
On the Round Complexity of Fully Secure Solitary MPC with

Honest Majority

Saikrishna Badrinarayanan1, Peihan Miao2, Pratyay Mukherjee1, and Divya Ravi3

1 Visa Research, {sabadrin, pratmukh}@visa.com
2 University of Illinois at Chicago, peihan@uic.edu

3 Aarhus University, divya@cs.au.dk

Abstract

We study the problem of secure multiparty computation for functionalities where only one
party receives the output, to which we refer as solitary MPC. Recently, Halevi et al. (TCC
2019) studied fully secure (i.e., with guaranteed output delivery) solitary MPC and showed
impossibility of such protocols for certain functionalities when there is no honest majority among
the parties.

In this work, we study fully secure solitary MPC in the honest majority setting and focus
on its round complexity. We note that a broadcast channel or public key infrastructure (PKI)
setup is necessary for an n-party protocol against malicious adversaries corrupting up to t parties
where n/3 ≤ t < n/2. Therefore, we study the following settings and ask the question: Can
fully secure solitary MPC be achieved in fewer rounds than fully secure standard MPC in which
all parties receive the output?

• When there is a broadcast channel and no PKI:

– We start with a negative answer to the above question. In particular, we show that
the exact round complexity of fully secure solitary MPC is 3, which is the same as
fully secure standard MPC.

– We then study the minimal number of broadcast rounds needed in the design of round-
optimal fully secure solitary MPC. We show that both the first and second rounds of
broadcast are necessary when 2dn/5e ≤ t < n/2, whereas pairwise-private channels
suffice in the last round. Notably, this result also applies to fully secure standard
MPC in which all parties receive the output.

• When there is a PKI and no broadcast channel, nevertheless, we show more positive results:

– We show an upper bound of 5 rounds for any honest majority. This is superior to the
super-constant lower bound for fully secure standard MPC in the exact same setting.

– We complement this by showing a lower bound of 4 rounds when 3dn/7e ≤ t < n/2.

– For the special case of t = 1, n = 3, when the output receiving party does not have an
input to the function, we show an upper bound of 2 rounds, which is optimal. When
the output receiving party has an input to the function, we show a lower bound of 3,
which matches an upper bound from prior work.

– For the special case of t = 2, n = 5, we show a lower bound of 3 rounds (an upper
bound of 4 follows from prior work).

All our results also assume the existence of a common reference string (CRS) and pairwise-
private channels. Our upper bounds use a decentralized threshold fully homomorphic encryption
(dTFHE) scheme (which can be built from the learning with errors (LWE) assumption) as the
main building block.

1

Contents

1 Introduction 3
1.1 Our Results . 5
1.2 Roadmap . 7

2 Technical Overview 8
2.1 Overview of Upper Bounds . 8
2.2 Overview of Lower Bounds . 10

3 Preliminaries 13
3.1 Notation and Setting . 13
3.2 Security Model . 13
3.3 Cryptographic Primitives . 14

4 With Broadcast and No PKI 18
4.1 Necessity of Three Rounds . 18
4.2 Necessity of Broadcast in Round 1 . 22
4.3 Necessity of Broadcast in Round 2 . 25
4.4 Upper Bounds . 30

5 With PKI and No Broadcast 32
5.1 Necessity of Four Rounds . 32
5.2 General Five-Round Protocol . 38
5.3 (t+ 2) Round Protocol . 41

6 Special Case: t = 1 with PKI and no Broadcast 41
6.1 Necessity of Three Rounds When Q Has Input . 41
6.2 Protocols . 43

7 Special Case: t = 2 with PKI and no Broadcast 45
7.1 Necessity of Three Rounds . 45
7.2 Four-Round Protocol . 48

A Literature Survey 54

B Necessity of Broadcast/PKI 55

C Security Proof For Five-Round Protocol 56

D Security Proof for t = 1 When Q Has No Input 63

2

1 Introduction

Secure multiparty computation (MPC) [Yao86,GMW87] allows a set of mutually distrusting parties
to jointly compute any function on their private data in a way that the participants do not learn
anything about the inputs except the output of the function. The strongest possible security notion
for MPC is guaranteed output delivery (god for short), which states that all honest parties are
guaranteed to receive their outputs no matter how the corrupt parties behave. An MPC protocol
achieving god is often called a fully secure protocol. A seminal work of Cleve [Cle86] showed that
there exist functionalities for which it is impossible to construct an MPC protocol with god unless
a majority of the parties are honest.

Solitary MPC. Recently, Halevi et al. [HIK+19] initiated the study of MPC protocols with
god for a special class of functionalities, called solitary functionalities, which deliver the output
to exactly one party. Such functionalities capture many real world applications of MPC in which
parties play different roles and only one specific party wishes to learn the output. For example,
consider a privacy-preserving machine learning task [MZ17] where several entities provide training
data while only one entity wishes to learn a model based on this private aggregated data. As
another example, a service provider may want to learn aggregated information about its users
while keeping the users’ data private [BIK+17,BBG+20]. In the rest of the paper we refer to such
MPC protocols as solitary MPC. For clarity of exposition, we refer to protocols where all parties
obtain output as standard MPC. While the argument of Cleve [Cle86] does not rule out solitary
MPC with god in the presence of a dishonest majority,1 Halevi et al. [HIK+19] showed that there
exist functionalities for which solitary MPC with god is also impossible with dishonest majority.
Hence, the results of [Cle86] and [HIK+19] rule out the existence of a generic MPC protocol that
can compute any standard and solitary functionality respectively with god in dishonest majority
(protocols can exist for specific classes of functionalities as shown in [GHKL11,ABMO15,HIK+19]).
Both impossibility results hold even when parties have access to a common reference string (CRS).
In this paper, we focus on solitary MPC with god in the honest majority setting.

Round Complexity. An important efficiency metric of an MPC protocol is its round complexity,
which quantifies the number of communication rounds required to perform the protocol. The
round complexity of standard MPC has been extensively studied over the last four decades (see
Appendix A for a detailed literature survey). In the honest majority setting, three rounds are
known to be necessary [GIKR02,PR18,GLS15] for standard MPC with god, even in the presence of
a common reference string (CRS) and a broadcast channel (without a PKI setup). Matching upper
bounds appear in [GLS15, ACGJ18, BJMS20]. The protocol of Gordon et al. [GLS15] requires a
CRS, while the other two [ACGJ18,BJMS20] are in the plain model. In this work we focus on the
round complexity aspects of solitary MPC protocols.

Necessity of Broadcast or PKI. A closer look at the above protocols reveals that all of
them assume the existence of a broadcast channel. For solitary MPC with god, the works of

1Cleve’s argument shows that with dishonest majority, it is impossible for an MPC protocol to achieve fairness,
which guarantees that malicious parties cannot learn the output while preventing honest parties from learning the
output. Since god implies fairness, this impossibility also holds for standard MPC with god. However, it doesn’t hold
for solitary MPC as fairness is clearly not an issue in the solitary MPC setting.

3

[FGMO01,ACOS20] show that either a broadcast channel or a public key infrastructure (PKI) setup
is indeed necessary assuming an honest majority (in particular, when n/3 ≤ t < n/2 for an n-party
protocol against adversaries corrupting up to t parties) even with a CRS.2 Note that although PKI
setup and broadcast channels are equivalent according to [DS83] from a feasibility perspective,
realizing broadcast under PKI setup with guaranteed termination requires super-constant rounds,
which we will discuss shortly. In light of the this, we study the round complexity of solitary MPC
with god when n/3 ≤ t < n/2 in two settings: (a) there is a broadcast channel and no PKI setup;
(b) there is PKI setup and no broadcast channel. When both broadcast channels and PKI are
available, we know from prior works [HLP11,GLS15] that the exact round complexity is two.

With Broadcast, No PKI. In this setting we investigate whether we can do better for solitary
MPC than standard MPC in terms of round complexity even in the presence of CRS. In particular,

Assuming a broadcast channel and CRS, can we build a solitary MPC protocol with god in fewer
than three rounds?

Unfortunately, the answer is no! We show that in the presence of a broadcast channel and CRS,
the exact round complexity for solitary MPC with god is also three, same as standard MPC.

However, broadcast channels are expensive to realize in practice – the seminal works of Dolev
and Strong [DS83] and Fischer and Lynch [FL82] showed that realizing a single round of deter-
ministic broadcast requires at least t+ 1 rounds of communication over pairwise-private channels,
where t is the number of corrupt parties, even with a public key infrastructure (PKI) setup.3

This can be overcome by considering randomized broadcast protocols in the honest majority set-
ting [FM89, FG03, KK09, ADD+19] requiring expected constant rounds. In particular, the most
round-efficient protocol to our knowledge is proposed by Abraham et al. [ADD+19], which solves
Byzantine agreement for t < n/2 in expected 10 rounds. Nevertheless, these protocols do not
guarantee termination in constant rounds, which is the setting we are interested in.4 In fact, it is
shown that termination cannot be guaranteed in constant rounds [CMS89,KY86].

Recent works [GGJ19, CGZ20, DMSY20] try to minimize the usage of expensive broadcast
channels in the context of round-optimal standard MPC. In particular, they study whether each
round of a round-optimal MPC protocol necessarily requires a broadcast channel or pairwise-private
channels suffice in some of them. In the context of round-optimal solitary MPC with god, we ask
an analogous question:

Is a broadcast channel necessary in every round of a three-round solitary MPC protocol with god?

We show that a broadcast channel is necessary in both the first and second rounds in a three-
round solitary MPC protocol with god while pairwise-private channels suffice in the third round.

2Fitzi et al. [FGMO01] show that converge-cast cannot be achieved when n/3 ≤ t < n/2 in the information
theoretic setting. Alon et al. [ACOS20] show a specific solitary functionality that cannot be computed by a 3-party
MPC protocol with a single corruption with god in the plain model (with no broadcast channel and no PKI), which
also extends to n/3 ≤ t < n/2. Both arguments also work even in the presence of a CRS. We present the proof in
Appendix B for completeness.

3Note that PKI setup is in fact necessary for realizing a broadcast channel when t ≥ n/3 (where n is the total
number of parties) [PSL80,LSP82].

4In these randomized broadcast protocols, the number of rounds depends on the randomness involved in the
protocol. For example, the protocol by Abraham et al. [ADD+19] terminates in constant rounds except with constant
probability and requires at least super-polylogarithmic rounds (in the security parameter) to terminate with all but
negligible probability.

4

With PKI, No Broadcast. In this setting a natural question arises: in the absence of a broad-
cast channel, if we assume a PKI setup, what is the optimal round complexity for solitary MPC with
god? In standard MPC, note that since standard MPC with god implies broadcast with guaranteed
termination, any protocol without a broadcast channel (only using pairwise-private channels with
PKI setup) should necessarily require super-constant rounds. In contrast, observe that solitary
MPC with god does not imply broadcast with guaranteed termination, so the same lower bound
does not hold. This motivates us to ask the following question:

With a PKI setup and no broadcast channel, can we overcome the above standard MPC lower
bound? Specifically, can we build a constant-round solitary MPC protocol with god in the honest

majority setting?

