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Abstract. Deep learning-based side-channel analysis (SCA) represents
a strong approach for profiling attacks. Still, this does not mean it is
trivial to find neural networks that perform well for any setting. Based on
the developed neural network architectures, we can distinguish between
small neural networks that are easier to tune and less prone to overfitting
but could have insufficient capacity to model the data. On the other
hand, large neural networks have sufficient capacity but can overfit and
are more difficult to tune. This brings an interesting trade-off between
simplicity and performance.

This work proposes to use a pruning strategy and recently proposed Lot-
tery Ticket Hypothesis (LTH) as an efficient method to tune deep neural
networks for profiling SCA. Pruning provides a regularization effect on
deep neural networks and reduces the overfitting posed by overparame-
terized models. We demonstrate that we can find pruned neural networks
that perform on the level of larger networks, where we manage to reduce
the number of weights by more than 90% on average. This way, pruning
and LTH approaches become alternatives to costly and difficult hyperpa-
rameter tuning in profiling SCA. Our analysis is conducted over different
masked AES datasets and for different neural network topologies. Our
results indicate that pruning, and more specifically LTH, can result in
competitive deep learning models.

Keywords: Side-channel Analysis - Deep learning - Lottery Ticket Hy-
pothesis - Pruning

1 Introduction

Several side-channel analysis (SCA) approaches exploit various sources of infor-
mation leakage from electronic devices. Common examples of side channels are
timing [16], power [I7], and electromagnetic (EM) emanation [26]. Besides a divi-
sion based on side channels, it is possible to divide SCA based on the attacker’s
capabilities into non-profiling and profiling attacks. Non-profiling attacks re-
quire fewer assumptions but often require thousands to millions of measurements
(traces) to break a target, especially if protected with countermeasures. Profiling
attacks are considered one of the strongest possible attacks as the attacker has
control over a clone device to build its complete profile [8]. This profile is given by
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a parametric statistical model used by the attacker to generalize to side-channel
information collected from similar devices to recover the secret information.

The history of profiling side-channel analysis (SCA) spans around 20 years,
and it is possible to distinguish among several research directions. The first
direction used techniques like (pooled) template attack [8/9] or stochastic mod-
els [28] and managed to improve the attack performance over non-profiling at-
tacks significantly. Then, the second direction moved toward machine learning
in SCA, and again, a plethora of results [25/T3/18] indicated that machine learn-
ing could outperform other profiling SCA methods. More recently, as the third
direction, we see a change of focus to deep learning techniques. Intuitively, we
can find at least two reasons for this: 1) deep learning show superior practical
results in breaking targets protected with countermeasures [20], and 2) deep
learning does not require pre-processing like feature selection [23] or dimension-
ality reduction [4]. While the SCA community progressed quite far in the deep
learning-based SCA in just a few years, there are many knowledge gaps. One
example would be how to successfully and systematically find neural networks
that manage to break various targets.

Thus, we still need to find approaches that allow designing neural networks
that perform well for various targets. We aim to have an approach that trans-
forms a good-performing architecture for one scenario into a good-performing ar-
chitecture for a different scenario. Finally, it would be ideal if the top-performing
architectures could be small (so they are more computationally efficient, and
hopefully, easier to understand). Unfortunately, this is not easy as the search
space turns into infinite neural network configuration possibilities. There are
no general guidelines on how to construct a neural network that will break a
target. Current efforts mainly concentrate on finding better hyperparameters
by defining modest and optimal ranges for hyperparameters, resulting in large
and exhaustive search spaces. Examples of applied hyperparameters search in
profiling SCA are random search [22], Bayesian optimization [32], reinforcement
learning [27], or approaches following a specific methodology [35I31]. Still, there
are alternatives to how to provide neural networks that are small and perform
well. Note that larger neural networks can also perform well for profiling SCA.
However, they suffer more from overfitting, and tuning large models becomes
more difficult due to the increased hyperparameter search spaces. Regulariza-
tion techniques are indicated to correct large models by limiting their capacity,
although constructing efficient regularizers can be a highly complex task.

In the machine learning domain, there is a technique called pruning (or spar-
sification) that refers to a systematical removal of parameters from neural net-
works. Commonly, pruning is used on large neural networks that show good
performance. The goal is to produce a smaller network with similar performance
to be deployed in memory-constrained devices. Also, pruning offers an alter-
native and cheap solution for regularizing large deep learning models. While
pruning [I4I6] is a rather standard technique in deep learning, it has not been
investigated before in the SCA domain to the best of our knowledge. Similarly,
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the Lottery Ticket Hypothesis [10] attracted quite some attention in the machine
learning community, but none (as far as we know) in the SCA community.

This chapter applies the recent Lottery Ticket Hypothesis (LTH) in the pro-
filing side-channel analysis. After training a (relatively large) neural network,
we apply the pruning process by removing the activity of small weights from
the neural network. We then re-initialize the pruned neural network with the
same initial weights set for the original large neural network. The pruned and
re-initialized network shows equal or, most of the time, superior performance
compared to the baseline trained network. We emphasize:

— Pruning is convenient for deep neural networks that overfit. Finding efficient
and small networks is more difficult than starting with a large model and
then pruning it. In this chapter, we consider neural network architectures
with up to one million trainable parameters.

