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Abstract. Many lattice-based encryption schemes are subject to a very
small probability of decryption failures. It has been shown that an adversary
can efficiently recover the secret key using a number of ciphertexts that
cause such a decryption failure. In PKC 2019, D’Anvers et al. introduced
‘failure boosting’, a technique to speed up the search for decryption failures.
In this work we first improve the state-of-the-art multitarget failure boost-
ing attacks. We then improve the cost calculation of failure boosting and
extend the applicability of these calculations to permit cost calculations of
real-world schemes. Using our newly developed methodologies we determine
the multitarget decryption failure attack cost for all parameter sets of Saber
and Kyber, showing among others that the quantum security of Saber can
theoretically be reduced from 172 bits to 145 bits in specific circumstances.
We then discuss the applicability of decryption failure attacks in real-world
scenarios, showing that an attack might not be practical to execute.

Keywords: Post-Quantum Cryptography, Lattice-based cryptography,
Decryption failure attacks, Failure boosting

1 Introduction

Lattice-based cryptography is known for its versatility, bringing forth among
others encryption schemes [23,4], digital signatures [26,24] and fully homomorphic
encryption [16], identity based encryption [17] and attribute based encryption [29].
Moreover, lattice-based cryptographic schemes are among the most promising
candidates for post-quantum cryptography, i.e. cryptography that is secure even
in the presence of quantum computers.

In 2016, the United States National Institute of Standards and Technology
(NIST) announced a standardization process with the goal of standardizing one
or more post-quantum encryption and digital signature schemes [1]. July 2020 saw
the start of the third round of this process, with 3 out of 4 finalists for public key
encryption being lattice-based (and 2 out of the 5 alternate ‘backup’ schemes).

To improve efficiency, many lattice-based encryption schemes are not perfectly
correct, which means that even after a correct execution of the protocol, it is
possible that the decryption fails to retrieve the correct message or key. Such an
event is called a decryption failure, and the ciphertext that caused the failure is



referred to as a failing ciphertext. Three of the lattice-based NIST candidates are
subject to such decryption failures: Saber [10], Kyber [8] and FrodoKEM [25].

While the probabilities of these decryption failures are chosen sufficiently small
to avoid any impact on performance, they have been used to stage attacks against
these schemes. Decryption failure attacks can be roughly divided into two cate-
gories: chosen-ciphertext attacks and valid-ciphertext attacks. The first type was
introduced by Jaulmes and Joux [21] and can efficiently recover the secret key if
it is reused, by crafting specific ciphertexts that fail based on properties of the
secret key. However, this attack type can be prevented by using a chosen-ciphertext
transformation such as the Fujisaki-Okamoto transformation.

The second type of decryption failure attacks remains a threat even in the
presence of chosen-ciphertext security measures. The idea behind this type of
attack is to input a large number of correctly generated ciphertexts in search for
failing ciphertexts. The authors of Kyber [8] noted that it is possible to do a Grover
search for ciphertexts with higher than average failure probability. D’Anvers et
al. [12] showed how to retrieve the secret key based on correctly generated but
failing ciphertexts, and introduced ‘failure boosting’, a framework to speed up the
search for failing ciphertexts. This was later extended in [11] to ‘directional failure
boosting’, which introduced a method that further speeds up the failing ciphertext
search when one or more failing ciphertext have already been found. The latter
work studied a simplified lattice-based scheme and focussed on attacking a single
target showing that the cost of a decryption failure attack is dominated by the cost
of finding the first failure. Moreover, they introduced a simple multitarget attack
specifically designed for scenarios where a maximum number of decapsulations
can be performed per target. Around the same time, Guo et al. proposed specific
decryption failure attacks on ss-ntru-pke [18] and LAC [19].

As opposed to attacks focusing on decryption failures, Bindel and Schanck [7]
showed that correctly generated ciphertexts also provide a small amount of infor-
mation about the secret. While the errors in individual message bits were assumed
to happen independently in many NIST submission documents, D’Anvers et al. [13]
showed that these errors are in fact correlated, showing an underestimation of the
decryption failure probability for schemes that use error correction and thus an
overestimation of the security of these schemes. Dachman-Soled et al. [9] developed
a tool to include ‘hints’ into a LWE hard problem and showed that it can be used
to retrieve the secret key using failing ciphertexts.

Our contributions: We first improve the state-of-the-art multitarget decryption
failure attack using a levelled approach in Section 4, leading to a more efficient
attack especially for schemes with low failure probability. Secondly, we enhance
the techniques to estimate the cost of decryption failure attacks, and extend them
to include practical schemes such as Saber and Kyber: Section 5 points out three
inaccuracies in the directional failure boosting calculation for the simplified scheme
of [11], which are discussed and remedied. Section 6 shows that this traditional
approach of calculating the directional failure boosting cost is not directly applicable
to practical schemes such as Kyber and Saber due to compression of the ciphertexts
and introduces new methods that adapt the traditional directional failure boosting
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approach to these real-world schemes. Thirdly, Section 7 introduces two additional
constraints an attacker might face when mounting a decryption failure attack, which
have not been taken into account in previous failure boosting attacks. As a result, in
Section 8 we discuss the impact of decryption failure attacks on Kyber and Saber.

2 Preliminaries

2.1 Notation

Denote with Zq the ring of integers modulo q, represented in (−q/2,q/2]. Let Rq
be the ring Zq[X]/(XN+1), with N a power of two, and let Rl1×l2 be the ring of
l1× l2 matrices over Rq. We denote matrices with bold upper case (e.g. A) and
vectors and polynomials with bold lower case (e.g. b).

Denote with b·c flooring to the nearest lower integer, with b·e rounding to the
nearest integer where ties are rounded upwards, and with b·eq→p dividing by p/q
followed by rounding, i.e. bxeq→p=bp/q ·xe. Let |·| denote taking the absolute value.
These notations are extended to vectors, matrices and polynomials element wise.
The l2 norm of a polynomial or vector of integers x is defined as ||x||2 =

√∑
ix

2
i

and for a vector of polynomials y as ||y||2 =
√∑

i||yi||22.
Let x←χ mean sampling x according to a probability distribution χ, and let

X←χ(Rl1×l2) denote sampling X∈Rl1×l2 with polynomial coefficients according
to the distribution χ. When the values are sampled pseudorandomly based on a
seed r, this is denoted as X←χ(Rl1×l2 ;r). The uniform distribution is denoted U .

We write P [E] to denote the probability of an event E. To simplify notation
we denote with P [a] the probability of sampling an element a from a certain
distribution χ when this distribution is clear from the context, i.e. P [x=a | x←χ].
Analogous, we denote with E[a] the expected value of an element a as sampled
from its distribution χ when this distribution is clear from the context.

2.2 Cryptographic definitions

We define a Public Key Encryption scheme (PKE) as a triplet of functions
(KeyGen,Encrypt,Decrypt), where the key generation KeyGen generates a public
key pk and secret key sk, where the encryption Encrypt take a public key pk and
a message m from the message spaceM to generate a ciphertext ct, and where
the decryption Decrypt retrieves the message m with high probability from the
ciphertext ct using the secret key sk. A PKE is δ-correct if:

E[P [Decrypt(Encrypt(m,pk),sk) 6=m]]≤δ.

Similarly, we define a Key Encapsulation Mechanism (KEM) as the functions
(KeyGen,Encaps,Decaps), where KeyGen generates a public key pk and secret key
sk, where Encaps generates a key k from keyspace K and a ciphertext ct given a
public key pk, and where Decaps outputs a key k′ or ⊥ when given a ciphertext
ct and corresponding secret key sk. We say that a KEM is δ-correct if:

E[P [Decaps(ct,sk) 6=k : (ct,k)←Encaps(pk)]]≤δ.
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The Module Learning with Errors (Mod-LWE) is a hard mathematical problem
introduced by Langlois and Stehlé [22], as a generalization of the Learning with
Errors (LWE) [26] and Ring Learning with Errors (Ring-LWE) [24] problems.
Given integersN , q and l, the ring Rq=Z[X]/(XN+1), a distribution with limited
variance χ and a secret element s∈Rlq, samples from the Mod-LWE distribution
LR,N,q,l,χ,s are generated as:

(a,b :=aT s+e) (1)

where: a←U(Rlq);e←χ(Rq) (2)

We will specifically focus on the case where N is a power of two. The decision
Mod-LWE problem is then, given k samples, to determine whether they were
generated as Mod-LWE samples from LR,N,q,l,χ,s or from the uniform distribution
U(Rlq×Rq). The search Mod-LWE problem consists of recovering the secret s from
k Mod-LWE samples. LWE is a specific instance where Rq =Zq and Ring-LWE
the specific instance where l=1.

