legendre PRF key-recovery
attack

In Section 4.2, we showed that if there exists a probabilistic polynomial-time algorithm that breaks the SLS
problem, then it could be used to find solutions of high order algebraic curves over Fp. This is essentially an
equivalent restatement of viewing the Legendre PRF as an MQ instance.
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Moreover, the resulting algebraic curves have a genus greater than 1, implying that the solutions lying
on the curve lack an Abelian group structure. However, in the case of shorter sequences, e.g. Legendre
sequences of length three, all the points that result in a specific Legendre symbol sequence of length three lie
on a sequence-specific non-singular elliptic curve. In the sequel, we show how to obtain the Legendre-sequence
specific elliptic curve equation by elementary methods.

D.1 The Case of Consecutive Legendre symbol triplets

Let us suppose that one wants to generate key candidates K
′
, whose subsequent Legendre symbols match

the first three symbols of a sequence, i.e.
((K ′

p

)
,

(
K
′
+ 1

p

)
,

(
K
′
+ 2

p

))
= (b0, b1, b2). Hereby, we show

that such key candidates can be obtained as solutions of an elliptic curve over Fp. One might generalise this
approach to potentially speed up key-recovery attacks against the Legendre PRF and reduce its security to
finding rational points on higher order algebraic curves over Fp.

For the sake of concreteness, let us assume that (b0, b1, b2) = (1, 1, 1). Similar techniques apply for other
bit-sequence patterns. Put it differently, the shifted Legendre sequence starts with 3 quadratic residues. Let
us denote the corresponding square roots as a, b, c mod p. Therefore we wish to solve the following equations:

c2 − b2 = b2 − a2 = 1

We introduce the following notation: s := b − a, 1
s := b + a and c−b

b−a = λ. We have that 2b = s + 1
s and

2b = 1
sλ − sλ. This implies the following:

s+
1

s
=

1

sλ
− sλ

s2λ+ λ = 1− s2λ2

s2 =
1− λ
λ2 + λ

s2(1 + λ)2λ2 = (1− λ)(1 + λ)λ (14)

By denoting the left hand side of Equation 14. as t2, we finally obtain the following nonsingular elliptic curve
of genus 1:

t2 = λ3 − λ.

4-symbol case (sketch): Now, let us assume we have an additional b3 = 1. Let d be the square-root of
K + 3. Furhtermore, let r := c− b and µ := d−c

c−b . Given Equation 14, we also have that

r2(1 + µ)2µ2 = (1− µ)(1 + µ)µ (15)

Since, r = sλ we can squeeze Equation 14 and Equation 15 into a single two-variable quartic equation:

λ2µ2 + λ2µ− λµ2 − λµ+ λ− µ− λµ+ 1 = 0

D.2 An Alternative View

We view the resulting equation system globally and assess the probability distribution of each coefficient to
appear in the MQ instance. Adjacent pairs of Legendre symbols are asymptotically equi-distributed [Per92].
Therefore we can easily describe the discrete probability distribution of the coefficients in the induced equation

system. Let X
(i,j)
q , X

(i)
l , Xc be the random discrete variables corresponding to the ith unknown’s quadratic,

linear and constant terms. For the equation system’s coefficients, we have the following discrete probability
distributions given Equations 1, 2 and 3. For the constant terms, we have that

Pr[Xc = 1] = Pr[Xc = r] =
1

2
. (16)

Every linear term is zero, namely,

Pr[X
(i)
l = 0] = 1,∀i ∈ [1, n]. (17)
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Finally, the quadratic terms’ coefficients have the following probability distribution. The Pr[X
(i,j)
q = 0] = 1,

if i 6= j,. Otherwise, we have that

Pr[X(i,i)
q = 1] =

1

n
, Pr[X(i,i)

q = −1] =
1

2n
,

Pr[X(i,i)
q = −r] = Pr[X(i,i)

q =− r−1] =
1

4n
, Pr[X(i,i)

q = 0] = 1− 2

n
.