— Pruning has two main advantages for SCA: (1) When the baseline model
is not carefully tuned and overfits or underfits, pruning (and specially LTH
process) may “tune” the model size. (2) Pruning acts as a strong regularizer,
which is important for noisy and small SCA datasets. Moreover, techniques
such as explainability and interpretability can be used to define pruning
strategies efficiently.

The results demonstrate that when the large network cannot reach a suc-
cessful attack (low guessing entropy), applying the Lottery Ticket Hypothesis
leads to a successful key recovery, even when the number of profiling traces is
low. More importantly, we verify that when training a large deep neural network
provides guessing entropy close to a random guess, a pruned and re-initialized
neural network can reduce the entropy of the target key. Our main contributions
are:

1. We introduce the pruning approach into profiling SCA, enabling us to pro-
pose a procedure that can work on top of other approaches. Our approach
can be applied to any neural network, regardless of whether it is selected
randomly or obtained through some other methodology. Naturally, depend-
ing on how good is the original network, the results from our approach can
differ.

2. We demonstrate that the Lottery Ticket Hypothesis holds for SCA, which
is a significant finding due to different metrics used in SCA. The original
publication [10] measures LTH efficiency through test accuracy. Here, our
metric is guessing entropy from the attack traces. As reported in this chapter,
we can find smaller, better, and stable networks by using the pruning and
weight initialization based on LTH, even when the original network does not
return successful attack results.

2 Background

2.1 Notation

Let calligraphic letters like X denote sets, and the corresponding upper-case
letters X denote random variables and random vectors X over X. The corre-
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sponding lower-case letters = and x denote realizations of X and X, respectively.
Next, let k be a key candidate that takes its value from the keyspace K, and k*
the correct key. We define a dataset as a collection of traces T, where each trace
t; is associated with an input value (plaintext or ciphertext) d; and a key k;.
When considering only a specific key byte j, we denote it as k; ;, and input byte
as d; ;.

The dataset consists of |T'| traces. From |T| traces, we use N traces for the
profiling set, V traces for the validation set, and @ traces for the attack set.
Finally, 6 denotes the vector of parameters to be learned in a profiling model,
and H denotes the hyperparameters defining the profiling model.

2.2 Supervised Machine Learning in Profiling SCA

Supervised machine learning considers the machine learning task of learning a
function f mapping an input X to the output Y (f : X — Y) based on input-
output pairs. The function f is parameterized by # € R™, where n represents the
number of trainable parameters.

Supervised learning happens in two phases: training and test, corresponding
to SCA’s profiling and attack phases. Thus, in the rest of this chapter, we use
the terms profiling/training and attack/testing interchangeably. As the function
f, we consider a deep neural network with the Softmaz output layer.

The goal of the training phase is to learn parameters 6’ that minimize the
empirical risk represented by a loss function L on a dataset T of size NN.

In the attack phase, the goal is to make predictions about the classes

y(tlak*)7 e ?y(tQ?k*)7

where k* represents the secret (unknown) key on the device under the attack
(or the key byte). The outcome of predicting with a model f on the attack set
is a two-dimensional matrix P with dimensions equal to @ X ¢ (the number of
classes ¢ depends on the leakage model as the class label v is derived from the
key and input through a cryptographic function and a leakage model). To reach
the probability that a certain key k is the correct one, we use the maximum
log-likelihood approach:

Q
S(k) =3 log(pi.)- (1)

The value p; , denotes the probability that for a key k£ and input d;, we obtain
the class v.

We are interested in reaching good generalization with machine learning al-
gorithms, denoting how well the concepts learned by a machine learning model
apply to previously unseen examples. At the same time, we aim to avoid un-
derfitting and overfitting. Overfitting happens when a model learns the detail
and noise in the training data, negatively impacting the model’s performance on
unseen data. Underfitting happens with a model that cannot model the training
data or generalize to unseen data.
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In SCA, an adversary is not interested in predicting the classes in the attack
phase but in obtaining the secret key k*. To estimate the effort required to obtain
the key, we will use the guessing entropy (GE) or success rate metrics [29]. An
attack outputs a key guessing vector g = [g1,92,...,9k|] in decreasing order
of probability, which means that g; is the most likely key candidate and g x|
the least likely key candidate. The success rate is the average probability that
the secret key k* is the first element of the key guessing vector g. Guessing
entropy is the average position of £* in g. Commonly, averaging is done over 100
independent experiments to obtain statistically significant results. As common
in the deep learning-based SCA, we consider multilayer perceptron (MLP) and
convolutional neural networks (CNNs).

2.3 Leakage Models and Datasets

During the execution of the cryptographic algorithm, the processing of sensi-
tive information produces a specific leakage. In this chapter, we consider the
Hamming weight leakage model since the considered datasets leak significantly
in this model .There, the attacker assumes the leakage is proportional to the
sensitive variable’s Hamming weight. This leakage model results in nine classes
when considering a cipher that uses an 8-bit S-box (¢ =9).

ASCAD Datasets. The first target platform we consider is an 8-bit AVR
microcontroller running a masked AES-128 implementation [5]. There are two
versions of the ASCAD dataset. The first version of the ASCAD dataset has
a fixed key and 50000 traces for profiling and 10000 for testing.The second
version of the ASCAD dataset has random keys, and it consists of 200 000 traces
for profiling and 100000 for testing. For both versions, we attack the key byte
3 unless specified differently. For the ASCAD dataset, the third key byte is the
first masked byte. For ASCAD with the fixed key, we use a pre-selected window
of 700 features, while for ASCAD with random keys, the window size equals
1400 features. These datasets are available at [I].