Learning with Rounding (LWR), as introduced by Banerjee et al. [5], is a
similar problem where the error e is replaced with a deterministic error obtained by
rounding. Analogous to the LWE problem, variants of LWR include Ring-LWR and
Mod-LWR. Given two moduli q and p, where q>p, sampling from the Mod-LWR
distribution can be described as:

(a,b :=baT seq→p) (3)

where: a←U(Rlq) (4)

In this paper we will specifically consider the case where p|q. The Mod-LWR deci-
sional and search problem are defined similar to their respective Mod-LWE versions,
where in the decisional problem an adversary has to distinguish between sampling
from a Mod-LWR or uniform distribution, and where in the search problem an
adversary is tasked to retrieve the secret s from k Mod-LWR samples.

2.3 Lattice-based Encryption

A generic PKE based on the Mod-LWE or Mod-LWR assumption is given in Algo-
rithm 1 to 3, where q, p1, p2 and t are scheme dependent integers, whereχs andχe are
scheme specific probability distributions with small variance, where r∈R={0,1}256
and where the message spaceM consists of polynomials inRq with coefficients {0,1}.

This generic protocol can be used to describe Saber, Kyber and the scheme
studied in [11], which was designed to simplify the study of failure boosting and
will be referred to as Katana. The parameters of these schemes are given in Table 1.
For Saber and Kyber we consider the round 3 submissions as described in [6] and
[27] respectively, which are the most recent versions at the time of writing.

For Kyber, the distributions χs and χe are centered binomial distributions
with limited variance. There is no public key compression (i.e. q=p1) but there is
ciphertext compression (i.e. q>p2>t). Saber1 similarly uses a centered binomial

1Saber has slightly different rounding methods, but this does not impact our study
as the failure condition remains the same.
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Algorithm 1: PKE.KeyGen()

1 A←U(Rl×l
q )

2 s,e←χs(Rl×1
q )×χe(Rl×1

q )
3 b :=bAs+eeq→p1

4 return (pk=(b,A),sk=s)

Algorithm 2: PKE.Enc(pk=(b,A),
m∈M;r)

1 s′,e′←χs(Rl×1
q ;r)×χe(Rl×1

q ;r)
2 e′′←χe(Rq;r)

3 b′ :=bAT s′+e′eq→p2

4 bq :=bbep1→q

5 v′ :=bbT
q s
′+e′′+bq/2c·meq→t

6 return ct=(v′,b′)

Algorithm 3: PKE.Dec(sk=s,ct=(v′,b′))

1 b′q :=bb′ep2→q

2 v′q :=bv′et→q

3 m′ :=bb2/qc(v′q−b′Tq s)e
4 return m′

l N q σ(si) σ(ei+ui) P [F ] Classical Quantum

Katana [11] 3 256 8192 2.00 2.00 2−119 2195 2177

Saber [6] 3 256 8192 1.41 2.29 2−136 2189 2172

Kyber768 [27] 3 256 3329 1.00 1.00/1.38† 2−164 2181 2164

† Standard deviation of the error term in the public key and ciphertext respectively

Table 1. Parameters of Katana, Saber and Kyber. The security is based on the estimates
of Albrecht et al. [3,2]

distribution for χs, but its distribution χe always returns zero. Saber does both
public key and ciphertext compression (e.g. q>p1 =p2>t). Katana is an idealized
scheme with Gaussian distributions for χs and χe and without compression of the
public key or ciphertext (i.e. q=p1 =p2 = t).

2.4 Chosen-ciphertext security

To protect against chosen-ciphertext attacks, designers typically convert their pas-
sively secure PKE to an actively secure KEM using a generic transformation such
as a post-quantum variant [28,20] of the Fujisaki-Okamoto [15,14] transformation.
The obtained KEM then has a similar key generation, while the encapsulation
and decapsulation are constructed as described in Algorithms 4 and 5 respectively.
The idea behind this transformation is that the input ciphertext is checked using a
re-encryption of the message, and the ciphertext is rejected if the input ciphertext
is not valid. As a result of this procedure, an adversary does not learn anything
from inputting invalid ciphertexts. However, in case of a valid ciphertext that leads
to a decryption failure, the re-encryption still fails and we will assume that an
attacker is able to recognize such event.
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Algorithm 4: KEM.Encaps(pk)

1 m←U({0,1}256)

2 (K,r) :=G(pk,m)
3 ct :=PKE.Enc(pk,m,r)

4 K :=H(K,r)
5 return (ct,K)

Algorithm 5: KEM.Decaps(sk,pk,ct,K)

1 m′ :=PKE.Dec(sk,ct)

2 (K,r′) :=G(pk,m′)
3 ct′ :=PKE.Enc(pk,m′;r′)
4 if ct=ct′ then

5 return K :=H(K,r′)
6 else
7 return K :=⊥

2.5 Decryption failures

A decryption failure is an event where one fails to recover message or key, which
can even happen after following the correct protocol. The occurrence of decryption
failures depends on the secret terms s,s′,e,e′,e′′ in combination with the rounding
errors u,u′,u′′, which are defined as:

u :=bq−(As+e) (5)

u′ :=b′q−(AT s′+e′) (6)

u′′ :=v′q−(bTq s′+e′′+m) (7)

Expanding the value of the received message m′, we get:

m′=bb2/qc(v′q−b′Tq s)e (8)

=m+bb2/qc((e+u)T s′−sT (e′+u′)+(e′′+u′′))e (9)

and a decryption failure occurs if any coefficient of this error term exceeds the
threshold qt=q/4, which can be formalized as follows:

||(e+u)T s′−sT (e′+u′)+(e′′+u′′)||∞>qt

Failure vectors: Following [12] we define the failure vectors S, C, G as:

S=

(
−s

e+u

)
C=

(
e′+u′

s′

)
G=e′′+u′′ (10)

which simplifies the failure condition to:

||STC+G||∞>qt

Geometric notation: To streamline notation, we will use the geometric notation
as introduced in [11]. The vector S ∈ ZlN×1q is an integer vector representation
of S, obtained by arranging all coefficients of the polynomials of S in a vector.
Additionally, the rotation of a vector of polynomials C is defined as:

C(r) :=Xr ·C(X−1) mod XN+1. (11)

Using this notation, the ith coefficient of STC can be calculated as STC(i). An
illustration of these concepts is given in Example 1. For more information about
this representation we refer to [11].
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Example 1. [11] For a secret S and a ciphertext C in Z2×1
q [X]/(X3+1):

S=

[
S0,0+S0,1X+S0,2X2

S1,0+S1,1X+S1,2X2

]
, C=

[
C0,0+C0,1X+C0,2X2

C1,0+C1,1X+C1,2X2

]
we get the following vectors:

S=


S0,0
S0,1
S0,2
S1,0
S1,1
S1,2

, C
(0) =


C0,0
−C0,2
−C0,1
C1,0
−C1,2
−C1,1

 C(1) =


C0,1
C0,0
−C0,2
C1,1
C1,0
−C1,2

 C(3) =


−C0,0
C0,2
C0,1
−C1,0
C1,2
C1,1

...

Definitions: We will denote with F a decryption failure, and with S a successful
decryption. Fi will denote an error at the ith coefficient of STC+G, which happens
when the absolute value of this coefficient is bigger than qt. Similarly Si will denote
a successful decryption of the ith coefficient. Using the geometric notation we can
say that an error Fi occurs if: ∣∣∣STC(i)+Gi∣∣∣>qt

We will use the shorthand PF [ct] to denote the failure probability P [F |ct] for
a certain ciphertext ct, which can be formalized as:

PF [ct]=
∑
∀S

P [S]·P [F |ct,S]

Sometimes, we will group ciphertexts in classes, where a class cl bundles all cipher-
texts with certain properties, e.g. cl= {∀ct : ||C||2 = c,G= g}. In this case PF [cl]
denotes the weighted average of the failure probabilities of all ciphertexts in the
class cl, which can be formalized as:

PF [cl]=
∑

∀ct:ct∈cl

P [ct]·P [F |ct]

3 Failure boosting attacks

By exploiting decryption failures, an attacker can mount an attack that retrieves
the secret key. The crux of such an attack is that failing ciphertexts give information
that can be used to reconstruct the secret key as described in [12], [11] and [9].
In this paper we will focus on the process to obtain these failing ciphertexts as
efficiently as possible.