1.1 Our Results

1.1.1 With Broadcast, No PKI

When there is a broadcast channel but no PKI setup, we show a lower bound of three rounds for
achieving solitary MPC with god in the honest majority setting, which is the same as the lower
bound for standard MPC.

Informal Theorem 1. Assume parties have access to CRS, pairwise-private channels and a broad-
cast channel. Then, there exists a solitary functionality f such that no two-round MPC protocol
can compute f with god in the honest majority setting (in particular, when n/3 ≤ t < n/2) even
against a non-rushing adversary.

This lower bound is tight because we know from prior works [GLS15,ACGJ18,BJMS20] that there
are three-round solitary MPC protocols with god in the honest majority setting.

We then study the minimal number of broadcast rounds needed in a round-optimal (three-round)
solitary MPC protocol with god. We show that a broadcast channel is necessary in both the first
and second rounds.

Informal Theorem 2. Assume parties have access to CRS and pairwise-private channels. No
three-round solitary MPC protocol can compute any solitary functionality f with god in the honest
majority setting (in particular, when 2 dn/5e ≤ t < n/2) even against a non-rushing adversary,
unless there are broadcast channels in both Rounds 1 and 2.

We note that the necessity of a broadcast channel in Round 1 holds for any n/3 ≤ t < n/2
while the necessity of a broadcast channel in Round 2 only holds for 2 dn/5e ≤ t < n/2 requiring at
least two parties be corrupted. In other words, for t = 1 and n = 3 only the first round broadcast
is necessary. This is consistent with and proven tight by the upper bound in the work of Patra
and Ravi [PR18], which constructed a three-round three-party protocol with god tolerating a single
corruption, using broadcast only in Round 1.

For the general case when t ≥ 2, we observe that in the three-round protocols from prior
work [GLS15, ACGJ18, BJMS20], only the first two rounds require a broadcast channel while the
third-round messages can be sent over pairwise-private channels to the output-receiving party.
Thus, our lower bounds are also tight in the general case.

5

Implications for Standard MPC. The work of Cohen et al. [CGZ20] identifies which rounds
of broadcast are necessary for achieving round-optimal (two-round) standard MPC with dishonest
majority. The recent work of [DMSY20] studies this question for two-round standard MPC in the
honest majority setting, assuming the presence of a correlated randomness setup (or PKI). However,
the same question for round-optimal (three-round) standard MPC with god in honest majority
setting and without correlated randomness (or PKI) is not known; which we address in this work.
Since standard MPC with god implies solitary MPC with god (via a generic transformation), our
negative results for solitary MPC also apply to standard MPC, namely both the first and second
rounds of broadcast are necessary for a three-round standard MPC with god. On the other hand,
we observe that the existing three-round protocols [GLS15, BJMS20] still work if the third-round
messages are sent over pairwise-private channels (see the discussion in Section 4.4), thus we fully
resolve this problem for standard MPC with god in honest majority setting and without correlated
randomness setup (i.e., in the plain and CRS models).

1.1.2 With PKI, No Broadcast

When there is a PKI setup and no broadcast channel, we show that the super-constant lower bound
for standard MPC does not hold for solitary MPC any more. In particular, we construct a five-
round protocol that works for any number of parties and achieves god in the honest majority setting.
Our protocol builds on the standard MPC protocol with god of Gordon et al. [GLS15] and uses a
decentralized threshold fully homomorphic encryption (dTFHE) scheme (defined in [BGG+18]) as
the main building block, which can be based on the learning with errors (LWE) assumption. Our
PKI setup includes a setup for digital signatures as well as one for dTFHE (similarly as in [GLS15]).

Informal Theorem 3. Assuming LWE, there exists a five-round solitary MPC protocol with god in
the presence of PKI and pairwise-private channels. The protocol works for any number of parties
n, any solitary functionality and is secure against a malicious rushing adversary that can corrupt
any t < n/2 parties.

We complement this upper bound by providing a lower bound of four rounds in the same setting
even in the presence of a non-rushing adversary.

Informal Theorem 4. Assume a PKI setup and pairwise-private channels. There exists a solitary
functionality f such that no three-round MPC can compute f with god in the honest majority (in
particular, when 3 dn/7e ≤ t < n/2) even against a non-rushing adversary.

The above lower bound requires t ≥ 3, namely at least 3 parties are corrupted. Separately we also
study the round complexity for scenarios when t < 3.

Special case: t = 1. When there is only 1 corrupted party, the only relevant setting is when
n = 3. We consider two cases: (a) when the function f involves an input from the output-receiving
party Q, and (b) when f does not involve an input from Q. In the first case, we show a lower bound
of three rounds for achieving solitary MPC with god. That is, there exists a solitary functionality f
(involving an input from Q) such that a minimum of three rounds are required to achieve solitary
MPC with god. Notably, this lower bound also extends to any n ≥ 3 and n/3 ≤ t < n/2. A
three-round upper bound for t = 1 can be achieved by combining [GLS15] and [DS83].

In the second case where f does not involve an input from Q, it turns out we can do better
than three rounds. In particular, we show a two-round protocol to achieve solitary MPC with god.

6

Once again, the main technical tool is decentralized threshold FHE and the protocol can be based
on LWE. This upper bound is also tight as we know from prior work [HLP11] that two rounds are
necessary.

Special case: t = 2. When the number of corrupted parties is 2, we only consider the case of
n = 5 and show a lower bound of three rounds to compute any function f (with or without input
from Q). This lower bound also extends to any n ≥ 5 and 2 dn/5e ≤ t < n/2. An upper bound of
four rounds for t = 2 can also be achieved by combining [GLS15] and [DS83].

We remark that all our lower bounds above hold not only for PKI, but naturally extend to
arbitrary correlated randomness setup model. We summarize all our results along with the known
related results for the round complexity of solitary MPC with god in Tables 1 and 2. Note that
for certain ranges of (n, t) such as 3 dn/7e ≤ t < n/2, it is not meaningful for every n (e.g., when
n = 8, there is no appropriate t in the range). This is an artifact of the partitioning technique used
in the proof. Nevertheless, the range is relevant for sufficiently large values of n. All our results
also assume the existence of a common reference string (CRS) and pairwise-private channels. Our
results are highlighted in red.

broadcast PKI (n, t) Q has input lower bound upper bound

yes yes t < n/2 — 2 [HLP11] 2 [GLS15]

yes no n/3 ≤ t < n/2 — 3 (Theorem 4.1) 3 [GLS15,ACGJ18,BJMS20]

no yes n = 3, t = 1 no 2 [HLP11] 2 (Theorem 6.4)

no yes n = 3, t = 1 yes 3 (Theorem 6.1) 3 [GLS15] + [DS83]

no yes n = 5, t = 2 — 3 (Theorem 7.1) 4 [GLS15] + [DS83]

no yes 3 dn/7e ≤ t < n/2 — 4 (Theorem 5.1) 5 (Theorem 5.7)

Table 1: Round complexity of solitary MPC with god. “—” means it doesn’t matter what value to take.
Our results are highlighted in red.

bc in R1 bc in R2 bc in R3 (n, t) Possible?

no yes yes n/3 ≤ t < n/2 No (Theorem 4.4)

yes no yes 2 dn/5e ≤ t < n/2 No (Theorem 4.7)

yes yes no t < n/2 Yes [GLS15,ACGJ18,BJMS20]

yes no no n = 3, t = 1 Yes [PR18]

Table 2: For the setting with broadcast channels and no PKI setup, we study the possibility of achieving a
three-round solitary MPC with god with fewer broadcast rounds. “bc in R1” means the parties have access
to the broadcast channel in Round 1. All parties have access to pairwise-private channels in all rounds. For
all the results, it doesn’t matter whether Q has input or not. Our results are highlighted in red.

1.2 Roadmap

We provide an elaborated technical overview next in Section 2. We provide detailed preliminaries
including the definitions of required cryptographic building blocks in Section 3. In Section 4 we
present our results assuming a broadcast channel but no PKI setup. In Section 5 we provide our
lower bounds for PKI without broadcast as well as our main five-round protocol as an upper bound.

7

In Section 6 and Section 7 we detail our results for t = 1 and t = 2 respectively. The detailed
literature survey appears in Appendix A.

2 Technical Overview

2.1 Overview of Upper Bounds

In this section, we give a technical overview of the upper bounds. We will mainly focus on the
general five-round protocol in the setting with PKI and no broadcast, and briefly discuss other
special cases at the end.

Our starting point is the two-round protocol of Gordon et al. [GLS15] which achieves guaranteed
output delivery (god) in the presence of an honest majority and delivers output to all parties,
assuming the existence of a broadcast channel and PKI setup. The protocol uses a (t+ 1)-out-of-n
decentralized threshold fully homomorphic encryption (dTFHE) scheme, where an FHE public key
pk is generated in the setup and the secret key is secret shared among the parties. The encryptions
can be homomorphically evaluated and can only be jointly decrypted by at least (t + 1) parties.
Their two-round protocol in the broadcast model roughly works as follows. First, the PKI setup
generates the dTFHE public key pk and individual secret keys ski for each party Pi. In Round 1,
each party Pi computes an encryption of its input xi and broadcasts JxiK.5 Then each party can
homomorphically evaluate the function f on Jx1K , . . . , JxnK to obtain an encryption of the output
JyK. In Round 2, each party broadcasts a partial decryption of JyK. At the end of this, every party
can individually combine the partial decryptions to learn the output y.

One immediate observation is that since we only care about one party Pn(= Q) receiving the
output, the second round also works without a broadcast channel by requiring every party to only
send partial decryptions directly to Q. The main challenge now is to emulate the first round with
pairwise-private channels instead of broadcast channels. A näıve approach is to employ a (t + 1)-
round protocol to realize the broadcast functionality over pairwise-private channels [DS83], but this
would result in a (t+ 2)-round protocol.

Even worse, there seems to be a fundamental barrier in this approach to design a constant round
protocol. At a high level, to achieve guaranteed output delivery, we want all the honest parties
to agree on a set of ciphertexts Jx1K , . . . , JxnK so that they can homomorphically evaluate on the
same set of ciphertexts and compute partial decryptions on the same JyK. This already implies
Byzantine agreement, which requires at least (t+ 1) rounds [DS83].

Circumventing the lower bound. A crucial observation here, which also separates solitary
MPC from standard MPC, is that we do not need all the honest parties to always agree. Instead,
we need them to agree only when Q is honest. In other words, if the honest parties detect any
dishonest behavior of Q, they can simply abort. This does not imply Byzantine agreement now.
Hence there is a hope to circumvent the super-constant lower bound.