CHES CTF 2018 Dataset. This dataset refers to the CHES Capture-
the-flag (CTF) AES-128 dataset, released in 2018 for the Conference on Crypto-
graphic Hardware and Embedded Systems (CHES). The traces consist of masked
AES-128 encryption running on a 32-bit STM microcontroller. We use 45 000
traces for the training set (CHES CTF Device C), containing a fixed key. The
attack set consists of 5000 traces (CHES CTF Device D). The key used in the
training and validation set is different from the key configured for the test set.
CHES CTF 2018 trace sets contain the power consumption of the full AES-128
encryption, with a total number of 650000 features per trace. The raw traces
were pre-processed in the following way. First, a window resampling is performed.
Later, we concatenated the trace intervals representing the processing of the
masks (beginning of the trace) with the samples indicating the processing of
S-boxes located after an interval without any particular activity (flat power con-
sumption profile). The resulting traces have 2200 features. The original dataset
is available at [2], and the processed traces are provided at [3].
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3 Related Works

The goal of finding neural networks that perform well in SCA is probably the
most explored direction in machine learning-based SCA. The first works com-
monly considered multilayer perceptron and reported good results even though
there were not many available details about hyperparameter tuning or the best-
obtained architectures [TTI21I3312]. In 2016, Maghrebi et al. made a significant
step forward in the profiling SCA as they investigated the performance of con-
volutional neural networks [20]. Since the results were promising, this paper
started a series of works where deep learning techniques (most dominantly MLP
and CNNs) were used to break various targets efficiently.

Soon after, works from Cagli et al. [7], Picek et al. [24], and Kim et al. [15]
demonstrated that deep learning could efficiently break implementations pro-
tected with countermeasures. While those works also discuss hyperparameter
tuning, it was still not straightforward to understand the effort required to
find the neural networks that performed well. This effort became somewhat
clearer after Benadjila et al. investigated hyperparameter tuning for the ASCAD
dataset [5]. Indeed, while considering only a subset of possible hyperparameters,
the tuning process was far from trivial.

Zaid et al. proposed a methodology for CNNs for profiling SCA [35]. While
the methodology has limitations, the results obtained are significant as they
reached top performance with never smaller deep learning architectures. This
direction is further investigated by Wouters et al. [31] who reported some issues
with [35] but managed to find even smaller neural networks that perform sim-
ilarly well. Still, the proposed methodologies have some issues. First, it is not
easy to use those methodologies and generalize for other datasets or neural net-
work architectures. Second, the conflicting results among those methodologies
indicate it is difficult to find a single approach that works the best for everything.

Perin et al. conducted a random search in pre-defined ranges to build deep
learning models to form ensembles [22]. Their findings showed that even random
search (when working on some reasonable range of hyperparameters) could find
neural networks that perform extremely well. Finally, van ver Valk et al. used
a technique called mimicking to find smaller neural networks that perform like
the larger ones [30]. Still, the authors did not use pruning but ran experiments
until they found a smaller network that outputs the same results as the larger
one. Thus, the approaches are significantly different.

Thus, while the approaches mentioned work as evident from the excellent
attack performance, there are still unanswered questions. What is clear is that
we can reach good results with (relatively) small neural networks. What remains
to be answered is how to adapt those methodologies for different datasets, or
can we find even smaller neural network architectures that perform as well (or
better). We aim to provide the answers to those questions in this work.
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4 The Lottery Ticket Hypothesis (LTH)

The Lottery Ticket Hypothesis (LTH) was originally proposed by Franke and
Carbin in [I0] as a technique to improve pruned neural network performances.
The main goal of pruning is to remove unnecessary weights to achieve the small-
est neural network by keeping the original baseline performance. The baseline
model refers to the trained neural network architecture that is not pruned. This
way, pruned neural networks are suitable for memory-constrained devices and
can deliver faster inference. With the LTH, authors verified that re-initializing
the pruned neural network with the same initial weights from the baseline neu-
ral network shows equivalent or superior performance to the baseline model. In
short, authors define the following: “Lottery Ticket Hypothesis: a randomly
initialized dense meural network contains a sub-network that is initialized such
that - when trained in isolation - it can match the test accuracy of the original
network after training for at most the same number of iterations”.

A fixed sparsity level gives the amount of pruned weights and denotes the
percentage of the removed network (e.g., 90% sparsity on an MLP would remove
90% of weight connections). The top-performing sub-networks are then called
the winning tickets. There are two main ways to deploy LTH: one-shot pruning
and iterative pruning. The latter defines the next sparsity level according to
the results obtained from the previously evaluated sparsity level amount. This
way, instead of defining a fixed sparsity level as in the case of one-shot pruning,
the process iteratively finds the maximum possible sparsity level that delivers
satisfactory results.

4.1 Pruning Strategy

To find an efficient pruned network, the large overparameterized baseline model
must be trained before applying pruning to remove unnecessary weights. The
pruning process applied in this work removes the smallest weights from the
trained weights obtained from training the baseline model for a fixed amount of
epochs. The activations in the forward propagation are mostly affected by larger
weight values. Therefore, pruning the smallest weights remove those weights that
are not significantly impacting the predictions. Different pruning strategies could
be considered. Here we show that even the most simple method based on weight
magnitude already delivers efficient results.