We specifically target schemes that are IND-CCA secured, which implies that
non-valid ciphertexts are rejected by the decapsulation regardless of the occurrence
of a decryption failure and thus that they can not give any information. As such
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the attack surface is limited to submitting valid ciphertexts and observing whether
a failure occurs.

Failure boosting [12] is a technique to increase the failure probability of valid
ciphertexts submitted for decapsulation. It is a two step process consisting of
a precomputation step and a query step. We will discuss the cost of a failure
boosting attack using two metrics: workW and queries Q. Work describes the cost
of precomputation, where 1W is defined as the cost of generating one ciphertext,
while Q describes the total number of decapsulation queries performed.

Precomputation: During precomputation, the adversary performs an offline search
for weak ciphertexts, i.e. valid ciphertexts with a high failure probability. This is
accomplished by randomly generating ciphertexts until a ciphertext with failure
probability above a certain threshold ft is found. The probability of finding such
a ciphertext can be expressed as follows:

α(ft)=
∑

∀ct:PF [ct]>ft

P [ct]. (12)

Finding a weak failure will take on average α(ft)
−1 work, but this can be sped

up quadratically using a quantum computer to
√
α(ft)−1 work.

Querying: Once a weak ciphertext is found, it is submitted for decapsulation and
the adversary observes whether it triggers a decryption failure. A failure happens
with probability β(ft) for a given threshold ft, which can be calculated as follows:

β(ft)=

∑
∀ct:PF [ct]>ft

P [ct]·PF [ct]∑
∀ct:PF [ct]>ft

P [ct]
=

∑
∀ct:PF [ct]>ft

P [ct]·PF [ct]

α(ft)
. (13)

The query step can not be sped up using quantum computers as an adversary
has typically no quantum access to the decapsulation oracle. An adversary needs
on average β(ft)

−1 queries to obtain one decryption failure.

Attack cost: For a given threshold ft, finding a decryption failure costs on
average α(ft)

−1β(ft)
−1 work and β(ft)

−1 queries, which can be reduced to√
α(ft)−1β(ft)

−1 work when Grover search is used during precomputation.

3.1 Directional failure boosting

Directional failure boosting [11] improves failure boosting and can be used when at
least one other failure has been found. It specifically uses information of previously
found failing ciphertexts to improve the search for new failures. In [11], this is done
by calculating E , an estimate of the direction of the secret S, and taking this into
account in the failure estimation PF [ct,E ].

Directional failure boosting dramatically reduces the cost of finding additional
failures after the first failure has been found. As a result, in a single target attack
the work and number of queries is dominated by finding the first failure and thus
the cost of a single target attack can be approximated as the cost of finding the first
failure. An in depth discussion of directional failure boosting can be found in [11].
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3.2 Estimation of efficiency

The cost of (directional) failure boosting is described by Equation 12 and 13, which
requires to sum over all possible ciphertexts. This is clearly infeasible, but can
be simplified by making an approximate failure model and grouping ciphertexts
with similar failure probability. Two such models were presented in the literature:
Gaussian approximation and geometric approximation.

Gaussian approximation [12]: The Gaussian approximation considers the coef-
ficients of STC to follow a Gaussian distribution with zero mean and variance
depending on C. This assumption can be used to accurately estimate failure boost-
ing efficiency, but does not work for directional failure boosting estimations. The
calculation method as presented in [12] takes both C and G into account in the weak
ciphertext selection. For more information about the exact calculation methodology
we refer the reader to [12].

Geometric approximation [11]: The geometric approximation assumes that the

angle φ between STC(i) behaves as a uniformly random angle in dimension 2Nl.
This approximation corresponds to the assumption that χs and χe are continuous
Gaussian distributions with zero mean. Using the geometric approximation, the
condition on an error at the ith coefficient can be rewritten from:∣∣∣STC(i)+Gi∣∣∣>qt (14)

to:

| ||S||2 ·||C||2 ·cos(φ)+Gi|>qt (15)

In directional failure boosting, the vectors S and C(i) are first expanded in a
part parallel and a part orthogonal to the estimate of the secret E :∣∣∣ST⊥C(i)⊥+ST‖ C(i)‖+Gi

∣∣∣>qt (16)

which can be further expanded to:∣∣∣∣ ||S||2 ·||C||2 ·cos(θSE)·cos(θCiE)+
||S||2 ·||C||2 ·sin(θSE)·sin(θCiE)·cos(ψ)+Gi

∣∣∣∣>qt (17)

with ψ a uniformly random angle in dimension 2Nl−1. In D’Anvers et al. [11],
the G term was neglected in the calculations. A more detailed explanation of this
technique can be found in [11].

Attack cost estimation: Using the above approximations, one can bundle cipher-
texts with similar failure probability in classes cl to reduce the cost of calculating
α(ft) and β(ft). The values of α(ft) and β(ft) can be calculated using the formulas
below, with the difference that P [cl] is the probability of a randomly generated
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ciphertext belongs to the specific class cl, and PF [cl] the failure probability of
ciphertexts in that class.

α(ft)≈
∑

∀cl:PF [cl]>ft

P [cl] (18)

β(ft)≈
∑
∀cl:PF [cl]>ft

P [cl]·PF [cl]

α(ft)
(19)

For example, under the geometric approximation, one bundles all ciphertexts
with similar ||C||2 for failure boosting. Directional failure boosting in the geometric
approximation defines classes based on ||C||2 and the closest angle maxcosi(θC(i)E)
between the rotations of the ciphertext and the estimate of the secret E .

4 Multitarget attacks

One of the main constraints in a practical attack is the number of queries that can
be performed. For example, NIST [1] set a maximum of qlimit=264 decapsulation
queries per target that can be performed during an attack. One possibility to
circumvent such limitation is to consider multiple targets, with the goal of breaking
one of these targets.

Such a multitarget attack queries a certain number of targets T (0), where each
target has an individual query limit. The goal is to retrieve the secret key for at
least one of these targets. We assume that multitarget protection is in place, so that
ciphertexts are only valid for one given public key and thus target. Such multitarget
protection is easily obtained by incorporating (a hash of) the public key in the
ciphertext generation, which is the case for Saber and Kyber.

4.1 Naive multitarget

A naive variant of the multitarget attack was introduced in [11], which proceeded
as follows: First, find the first failure by performing at most qlimit/2 per target,
which in total implies a maximum of T (0) · qlimit/2 queries. Then, focus on the
target that caused the failure and continue with a single target attack on this target
with query limit qlimit/2.

First note that due to multitarget protection, each generated weak ciphertext
is linked to a specific public key and can only be used for that target. Moreover,
one can assume that given only the public key the adversary has no efficient way to
retrieve information about the secret key S without solving the Mod-LWE/LWR
problem. This implies that he has no efficient way to distinguish between targets
with higher or lower failure probability and thus that generating a weak ciphertext
and querying it has exactly the same failure probability at each target.

Assuming that successful queries do not contribute any information about the
targets, the failure probability at each target stays the same until a decryption
failure has been found. Therefore, we can say that finding one failure at T (0) targets
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with a maximum of qlimit/2 queries per target has the same cost as finding one
failure at one target with a maximum of T (0) ·qlimit/2 queries, so that the cost of
finding the first failure in the naive multitarget attack can be described with:√

α−10 β−10 work, and β−10 queries, (20)

under the condition that:

β−10 <T (0) ·qlimit/2, (21)

where αi and βi denote the optimal values for α(ft) and β(ft) for the ith failure,
which can be determined by selecting the value of ft that optimally reduces the
work while fulfilling the query limit constraint.

To estimate the cost of finding the follow-up failures, we can use the approx-
imation from [11], which states that in a single target attack the attack cost is
dominated by finding the first failure. In this case, the first failure of the single
target attack is the second overall failure so that the cost of finding the follow up
failures can be calculated as:√

α−11 β−11 work, and β−11 queries, (22)

under the condition that:

β−11 <qlimit/2, (23)

One can easily see that the total number of queries per target is always under qlimit
in this scenario.