Relying on honest Q. First, consider a simple case where honest parties only need to agree on
JxnK when Q is honest. This can be done in two rounds (by augmenting the two-round broadcast
with abort protocol of [GL05] with digital signatures). In Round 1, Q sends JxnK to each party
(along with its signature). To ensure Q sends the same ciphertext to everyone, in Round 2, parties

5We use JxK to denote a dTFHE encryption of x.

8

exchange their received messages in Round 1. If there is any inconsistency, then they detect
dishonest behavior of Q, so they can abort; otherwise, all the honest parties will agree on the same
JxnK at the end of Round 2 if Q is honest. Unfortunately this simple approach does not work for
parties other than Q. If honest parties want to agree on JxiK for i 6= n, they cannot simply abort
when detecting inconsistent messages from Pi (because they are only allowed to abort when Q is
dishonest).

Our next attempt is to crucially rely on Q to send out all the ciphertexts. In Round 1, each
party Pi first sends an encryption JxiK to Q. Then in Round 2, Q sends Jx1K , . . . , JxnK to each
party. In Round 3, parties exchange their messages received from Q. If the honest parties notice
any inconsistency in Q’s Round-2 messages, they can simply abort. Note that every message is
sent along with the sender’s signature, so a malicious Q cannot forge an honest Pi’s ciphertext JxiK;
similarly, a malicious Pi cannot forge an honest Q’s Round-2 message. Therefore, all the honest
parties will agree on the same set of ciphertexts at the end of Round 3 if Q is honest.

Nevertheless, a malicious Q has complete freedom to discard any honest party’s input in Round
2 (pretending that these parties did not communicate to him in Round 1) and learn a function
excluding these honest parties’ inputs, which should not be permitted. The crux of the issue is the
following: Even when Q is malicious, the output of f learned by Q must be either ⊥ or include
every honest party’s input. This is implied by the security guarantees of the MPC protocol. In
particular, in the real/ideal paradigm, a malicious Q in the ideal world can only obtain an output
from the ideal functionality that computes f involving all the honest parties’ inputs. Therefore, we
need a mechanism to ensure that all the honest parties’ ciphertexts are picked by Q. However, the
parties do not the identities of the honest parties. How can they ensure this?

Innocent until proven guilty. Our solution to this problem is for every party Pi to treat other
parties with more leniency. That is, unless Pi knows with absolute certainty that another party
Pk is malicious, Pi would demand that the ciphertexts picked by Q must also include a ciphertext
from Pk. To implement this mechanism, we add another round at the beginning, where each party
Pi sends JxiK to every other party. Then in Round 2, each party Pi, besides sending JxiK to Q,
also sends all the ciphertexts he has received to Q. In Round 3, Q picks a set of ciphertexts
Jx1K , . . . , JxnK and sends to each party. In particular, for each party Pk, as long as Q received any
valid ciphertext for Pk (either directly from Pk or from other parities), Q must include a ciphertext
for Pk. Parties exchange messages in Round 4 to check Q’s consistency as before. Finally, we
maintain the following invariant for every honest party Pi before sending the partial decryption in
Round 5: if Pi received a ciphertext JxkK from party Pk in Round 1, then the ciphertexts picked
by Q must also include a ciphertext from Pk. Crucially, this invariant allows Q to pick a different
ciphertext Jx′kK (with a valid signature) if e.g. that was received by Q from Pk. On the other hand,
this prevents the attacks discussed earlier as a malicious Q can no longer discard an honest Pk’s
ciphertext JxkK, although Pi is yet to identify the honest parties.

Achieving fully malicious security. To achieve fully malicious security, we still need to ensure
that the adversary’s messages are correctly generated. The approach taken by [GLS15] is to apply a
generic round-preserving compiler [AJL+12] that transforms a semi-malicious protocol (where, the
semi-malicious adversary needs to follow the protocol specification, but has the liberty to decide
the input and random coins in each round) to a malicious protocol using non-interactive zero-
knowledge (NIZK) proofs in the CRS model with broadcast channels. In particular, in each round,

9

the adversary must prove (in zero-knowledge) that it is following the protocol consistently with
some setting of random coins. However, we cannot directly apply this round-preserving compiler
since we do not have broadcast channels. This limitation introduces additional complications in
our protocol design to preserve the round complexity while achieving malicious security. We refer
the reader to Section 5.2 for more details of the protocol and other subtle issues we faced in our
protocol design.

Special cases. As we mentioned above, the two-round protocol of Gordon et al. [GLS15] with
broadcast and PKI can be transformed into a (t + 2)-round protocol if the broadcast in the first
round is instantiated by a (t+ 1)-round protocol over pairwise-private channels [DS83] and parties
only send their messages to Q in the second round. For t = 1 and 2, we can achieve better than
five rounds. For t = 1, when Q does not have input, we can design a two-round protocol which
crucially relies on the fact that at most one party is corrupted. See Section 6.2.1 for more details.

2.2 Overview of Lower Bounds

At a high level, we use the following common approach in our lower-bound arguments. To prove the
impossibility of an r-round protocol, we assume towards a contradiction that an r-round solitary
MPC protocol Π with god exists. Next, we analyze a sequence of scenarios which allow us to
draw inferences regarding the properties that Π must satisfy. Here, we exploit the guarantees of
correctness, privacy and full-security (guaranteed output delivery). The strategic design of the
scenarios building on these inferences lets us arrive at the final contradiction. The crux of these
arguments lies in the adversarial strategies, which exploit either the absence of broadcast or PKI,
depending on the relevant network model.

With broadcast and no PKI. For our three-round lower bound with a broadcast channel and
no PKI setup, in accordance with the above, we assume there exists a two-round protocol Π with
god computing a 3-party solitary functionality amongst parties P1, P2, and Q (output receiving
party). The first two scenarios involving a malicious P2 and passive Q respectively allow us to
infer the following property of Π – Π must be such that even if P2 does not communicate privately
to Q in Round 1 and aborts in Round 2, Q must still be able to compute the output on x2 i.e.
the input with respect to which it interacted with P1 in Round 1. This can be inferred by the
security guarantee of god. Intuitively, this implies that Q relies on the following messages to carry
information about x2 required for output computation (i) P1’s broadcast message in Round 2 and
(ii) P2’s broadcast message in Round 1. However, we note that, both of these are also available to
P1 at the end of Round 1 itself. This leads us to a final scenario, in that a passive P1 can compute
the residual function f(x̃1, x2, x̃3) for more than one choices of (x̃1, x̃3), while the input of honest
P2 remains fixed – which is the final contradiction. Notably, this argument does not work in the
presence of a PKI, which allows Q to have some secret, such as a secret-key, under which P2’s
messages can be encrypted – this disables P1 to recover the same information as Q after Round 1.

Necessity of broadcast in Round 1. To show the necessity of broadcast in Round 1 in a three-
round solitary MPC protocol with god (with broadcast and no PKI), we assume there exists a three-
round protocol Π with god computing a 3-party solitary functionality among parties {P1, P2, Q}
which uses the broadcast channel only in Round 2 and Round 3 (and uses pairwise-private channels

10

in all rounds). We first consider a scenario with a malicious P2, who only behaves honestly to P1

and pretends to have received a maliciously computed message from Q in Round 1. In addition,
P2 aborts in Round 3. We show that an honest Q in this scenario must obtain f(x1, x2, x3) as the
output, where x1, x2, x3 are the parties’ honest inputs. First of all, Qmust learn an output computed
on the honest parties’ inputs x1 and x3 by the god property of Π. The output is also w.r.t. P2’s
honest input x2 because Q’s view in this scenario is subsumed by another scenario with a malicious
Q, where Q only behaves honestly to P1 and pretends to have received a maliciously computed
message from P2 in Round 1. Since the first-round messages are only sent via pairwise-private
channels, P1 cannot distinguish whether P2 is malicious (first scenario) or Q is malicious (second
scenario), and P1’s view is identically distributed in both scenarios. Comparing the messages
received by Q in the two scenarios, we can conclude Q’s view in the first scenario is subsumed by
its view in the second scenario. Notice that a malicious Q in the second scenario can only learn an
output on the honest parties’ input x1 and x2, hence Q must learn f(x1, x2, x3) in both scenarios.
The key takeaway is that P2’s input can be considered as “committed” in its private message to
P1 in Round 1 and broadcast message in Round 2. This allows a semi-honest P1 to emulate Q’s
view in the first scenario for an arbitrary input x̃3 and locally compute f(x1, x2, x̃3) violating the
security of Π. This argument can be extended for the general case n/3 ≤ t < n/2. A more detailed
proof is presented in Section 4.2.

Necessity of broadcast in Round 2. For our result showing necessity of broadcast in Round
2, we assume there exists a three-round 5-party solitary MPC Π with god against 2 corruptions
which uses broadcast in only Round 1 and Round 3 (and uses pairwise-private channels in all
rounds). The argument involves two crucial observations (1) Π is such that if corrupt P1 participates
honestly using input x1 only in the broadcast communication and private communication towards
{P2, P5 = Q} in Round 1 (and sends no other messages during Π), then there exists some x1, say
x∗1, such that the output obtained by Q is not computed with respect to x∗1 with non-negligible
probability. Intuitively, if this does not hold and for all x1 the output is computed with respect to
x1, then it would mean that Π is such that {P2, Q} obtain sufficient information to compute on x1
at the end of Round 1 itself. This would make Π susceptible to residual function attack by {P2, Q}
which violates security. (2) Π is such that if corrupt {P3, P4} pretend in Round 2 as if they have
not received private communication from P1 in Round 1, still, the output obtained by Q must be
computed on honest P1’s input x1. This follows from correctness of Π. Next, we design a final
scenario building on (1) and (2) where an adversary corrupting {P1, Q} obtains multiple outputs,
with respect to both input x′1 6= x∗1 and x∗1; which gives the final contradiction. Crucially, due
to absence of broadcast in Round 2, the adversary is able to keep the honest parties {P2, P3, P4}
on different pages with respect to whether P1 has aborted after Round 1 or not. Specifically, the
adversarial strategy in the final scenario exploits the absence of broadcast in Round 2 to ensure
the following - (a) view of honest {P3, P4} is similar to the scenario in (1), where they do not
receive any communication from P1 except its broadcast communication in Round 1 and (b) view
of honest P2 is similar to the scenario in (2). Here, P2 receives communication from P1 in both
Round 1 and Round 2; but receives communication from {P3, P4} in Round 2 conveying that they
did not receive P1’s private communication in Round 1 (the Round 2 messages from {P3, P4} could
potentially convey this information, depending on protocol design). This inconsistency in the views
of honest parties enables the adversary to obtain multiple outputs. This completes the description
focusing on the core ideas, we defer the more involved technicalities to Section 4.3. This argument

11

is extended for the general case 2 dn/5e ≤ t < n/2.