As shown in the experimental results section, we apply the LTH process
on public (and protected) AES datasets, which also works when considering
other than accuracy performance metrics (e.g., success rate, guessing entropy).
The process starts by training an overparameterized neural network model for
a single target AES key byte (note that our baseline models are assumed to
be overparameterized in comparison to state-of-the-art works, e.g., [35I3TI27]).
Afterward, the model is pruned by removing smallest weights, and this pruned
model is re-initialized and retrained (with more efficiency, e.g., fewer epochs)
for all AES key bytes. Therefore, LTH reduces the complexity of deep neural
network tuning in profiling SCA. We give the pruning strategy procedure for
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Fig. 1: One-shot pruning procedure for LTH.

LTH in Algorithm |1} Although our process iterates over all sparsity levels s (in
our case, from 1% to 99%), we do not consider it as iterative pruning because
we do not set a metric to stop the process. Our main goal is to evaluate the
profiling attack performance for all evaluated sparsity levels.

Algorithm 1 Pruning Strategy.

1: procedure PRUNING STRATEGY (original neural network f, original dataset x, ran-
dom initial weights 6o, training epoch 6;, trained weight 6;, pruning ratio Py, mask
m)
for s=1 to 99 do
0; < Pretrain Model f(x,00) for j epochs
m < Prune s% of the smallest weights from 6;
for i=1 to j do
Train f(x,00©m)
end for
end for
end procedure

In Figure[T]} we depict an one-shot pruning procedure. The first part of the fig-
ure displays the reference training procedure with no pruning where the weights
at the beginning of the training process are different from those at epochs A
and B. The lower figure shows the setup when we prune the smallest weights
and are left to choose whether we randomly initialize the remaining weights or
re-initialize them from the original weights.
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4.2 Winning Tickets in Profiling SCA

In [10], a winning ticket is defined as a sub-network that, when trained in iso-
lation (after being re-initialized with the same baseline model initial weights),
provides classification accuracy equivalent or superior to the baseline model. For
profiling SCA, we define winning ticket as a sub-network that provides a test
guessing entropy lower than or equivalent to the guessing entropy obtained from
the original baseline model. Note that hyperparameters defined for the baseline
model (which affects the total number of training parameters) and the num-
ber of profiling traces directly affect the chances to identify a winning ticket as
demonstrated in Section [l

Recall, pruning refers to removing neurons (neuron-based pruning) or weight
connections (weight-based pruning) from the neural network activity. The most
popular pruning technique consists of keeping a number of weight connections
based on their weight value. This means that the smallest weights are pruned
out from the model ﬂ However, one should note that the concept of winning
ticket does not imply that pruning is applied to well-selected pruned weights or
neurons. For instance, if one prunes a certain percentage of elements selected
at random and the remaining sub-network still performs as well as the baseline
model, the resulting model is still called a winning ticket. Obviously, pruning
techniques should also be explored to find a sub-network with more efficiency.
In Section |5, we provide an extensive set of experimental results showing that
pruning the smallest weights provides excellent results for SCA. Still, we do not
claim that pruning, e.g., random weights, would not give good results for specific
settings.

Ideally, deep learning-based SCA requires selecting the smallest possible neu-
ral network architecture that provides good generalization for a given target.
Small models are faster to train and easier to interpret. The challenge of finding
a well-performing small architecture may grow proportionally to the difficulty
of the evaluated side-channel dataset (misalignment, noise, countermeasures).
Nevertheless, side-channel traces usually provide a low signal-to-noise ratio, and
regularization techniques play an important role in leakage learnability. Small
models are self-regularized, mainly because they offer less capacity to overfit the
training set. This justifies the importance of finding winning tickets in SCA.
Regardless of the evaluated dataset, starting from a large baseline model and
applying the Lottery Ticket Hypothesis improves the chances to create a small
and efficient neural network model.

5 Experimental Results

5.1 Baseline Neural Networks

In our experiments, we define six different baseline models: three MLPs and
three CNNs. Here, the main idea is to demonstrate how pruning and weight re-
initialization (the Lottery Ticket Hypothesis) provide different SCA results if the

3 Similarly, pruning can be considered as keeping the largest weights in model.
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baseline model varies in size or capacity. The MLP models are selected based on
the sizes of commonly used architectures from the related works [20/5/22]. CNN
models contain relatively fewer trainable parameters, and we define them based
on efficient results obtained with smaller models as presented in [35/31122].

Table[I]lists the hyperparameter configurations for MLP4, MLP6, and MLP8
models. The main idea is to verify how pruning and re-initialization work for
MLP architectures with different numbers of dense layers and, consequently,
different number of trainable parameters. Note that we have not selected very
large neural network models. All of them contain less than one million train-
able parameters. Here, the goal is to demonstrate that even a moderately-sized
model can be significantly reduced according to the Lottery Ticket Hypothesis
procedure presented in Algorithm [I] and still keep or provide improved profil-
ing SCA results. While it could be said that neural networks with up to one
million trainable parameters are small, we note that the state-of-the-art results
report significantly smaller architectures (even significantly fewer than 100000
trainable parameters) [35I31127].