4.2 Levelled multitarget

When the cost of finding the second failure is the dominant factor, this naive multi-
target attack can be improved using a levelled approach. Notice that the naive mul-
titarget attack essentially reduces the cost of the attack by relaxing the query limit
constraint for finding the first failure. To reduce the cost of finding the second failure,
we can similarly focus on multiple targets to relax the query constraint. However, this
requires the attacker to find multiple failing ciphertexts in the first step of the attack.

More specifically, in the first phase, the attacker aims at obtaining T (1) targets
using under qlimit/3 queries per target (which is a total of T (0) ·qlimit/3 queries).
This has a cost of:

T (1)
√
α−10 β−10 work and T (1)β−10 queries. (24)

Under the condition that:

T (1)β−10 <T (0) ·qlimit/3. (25)
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(a) Naive multitarget[11] (b) Levelled multitarget

Fig. 1. Example of multitarget attacks on Katana, with 264 targets and maximum 264

queries. The cost of finding one failure is indicated with x. The cost of finding T (1) failures
using failure boosting in the first phase is given by the blue dot, and the corresponding
number of queries can be found as β−1 where β is the x-axis value of this point. In the
naive multitarget attack the cost is dominated by finding the second failure in under 264

queries. In the levelled approach the cost of the two phases is equalized.

Naive multitarget [11] Levelled multitarget [ours]
work queries work queries

first failure
√
α−1
0 β−1

0 T (0) ·qlimit/2 T (1)
√
α−1
0 β−1

0 T (0) ·qlimit/(3T
(1))†

second failure
√
α−1
1 β−1

1 qlimit/2
√
α−1
1 β−1

1 T (1) ·qlimit/3

follow up failures negligible -
√
α−1
2 β−1

2 qlimit/3

† per failure, total query limit is T (0) ·qlimit

Table 2. Comparison of the naive and levelled multitarget attack. Note that α and β
values are not the same between both methods as the difference in query limits leads to a
different optimal ft.

The attacker can then use T (1) ·qlimit/3 queries to find the next failure, which has
a cost of: √

α−11 β−11 work and β−11 queries. (26)

Under the condition that:

β−11 <T (1) ·qlimit/3. (27)

Once a second failure is found for a given target, the attack continues with a single
target attack on that target using at most qlimit/3 queries. An overview of this
levelled multitarget approach is given in Table 2. Note that the query limit per
phase is chosen so that the total number of queries at each target over all failures
is always under qlimit. Figure 1 gives a graphical comparison of the naive and
multitarget attack on Katana.

In principle it is possible to extend this approach to more levels: if the third
failure would be more expensive than the previous two failures one can target T (2)
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targets to reduce the cost of finding the third failure. However, we did not find a
situation in which this was applicable, as finding the third failure is typically much
cheaper than finding previous failures.

5 Better failure boosting estimation

The calculation of the work necessary to perform a multitarget attack is not
straightforward. Especially the cost of directional failure boosting is expensive to
determine and requires multiple approximations to be able to practically compute.
D’Anvers et al. [11] introduced crude approximations to reduce the computational
cost of this calculation.

Apart from the geometric approximation, as explained in subsection 3.2, they
did not consider G, simplified the distribution of ||S||2 into its average and used
a simplified formula for the calculation of θSE . Additionally, there is a weak key
effect in multitarget attacks which has not been addressed before2.

These simplifications are justifiable in the single target attack, where the cost of
the second failure is significantly lower than the cost of the first failure. However, in
multitarget attacks, where the second failure cost might be dominant, it is important
to have an accurate estimation of the cost to find this failure. We will first detail the
weak key effect, then we will improve the estimation of cos(θSE) and finally we will
consider the distribution of ||S||2 and G. We will clearly compare our improvements
with the state-of-the-art. In this section we focus on the case where χs = χe
and schemes without rounding, while in Section 6 we will extend the estimation
techniques for more general schemes, including the NIST finalists Kyber and Saber.

5.1 Weak keys

Some targets might have secret keys that are more prone to decryption failures,
which we will call weak keys. It does not seem possible to efficiently identify targets
with weak keys from their public key. However, in a multitarget attack, weak key
targets are more prone to produce a failing ciphertext. This means that in the
second phase of the attack, when looking for the second failure of a certain target,
this target will have higher failure probability compared to a single target attack.

In particular, the norm of the secret ||S||2 determines the failure probability
of a given target. We will show that the a posteriori distribution of ||S||2, given
a multitarget attack where in the first phase T (0) targets are considered, and with
failure boosting threshold ft can be approximated using:

P [||S||2]· T (0)P [F | ||S||2,ft]
P [F | ||S||2,ft]+(T (0)−1)·P [F | ft]

(28)

To derive this formula, we first introduce the notation F (t,q) to describe the
event where the overall first failure occurs at target t on the qth query. Similarly, we

2Guo et al. [18] have used the terminology (‘weak keys’) in their attack, but this
refers to public keys that are vulnerable against specific types of ciphertexts.
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define S(t,q) as a success at target t on the qth query. F (t,·) signifies the event where
the first failure occurs at target t, regardless of at which query this happens. Without
loss of generality we denote the target where the first failure occurs as target t=0,
which implies that ||S||2 denotes the norm of S for the 0th target. To simplify the
derivation, we will assume that the ith query is performed at all targets at the same
time, after which they are all checked for decryption failures. We can then write:

P [||S||2 | F (0,·),ft] (29)

=P [||S||2 | ft]·
P [F (0,·) | ||S||2,ft]

P [F (0,·) | ft]
(30)

≈T (0) ·P [||S||2]·P [F (0,·) | ||S||2,ft] (31)

where the latter step uses the fact that a failure occurs with equal probability at
all T (0) targets without extra information about the norms ||S||2 of the targets.

The term P [F (0,·) | ||S||2,ft] can then be extended by explicitly writing it out
as a sum over the probabilities of failures at each query round:

P [F (0,·) | ||S||2,ft] (32)

=

∞∑
q=0

P

[
F (t,q),S(i,j)

∀i∈{0,...,T (0)−1},j∈{0,...,q} : (i,j) 6=(t,q)

∣∣∣∣ ||S||2,ft] (33)

=

∞∑
q=0

P

[
F (0,q),S(0,j)
∀j∈{0...,q−1}

∣∣∣∣ ||S||2,ft]·P[ S(1,j)
∀j∈{0...,q}

∣∣∣∣ ft]T (0)−1

(34)

The failure probability of a target is reduced slightly when successful ciphertexts
are found. However, this effect is small, as the information embedded in successful
ciphertexts is limited. We therefore assume that the failure probability of cipher-
texts does not change when finding successful ciphertexts. This allows us to simplify
the expression as:

≈
∞∑
q=0

P [F | ||S||2,ft]·P [S | ||S||2,ft]q ·P [S | ft](T
(0)−1)(q+1)

≈P [F | ||S||2,ft]·P [S | ft](T
(0)−1)

∞∑
q=0

(
P [S | ||S||2,ft]·P [S | ft](T

(0)−1)
)q

(35)

≈ P [F | ||S||2,ft]·P [S | ft](T
(0)−1)

1−P [S | ||S||2,ft]·P [S | ft](T
(0)−1)

≈ P [F | ||S||2,ft]
P [F | ||S||2,ft]+(T (0)−1)·P [F |ft]

(36)

where Equation 35 is an infinite geometric sum, and Equation 36 takes a Taylor
approximation where only the highest order terms are kept. We will discuss the
effect of weak keys in the next section, after its effects on θSE have been addressed.
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5.2 Calculating θSE

The angle θSE can be estimated using the simplified failure equation. Assuming
a failure occurred at the ith location we know:

STC(i)>qt, (37)

which can be rewritten as:

cos(θSE)>
qt

||S||2||C||2
. (38)

The fact that uniform angles in high dimensions strongly tend to orthogonality
can be used to approximate this to:

cos(θSE)=
qt

||S||2||C||2
. (39)

As such, we can estimate the expected value of cos(θSE) by assuming independence
between E[||S||2] and E[||C||2] as:

E[cos(θSE)]=
qt

E[||S||2]E[||C||2]
. (40)

In [11], the values of E[||S||2] and E[||C||2] were estimated over the original a pri-
ori distribution. However, failure boosting increases the expected norm of ||C||2 and
the weak key effect increases the expected norm ofE[||S||2]. Both effects will decrease
E[cos(θSE)] and therefore diminish the efficiency of directional failure boosting.