(18)

We remark that the discrete probability distribution of the quadratic terms is reminiscent of a discrete
normal Gaussian distribution with average 0, whenever n goes to infinity. If the linear terms, cf. Equation 17,
would follow a uniformly random distribution after a suitable change in the variables, the resulting MQ
instance could be seen asymptotically as a learning with errors (LWE) instance. We leave this as an interesting
future direction to investigate further connections to other post-quantum secure assumptions.

E Algebraic Cryptanalysis of the Legendre PRF

E.1 Computing the Q-rank of the Legendre PRF

The Q-rank of a MQ cryptosystem plays a crucial role in cryptanalysis. Every multivariate quadratic equation
system f can be lifted to a quadratic form Q in an extension field. Let E denote an extension field over Fp.
Informally, Q-rank is the rank of the quadratic formQ as a matrix over the field E. Low Q-rank is detrimental,
since it facilitates successful cryptanalysis (key-recovery, decryption etc.) [KS99, PPST17].

Definition E.1 (Q-rank) The Q-rank of a multivariate quadratic map f : Fnq → Fnq over the finite field Fq
is the rank of the quadratic form Q on the extension field E[X0, . . . , Xn−1] defined by Q(X0, . . . , Xn−1) =

φ ◦ f ◦ φ−1(X,Xq, . . . , Xqn−1

), under the identification φ: X0 = X,X1 = Xq, . . . , Xn−1 = Xqn−1

.

We compute now the Q-rank (cf. Definition E.1) of the Legendre PRF equation system [Osp16]. We
rewrite each generator polynomial fi in the ideal I = 〈f1, . . . , fm〉 induced by the Legendre PRF, as folllows:

fi(x1, . . . , xn) =

n∑
i,j=1

aijxixj +

n∑
i=1

bixi + c = xTAix +Bix + c, (19)

where x = [x1, . . . , xn]T , Ai ∈ Mn×n(F) is the matrix [aij ]ij and Bi ∈ M1×n(F) is the matrix [bi]1i. We
note, that in the case of the Legendre PRF, Bi = 0. Each polynomial fi can be represented in the extension
field, in the following form:

Fi(X) =

n∑
i,j=1

αijX
qi−1+qj−1

+

n∑
i=1

βiX
qi−1

+ γ = XTMiX +NiX + γ, (20)

where X = [Xq0 , . . . , Xqn−1

]T ,Mi ∈ Mn×n(E) is the matrix [αij ]ij and B ∈ M1×n(F) is the matrix [βi]1i.
It is well-known that a quadratic polynomial equation system F defined by the generating polynomials fi of
I, can be lifted to the extension field by

Lft(F )(X) = φ−1 ◦ F ◦ φ(X) = XTMX +NX + γ, (21)

where x = φ(X). Our goal is to establish the rank of the matrix M ∈ Mn×n(E). We start off by defining
X = ∆ · φ(X), where ∆ is the following invertible matrix,

∆ =


y0 y1 . . . yn−2 yn−1

(y0)q
1

(y1)q
1

. . . (yn−2)q
1

(yn−1)q
1

(y0)q
2

(y1)q
2

. . . (yn−2)q
2

(yn−1)q
2

...
...

. . .
...

...

(y0)q
n−1

(y1)q
n−1

. . . (yn−2)q
n−1

(yn−1)q
n−1

 (22)

Equipped with all this, we can now define M ∈ Mn×n(F), N ∈ M1×n(F) and γ ∈ E from the lifting
Equation 21. We define γ = c1 + c2y + · · ·+ cny

n−1 and the matrices as,

M = (∆T )−1
( n∑
i=1

yi−1Ai

)
∆−1 and N =

( n∑
i=1

yi−1Bi

)
∆−1. (23)

Note that in case of the Legendre PRF MQ instance, N = 0, since Bi = 0 for all i. The second term in
matrix M ,

∑
yi−1Ai is a double diagonal non-singular matrix. Hence, M has full rank, since it is the product

of non-singular matrices.
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E.2 Group Structure of the Legendre PRF MQ Instances’ Solutions

Lemma E.2 Pn(N) = 2(n−1) ·N − (n− 3) · 2(n−2).