The principle also holds for the chosen CNN models. Table [2| shows three
CNN architectures, denoted as CNN3, CNN4, and CNN4-2. We defined rela-
tively small CNNs (but still larger than state-of-the-art in, e.g., [35]), which are
sufficient to break the evaluated datasets. CNN3 has only one convolution layer,
while CNN4 and CNN4-2 contain two convolution layers each. In particular,
CNN4-2 has larger dense layers than CNN4 to allow more complex relations
between the input-output data pairs to be found (and allow more overfitting
to happen). It is important to note that we define the same models for three
different datasets. It is expected that for baseline models (without pruning),
the performance might not be optimal for all cases. Although it is out of this
chapter’s scope to identify one model that generalizes well for all scenarios, we
demonstrate that applying the Lottery Ticket Hypothesis procedure is a step
forward in this important deep learning-based profiling SCA research direction.

We also provide experimental results demonstrating that the procedure de-
scribed in Section [4 depends on several aspects such as the number of profiling
traces and the sparsity level in the pruning process. By identifying the optimal
sparsity level for pruning, we can drastically improve the performance of re-
initialized sub-networks. Moreover, in some scenarios, we show that even when
a large baseline model cannot recover the key, the pruned and re-initialized sub-
network succeeds, especially when the number of profiling traces is small.

Interpreting Plots: This section’s results are given in terms of guessing en-
tropy for different baseline models, datasets, and sparsity levels. The sparsity
level is provided in the z-axis, where we apply pruning to the trained baseline
neural network from 1% up to 99%. In each plot, there is a dashed green line that
represents the average resulting guessing entropy for the baseline model without
pruning. Thus, the green line is shown together with the plots to indicate the
obtained guessing entropy when baseline models are trained for 300 epochs with-
out any pruning. We consider 300 epochs to skip possible underfitting scenarios.
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Layer MLP4 MLP6 MLPS8
Dense_1 200 neurons 200 neurons 200 neurons
Dense_2 200 neurons 200 neurons 200 neurons
Dense_3 200 neurons 200 neurons 200 neurons
Dense 4 200 neurons 200 neurons 200 neurons
Dense_5 - 200 neurons 200 neurons
Dense_6 - 200 neurons 200 neurons
Dense_7 - - 200 neurons
Dense_8 - - 200 neurons
Softmazx 9 neurons 9 neurons 9 neurons

Parameters (ASCAD Random Keys) 402609 483009 563409
Parameters (ASCAD Fized Key) 262 609 343009 423 409

Parameters (CHES CTF 2018) 562 609 643009 723409

Table 1: MLP architectures (batch size 400, learning rate 0.001, ADAM, selu
activation functions). Number of parameters vary for different datasets due to
different input layer dimensions.

The models we consider range from 32969 to 723 409 trainable parameters, and
with 300 epochs, there are no extreme overfitting cases.

The dashed red line is the resulting average guessing entropy after the trained
baseline model is pruned according to the indicated sparsity level (z-axis) and
initialized with random weights and trained for 50 epochs. Finally, the blue line
is the resulting average guessing entropy from the same previous pruned model
and re-initialized with initial weights from the baseline model according to LTH
and trained for 50 epochs. For each sparsity level, each experiment is repeated
ten times. Therefore, each plot results from training 98 x 2 x 10 = 1960 pruned
models. The plots also present the margin variation obtained with ten experi-
ments (depicted as the area in the respective color).

We briefly discuss the limits that pruning and the Lottery Ticket Hypothesis
offer regarding the results and their explainability:

1. Pruning allows smaller neural networks that perform on the level or even
better than larger ones. This results from the regularization effect provided
by pruning out small weights according to some strategy (random pruning
or LTH).

2. The Lottery Ticket Hypothesis assumes there will be smaller, good perform-
ing sub-networks, so-called winning tickets. Winning tickets in profiling SCA
allow reaching small sub-networks with good attack performance, as mea-
sured with GE. This provides an alternative solution for hyperparameter
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Layer CNN3 CNN4 CNN4-2
ConviD.1 16 filters 16 filters 16 filters
ks=10, stride=5 ks=10, stride=>5 ks=10, stride=5
MaxPool1D_1 ks=2, stride=2 ks=2, stride=2 ks=2, stride=2
- BatchNorm BatchNorm BatchNorm
ConviD.2 ks:ll?),fisl‘sfije:5 ks:ll?),ﬁsl‘sfiidse:5
MaxPool1D_2 - ks=2, stride=2 ks=2, stride=2

- - BatchNorm BatchNorm

Dense_1 128 neurons 128 neurons 256 neurons
Dense_2 128 neurons 128 neurons 256 neurons
Softmazx 9 neurons 9 neurons 9 neurons
Parameters (ASCAD Random Keys) 302713 47305 124 489
Parameters (ASCAD Fized Key) 159 353 32969 95817
Parameters (CHES CTF 2018) 466 553 63 689 157257

Table 2: CNN architectures (batch size 400, learning rate 0.001, ADAM, selu
activation function). Number of parameters vary for different datasets due to
different input layer dimensions.

tuning in which pruning is used to extract the best possible performance
from a model by disabling unnecessary weight connections.