With PKI and no broadcast. The lower-bound arguments in the setting with a PKI setup
and no broadcast tend to be more involved as PKI can be used to allow output obtaining party
Q to have some secret useful for output computation (as elaborated in the overview of 3-round
lower bound above). For our four-round general lower bound that holds for 3 dn/7e ≤ t < n/2
and t ≥ 3, we assume there exists a three-round protocol Π with god computing a special 7-
party solitary functionality amongst parties P1, . . . , P6 and Q. We analyze four main scenarios as
follows. In Scenarios 1 and 2, {P1, P6} are corrupt and P1 does not communicate directly to anyone
throughout. The crucial difference between them is in the communication of P6 in Round 2 to
{P2, P3, P4, P5}: in Scenario 1, P6 acts as if he did not receive any communication from P1 in Round
1; in Scenario 2, P6 pretends to have received communication from P1 in Round 1. We first show
that in Scenario 1, Q must learn an output computed with regard to some x∗1 that is independent of
x1, with non-negligible probability. Intuitively, this holds because the communication in Scenario
1 is independent of x1. Next, consider this special x∗1, we prove via a sequence of hybrids that
Scenario 2 must also result in output being computed on x∗1 with non-negligible probability. This
lets us infer a critical property satisfied by Π - if {P3, P4, P5} do not receive any communication
directly from P1 throughout Π and only potentially receive information regarding P1 indirectly via
P6 (say P6 claims to have received authenticated information from P1 which can be verified by
{P3, P4, P5} due to availability of PKI), then Q obtains an output on some x∗1 that is independent
of x1, with non-negligible probability.

Next, we consider an orthogonal scenario (Scenario 3) where {P3, P4, P5} are corrupt and pre-
tend as if they received no information from P1 directly. Correctness of Π ensures that Q must
obtain output on honest input of P1 using the messages from {P1, P2, P6}. Roughly speaking, the
above observations enable us to partition the parties {P1, . . . , P6} into two sets {P1, P2, P6} and
{P3, P4, P5}. Combining the above inferences, we design the final scenario where adversary corrupts
{P1, P2, Q} and participates with x′1 6= x∗1. Here, P1 behaves honestly only to P6 (among the honest
parties). The communication of corrupt parties is carefully defined so that the following holds: (a)
the views of {P3, P4, P5} are identically distributed to their views in Scenario 2, and (b) the views
of {P1, P2, P6} are identically distributed to their views in Scenario 3. We then demonstrate that
Q can obtain an output computed on x∗1 as well as another output computed on P1’s honest input
x′1 by using the communication from {P3, P4, P5} and {P1, P2, P6} selectively. Several technicalities
and intermediate scenarios have been skipped in the above skeleton in the interest of highlighting
the key essence of our ideas. We refer to Section 5.1 for the details.

We observe that the above approach inherently demands the presence of 3 or more corruptions.
The main bottleneck in extending it to t = 2 arises from the sequence of hybrids between Scenario
1 and 2, which requires the presence of an additional corruption besides {P1, P6}. This shows hope
for better upper bounds (less than four rounds) for lower corruption thresholds. In this direction,
we investigated the cases of t = 1 and t = 2 separately. We showed the necessity of three rounds for
t = 1 when Q has input and for t = 2 (irrespective of whether Q has input). These lower bounds
also employ the common approach outlined above but differ significantly in terms of the associated
scenarios. We refer to the respective technical sections for details. Notably, all the lower bounds
also extend to arbitrary correlated randomness setup.

12

3 Preliminaries

3.1 Notation and Setting

We use λ to denote the security parameter. By poly(λ) we denote a polynomial function in λ. By
negl(λ) we denote a negligible function, that is, a function f such that f(λ) < 1/p(λ) holds for any
polynomial p(·) and sufficiently large λ. We use JxK to denote an encryption of x.

We consider a set of parties {P1 . . . , Pn}. Each party is modelled as a probabilistic polynomial-
time (PPT) Turing machine. We assume that there exists a PPT adversary who can corrupt up to
t parties where n/3 ≤ t < n/2. We assume throughout that the parties are connected by pairwise-
secure and authentic channels and have access to a common reference string (CRS). Additional
setup or network assumption is explicitly mentioned in the respective sections.

3.2 Security Model

We prove the security of our protocols based on the standard real/ideal world paradigm. Essentially,
the security of a protocol is analyzed by comparing what an adversary can do in the real execution
of the protocol to what it can do in an ideal execution, that is considered secure by definition (in
the presence of an incorruptible trusted party). In an ideal execution, each party sends its input to
the trusted party over a perfectly secure channel, the trusted party computes the function based
on these inputs and sends to each party its respective output. Informally, a protocol is secure if
whatever an adversary can do in the real protocol (where no trusted party exists) can be done in
the above described ideal computation. We formalize the model below with text taken verbatim
from [CL14] and refer to [CL14] for further details.

Execution in the Real World. Throughout a real execution, all the honest parties follow the
instructions of the prescribed protocol, whereas the corrupted parties receive their instructions from
the adversary. Then, at the conclusion of the execution, the honest parties output their prescribed
output from the protocol, the corrupted parties output nothing and the adversary outputs an
(arbitrary) function of its view of the computation (which contains the views of all the corrupted
parties). Without loss of generality, we assume that the adversary always outputs its view (and
not some function of it).

Definition 3.1. (Real-model execution). Let f be an n-party functionality, let π be a multiparty
protocol for computing f and let λ be the security parameter. Let I ⊆ [n] denotes the set of indices
of the parties corrupted by A. Then, the joint execution of π under (A, I) in the real model, on input
vector x = (x1, . . . xn), auxiliary input z to A and security parameter λ, denoted Realπ,I,A(z)(x, λ)
is denoted as the output vector of P1, . . . , Pn and A resulting from the protocol interaction, where
for every i ∈ I, party Pi computes its messages according to A, and for every j /∈ I, party Pj
computes its messages according to π.

Execution in the Ideal World. For full security a.k.a security with guaranteed output delivery,
an ideal execution proceeds as follows:

- Send inputs to trusted party: Each honest party Pi sends its input xi to the trusted party.
Maliciously corrupted parties may send the trusted party arbitrary inputs as instructed by
the adversary. Let x′i denote the value sent by Pi.

13

- Trusted party answers the parties: If x′i is outside of the domain for Pi or Pi sends no input,
the trusted party sets x′i to be a predetermined default value x̂i. Next, the trusted party
computes f(x′1, . . . x

′
n) = (y1, . . . , yn) and sends yi to party Pi for every i.

- Outputs: Honest parties always output the message received from the trusted party and the
corrupted parties output nothing. The adversary outputs an arbitrary function of the initial
{xi}i∈I and the messages received by the corrupted parties from the trusted party {yi}i∈I ,
where I denotes the set of indices of the corrupted parties.

Definition 3.2. (Ideal-model execution with guaranteed output delivery). Let f : ({0, 1}∗)n →
({0, 1}∗)n be an n-party functionality where f = (f1, . . . fn). Let λ be the security parameter and
I ⊆ [n] denotes the set of indices of the corrupted parties. Then, the joint execution of f under
(Sim, I) in the ideal model, on input vector x = (x1, . . . xn), auxiliary input z to Sim and security
parameter λ, denoted Idealf,I,Sim(z)(x, λ) is denoted as the output vector of P1, . . . , Pn and Sim
resulting from the above described ideal process.

Security of Protocols. The security of protocols is formulated by saying that adversaries in the
ideal model are able to simulate adversaries in an execution of a protocol in the real model.

Definition 3.3. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality and let π be a protocol
computing f . We say that protocol π t-securely computes f with guaranteed output deliv-
ery (god) if for every non-uniform polynomial-time adversary A for the real model, there exists a
non-uniform probabilistic (expected) polynomial-time adversary Sim for the ideal model, such that
for every I ⊆ [n] with |I| ≤ t, the following two distributions are computationally indistinguishable:{

Realπ,I,A(z)(x, λ)
}
(x,z)∈({0,1}∗)n+1,κ∈N

and
{
Idealf,I,Sim(z)(x, λ)

}
(x,z)∈({0,1}∗)n+1,κ∈N

Solitary Output. In this work, we consider the setting where the output is delivered to only one
party Q = Pn. That is, we consider functions f where f(x1, . . . , xn) = (⊥, . . . ,⊥, yn).

3.3 Cryptographic Primitives

3.3.1 Digital Signatures

A digital signature scheme consists of the following three algorithms (Gen,Sign, Verify).

• (skey, vkey)← Gen(1λ). A randomized algorithm that takes the security parameter λ as input,
and generates a verification-key vkey and a signing key skey.

• σ ← Sign(skey,m). A randomized algorithm that takes a message m and signing key skey as
input and outputs a signature σ.

• 0/1 ← Verify(vkey, (m,σ)). A deterministic algorithm that takes a verification key vkey and
a candidate message-signature pair (m,σ) as input, and outputs 1 for a valid signature and
0 otherwise.

The following correctness and security properties should be satisfied:

• Correctness. For all λ ∈ N, all (vkey, skey) ← Gen(1λ), any message m, Verify(vkey,m,
Sign(skey,m)) = 1.

14

• Unforgeability. A signature scheme is unforgeable if for any PPT adversary A, the following
game outputs 1 with negligible probability (in security parameter).

– Initialize. Run (vkey, skey)← Gen(1λ). Give vkey to A. Initiate a list L = ∅.
– Signing queries. On query m, return σ ← Sign(skey,m). Run this step as many times

as A desires. Then, insert m into the list L.

– Output. Receive output (m∗, σ∗) from A. Return 1 if and only if Verify(vkey, (m∗, σ∗)) =
1 and m∗ 6∈ L, and 0 otherwise.

3.3.2 Simulation-Extractible NIZK

A simulation-extractible non-interactive zero-knowledge (NIZK) argument for an NP language L
with relation R consists of the following randomized algorithms (NIZK.Setup,NIZK.Prove,NIZK.Verify):

• crs← NIZK.Setup(1λ) : Given security parameter λ, it outputs a common reference string crs.

• π ← NIZK.Prove(crs, st,wit) : Given crs, a statement x and witness w, outputs a proof π.

• 0/1← NIZK.Verify(crs, st, π) : Given crs, a statement x and proof π, it outputs one bit.

It should satisfy the following correctness and security properties.

• Completeness. For every security parameter λ ∈ N, and any (st,wit) ∈ R,

Pr[NIZK.Verify(crs, π, st) = 1 : crs← NIZK.Setup(1λ),

π ← NIZK.Prove(crs, st,wit)] ≥ 1− negl(λ)

where the probability is over the randomness of the three algorithms.