Proof: We first determine the linear coefficient by considering the difference polynomial Qn(N) = Pn(N +
1)−Pn(N), which is a constant by the linearity of Pn. Using the inclusion-exclusion argument again, we see
that Qn(N) is also a Hilbert-polynomial. To obtain an ideal with Qn(N) as its Hilbert polynomial, take an
(n−1)-variable ring and n−1 polynomials, each of which is quadratic in a distinct single variable. The ideal
generated by these polynomials is zero-dimensional, and therefore has a constant Hilbert polynomial whose
value is the size of the corresponding variety, i.e., 2n−1. For the constant term, first note that for any real value
of x,

(
x
n

)
= (−1)n

(−x+n−1
n

)
. Therefore, by substituting N = (n− 3)/2 into (8), the terms gn(N − 2k)

(
n−1
k

)
and gn(N − 2(n− k))

(
n−1
n−k
)

cancel, and the middle term (for odd n) is 0, hence Pn(n− 3/2) = 0, which gives

the constant term.

F Proof of Theorem 5.2

Next, we sketch the security proof of the Legendre VRF.
Proof: To prove the theorem, we show that the requirements of Definition 5.1 are fulfilled by the Legendre
VRF. Correctness directly follows from the prefect correctness of NIZK. To see that pseudorandomness holds,
notice that game GVRFA (1λ) is indistinguishable from the pseudorandomness game for PRFs as long as the
honestly evaluated π in the answers for A’s evaluation queries can be substituted by simulated π. Indeed,
the game knows τ,R, φ for such simulation. Since the perfect zero-knowledge property of NIZK guarantees
this, the proposed VRF is pseudorandom if the Legendre PRF is pseudorandom, i.e., assuming the hardness
of the SLS problem.

We prove trusted computational unique provability indirectly. Therefore, let us assume that there exists a
PPT A for which the probability in equation (10) is greater than negl(λ). As the values vk, X, Y determine
φ, it follows that for the above A

Pr

NIZK.Vfy(R, σ, φ0, π0) =
NIZK.Vfy(R, σ, φ1, π1) = 1

∣∣∣∣∣∣
ppvrf ←$VRF.PPGen(1λ)

(vk, X, Y0, Y1, π0, π1)←$A(ppvrf)
Y0 6= Y1

 > negl(λ) .

This only holds if either NIZK.Vfy accepts false statements with non-negligible probability or both statements
are true. As the first option would contradict with the assumed computational soundness of NIZK, both
statements has to be true, i.e., (φ0,w0), (φ1,w1) ∈ R. Two Legendre sequences of the same length are equal
if their starting points are equal, so Y0 6= Y1 =⇒ K0 + Xλ 6= K1 + Xλ =⇒ sk0 = K0 6= K1 = sk1.
However, both statements φ0 and φ1 ensures that {c · log p}K0 = {c · log p}K1 = vk implying that the values
of these different Legendre sequences must collide with non-negligible probability. This is contradiction since
we know from [Per92] that the probability of such collision is 1/2c log p = 1/2cλ < negl(λ).

G The Legendre Verifiable OPRF

In Section 5.2, we built an OPRF relying on semi-honest 2PC that clearly cannot prevent the participants
from deviating the protocol. What is even more problematic in practice is that sometimes the server is
supposed to behave consistently in multiple OPRF evaluations, namely, it is assumed to use the same key.
To check this on the receiver side – without obtaining information about the key – active security alone is
not enough, but in an initialization phase the sender has to commit to the key(s) it wishes to use. Such
commitments can then be published (as a “public key”) to enable the receiver the verification of whether
distinct OPRF evaluations happened under the same or different keys. OPRF protocols that guarantee
such verifiability are called verifiable OPRFs (VOPRFs). In Figure 7a, we recall the ideal functionality as
defined in [ADDS21], for the precise security definition we also refer to this work. We note that different
formalizations of VOPRF exist, e.g. [JKK14] considered in the concurrent setting when defining the universal
composable VOPRF.