3. In profiling SCA, finding an efficient model is also characterized by determin-
ing a good balance between the model’s fitting capacity (i.e., its number of
trainable parameters) and its generalization. Regularization is the method
that provides this balance if one chooses to avoid tuning the model’s hy-
perparameters. However, finding good regularizers might also pose critical
difficulties, especially when there are more hyperparameters to be tuned due
to the regularizer choice. Therefore, the pruning, and LTH process, offer a
cheap and easy-to-deploy alternative to regularize a large model. However,
not all neural network sizes will necessarily be converted from a baseline
model that performs poorly into an optimal one just by applying pruning
strategies as regularizers. Other aspects, such as dataset nature and the
number of profiling traces, also will affect the pruned model’s performance.

4. Pruning and LTH are not methods to provide explainability. However, ex-
plainability and interpretability can be used to improve the pruning strategy.
This can be done by analysing, e.g., gradients [19], neuron relevance to clas-
sification [34] or simply weight magnitude [10].
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Fig. 2: ASCAD Fixed Key, MLP4

5.2 ASCAD with a Fixed Key

Figures and [4] provide results for the ASCAD Fixed Key dataset when
MLP4, MLP6, and MLP8 are used as baseline models, respectively, for different
number of profiling traces. There, we can immediately conclude that random
initialization (random init in figure legends) and LTH initialization (LTH init in
figure legends) provide different final guessing entropy results for different MLP
sizes and the number of profiling traces. For the LTH case, the model size and
the number of profiling traces have a small impact, and we can observe that, for
all scenarios, pruning up to 90% of the weights show similar key recovery results.

On the other hand, if the pruned models are initialized with random weights,
the model’s performance is directly related to model size and the number of pro-
filing traces. Adding more profiling traces improves the behavior of the model
that is randomly initialized, approaching the model’s behavior that is re-initialized
according to LTH. The baseline model performs better than the pruned model
that uses random initialization if the percentage of pruned weights is larger than
50% (for MLP8), and the number of profiling traces is sufficient to build a strong
model. For the pruned model that follows the LTH initialization, the baseline
model performs better only if we prune more than 90% of weights.

Interestingly, we can observe that pruning and LTH weight initialization show
very stable results. Repeating the experiments ten times for each sparsity level
tends to provide similar final guessing entropy values. Random weight initializa-
tion after pruning clearly shows different final guessing entropy results, which is
an obvious consequence of the randomness of weight initialization.

Next, we give results for the three different CNN architectures. Figures
and [6]indicate that for 30000 training traces, as the dataset is small, the baseline
model generally performs well but shows signs of overfitting. Then, pruning up to
60% of weights improves the performance regardless of the weight initialization
procedure, although the LTH approach shows more stable and superior results.
Increasing the number of traces shows improved behavior for the baseline model.
Still, carefully selected sub-networks are sufficient to break the target, even when
pruning 80% of weights.
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Going to a more complex architecture (CNN4), the baseline model performs
well and can reach a guessing entropy of one. However, this baseline model
shows more variation from the ten repeated experiments. Simultaneously, prun-
ing enables similar performance where the larger the training set, the smaller
the differences between weight initialization procedures (LTH initialization or
random). In Figure [7 we consider the most complex CNN architecture. Inter-
estingly, for 40 000 and 50000 traces, we observe an even better performance of
pruned networks when compared to the baseline model for up to 60% pruned
weights. Again, LTH initialization tends to provide more stable results.

5.3 ASCAD with Random Keys

In this section, we provide results for the ASCAD Random Keys dataset, as
introduced in Section Again, we apply the LTH procedure for a different
number of profiling traces (60000, 100000, and 200000) on the six different
baseline models (MLP4, MLP6, MLP8, CNN3, CNN4, and CNN4-2).

Figure [§ shows results for different number of profiling traces and the MLP4
baseline model. With four dense layers, this MLP can be considered a small
model, which is sufficient to break the ASCAD dataset for a large number of



The Lottery Ticket Hypothesis in Deep Learning-based SCA

200

15

Final Guessing Entropy

[
w v 8 R &G 5
g3 8 % 38

~
o

o

—— LTHinit —— Random init ---- Baseline Model
200 200
175 175
Q Q
2 150 £ 150
5 5
e e
w125 w125
g g
‘@ 100 ‘@ 100
b4 b4
S 75 S 75
] o
T 50 T 50
£ £
o2 o2
== 0 0
4 20 40 60 80 100 20 40 60 20 40 60

Sparsity Level (%)

(a) 30000 profiling traces.

Fig.5: ASCAD Fixed Key, CNN3

Sparsity Level (%)

(b) 40000 profiling traces.

Sparsity Level (%)

(c) 50000 profiling traces.

B

Final Guessing Entropy

—— LTHinit —— Randominit ---- Baseline Model

200 200

175 175
Q Q

£ 150 £1s50
2 2

w125 w125
g g

‘@ 100 ‘@ 100
a 2
v v

3 75 > 75
o o

T 50 T 50
£ £
i i

25 A ?M« 25 RIS
ROV IO 11T PP
0 0
0 20 40 60 80 100 20 40 60 80 100 20 40 60

Sparsity Level (%)

(a) 30000 profiling traces.

Fig. 6: ASCAD Fixed Key, CNN4

Sparsity Level (%)

(b) 40000 profiling traces.

Sparsity Level (%)

(c) 50000 profiling traces.