We take these effects into account by considering the a posteriori distributions
as follows:

E[||C||2]=
∑
||C||2

||C||2 ·P [||C||2 | ft] (41)

E[||S||2]=
∑
||S||2

||S||2 ·P [||S||2 | F (0,·),ft] (42)

Note that our expression of E[cos(θSE)] is now significantly better than in previous
works, but still not exact for the following reasons: First, E[||C||2] will be slightly
higher than calculated above as failures happen with higher probability for higher
values of ||C||2. However, this effect is limited as failure boosting pushes ||C||2 to
high values where the tails decrease rapidly. Therefore the values of ||C||2 will be
strongly focussed around the cut-off value. Secondly, the independence assumption
used to obtain Equation 40 is not exact. Nevertheless, the approximation is good
enough for our purposes.

Comparison to state-of-the-art: Figure 2a shows the effect of including the weak
key effect and improving the cos(θSE) estimation. On one hand, one can see that the
weak key reduces the failure probability, which is the leftmost point on the curve,
from 2−115 to 2−107. On the other hand, the increase in E[||S||2] and E[||C||2] and
subsequent reduction of E[cos(θSE)] reduces the effectiveness of directional failure
boosting, an effect that becomes more pronounced with higher precomputation.
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Fig. 2. Effect of inclusion of weak keys and ||S||2 and G on Katana. The red cross indicates
the failure probability of Katana (or equally the cost of finding a failure when random
guessing).

5.3 Inclusion of S and G

In [11], the distributions of ||S||2 and G were simplified to their mean to speed up
calculations. However, the side-effect of this is an underestimation of the failure
probability and the attack efficiency. In our calculations, we take into account the
distribution of both ||S||2 and G.

Failure boosting: Failure boosting calculations under the geometric approximation
can be calculated by making classes based on ||C||2 and using Equations 18 and
19 to determine α(ft) and β(ft).

Including S and G does not change the ciphertext probability P [cl], but does
impact the failure probability PF [cl] needed to calculate α(ft) and β(ft). A more
exact expression of this failure probability that takes into account ||S||2 and G can
be derived as follows:

PF [cl]=PF [||C||2] (43)

=
∑
||S||2

P [||S||2]·P [F | ||C||2,||S||2] (44)

=
∑
||S||2

P [||S||2]·

(
1−

N−1∏
i=0

(1−P [Fi | ||C||2,||S||2])

)
(45)

=
∑
||S||2

P [||S||2]·

(
1−

N−1∏
i=0

(
1−
∑
Gi

P [Gi]·P [Fi | ||C||2,||S||2,Gi]

))
(46)
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where P [Fi | ||C||2,||S||2,Gi] can be calculated following the geometric approxima-
tion of Equation 15 as:

P [Fi | ||S||2,||C||2,Gi]=
P [cos(φ)> qt−Gi

||S||2·||C||2 | ||C||2,||S||2,Gi]

+P [cos(φ)< −qt−Gi
||S||2·||C||2 | ||C||2,||S||2,Gi]

, (47)

and where φ can be modelled as a uniformly random angle in dimension 2Nl.

Directional failure boosting: The procedure for directional failure boosting is more
complicated, as one should make a list over all values of ||C||2 and maxcosi(θC(i)E).
As before, the calculation of P [cl] is the same as in [11], but the calculation of
PF [cl] additionally should take into account ||S||2 and G.

Without loss of generality we will assume that the highest value of cos(θC(i)E)
occurs at i=0, so that maxcosi(θC(i)E)=cos(θC(0)E). Similar to the derivation of
Equation 46, the failure probability can then be calculated as:

PF [cl]=PF [||C||2,θC(0)E ] (48)

=
∑
||S||2

P [||S||2]·P [F | ||C||2,θC(0)E ,||S||2] (49)

=
∑
||S||2

P [||S||2]·

(
1−

N−1∏
i=0

(1−P [Fi | ||C||2,θC(0)E ,||S||2])

)
(50)

≈
∑
||S||2

P [||S||2]·
(

1−
(

(1−P [F0 | ||C||2,θC(0)E ,||S||2])·∏N−1
i=1 (1−P [Fi | ||C||2,cos(θC(i)E)≤cos(θC(0)E),||S||2])

))
(51)

≈
∑
||S||2

P [||S||2]· (52)

(
1−
((

1−
∑
G0P [G0]·P [F0 | ||C||2,θC(0)E ,||S||2,G0]

)
·∏N−1

i=1

(
1−
∑
GiP [Gi]·P [Fi | ||C||2,cos(θC(i)E)≤cos(θC(0)E),||S||2,Gi]

)))

P [Fi | ||C||2,θC(i)E ,||S||2,Gi] can be estimated using the geometric assumption
and Equation 17 as:

P [cos(ψ)>
qt−Gi−||S||2·||C||2·cos(θSE)·cos(θ

C(i)E
)

||S||2·||C||2·sin(θSE)·sin(θ
C(i)E

) | ||S||2,||C||2,Gi,cos(θC(i)E)]

+P [cos(ψ)<
−qt−Gi−||S||2·||C||2·cos(θSE)·cos(θ

C(i)E
)

||S||2·||C||2·sin(θSE)·sin(θ
C(i)E

) | ||S||2,||C||2,Gi,cos(θC(i)E)]

with ψ a uniformly random angle in dimension 2Nl−1.

The value P [Fi | ||C||2,cos(θC(i)E)≤cos(θC(0)E),||S||2,Gi] can be calculated by
taking a weighted average over all θC(i)E values for which cos(θC(i)E)≤cos(θC(0)E)
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as:

P [Fi | ||C||2,cos(θC(i)E)≤cos(θC(0)E),||S||2,Gi] (53)

=
∑

∀θ
C(i)E

:cos(θ
C(i)E

)≤cos(θ
C(0)E

)

P [θC(i)E ]·P [Fi | ||C||2,θC(i)E ,||S||2,Gi] (54)

Approximate distributions Note that both the failure boosting and directional fail-
ure boosting methods require to loop over all possible values of ||C||2,θC0E ,||S||2,Gi,
which is a costly process. To reduce calculation time, these distributions are ap-
proximated using a subset of points in the distribution. We use 200 points to
approximate ||C||2 and θC(i)E , 100 points to approximate ||S||2 and a maximum
of 40 points to approximate Gi.

Comparison to state-of-the-art: From Figure 2b, we see that the method that
does not take into account ||S||2 and G does indeed underestimate the failure
probability. This effect will become larger for realistic schemes such as Saber and
Kyber, who have a larger variance of the distribution of G. Our new methodology
that takes ||S||2 and G into account does match with the reference calculation
using the Gaussian approximation, which further confirms our method. Note that
this figure presents failure boosting (for the first failure), and that the Gaussian
approximation can not be used for directional failure boosting.

6 Dealing with uneven distributions

The cost estimation as described above can not directly be used for calculation
of practical schemes that use rounding, such as Kyber or Saber, or more generally
schemes that have uneven distributions for the coefficients of S and C. The main
reasons are twofold: first, when the distributions of s and e do not have the same
variance, values of ||e′+u′||2 and ||s′||2 have different impact on the overall failure
probability. Therefore, using ||C||2 as a predictor of the failure probability, as
used in the traditional calculation of direction failure boosting [11], does not give
accurate results. Secondly, when rounding occurs, the distributions of e and e′

are typically not centered and thus the assumption of them following a uniform
distribution is not valid.

Note that the Gaussian approximation which is used for the failure boosting
(first failure) does not have these problems. Unfortunately it does not seem possible
to port the Gaussian assumption to directional failure boosting due to the skew
introduced in the distribution of STC when directional failure boosting is applied.

The problems described above have a significant effect on the accuracy of the
failure boosting estimation (blue) as can be seen from Figure 3. First, one can see
that performing no precomputation (i.e. the leftmost point on the curve, which
corresponds to the failure probability before failure boosting) does not correspond
to the actual failure probability by a large margin. As an additional check we plotted
the Gaussian estimation (green) for finding the first failure, which clearly further
shows the discrepancy between both estimations. Looking ahead, we also plotted
the geometric-uneven estimate (orange) which will be developed in this section.
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Fig. 3.Comparison of estimated cost of (directional) failure boosting for Saber. Geometric
refers to the method of Section 5, while geometric-uneven indicates the improved method
of Section 6 Red cross indicates failure probability (when no precomputation is performed).
Gaussian estimation is given for failure boosting as a reference.
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Fig. 4. Comparison of estimated cost of (directional) failure boosting for Katana. Geo-
metric refers to the method of Section 5, while geometric-uneven indicates the improved
method of Section 6 Red cross indicates failure probability (when no precomputation is
performed). Gaussian estimation is given for failure boosting as a reference.