• Zero Knowledge. For any malicious verifierAV , there exists a PPT simulator (NIZK.Sim.Setup,
NIZK.Sim.Prove) such that for all (st,wit) ∈ R:

(crs, π)
c
≈ (simcrs, π∗)

where crs← NIZK.Setup(1λ), π ← NIZK.Prove(crs, st,wit), (simcrs, td)← NIZK.Sim.Setup(1λ),
π∗ ← NIZK.Sim.Prove(td, st) and the probability is over the randomness of all algorithms.

• Simulation Extractiblity. For any PPT cheating prover AP , there exists a PPT extractor
NIZK.Sim.Ext such that for all st:

Pr[NIZK.Verify(simcrs, π∗, st) = 1 ∧ wit = NIZK.Sim.Ext(td, π∗, st)

∧ (st,wit) /∈ R ∧ (st, π∗) /∈ L] ≤ negl(λ)

where π∗ = ANIZK.Sim.Prove(td,·)
P (simcrs, st), (simcrs, td) ← NIZK.Sim.Setup(1λ), L is the set of

(sti, πi) responses output by the oracle NIZK.Sim.Prove(simcrs, ·) that AP gets access to and
the probability is over the randomness of all algorithms.

Languages Used. In our solitary MPC protocols presented in Section 5.2 and Section 6.2.1, we
will consider two NP languages L1, L2 for the NIZK described below.

• NP Language L1:
Statement st = (JxK , pk) Witness wit = (x, ρ)
R1(st,wit) = 1 iff JxK = dTFHE.Enc(pk, x; ρ).

15

• NP Language L2:
Statement st = (Jx : skK , JxK , pk, i) Witness wit = (sk, r)
R2(st,wit) = 1 iff Jx : skK = dTFHE.PartialDec(sk, JxK) and (pk, sk) = dTFHE.DistGen(1λ,
1d, i; r).

Imported Theorem 1 ([CCH+19,PS19]). Assuming LWE, there exists a Simulation-Extractible
NIZK argument system for all NP languages.

3.3.3 Threshold Fully Homomorphic Encryption

We define a t-out-of-n decentralized threshold fully homomorphic encryption scheme as in the work
of Boneh et al. [BGG+18].

Definition 3.4. (Decentralized Threshold Fully Homomorphic Encryption (dTFHE))
Let P = {P1, . . . , Pn} be a set of parties. A dTFHE scheme is a tuple of PPT algorithms
dTFHE = (dTFHE.DistGen, dTFHE.Enc, dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine) with the
following syntax:

• (pki, ski) ← dTFHE.DistGen(1λ, 1d, i; ri): On input the security parameter λ, a depth bound
d, party index i and randomness ri, the distributed setup outputs a public-secret key pair
(pki, ski) for party Pi. We denote the public key of the scheme as pk = (pk1‖ . . . ‖pkn).

• JmK← dTFHE.Enc(pk,m): On input a public key pk, and a plaintext m in the message space
M, it outputs a ciphertext JmK.

• JyK ← dTFHE.Eval(pk,C, Jm1K , . . . , JmkK): On input a public key pk, a circuit C of depth at
most d that takes k inputs each from the message space and outputs one value in the message
space, and a set of ciphertexts Jm1K , . . . , JmkK where k = poly(λ), the evaluation algorithm
outputs a ciphertext JyK.

• Jm : skiK← dTFHE.PartialDec(ski, JmK): On input a secret key share ski and a ciphertext JmK,
it outputs a partial decryption Jm : skiK.

• m/⊥ ← dTFHE.Combine(pk, {Jm : skiK}i∈S): On input a public key pk and a set of partial
decryptions {Jm : skiK}i∈S where S ⊆ [n], the combination algorithm either outputs a plaintext
m or the symbol ⊥.

As in a standard homomorphic encryption scheme, we require that a dTFHE scheme satisfies
compactness, correctness and security. We discuss these properties below.

Compactness. A dTFHE scheme is said to be compact if there exists polynomials poly1(·) and
poly2(·) for all λ, all message spaces M with size of each message being poly3(λ), all k = poly(λ),
depth bound d, circuit C : {0, 1}k·poly3(λ) → {0, 1}λ of depth at most d and mi ∈ M for i ∈ [k],
the following condition holds. Let (pkj , skj) ← dTFHE.DistGen(1λ, 1d, j) for all j ∈ [n], pk =
(pk1‖ . . . ‖pkn); let JmiK ← dTFHE.Enc(pk,mi) for all i ∈ [k]; compute JyK ← dTFHE.Eval(pk,C,
Jm1K , . . . , JmkK) and Jy : skjK ← dTFHE.PartialDec(skj , JyK) for j ∈ [n], then it holds that | JyK | ≤
poly1(λ, n, d) and | Jy : skjK | ≤ poly2(λ, n, d).

16

Evaluation Correctness. Informally, a dTFHE scheme is said to be correct if recombining
partial decryptions of a ciphertext output by the evaluation algorithm returns the correct evalu-
ation of the corresponding circuit on the underlying plaintexts. Formally, We say that a dTFHE
scheme satisfies evaluation correctness if for all λ, all message spaces M with size of each mes-
sage being poly3(λ), all k = poly(λ), circuit C : {0, 1}k·poly3(λ) → {0, 1}λ of depth at most d and
mi ∈ M for i ∈ [k], the following condition holds. Let (pkj , skj) ← dTFHE.DistGen(1λ, 1d, j)
for all j ∈ [n], pk = (pk1‖ . . . ‖pkn); let JmiK ← dTFHE.Enc(pk,mi) for all i ∈ [k] and JyK ←
dTFHE.Eval(pk,C, Jm1K , . . . , JmkK), for any S ⊆ [n], |S| = t,

Pr [dTFHE.Combine(pk, {dTFHE.PartialDec(skj , JyK)}j∈S) = C(m1, . . . ,mk)] ≥ 1− negl(λ).

Semantic Security. Informally, a dTFHE scheme is said to provide semantic security if a PPT
adversary cannot efficiently distinguish between encryptions of arbitrarily chosen plaintext messages
m0 and m1, even given the secret key shares corresponding to a subset S of the parties for any set
S of size at most (t−1). Formally, a dTFHE scheme satisfies semantic security if for all λ, all depth
bound d, message spaceM, for any PPT adversary A, the following experiment ExptdTFHE,sem(1λ)
outputs 1 with negligible probability:

ExptdTFHE,sem(1λ, 1d):

1. On input the security parameter 1λ, circuit depth 1d, the message space M and the number
of parties n, the adversary A outputs a set S of size at most (t − 1) and two messages
m0,m1 ∈M.

2. The challenger generates (pkj , skj) ← dTFHE.DistGen(1λ, 1d, j) for all j ∈ [n], sets pk =
(pk1‖ . . . ‖pkn) and provides (pk, {ski}i∈S) along with dTFHE.Enc(pk,mb) to A where b is
picked uniformly at random.

3. A outputs a guess b′. The experiment outputs 1 if b = b′.

Simulation Security. Informally, a dTFHE scheme is said to provide simulation security if
there exists an efficient algorithm dTFHE.Sim that takes as input a circuit C, a set of ciphertexts
Jm1K , . . . , JmkK, the output of C on the corresponding plaintexts, and outputs a set of partial
decryptions corresponding to some subset of parties, such that its output is computationally in-
distinguishable from the output of a real algorithm that homomorphically evaluates the circuit C
on the ciphertexts Jm1K , . . . , JmkK and outputs partial decryptions using the corresponding secret
key shares for the same subset of parties. In particular, the computational indistinguishability
holds even when a PPT adversary is given the secret key shares corresponding to a subset S of the
parties, so long as dTFHE.Sim also gets the secret key shares corresponding to the parties in S.

Formally, a dTFHE scheme satisfies simulation security if for all λ, all depth bound d, message
space M, for any PPT adversary A, there exists a simulator dTFHE.Sim such that the following
two experiments ExptdTFHE,Real(1

λ) and ExptdTFHE,Ideal(1
λ) are computationally indistinguishable.

ExptdTFHE,Real(1
λ), 1d:

1. On input the security parameter 1λ, circuit depth d, the message space M and the number
of parties n, the adversary A outputs a set S of size at most (t − 1) and a set of messages
m1, . . . ,mk for k = poly(λ).

17

2. The challenger generates (pkj , skj) ← dTFHE.DistGen(1λ, 1d, j) for all j ∈ [n], sets pk =
(pk1‖ . . . ‖pkn) and provides (pk, {ski}i∈S) along with JmiK ← dTFHE.Enc(pk,mi) for each
i ∈ [k] to A.

3. A issues a query with a circuit C. The challenger first computes JyK← dTFHE.Eval(pk,C, Jm1K ,
. . . , JmkK). Then, it outputs {dTFHE.PartialDec(ski, JyK)}i/∈S to A .

4. At the end of the experiment, A outputs a distinguishing bit b.

ExptdTFHE,Ideal(1
λ), 1d:

1. On input the security parameter 1λ, circuit depth d, the message space M and the number
of parties n, the adversary A outputs a set S of size at most (t − 1) and a set of messages
m1, . . . ,mk for k = poly(λ).

2. The challenger generates (pkj , skj) ← dTFHE.DistGen(1λ, 1d, j) for all j ∈ [n], sets pk =
(pk1‖ . . . ‖pkn) and provides (pk, {ski}i∈S) along with JmiK ← dTFHE.Enc(pk,mi) for each
i ∈ [k] to A.

3. A issues a query with a circuit C. The challenger outputs dTFHE.Sim(C,C(m1, . . . ,mk), Jm1K ,
. . . , JmkK , {ski}i∈S) to A.

4. At the end of the experiment, A outputs a distinguishing bit b.

Imported Theorem 2 ([BGG+18]). Assuming LWE, there exists a TFHE scheme for every
t−out-of-n threshold access structure.

4 With Broadcast and No PKI

In this section, we assume a network setting where the parties have access to a broadcast channel in
addition to pairwise-private channels. In terms of setup, we assume that all parties have access to
a common reference string (CRS). First, we present a new lower bound of three rounds for solitary
MPC with god in Section 4.1. Then we study whether it is possible to use fewer rounds of broadcast
and show in Section 4.2 and Section 4.3 that broadcast is necessary in both the first and second
rounds. Finally, we show that the above negative results are tight by demonstrating the existing
results of [GLS15,ACGJ18,BJMS20,PR18] in Section 4.4.

4.1 Necessity of Three Rounds

We show that it is impossible to design a two-round solitary MPC with god in the honest majority
setting (in particular, n/3 ≤ t < n/2), assuming the presence of pairwise-private channels and a
broadcast channel. Our result holds in the presence of any common public setup such as CRS, even
against non-rushing adversaries and irrespective of whether the output-obtaining party Q provides
an input or not.