—— LTHinit —— Randominit ---- Baseline Model

200 200 200

J175 175 175
Q Q Q

£ 150 £ 150 £150
2 2 2

w125 w125 w125
g g g

& 100 ‘@ 100 ‘@ 100
a a 2
3 v v

> 75 > 75 3 75
[C] ] ]

T 50 T 50 e
£ £ £

T T =2

.
0 0 0
0 20 40 60 80 100 20 40 60 80 100 20 40 60 80

Sparsity Level (%)

(a) 30000 profiling traces.

Fig. 7: ASCAD Fixed Key, CNN4-2

Sparsity Level (%)

(b) 40000 profiling traces.

100
Sparsity Level (%)

(c) 50000 profiling traces.

profiling traces (above 100000), as indicated by the baseline model guessing
entropy results. However, if the number of profiling traces is reduced (60 000),
the guessing entropy result for the baseline model trained for 300 epochs is worse
due to overfitting. On the other hand, applying the LTH process on this MLP4
baseline model shows good results even when the number of profiling traces is
reduced. A natural alternative to fix the baseline model training would be to



16 G. Perin et al.

—— LTHinit —— Randominit ---- Baseline Model

200 200 200

> 175 175 175
Q Q Q

2150 2150 2 150
5 5 =]
c c c

w125 w125 w125
o o o
< < <

@ 100 & 100 ‘G 100
3 b 8

S 75 3 75 3 75
o o [C]

T 50 B 50 e
£ £ £

T o2 i toas

0 e ey 0 0

0 20 40 60 80 0 20 40 60 80 100 0 20 40 60 80 100
Sparsity Level (%) Sparsity Level (%) Sparsity Level (%)

(a) 60000 profiling traces. (b) 100000 profiling traces. (c) 200000 profiling traces.

Fig.8: ASCAD Random Keys, MLP4

—— LTHinit —— Random init ---- Baseline Model

200 200 200

> 175 175 175
Y 2 2

2150 2150 2150
€ € e

w125 w125 w125
2 2 2

& 100 ‘@ 100 ‘@ 100
a @ @
4 4] 4

375 375 375
[C] [¢] o

T 50 T 50 T s0

=R T o o2

04= ; 0 L 0

0 20 0 20 20

40 60 40 60 40 60
Sparsity Level (%) Sparsity Level (%) Sparsity Level (%)

(a) 60000 profiling traces. (b) 100000 profiling traces. (c) 200000 profiling traces.

Fig.9: ASCAD Random Keys, MLP6

reduce the number of epochs to limit the overfitting. However, we expose this
result (Figure[8a) to demonstrate how pruning (even from 1% of weights) already
regularizes the model and delivers successful attack results (we also must mention
that pruned model is trained for fewer epochs, also reducing overfitting).

The observations are confirmed in Figures [9] and for MLP models with
more capacity (MLP6 and MLPS). Indeed, profiling sets that are too small cause
overfitting for the baseline model, which can be easily resolved following the
pruning method. Notice that random initialization always works worse than LTH
initialization, and it also gives more irregular behavior due to the randomness in
the process. This is even more evident in Figure[I0]where the variation of random
initialization after pruning is very significant. This confirms that the LTH is valid
in the profiling SCA context. As shown in Figure@, pruning approximately 90%
of the weights from the baseline model results in a successful attack when weights
are initialized with the LTH process.

Comparing Figures [J] and [I0] the larger baseline models tend to provide less
successful results when the LTH procedure is applied. Larger baseline models
may overfit training data more easily, and, as a consequence, the pruning process
is applied to a model that might overfit. The solution for this problem is to
consider early stopping for the baseline model training. This way, pruning would
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Fig. 10: ASCAD Random Keys, MLP8

be applied to the baseline model weights when they reach the best training epoch.
To confirm our hypothesis, we can consider Figure [10c} The baseline model
(MLP8) is trained on 200 000 profiling traces for 300 epochs and does not overfit,
as seen in the final baseline model’s guessing entropy. In this case, the pruned
model performance with LTH initialization is as good as for smaller baseline
models trained on the same number of profiling traces (see, e.g., Figure .

The CNN architectures selected for this analysis show better guessing entropy
results for the baseline model when more profiling traces are used, as shown in
Figures[T] and [I3] However, when less profiling traces are used, as is the case
of results provided in Figures [IIb] [I2b] and [I3] the baseline guessing entropy
is not reaching one on average. Adding more profiling traces helps, but the
number of profiling traces should align with the model complexity. The evaluated
CNN models worked well for the ASCAD Fixed Key dataset, as shown in the
last section. However, these models (especially CNN4 and CNN4-2) appear less
appropriate for the ASCAD Random Keys dataset. In such cases, pruning plays
an important role in (partially) overcoming this. After pruning, it is possible to
reach very low GE values (under 5) for a specific percentage of pruned weights.
In particular, results show that pruning plus LTH initialization is better than
pruning plus random initialization. For all cases, we can prune up to around
50% of weights and still reach good performance even though we use (relatively)
simple CNN architectures.

5.4 CHES CTF 2018

For the CHES CTF 2018 dataset, we repeated the experiments on the same
neural network architectures defined in Tables[l|and [2| In this case, we observed
much better results for the three selected MLPs and CNN3 than results obtained
for CNN4 and CNN4-2. These results again confirm the practical advantage of
the LTH procedure in profiling SCA.