Turning our attention to the realization, it seems obvious that special purpose protocols beat general
ones in all efficiency metrics. Indeed, known realizations [JKK14, ADDS21, DFHSW21] try to avoid generic
tools such as 2PC that leads to efficient solutions in case of constructions using pre-quantum assumptions
but not when aiming protocols that offer post-quantum security. Besides their theoretical post-quantum
solutions, Albrecht et al. [ADDS21] mention an alternative pathway towards post-quantum VOPRFs that
has comparable efficiency with their lattice-based solutions. This solution consists of a hash commitment
to a key K, and an actively secure MPC evaluation of the AES circuit on inputs K and x (from S and R
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respectively) together with comparison of the hash of the used key with the committed key, after which R
receives output iff the check goes through. At this point, one may recall the Legendre OPRF of Figure 6a
that requires a single multiplication in the online phase for one bit output (or 128 multiplications for 128
bits). This is in contrast to the 960 multiplication of the AES circuit evaluation [GRR+16]. This observation
motivates our Legendre VOPRF protocol, that is described in details in Figure 7b.

Functionality FVOPRF

Participants: sender S, receiver R.
Parameters: a PRF F : K ×X → {0, 1} for key-space K input-space X
Init-S: On input init from S the functionality waits for an input K from S. If S

returns abort then the functionality aborts. Otherwise, it stores the value
K if it is a valid key (i.e., conforming to a predefined distribution.) and
aborts if not.

Init-R: On input of init from R, the functionality will return abort if Init-S has
not successfully completed.

Query: On input of (query;x) fromR, if x 6= ⊥ then the functionality waits for an
input from S. If S returns deliver then the functionality sends y = F (K,x)
to R. If S returns abort then the functionality aborts.

(a) Ideal functionality for VOPRF adapted from [ADDS21].

Protocol ΠVOPRF
Legendre

Participants: sender S, receiver R.
Initialization of S:

– samples and stores K, r ∈ Fp,
– computes and publishes commitment h = H(K||r).

Input:
– S: K, r ∈ Fp,
– R: x ∈ Fp, h.

Evaluation: S and R run a secure 2-party computation with the above inputs
to

1. sample a random non-zero square s2 ∈ Fp,
2. compute c = s2 · (K + x),
3. b← (h 6= H(K||r)), where b ∈ {0, 1}.
4. output to R: c′ = (b · ⊥) + (1− b) · c.

Finally R computes Lp(c
′) = Lp(K + x)⇔ K is consistent to h.

(b) Legendre VOPRF based on actively secure 2PC and
collision-resistant hash H.

Figure 7: Legendre VOPRF.

Theorem G.1 (Informal) When instantiated with actively secure 2PC, protocol ΠVOPRF
Legendre securely realizes

FVOPRF under the SLS assumption and the assumptions which the 2PC protocol relies on and if H is a
collision-resistant hash.

The generality of the utilized 2PC protocol leads to various instantiation opportunities causing that the above
result can have several different flavours. We mention some of these. [KO04] showed that actively secure
2PC in the standard model requires 5 rounds of interaction. With some relaxations, namely by allowing the
simulator to run in superpolynomial time while the adversary is still restricted to polynomial time (a.k.a.
SPS security), actively secure non-interactive secure computation (NIZK) is possible in the plain model under
the subexponential security of the LWE assumption [BGI+17, BD18] leading to a VOPRF realization under
the same assumptions. Leaving the plain model, it is also possible to instantiate our VOPRF utilizing NIZK
built on oblivious transfer (OT) in the OT-hybrid model [IKO+11], in the common reference string model
[MR17] or in the global random oracle model [CJS14].
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