6.1 Uneven distributions

When the variance of the coefficients of s and e+u differs, the impact of ||e′+u′||2
and ||s′||2 varies and they should be considered separately instead of combined in
the term ||C||2. For sake of brevity, we will use the following abbreviations:
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C0 =e′+u′ S0 =−s
C1 =s′ S1 =e+u

(55)

Uneven failure boosting: Instead of grouping ciphertexts based on ||C||2, cipher-
texts will be grouped in classes based on ||C0||2 and ||C1||2. The probability of a
class P [cl] can be easily calculated as P [||C0||2]·P [||C1||2], where the distribution of
the norms can be calculated exhaustively. The failure probability PF [cl] becomes
more involved to calculate.

Similar to the approach of subsection 5.3, we first include the effect of S and
G, with the difference that we split ||S||2 into ||S0||2 and ||S1||2 which leads to:

PF [cl]=PF [||C0||2,||C1||2]= (56)∑
||S0||2

∑
||S1||2

(
P [||S0||2]·P [||S1||2]·(

1−
(
1−
∑
GiP [Gi]·P [Fi | ||C0||2,||C1||2,||S0||2,||S1||2,Gi]

)N))

To find an expression for P [Fi | ||C0||2,||C1||2,||S0||2,||S1||2,Gi] we go back to
the failure term which we rewrite as:

STC+Gi (57)

=ST0 ·C0+ST1 ·C1+Gi (58)

= ||S0||2 ·||C0||2 ·cos(φ0)+||S1||2 ·||C1||2 ·cos(φ1)+Gi (59)

Under the geometric assumption, the distribution of φ0 and φ1 can be approx-
imated as angles from the uniform angle distribution in dimension lN . This
allows us to calculate the error probability at the ith location for given values of
cond1 :=(||S0||2,||S1||2,||C0||2,||C1||2,Gi) as:

P [F | cond1] (60)

=P [|||S0||2 ·||C0||2 ·cos(φ0)+||S1||2 ·||C1||2 ·cos(φ1)+Gi|>qt | cond1] (61)

=
∑
φ0

P [φ0]

(
P [cos(φ1)> qt−Gi−||S0||2·||C0||2·cos(φ0)

||S1||2·||C1||2 | cond1]+

P [cos(φ1)< −qt−Gi−||S0||2·||C0||2·cos(φ0)
||S1||2·||C1||2 | cond1]

)
(62)

Uneven directional failure boosting: Directional failure boosting not only considers
||C0||2 and ||C1||2, but also the angle between the ciphertext and the estimate E .
Similar to splitting ||C||2 these angles and the estimate E also should be split. We
will denote with E0 the estimation of the direction of the secret S0 and with E1 the
estimation of the direction of the secret S1. The angles θCi

0E0
and θCi

0E0
denote

the angle between C(i)0 and E0 and between C(i)1 and E1 respectively.
Ciphertext are then combined in classes based on both the norms and the

angles. Ideally one would take the maximal angle out of the lN available angles
similar to [11]:

cl :=
(
||C0||2,||C1||2,max

i
cos(θCi

0E0
),max

i
cos(θCi

1E1
)
)
.
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However, for computational efficiency we only consider failures F0 at the zeroth

coefficient, so that the classes are defined by:

cl :=
(
||C0||2,||C1||2,θC0

0E0
,θC0

1E1

)
.

The failure probability is under the same approximation equal to:

PF [cl]≈P [F0|cl]

For the calculation of α(ft) and β(ft), the class probability P [cl] can be sim-
plified using independence between the class properties as: P [||C0||2] ·P [||C1||2] ·
P [θC0

0E0
]·P [θC0

1E1
]. For the failure probability PF [cl] we first include the influence

of ||S0||2, ||S1||2 and G0 as:

PF [cl]≈P [F0 | cl] (63)

=
∑
||S0||2

∑
||S1||2

∑
G0

(
P [||S0||2]·P [||S1||2]·P [G0]·
P [F0 | ||C0||2,||C1||2,||S0||2,||S1||2,G0,θC0

0E0
,θC0

1E1
]

)
,

and further denoting cond2 :=
(
||C0||2,||C1||2,||S0||2,||S1||2,G0,θC0

0E0
,θC0

1E1

)
, this

becomes:

=
∑
||S0||2

∑
||S1||2

∑
G0

P [||S0||2]·P [||S1||2]·P [G0]·P [F0 | cond2]. (64)

To find an expression for the error probability P [F0 | cond2], we rewrite the
failure term as follows:

STC(0)+G0 (65)

=ST0 C(0)0+ST1 C(0)1+G0 (66)

=ST0,‖C(0)0,‖+S
T

0,⊥C(0)0,⊥+ST1,‖C(0)1,‖+S
T

1,⊥C(0)1,⊥+G0 (67)

= ||S0||2||C0||2cos(θS0E0
)cos(θC0

0E0
)+||S0||2||C0||2sin(θS0E0

)sin(θC0
0E0

)cos(ψ0)

+||S1||2||C1||2cos(θS1E1
)cos(θC0

1E1
)+||S1||2||C1||2sin(θS1E1

)sin(θC0
1E1

)cos(ψ1)

+G0, (68)

with θS0E0
and θS1E1

the angles between S0 and E0, and S1 and E1 respectively.
Following the geometric approximation, ψ0 and ψ1 are uniformly random angles
in dimension Nl−1. The failure probability can then be calculated as:

P [F0 | cond2]= (69)

∑
ψ0

P [ψ0]

P [cos(ψ1)> qt−G0−w
||S1||2||C1||2sin(θS1E1

)sin(θ
C0
1E1

) | cond2,ψ0]

+P [cos(ψ1)< −qt−G0−w
||S1||2||C1||2sin(θS1E1

)sin(θ
C0
1E1

) | cond2,ψ0]

,
where:

w=

 ||S1||2||C1||2cos(θS1E1)cos(θC0
1E1

)

+||S0||2||C0||2cos(θS0E0)cos(θC0
0E0

)

+||S0||2||C0||2sin(θS0E0
)sin(θC0

0E0
)cos(ψ0)

. (70)
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6.2 Meet-in-the-middle speedup

While the uneven directional failure boosting method is much more precise for
schemes with uneven distributions than the original method of [11], it is compu-
tationally very demanding. The prescribed calculation in subsection 6.1 sums over
the distributions of C0, C1, S0, S1, G0, θC0

0E0
, θC0

1E1
and ψ0. Even when these distri-

butions are approximated, the trade-off between computational cost and accuracy
remains unsatisfactory. In this section we will introduce a meet-in-the-middle
approach to reduce the computational cost of this method.

From Equation 68, we can see that the failure equation can be written as:

x0cos(ψ0)+x1cos(ψ1)+z+G0 (71)

where:

x0 =||C0||2 ·||S0||2 ·sin(θC0
0E0

)·sin(θSE0
) (72)

x1 =||C1||2 ·||S1||2 ·sin(θC0
1E1

)·sin(θSE1) (73)

z=

(
||C0||2 ·||S0||2 ·cos(θC0

0E0
)·cos(θSE0

)+

||C1||2 ·||S1||2 ·cos(θC0
1E1

)·cos(θSE1
)

)
(74)

The work can then be split into a precomputation, where the failure probability
given x0, x1 and z is calculated (i.e. PF [x0,x1,z]), and the directional failure boost-
ing calculation itself, which can now use the precomputed values of PF [x0,x1,z]
to reduce calculations. During precomputation PF [x0,x1,z] is calculated for a wide
range of x0,x1 and z values as:

PF [x0,x1,z]≈P [F0 | x0,x1,z] (75)

=P [|x0cos(φ0)+x1cos(φ1)+z+G0|>qt | x0,x1,z] (76)

=
∑
G0

∑
φ0

P [G0]·P [φ0]·P [|x0cos(φ0)+x1cos(φ1)+z+G0|>qt | x0,x1,z] (77)