Figure shows the guessing entropy for different sparsity levels on three
different number of profiling traces: 20 000, 30 000, and 40000. As indicated by
the dashed green line in Figures and the baseline guessing entropy
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Fig. 13: ASCAD Random Keys, CNN4-2

cannot reach one for MLP4 trained on 300 epochs. Adding more profiling traces
helps, but still, GE stays slightly above one on average. When the network is
pruned, we can immediately see how GE improves, especially for sparsity levels
around 80% to 95%. The LTH initialization shows better (at least more stable)
results than random initialization. Figures [15] and [L6| confirm our observations
as more profiling traces is required for good attack performance for the baseline
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model, especially as the architecture becomes more complex. On the other hand,
we can prune up to 95% of weights if we follow the LTH initialization and still
reach superior attack performance.

Results for CNNs on the CHES CTF 2018 dataset are acceptable (i.e., con-
verging to GE close to one) for the CNN3 architecture only, as shown in Fig-
ure [I7} There, we see the benefit of adding more profiling traces as the baseline



20 G. Perin et al.

—— LTHinit —— Randominit ---- Baseline Model

200 200 200
175 W15 W17
Q Q Q
2 150 2 150 £ 150
5 5 =]
c c c
w125 w125 w125
g g g /
@ 100 & 100 ‘G 100
§ g § /
3 75 3 75 S 75 f
o o [C] |
T 50 T 50 T 50 4
£ I £ £ y
toos o s i o i

I LT Y Lil
o o [ et o s i -
0 20 40 60 80 100 20 40 60 20 40 60 80 100
Sparsity Level (%) Sparsity Level (%) Sparsity Level (%)

(a) 20000 profiling traces. (b) 30000 profiling traces. (c) 40000 profiling traces.

Fig.17: CHES CTF 2018, CNN3

—— LTHinit —— Randominit ---- Baseline Model
200 200 200
=175 175 175
Q Q Q
£ 150 bt g1s01 g 150 i
5125 gt gt
2 2 2
g 100 N ,- 7 1 7 1
b Rt AN A
o I|I||||\|||\|IIHII|I|J||If 1l L o o
E YRl a1 L D Tcn ‘_:“
i = £
25 | 25
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Sparsity Level (%) Sparsity Level (%) Sparsity Level (%)

(a) 20000 profiling traces. (b) 30000 profiling traces. (c) 40000 profiling traces.

Fig.18: CHES CTF 2018, CNN4

model overfits. Still, some sub-networks are providing better attack performance.
For CNN4 and CNN4-2 (Figures (18| and , the baseline model provides poor
performances when trained on 300 epochs. We postulate this happens as the
baseline model has a significantly larger capacity than needed, so it either over-
fits or underfits, becoming similar to random guessing. In other words, CNN4
and CNN4-2 on smaller profiling sets (lower than 30000 traces) show no gen-
eralization for the baseline model, indicating that these two models are not
compatible with the target dataset. We can observe how the LTH procedure re-
duces guessing entropy for specific sparsity level ranges even with those models.
Observing Figures [18[ and for sparsity levels around 70%, LTH initialization
reach significantly lower guessing entropy values (GE < 70) after training for 50
epochs. Increasing the number of attack traces (we consider only 2000 attack
traces) could lead to successful key recovery, which is particularly interesting
if a baseline model provided performance close to random guessing. When the
number of profiling traces is increased to 40000 traces (Figures and ,
the baseline model shows slightly better results and the LTH initialization still
improves the attack performance. In this case, we can verify that random ini-
tialization might not be a good procedure, as the guessing entropy results are
inferior to the baseline model results.
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5.5 General Observations

Based on the conducted experiments, we provide several general observations:

— If the baseline model works poorly for a limited set of attack traces, pruning
might still improve performance.

— If the baseline works well and does not overfit, then pruning maintains the
performance but produces smaller and regularized networks.

— If there are not enough profiling traces for the model capacity, it will overfit,
and pruning can help avoid that.

— More profiling traces improve pruning results, but it also reduces differences
between weight initialization techniques.

— Pruning and LTH initialization procedure works the best, provided the neu-
ral network architectures are large enough to utilize the winning tickets.

— Pruning can improve the attack results as indicated by the SCA performance
metrics.

6 Conclusions and Future Work

This chapter discussed how pruning could improve the attack performance for
deep learning-based side-channel analysis. We considered the recently proposed
Lottery Ticket Hypothesis that assumes there are small sub-networks in the
original network that perform on the same level as the original network. To the
best of our knowledge, both of those concepts were never before investigated
in profiling SCA. Our experimental investigation confirms this hypothesis for
profiling SCA, which allows us to prune up to 90% of weights and still reach good
attack performance. Thus, we manage to reach the same attack performance
for significantly smaller networks (easier to tune and faster to train). What is
more, we show how pruning helps when a large network overfits or has issues
due to imbalanced data. In such cases, pruning, besides resulting in smaller
architectures, enables improved attack performance.

As future work, we plan to consider more sophisticated pruning techniques
and different leakage models. Finally, as discussed, pruning allows smaller neu-
ral networks and good performance but does not provide insights into neural
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networks’ explainability. It could be interesting to consider various feature vi-
sualization techniques to evaluate the important features before and after the
pruning. Also, explainability and interpretability techniques could be efficiently
applied here to select weights to be pruned.
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