Before presenting our proof, we first analyze whether the existing lower bounds (three rounds)
for standard MPC with god in the presence of an honest majority [GIKR02,GLS15,PR18] hold for
solitary functionalities. Among them, [GIKR02,GLS15] assumes the same network setting as ours
while [GLS15] assumes that the pairwise channels are non-private. For the sake of completeness,
we briefly describe below why each of their proof arguments does not hold for solitary MPC. First,
we observe that the arguments of [GLS15,PR18] exploit fairness (implied by god) in the following

18

manner. Their proofs proceed via adversarial strategies where one party gets the output and
subsequently draw inferences based on the property that another party must have also obtained
the output in that case (due to fairness). Such arguments clearly break down in the context of
solitary MPC. Regarding the lower bound of [GIKR02] (which is shown with respect to functions
of simultaneous broadcast, XOR and AND of two input bits), we note that it doesn’t hold for
solitary MPC for the following reason. Their argument which holds for t ≥ 2 proceeds via a
strategy where the adversary corrupts an input providing party P2 and another carefully chosen
party Pj (j > 2) who should receive the output. The identity of Pj is determined by identifying
the pair of consecutive hybrids which has a non-negligible difference among a sequence of hybrids
corresponding to a specific distribution of outputs. This breaks down in case of solitary MPC, as
Q is the only output receiving party and in their lower bound argument, the choice of Pj may not
necessarily result in Q always. Therefore, existing lower bounds leave the question open regarding
the existence of two-round solitary MPC with god. We answer this question in the negative and
show that three rounds continue to remain the lower bound for god even if only a single party is
supposed to obtain the output. Notably, our lower bound holds even for a non-rushing adversary.
We state the formal theorem below.

Theorem 4.1. Assume parties have access to CRS, pairwise-private channels and a broadcast
channel. Let n and t be positive integers such that n ≥ 3 and n/3 ≤ t < n/2. Then, there exists a
solitary functionality f such that no two-round n-party MPC protocol tolerating t corruptions can
compute f with god, even when the adversary is assumed to be non-rushing.

Proof. For simplicity, we present the argument for the setting n = 3 and t = 1 below and elaborate
on how to extend the proof to n/3 ≤ t < n/2 later. For the sake of contradiction, suppose
there exists a two-round 3-party solitary MPC with god, say Π which computes a solitary function
f(x1, x2, x3) among {P1, P2, P3} where Q = P3 denotes the output receiving party. For simplicity,
let f be defined as f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb, where x3 = ⊥ denotes that Q has no
input; (m0,m1) ∈ {0, 1}λ denote a pair of strings and b ∈ {0, 1} denotes a single bit. Note that at
most the adversary corrupts at most one party.

We consider three different scenarios of the execution of Π. For simplicity, we assume the
following about the structure of Π: (a) Round 2 involves only broadcast messages while Round 1
involves messages sent via both pairwise-private and broadcast channels. This holds without loss
of generality since the parties can perform pairwise-private communication by exchanging random
pads in the first round and then using these random pads to unmask later broadcasts [GIKR01].
(b) In Round 1, each pair of parties communicate via their pairwise-private channels (any protocol
where a pair of parties does not communicate privately in Round 1 can be transformed to one
where dummy messages are exchanged between them). (c) Round 2 does not involve any outgoing
communication from Q (as Q is the only party to receive the output at the end of Round 2).

Next, we define some useful notation: Let pci→j denote the pairwise-private communication
from Pi to Pj in Round 1 and bri→ denote the message broadcast by Pi in round r, where r ∈
[2], {i, j} ∈ [3]. These messages may be a function of the crs as per protocol specifications. Let
Viewi denotes the view of party Pi which consists of crs, its input xi, randomness ri and all incoming
messages.

Following is a description of the scenarios. In each of these scenarios, we assume that the
adversary uses the honest input on behalf of the corrupt parties and its malicious behaviour is
limited to dropping some of the messages supposed to be sent by the corrupt party. The views of
the parties for all the scenarios are shown in Table 3.

19

Scenario 1: The adversary actively corrupts P2 who behaves honestly in Round 1 towards P1 but doesn’t
communicate privately to Q in Round 1. In more detail, P1 sends messages pc2→1, b

1
2→

according to the protocol specification but drops the message pc2→3. In Round 2, P2 aborts.

Scenario 2: The adversary passively corrupts Q who behaves honestly throughout and learns output
f(x1, x2, x3). Additionally, Q locally re-computes the output by emulating Scenario 1, namely
when P2 does not communicate privately to Q in Round 1 and aborts in Round 2. Specifically,
Q can locally emulate this by discarding pc2→3 (private communication from P2 to Q in Round
1) and b22→ (broadcast communication from P2 in Round 2).

Scenario 3: The adversary corrupts P1 passively who behaves honestly throughout. P1 also does the
following local computation: Locally emulate the view of Q as per Scenario 1 (from which
the output can be derived) for various choices of inputs of {P1, P3} while the input of P2 i.e.
x2 remains fixed. In more detail, P1 does the following - Let (pc2→1, b

1
2→) be fixed to what

was received by P1 in the execution. Choose various combinations of inputs and randomness
on behalf of P1 and P3. Consider a particular combination, say {(x̃1, r̃1), (x̃3, r̃3)}. Use it

to locally compute b̃11→, b̃
1
3→, p̃c1→3, p̃c3→1. Next, locally compute b̃21→ using the Round 1

emulated messages which results in the complete view Ṽiew3 of Q analogous to Scenario 1,

where Ṽiew3 = {crs, x̃3, r̃3, b̃11→, b12→, p̃c1→3, b̃
2
1→} corresponds to the inputs (x̃1, x2, x̃3).

Scenario 1 Scenario 2 & 3

View1 View2 View3 View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x1, r1, crs) (x2, r2, crs) (x3, r3, crs)

Round 1
pc2→1, pc3→1 pc1→2, pc3→2, pc1→3, –, pc2→1, pc3→1, pc1→2, pc3→2, pc1→3, pc2→3,
b12→, b

1
3→ b11→, b

1
3→ b11→, b

1
2→ b12→, b

1
3→ b11→, b

1
3→ b11→, b

1
2→

Round 2 – b21→ b21→ b22→ b21→ b21→, b
2
2→

Table 3: Views of P1, P2, P3 in Scenarios 1 – 3.

The proof skeleton is as follows. First, we claim that if Scenario 1 occurs, then Q must obtain
f(x1, x2, x3) with overwhelming probability. If not, then Π is vulnerable to a potential attack
by semi-honest Q (which enables Q to learn information that he is not supposed to learn) that
violates security. Intuitively, this inference captures Q’s reliance on P1’s messages in Round 2 and
P2’s broadcast in Round 1 to carry information about x2 required for output computation. Note
that this information is available to P1 at the end of Round 1 itself. Building on this intuition, we
show that Π is such that an adversary corrupting P1 passively can compute f(x̃1, x2, x̃3) for any
choice of (x̃1, x̃3), which is the final contradiction. We now prove a sequence of lemmas to complete
our proof.

Lemma 4.2. Π must be such that if Scenario 1 occurs, then Q outputs f(x1, x2, x3) with all but
negligible probability.

Proof. In Scenario 1, it follows from the god property of Π that Q obtains an output with all but
negligible probability. Since P1 and Q are honest, the output must be computed on x1 = (m0,m1)

20

by the correctness of Π. Therefore, Q’s output in Scenario 1 is f(x1, x
′
2, x3) = mb′ for some x′2 = b′.

Note that the view locally emulated by a semi-honest Q in Scenario 2 is distributed identically to
its view in Scenario 1. We can thus infer that if Scenario 2 occurs, then Π allows a semi-honest Q
to learn f(x1, x

′
2, x3) = mb′ . By the security of Π, Q is not allowed to learn anything beyond the

correct output in Scenario 2 (i.e., f(x1, x2, x3) = mb for x2 = b as all behave honestly in Scenario
2) as per the ideal functionality. We can thus conclude that if Scenario 1 occurs, then b′ = b and
Q outputs y = f(x1, x2, x3) = mb with all but negligible probability.

Lemma 4.3. Π is such that a semi-honest P1 can compute the residual function f(x̃1, x2, x̃3) (for
different choices of (x̃1, x̃3)) with all but negligible probability.

Proof. Firstly, it follows from Lemma 4.2 that the view of Q in Scenario 1 comprising of {crs, x3, r3,
b11→, b

1
2→, pc1→3, b

2
1→} (see Table 3) results in output f(x1, x2, x3) with all but negligible probability.

Now, suppose Scenario 3 occurs, then P1 can locally emulate the view of Q at the end of Scenario
1 (w.r.t. different choices of inputs and randomness on behalf of P1 and P3 while the input of P2

remains fixed). Specifically, the view emulated by P1 for specific choice of (x̃1, x̃3) is identically
distributed to the view of Q at the end of Scenario 1 if it occurred with respect to (x̃1, x2, x̃3). We
can thus conclude that P1 can carry out output computation (similar to Q in Scenario 1) to learn
f(x̃1, x2, x̃3) with all but negligible probability. Hence, Π is such that it allows a semi-honest P1 to
learn f(x̃1, x2, x̃3) for different choices of (x̃1, x̃3) with all but negligible probability.

We note that the above attack by an adversary corrupting P1 breaches privacy of honest P2.
This is because corrupt P1 can learn f(x̃1 = (m̃0, m̃1), x2 = b, x̃3 = ⊥) = m̃b, which reveals x2 = b
to P1. This must not be allowed as per ideal realization of f (based on which P1 is not allowed to
learn b). We have thus arrived at a contradiction to our assumption that the two-round protocol
Π is secure.

Lastly, we show how the above proof can be extended for n ≥ 3 and n/3 ≤ t < n/2 using party
partitioning technique [Lyn96]. Assume towards a contradiction, that there exists a two-round
n-party solitary MPC Π′ computing f that achieves god against t corruptions, where 2t < n ≤ 3t.
Then, Π′ can be transformed into a two-round three-party solitary MPC protocol Π achieving god
against a single corruption as follows: Partition the set of n parties into three disjoint groups S1, S2
and S3 of size t, t and (n− 2t) respectively. Let Pi (i ∈ [3]) in Π emulate the steps of parties in Si
during Π′. It is easy to see that security of Π′ implies security of Π (as corruption of single party Pi
(i ∈ [3]) during Π is analogous to corruption of upto t parties in Si during Π′). However, our proof
argument above showed the impossibility of such a two-round three-party solitary MPC protocol
Π achieving god against a single corruption. We have thus arrived at a contradiction, completing
the proof of Theorem 4.1.