=
∑
G0

∑
φ0

P [G0]·P [φ0]·

(
P [cos(φ1)> qt−z−G0−x0cos(φ0)

x1
| x0,x1,z]+

P [cos(φ1)< −qt−z−G0−x0cos(φ0)
x1

| x0,x1,z]

)
(78)

Using the precomputation, the directional failure boosting calculation of PF [ct]
can then be simplified as:

PF [ct]≈P [F0|ct] (79)

=
∑
||S0||2

∑
||S1||2

P [||S0||2]·P [||S1||2]·P [F0|ct,||S0||2,||S1||2] (80)

=
∑
||S0||2

∑
||S1||2


P [||S0||2]·P [||S1||2]·

P

F0

∣∣∣∣∣∣∣∣
x0 = ||C0||2 ·||S0||2 ·sin(θC0

0E0
)·sin(θSE0

),

x1 = ||C1||2 ·||S1||2 ·sin(θC0
1E1

)·sin(θSE1
),

z=

(
||C0||2 ·||S0||2 ·cos(θC0

0E0
)·cos(θSE0

)+

||C1||2 ·||S1||2 ·cos(θC0
1E1

)·cos(θSE1)

)

 (81)
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with the values of P [F0 | x0,x1,z] as calculated in the precomputation.
The precomputation loops over a grid of (x0,x1,z) values, and for each gridpoint

sums over the distribution of G0 and φ0. In total, the precomputation thus only
loops 5 distributions. The (x0,x1,z) grid is calculated over 100 values for each of
the elements, and intermediate values of P [F0 | x0,x1,z] are linearly interpolated.

The directional failure boosting loops over the distributions of C0, C1, S0, S1,
θC0

0E0
, θC0

1E1
, which is a total of 6 distributions. This can be compared to the loop

over 8 distributions in the direct method that does not use meet-in-the-middle
calculations. As a result, our meet-in-the-middle approach makes it possible to
practically calculate the cost of directional failure boosting for practical schemes
such as Saber and Kyber.

6.3 Removing the bias

One of the assumptions that is explicitly used for the geometric estimation of
(directional) failure boosting is that the angles ψ0 and ψ1 are distributed uniformly
random. This corresponds to the idealized scenario where the secret is drawn
from a continuous Gaussian distribution, but it is well approximated by binomial
distribution, which is typically used in practical designs. In case of rounding, there
is typically a bias in the distribution due to a non-zero mean, as a result of which
there will be a ‘sense of direction’ in C0 and S1.

To remove this ‘sense of direction’ we subtract the mean of the distribution of
the coefficients of C0 and S1:

C′0 =C0−µχe+χs
(82)

S ′1 =S1−µχe+χs
, (83)

This subtraction needs to be compensated to keep a correct failure equation, which
can be done as follows:

ST0 C0+ST1 C1+G (84)

=ST0 C′0+S ′T1 C1+(G+µχe+χs ·S0+µχe+χsC1) (85)

And thus by selecting:

G′=G+µχe+χs
·S0+µχe+χs

+C1, (86)

we can use the failure term ST0 C′0+S ′1TC1+G′, which has exactly the same failure
probability. However, this term will give slightly lower efficiency of failure boosting,
as an adversary only considers C0 and C1, and not G, to determine the weakness
of ciphertexts. To apply this adjustment to previous techniques one just has to use
the C′0, S ′1 and G′ instead of C0, S1 and G.

6.4 Discussion

Figure 3 and Figure 4 give an indication of the accuracy of our newly developed
geometric-uneven methods. First, one can see that both in the case of Saber and
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Katana, the attack cost when performing no precomputation (the leftmost point
on the curves) is approximately the failure probability. This is expected behaviour,
but it is not the case for Saber in the geometric calculations following Section 5.
This is a first indication that the geometric-uneven method is more accurate than
the standard geometric method in this case.

Secondly, one can see that the geometric-uneven curve is relatively close to the
Gaussian curve in the failure boosting (first failure) case. For Saber the geometric-
uneven approximation gives a significantly more accurate result compared to
the geometric approximation. Overall, the geometric-uneven estimation gives an
overestimation of the attack cost, which is logical in view of the assumptions and
approximations made in its derivation (e.g. only considering F0 and making the
distributions symmetric). On the other hand, for Katana the geometric approach
is more accurate than the geometric-uneven approach, which makes sense as the
scheme has χs=χe and does not perform rounding.

One can therefore conclude that the geometric approach is best suited for sym-
metric non-rounding schemes like Katana, while the geometric-uneven approach
is considerably better than the geometric approach for practical schemes such as
Saber and Kyber.

7 Attack constraints

In previous derivations, as in literature [12,11], it is assumed that there is an
unlimited number of possible ciphertexts. However, for schemes that use the FO
transformation, ciphertexts are generated deterministicaly from a message m∈M,
and as such there are only |M| ciphertexts for each public key. When an attacker
performs strong failure boosting, this maximum number of ciphertexts |M| might
be a limit to the number of weak ciphertexts an adversary can generate, which in
turn could limit or even obstruct an attack.

In a failure boosting attack an adversary first searches for weak ciphertexts,
which occur with a probability α(ft). This means that there are on average
|M|·α(ft) weak ciphertexts that can be found at each target, and thus |M|·α(ft)·T1
in total for T1 targets. It is expected that an attacker needs β(ft)

−1 of these weak
ciphertexts to find one decryption failure and thus an adversary that wants to
collect T2 failures would need β(ft)

−1 ·T2 weak ciphertexts. In short, there are on
average |M|·α(ft)·T1 weak ciphertexts available, and an adversary would need
on average β(ft)

−1 ·T2 of them to proceed to the next phase of the attack.
From the above we can conclude that if β(ft)

−1 · T2 > |M| ·α(ft) · T1, it is
probable that the attacker will not find sufficient unique ciphertexts to obtain
T2 decryption failures. Even in the case where β(ft)

−1 ·T2≈ |M|·α(ft) ·T1, the
attack will become less efficient as the adversary will with high probability generate
non-unique weak ciphertexts, which requires him to restart the precomputation.
For β(ft)

−1 ·T2< |M|·α(ft)·T1, these effects can be expected to be negligible, as
there will be enough weak ciphertexts to avoid duplication. To take this observation
into account one can add an additional constraint in the attack calculations using
the following restriction on ft: β(ft)

−1 ·α(ft)
−1< |M|·T1/T2.
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Another possible obstacle for an attacker is the maximum depth Dmax of the
quantum computer used for the precomputation. Such depth limit reduces the
Grover search success probability if

√
α(ft)−1�Dmax. This can be compensated

for by splitting the search space in p partitions and performing a Grover search
of depth Dmax in each partition. Asymptotically one would need α(ft)

−1/D2
max

partitions to find a weak ciphertext with probability close to 1.
Thus, when

√
α(ft)−1 ≤ Dmax, the maximum depth does not restrict the

Grover search and the cost to find a weak ciphertext is
√
α(ft)−1, but when√

α(ft)−1>Dmax, the cost is Dmax ·α(ft)
−1/D2

max=α(ft)
−1/Dmax.

8 Results

We calculated the multitarget attack cost using the geometric-uneven approach
for all parameter sets of Saber, Kyber and uSaber with a query limit of 264 per
target. In Table 3, we first give the attack cost for 240 and 264 targets following
the procedure described until Section 6, where |M|=∞ and Dmax=∞.

We then recalculate the results for 264 targets with the following restrictions: in
a first instance |M|=2256, which is the case for the current designs of these schemes,
and a second instance |M| is taken equal to the equivalent AES strength, i.e. 2128

schemes that are in NIST category 1, 2192 for schemes in NIST category 3 and 2256 for
schemes in NIST category 5. The maximum depth is in both cases set toDmax=296,
which is the worst case scenario put forward by NIST [1]. A graphical overview of
the attack for all parameter sets of Saber and Kyber is given in Appendix A, where
the full line represents Dmax=∞ and where the dotted line represents Dmax=296.

An interested reader can generate their own numbers and figures for spe-
cific constraints using the python source code, which is made available at https:
//github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures.

8.1 Impact on Saber and Kyber

Before discussing the security impact of our attack on the targeted schemes, we
want to go into some considerations considering the attack model. The failure
boosting attack cost is expressed in terms of precomputational workW and queries
Q: 1W refers to the cost of 1 offline encapsulation and the quantum speedup is
assumed to be quadratic, ignoring subexponential costs; 1Q describes the cost of
1 decapsulation, which is performed as classical computations.