Circumventions of the Lower Bound. Before concluding the section, we present a couple of
interesting circumventions of our lower bound:

– Using PKI : We point that our lower bound can be circumvented in the presence of private
setup such as public-key infrastructure (PKI) due to the following reason. If a setup such
as PKI is established, Q may hold some private information unknown to P1 at the end of
Round 1, such as the decryption of P2’s Round 1 broadcast using its exclusive secret key. This
may aid in output computation by Q; thereby the argument about the residual attack by P1

21

(Lemma 4.3) does not hold. In fact, a two-round protocol achieving god can be designed in
the presence of CRS and PKI setup as demonstrated by the work of [GLS15].

– Single-input functions: Since our final contradiction relies on residual attack by P1, it would
not hold in case f is a single-input function i.e. involves inputs provided only by single party.
We note that employing a protocol for single-input functions seems meaningful when the in-
put holding party is different from the output receiving party Q. In such scenarios, when a
function f(x) is to be computed involving input x from a party Pi 6= Q, we point that any ex-
isting two-round two-party secure computation protocol (also known as non-interactive secure
computation) between Pi and Q can be employed [IKO+11,AMPR14,CJS14,MR17,BGI+17].
This would trivially achieve god as the failure of the non-interactive secure computation pro-
tocol when Q is honest implies that Pi is corrupt; enabling Q to simply compute f on default
input of Pi.

4.2 Necessity of Broadcast in Round 1

Now we show that any three-round n-party solitary MPC with god against t corruptions must use
broadcast channel in Round 1, where n/3 ≤ t < n/2.

Theorem 4.4. Assume parties have access to CRS and pairwise-private channels. Let n and t be
positive integers such that n ≥ 3 and n/3 ≤ t < n/2. There exists a solitary functionality f such that
no three-round n-party solitary MPC protocol securely computes f with god against t corruptions,
while making use of the broadcast channel only in Round 2 and Round 3 (pairwise-private channels
can be used in all the rounds).

Proof. For simplicity, we present the argument for the setting n = 3 and t = 1 below. The proof
can be extended for n/3 ≤ t < n/2 using player partitioning technique (as elaborated in the proof
of Theorem 4.1). Suppose for the sake of contradiction that there exists a three-round solitary
MPC protocol with god, say Π that utilizes broadcast channel only in Rounds 2 and 3 (i.e., Π uses
only pairwise-private channels in Round 1, and uses both broadcast and pairwise-private channels
in Rounds 2 and 3).

Without loss of generality, we can assume that Π has the following structure: (a) No broadcast
messages are sent during Round 3, and Round 3 only involves private messages sent to Q. This
is without loss of generality as any solitary MPC that uses broadcast in the last round can be
transformed into one where the messages sent via broadcast are sent privately only to Q (as Q
is the only party supposed to receive output at the end of Round 3). (b) Round 2 only involves
broadcast messages. This is also without loss of generality since the parties can perform pairwise-
private communication by exchanging random pads in the first round and then using these random
pads to unmask later broadcasts [GIKR01].

Let Π compute the solitary function f(x1, x2, x3) among parties {P1, P2, P3} where Q := P3

denotes the output receiving party. For simplicity, we use the same definition of f as in Theorem 4.1
i.e. f(x1 = (m0,m1), x2 = b, x3 = ⊥) := mb, where x3 = ⊥ denotes that Q has no input;
(m0,m1) ∈ {0, 1}λ denote a pair of strings and b ∈ {0, 1} denotes a single bit. We analyze three
different scenarios of the execution of Π. Before describing the scenarios, we define some useful
notation. We assume (r1, r2, r3) are the randomness used by the three parties if they behave
honestly during the protocol execution. Let pci→j where i, j ∈ [3] denote the pairwise-private
communication from Pi to Pj in Round 1 if Pi behaves honestly using input xi and randomness

22

ri. Similarly, let p̃ci→j denote the pairwise-private communication from Pi to Pj in Round 1 if

Pi follows the protocol but uses some other input x̃i and randomness r̃i. Let b
x,r,pci−1,pci+1

i where
i ∈ [3] denote the broadcast communication by Pi in Round 2 if Pi behaves honestly using input
x and randomness r, and received pci−1 from Pi−1 and pci+1 from Pi+1 in Round 1 (let P0 := P3

and P4 := P1). Lastly, let pc`i→3 where i ∈ [2], ` ∈ [3] denote the pairwise-private communication
from Pi to Q in Round 3 in Scenario `. A party’s view consists of crs, its input, randomness and
incoming messages. Following is a description of the three scenarios. The views of the parties are
described in Tables 4 – 5.

Scenario 1: Adversary corrupts P2. In Round 1, P2 behaves honestly to P1 using input x2 and randomness
r2 while behaving dishonestly to Q using (x̃2, r̃2). In other words, P2 sends pc2→1 to P1 and
p̃c2→3 to Q.

In Round 2, P2 broadcasts a message as if he behaved honestly in Round 1 to both parties
(using (x2, r2)) and received a message from Q computed using (x̃3 = ⊥, r̃3) in Round 1.

Formally, P2 broadcasts b
x2,r2,pc1→2,p̃c3→2
2 .

In Round 3, P2 aborts.

Scenario 2: Adversary corrupts Q. In Round 1, Q behaves towards P1 using (x3 = ⊥, r3) while behaving
towards P2 using (x̃3 = ⊥, r̃3). In other words, Q sends pc3→1 to P1 and p̃c3→2 to P2.

In Round 2, Q broadcasts a message as if he behaved honestly in Round 1 to both parties
(using (x3 = ⊥, r3)) and received a message from P2 in Round 1 using (x̃2, r̃2). Formally, Q

broadcasts b
x3,r3,pc1→3,p̃c2→3
3 .

Scenario 3: Adversary passively corrupts P1 behaving honestly using (x1, r1) in all rounds.

Scenario 1 Scenario 2

View1 View2 View3 View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs) (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2 pc1→3, p̃c2→3 pc2→1, pc3→1 pc1→2, p̃c3→2 pc1→3, pc2→3

Round 2
b
x2,r2,pc1→2,p̃c3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1 b

x2,r2,pc1→2,p̃c3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1

b
x3,r3,pc1→3,p̃c2→3
3 b

x3,r3,pc1→3,p̃c2→3
3 b

x2,r2,pc1→2,p̃c3→2
2 b

x3,r3,pc1→3,p̃c2→3
3 b

x3,r3,pc1→3,p̃c2→3
3 b

x2,r2,pc1→2,p̃c3→2
2

Round 3 – – pc11→3 – – pc21→3, pc
2
2→3

Table 4: Views of {P1, P2, Q} in Scenarios 1 and 2.

View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x3 = ⊥, r3, crs)

Round 1 pc2→1, pc3→1 pc1→2, pc3→2 pc1→3, pc2→3

Round 2
b
x2,r2,pc1→2,pc3→2
2 b

x1,r1,pc2→1,pc3→1
1 b

x1,r1,pc2→1,pc3→1
1

b
x3,r3,pc1→3,pc2→3
3 b

x3,r3,pc1→3,pc2→3
3 b

x2,r2,pc1→2,pc3→2
2

Round 3 – – pc31→3, pc
3
2→3

Table 5: Views of {P1, P2, Q} in Scenario 3.

23

The proof skeleton is as follows. First, we claim if Scenario 1 occurs, then Q must obtain
f(x1, x2,⊥) with overwhelming probability. Due to the god property of Π, the honest Q in Scenario
1 must learn an output on the honest P1’s input, namely x1. The output should also be computed
on P2’s honest input x2 because Q’s view is Scenario 1 is subsumed by its view in Scenario 2, where
the malicious Q can only learn an output computed on the honest P2’s input. Intuitively, P2’s input
is “committed” in its private communication to P1 in Round 1 and broadcast message in Round 2.
This allows a semi-honest P1 in Scenario 3 to emulate Q’s view in Scenario 1 and learn f(x1, x2,⊥),
which compromises the security of Π. We now prove a sequence of lemmas to complete our proof.

Lemma 4.5. Π must be such that if Scenario 1 or 2 occurs, then the output obtained by Q must
be y = f(x1, x2,⊥) with all but negligible probability.

Proof. First, in Scenario 1, it follows from the god property of Π that Q obtains an output with
all but negligible probability. Correctness dictates that the output must be computed w.r.t the
honest input of P1, namely x1 = (m0,m1). Therefore, the output should be f(x1, x

′
2,⊥) = mb′ for

some x′2 = b′. Observe that the message sent from P1 to Q in Round 3 is identically distributed in
Scenarios 1 and 2, namely pc21→3 = pc11→3. Hence the view of Q in Scenario 2 subsumes its view
in Scenario 1 except p̃c2→3. Notice that p̃c2→3 is computed using (x̃2, r̃2), which can be arbitrarily
chosen by Q and computed by Q himself. Therefore, a corrupted Q in Scenario 2 can emulate its
view in Scenario 1, hence obtaining the output f(x1, x

′
2,⊥) = mb′ . By the security guarantee of Π,

corrupted Q in Scenario 2 is not allowed to learn anything beyond the output computed w.r.t the
honest inputs of P1 and P2 i.e. the output f(x1, x2,⊥) = mb for x2 = b. We can thus conclude
that b′ = b must hold with all but negligible probability and thus, in both Scenarios 1 and 2, the
output obtained by Q must be y = f(x1, x2,⊥) with all but negligible probability.

Lemma 4.6. Π must be such that if Scenario 3 occurs, then the adversary P1 can learn f(x1, x2,⊥)
with all but negligible probability.

Proof. Consider Scenario 1 with (x3 = ⊥, r3) and (x̃3 = ⊥, r̃3) flipped. We call this Scenario 4 and
present the views of the three parties in Table 6.

View1 View2 View3

Initial Input (x1, r1, crs) (x2, r2, crs) (x̃3 = ⊥, r̃3, crs)

Round 1 pc2→1, p̃c3→1 pc1→2, p̃c3→2 pc1→3, p̃c2→3

Round 2
b
x2,r2,pc1→2,pc3→2
2 b

x1,r1,pc2→1,p̃c3→1
1 b

x1,r1,pc2→1,p̃c3→1
1

b
x̃3,r̃3,pc1→3,p̃c2→3
3 b

x̃3,r̃3,pc1→3,p̃c2→3
3 b

x2,r2,pc1→2,pc3→2
2

Round 3 – – pc41→3

Table 6: Views of {P1, P2, Q} in Scenario 4.

By Lemma 4.5, Q should learn f(x1, x2,⊥) in Scenario 4. We now show that P1 and Q’s views
in Scenario 4 can be emulated by corrupted P1 in Scenario 3.