In a real-life scenario, one needs to take into account the fact that 1Q involves
performing a decapsulation query online on the targets hardware, which might be
a critical constraint in mounting a practical attack. For Saber, in an ideal scenario
our attack requires at least 298 queries and thus encapsulations performed on
the attacked hardware for an attack that costs 2168W. For the attack reported in
Table 3, the query cost is 2126 queries.

Moreover, in the offline precomputation step one has to take into account the
cost of performing the encapsulation (1W). The Grover search is additionally
constraint when considering a depth d for executing one encapsulation, leading
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to a cost of α(ft)
−1 ·d/DmaxW when

√
α(ft)−1>Dmax/d where the cost of one

encapsulation is still counted as 1W.
Our analysis shows that the category 3 instance of Saber is theoretically vulner-

able for a decryption failure attack. A decryption failure attack on Saber would cost
2145W and 2126Q in the specific setting where qlimit=264 and T (0) =264, which can
be compared to the claimed 2172 coreSVP security. However, practical execution
of the attack would not be straightforward due to the constraints outlined above.
The other parameter sets of Saber and Kyber are not vulnerable to the decryption
failure attack we developed, in case of Kyber1024 and FireSaber this is due to the
constraints on the number of ciphertexts due to |M|. The uSaber parameter sets
are not vulnerable to the decryption failure attacks we developed, even without
additional constraints.

8.2 Increasing the attack cost

One option to increase the attack cost could be to reduce |M|. Such a design change
does not incur an efficiency cost but is limited by the security of the overall scheme
as a too low value for |M| could impact the security under traditional attacks.
The effect of a reduction of |M| to 2128 and 2192 for schemes of category 1 and 3
respectively is detailed in the last column of Table 3. Note that this change will
especially restrain the efficiency of finding follow up failures, as the term |M|·T1/T2
is typically much higher for finding the first failure due to a high value of the number
of targets T1. Therefore, a reduction in |M| is also a good precaution for future
advances in decryption failure attacks as will be discussed in subsection 8.3.

Looking at the error term (e+u)T s′−sT (e′+u′)+(e′′+u′′), the compression
error u′′ can be a significant factor in decryption failures in schemes with strong
compression of v′ (i.e. large q/t). In this case the attack cost can be increased by
increasing t. This comes at a modest cost in ciphertext size, but generally has no
impact on the security of the scheme under non-decryption failure attacks. For
Saber, increasing t to 2t would make the attack more expensive than solving the
Mod-LWR problem while increasing the ciphertext size with only 256 bits. The
impact of such a change for Saber is given in the last rows of Table 3.

If increasing t is not sufficient, one needs to adapt the distributions of χs and
χe, which would impact both security as design and thus would require a more
in-depth analysis.

8.3 Possible future advances

In this subsection we go into detail on possible future advances in failure boosting
and its cost estimations.

Failure boosting The cost calculation of failure boosting takes into account both
C and G and makes two assumptions. The first being that errors at different coeffi-
cients of the message are independent, which has been shown by D’Anvers et al. [13]
to be a valid assumption for schemes without error correction. The second being
the Gaussian assumption as discussed in subsection 3.2. As a result, the attack cost
calculation of failure boosting is nearly optimal in the failure boosting framework.
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Directional failure boosting The directional failure boosting calculation uses more
assumptions and approximations that make the estimate less accurate. Specifically,
the attack relies on two assumptions: The geometric-uneven assumption states
that the distributions of S0, C0, S1 and C1 are multivariate Gaussian distributed
with zero mean and equal variance for each coefficient. This is a fairly good approx-
imation for binomial distributions with large variance, but is less accurate for small
variance binomial distributions or uniform distributions as is the case in Kyber and
Saber. The second assumption is the independency assumption that is also used in
the failure boosting calculation and is valid for schemes without error correction.

Furthermore, the directional failure boosting calculation in this work considers
a slightly suboptimal attack as some terms are not taken into account in the weak
ciphertext selection criterion: First, the attack does not take into account G in the
weak key selection (but it does for the failure probability calculation). Secondly,
it removes the bias of S0 and C1 due to rounding, and adds it to the term G as
explained in subsection 6.3. Therefore, the above approximations correspond to
executable attacks, but the attack is slightly suboptimal as a better weak ciphertext
selection criterion (e.g. taking G into account) would lead to a more efficient attack.

Finally, the directional failure boosting calculation makes two significant approx-
imations: First, in the geometric-uneven directional failure boosting approach, only
the error probability of the first bit of the message is considered. This would lead
to an underestimation of the failure probability and thus an overestimation of the
attack cost. Secondly, the distributions of the different variables are approximated
using a limited number of points.

The previous assumptions and approximations are necessary to allow efficient
calculation of the attack cost. However, they could result in a less optimal attack
and a less accurate cost estimation for directional failure boosting. During the
development of our cost estimation methods in Sections 5 and 6 we showed that
our calculation methods are still reasonably accurate using three checks:

First we checked the failure probability when no precalculation is performed,
which should correspond to the failure probability of the scheme. As shown in the
paper, this is always approximately the case for our cost estimation methods (but
not in case of Saber or Kyber in the geometric case, which led us to argue that this
method is not appropriate for Saber or Kyber).

Secondly, we checked our geometric and geometric-uneven methods in the
failure boosting case using the more accurate Gaussian approximation, where we
could see that our newly developed methods give approximately the same result.
Note that this comparison is not possible in the directional failure boosting case.

Thirdly, we verified the geometric-uneven method using the geometric method
in case of Katana. As the latter method makes less approximations and as its
assumptions are valid for Katana, this comparison can be used to verify some of
the new assumptions (i.e. removing the bias in subsection 6.3 and only considering
errors at the first coefficient in subsection 6.1) made in the geometric-uneven
method compared to the geometric method.

Conclusion For schemes where the attack cost is dominated by finding the first
failure, the calculated cost will be close to the optimal decryption failure attack cost
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Full attack First failure
W0/Q0 W1/Q1 W0/Q0

LightSaber 116 / 108 104 / 62 116 / 108
Saber 140 / 126 140 / 68 133 / 125
FireSaber 215 / 126 215 / 68 188 / 128

Kyber512 131 / 118 129 / 62 131 / 118
Kyber768 174 / 126 175 / 69 161 / 128
Kyber1024 228 / 126 219 / 71 191 / 128

Table 4. Cost (log2) of obtaining the first and second failure in our multitarget attack and
cost of obtaining only the first failure if the second failure would be free. qlimit =264 and
T (0) =264. Text is made bold for dominating factor in the attack cost. When performing
a levelled multitarget attack where T (1) 6=1, the search for the second failure is considered
dominant.

(unless a radical new attack is discovered that outperforms failure boosting). For
schemes with an attack cost dominated by directional failure boosting, the estima-
tion will be less accurate. In a worst case attack scenario (from the designers perspec-
tive) one could assume the directional failure boosting cost to be reduced even more,
leading to an attack that is essentially dominated by finding the first failure. Note
that this is a very conservative approach and does not correspond to an existing
attack scenario. An overview of the dominant attack costs can be found in Table 4.
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A Detailed attack costs

(a) Cost to find a failure vs weak ciphertext
failure rate for qlimit =264 and T (0) =264.

(b) Attack cost in function of targets T (0)

for qlimit =264.

Fig. 5. LightSaber

(a) Cost to find a failure vs weak ciphertext
failure rate for qlimit =264 and T (0) =264.

(b) Attack cost in function of targets T (0)

for qlimit =264.

Fig. 6. Saber

(a) Cost to find a failure vs weak ciphertext
failure rate for qlimit =264 and T (0) =264.

(b) Attack cost in function of targets T (0)

for qlimit =264.

Fig. 7. FireSaber
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(a) Cost to find a failure vs weak ciphertext
failure rate for qlimit =264 and T (0) =264.

(b) Attack cost in function of targets T (0)

for qlimit =264.

Fig. 8. Kyber512

(a) Cost to find a failure vs weak ciphertext
failure rate for qlimit =264 and T (0) =264.

(b) Attack cost in function of targets T (0)

for qlimit =264.

Fig. 9. Kyber768

(a) Cost to find a failure vs weak ciphertext
failure rate for qlimit =264 and T (0) =264.

(b) Attack cost in function of targets T (0)

for qlimit =264.

Fig. 10. Kyber1024
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