First, P1 knows (x1, r1, crs) and he can choose arbitrary (x̃2, r̃2) for P2, set x̃3 = ⊥ and choose
arbitrary r̃3 for Q as the initial inputs. In Round 1, pc2→1 is the message P1 receives from P2

in Scenario 3. p̃c3→1 can be computed using (x̃3 = ⊥, r̃3, crs). pc1→3 can be computed using

24

(x1, r1, crs). p̃c2→3 can be computed using (x̃2, r̃2, crs). In Round 2, b
x2,r2,pc1→2,pc3→2
2 is the message

broadcast by P2 in Round 2 of Scenario 3. b
x̃3,r̃3,pc1→3,p̃c2→3
3 can be computed from (x̃3, r̃3, crs), pc1→3

(which can be computed using (x1, r1, crs)), p̃c2→3 (which can be computed using (x̃2, r̃2, crs)).

b
x1,r1,pc2→1,p̃c3→1
1 can be computed from (x1, r1, crs), pc2→1, p̃c3→1. In Round 3, pc41→3 can be

computed from P1’s view in Scenario 4.
Therefore, P1 can emulate Q’s view in Scenario 4 and learn f(x1, x2,⊥).

By Lemma 4.6, the corrupted P1 can learn f(x1 = (m0,m1), x2 = b,⊥) = mb which allows P1

to learn honest P2’s input x2 = b. This contradicts with the security guarantee of Π based on which
parties other than Q must learn no information. Note that since f does not involve an input from
Q, our proof shows that this argument holds irrespective of whether Q has an input or not.

4.3 Necessity of Broadcast in Round 2

In this section, we show that any three-round n-party solitary MPC with god against t corruptions
must use broadcast channel in Round 2 when 2 dn/5e ≤ t < n/2 (note that t ≥ 2). Interestingly,
the use of broadcast in Round 2 is not necessary for the special case of single corruption, which we
discuss in Section 4.4.

Theorem 4.7. Assume parties have access to CRS. Let n and t be positive integers such that
n ≥ 5 and 2 dn/5e ≤ t < n/2. Then, there exists a solitary functionality f such that no three-round
n-party solitary MPC protocol tolerating t corruptions securely computes f with god, while making
use of the broadcast channel only in Round 1 and Round 3 (pairwise-private channels can be used
in all the rounds).

Proof. We present the argument for the setting of n = 5 and t = 2 below, and elaborate later on
how to extend to 2 dn/5e ≤ t < n/2. Suppose for the sake of contradiction that there exists a
three-round 5-party solitary MPC protocol with god against two corruptions, say Π that utilizes
broadcast channel only in Round 1 and Round 3 (i.e. Π uses broadcast and pairwise-private
channels in Round 1 and Round 3; and only pairwise-private channels in Round 2).

Without loss of generality, we assume for simplicity that Π has the following structure: (a) No
broadcast messages are sent during Round 3 and Round 3 involves only private messages sent to
Q. This is w.l.o.g as any solitary MPC that uses broadcast in last round can be transformed to
one where the messages sent via broadcast are sent privately only to Q (as Q is the only party
supposed to receive output at the end of Round 3). (b) Round 2 does not involve messages from
Pi (i ∈ [4]) to Q (such a message is meaningful only if Q communicates to Pi in Round 3, which is
not the case as per (a)).

Let Π compute the solitary function f(x1, . . . , x5) among {P1, . . . , P5} where Q = P5 denotes
the output receiving party. We clarify that our argument holds irrespective of whether f involves
an input from Q or not. Let f(x1 = (xr, xc), x2 = (x02, x

1
2), x3 = (x03, x

1
3), x4 = ⊥, x5 = ⊥) with

x1, x2, x3 ∈ {0, 1}2 be defined as

f(x1, . . . , x5) =

{
(xr ⊕ x02, x03) if xc = 0
(xr ⊕ x12, x13) if xc = 1

.

We consider an execution of Π with inputs (x1, . . . , x5) where xi denotes the input of Pi. In
the above definition of f , x4 = x5 = ⊥ indicates that P4 and P5 do not have any inputs. Next, we

25

analyze four different scenarios. Before describing the scenarios, we define some useful notation.
Let b1i denote the broadcast communication by Pi in Round 1 when Pi behaves honestly. In Rounds
1 and 2, let pcri→j where r ∈ [2], i, j ∈ [5] denote the pairwise-private communication from Pi to Pj

in Round r, as per an execution where everyone behaves honestly. Next, we use p̃c2i→j to denote the
messages that Pi (i ∈ [5]) is supposed to send in Round 2 to Pj (j ∈ [4]\ i) incase Pi did not receive
Round 1 message from P1. Note that this communication could be potentially different from what
Pi would send in an honest execution. Lastly, since Round 3 messages to Q could potentially be
different for each of the four scenarios, we index them additionally with ` indicating the scenario
i.e. pc3,`j→5 denotes Pj ’s Round 3 message to Q in Scenario ` (j ∈ [4], ` ∈ [4]). These messages may
be a function of the common reference string (denoted by crs). A party’s view comprises of crs, its
input, randomness and incoming messages.

Following is a description of the scenarios. In each of these scenarios, we assume that the
adversary uses the honest input on behalf of the corrupt parties and its malicious behaviour is
limited to dropping some of the messages that were received or supposed to be sent by the actively
corrupt parties. The views of the parties are described in Tables 7 – 10.

Scenario 1: Adversary corrupts P1. In Round 1, P1 behaves honestly w.r.t his broadcast communication
and private message towards P2 and Q, but drops his private message towards P3 and P4.
Further, P1 remains silent after Round 1 (i.e. does not communicate at all in Round 2 and
Round 3). In other words, in Scenario 1, P1 computes and sends only the following messages
honestly : b11, pc

1
1→2 and pc11→5.

Scenario 2: Adversary corrupts {P1, P2}. P1 behaves identical to Scenario 1. P2 behaves honestly except
that he drops his Round 3 message towards Q.

Scenario 3: Adversary corrupts {P3, P4}. In Round 1, {P3, P4} behave honestly as per protocol steps.
In Round 2, {P3, P4} only communicate to P2, towards whom they pretend that they did

not receive Round 1 message from P1 (i.e. Pi sends p̃c2i→2 to P2 where i ∈ {3, 4}). Lastly,
{P3, P4} remain silent in Round 3 i.e. do not communicate towards Q.

Scenario 4: Adversary corrupts {P1, Q}. Q behaves honestly throughout the protocol. P1 behaves as
follows: In Round 1, P1 behaves identical to Scenario 1 (i.e. behaves honestly w.r.t its
broadcast communication and private message to P2 and Q; but drops his private message to
P3 and P4). In Round 2, P1 behaves honestly only to P2 (but does not communicate to others).
Lastly, P1 sends its Round 3 message to Q as per Scenario 3 (i.e. as per protocol specifications
when P1 does not receive Round 2 message from P3 and P4). The communication in Round
3 among the corrupt parties is mentioned only for clarity.

26

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1
{b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},
{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}

Round 2
{pc2j→1}j∈{2,5} {pc2j→2}j∈{5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{p̃c2j→1}j∈{3,4} {p̃c2j→2}j∈{3,4} {p̃c2j→3}j∈{4} {p̃c2j→4}j∈{3} –

Round 3 – – – – {pc3,1j→5}j∈{2,3,4}

Table 7: Views of {P1, . . . , P5} in Scenario 1.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1
{b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},
{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}

Round 2
{pc2j→1}j∈{2,5} {pc2j→2}j∈{5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{p̃c2j→1}j∈{3,4} {p̃c2j→2}j∈{3,4} {p̃c2j→3}j∈{4} {p̃c2j→4}j∈{3} –

Round 3 – – – – {pc3,2j→5}j∈{3,4}

Table 8: Views of {P1, . . . , P5} in Scenario 2.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1
{b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},
{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{3} {pc1j→4}j∈[5]\{4} {pc1j→5}j∈[5]\{5}

Round 2 {pc2j→1}j∈{2,5} {pc2j→2}j∈{1,5}, {p̃c2j→2}j∈{3,4} {pc2j→3}j∈{1,2,5} {pc2j→4}j∈{1,2,5} –

Round 3 – – – – {pc3,3j→5}j∈{1,2}

Table 9: Views of {P1, . . . , P5} in Scenario 3.

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs) (x2, r2, crs) (x3, r3, crs) (x4, r4, crs) (x5, r5, crs)

Round 1
{b1j}j∈[5]\{1}, {b1j}j∈[5]\{2}, {b1j}j∈[5]\{3}, {b1j}j∈[5]\{4}, {b1j}j∈[5]\{5},
{pc1j→1}j∈[5]\{1} {pc1j→2}j∈[5]\{2} {pc1j→3}j∈[5]\{1,3} {pc1j→4}j∈[5]\{1,4} {pc1j→5}j∈[5]\{5}

Round 2
{pc2j→1}j∈{2,5} {pc2j→2}j∈{1,5} {pc2j→3}j∈{2,5} {pc2j→4}j∈{2,5} –

{p̃c2j→1}j∈{3,4} {p̃c2j→2}j∈{3,4} {p̃c2j→3}j∈{4} {p̃c2j→4}j∈{3} –

Round 3
– – – – {pc3,4j→5}j∈{1,2} = {pc3,3j→5}j∈{1,2}
– – – – {pc3,4j→5}j∈{3,4} = {pc3,2j→5}j∈{3,4}

Table 10: Views of {P1, . . . , P5} in Scenario 4.

27

The proof skeleton is as follows. First, we claim that there exists an x∗c ∈ {0, 1} such that if
Scenario 1 occurs with respect to xc = x∗c , then the output obtained by Q must be computed with
respect to ¬x∗c with non-negligible probability. Intuitively, if for all xc, the output of Scenario 1 was
computed on xc, then it would mean that {P2, Q} have sufficient information about xc at the end
of Round 1 itself. This would make Π vulnerable to a residual function attack by {P2, Q}. Next, we
claim that if xc = x∗c , even the output of Scenario 2 must be computed on ¬x∗c with non-negligible
probability. Regarding Scenario 3, correctness of Π lets us infer that Q must compute output on the
input x1 = (xr, xc) of honest P1. Lastly, we argue that Q’s view in Scenario 4 subsumes its views
in Scenario 2 and Scenario 3. This would allow corrupt {P1, Q} (who participate with xc = x∗c) in
Scenario 4 to obtain multiple outputs i.e. output with respect to both ¬x∗c (as in Scenario 2) and
x∗c (as in Scenario 3), which contradicts security of Π. This completes the proof sketch. We present
below a sequence of inferences to formalize the above proof sketch.

Lemma 4.8. There exists an x∗c ∈ {0, 1} such that if Scenario 1 of Π occurs with respect to
xc = x∗c , then the output obtained by Q must be f(x′1 = (x′r, x

′
c), x2, x3, x4, x5) where x′c 6= x∗c

(namely, x′c = ¬x∗c) with non-negligible probability.

Proof. Suppose Scenario 1 occurs. First, it follows from the god property of Π that Q obtains an
output with overwhelming probability. Correctness dictates that the output should be computed
w.r.t honest inputs of {P2, P3, P4, P5}. Therefore, Q obtains f(x′1, x2, x3, x4, x5) for some x′1 =
(x′r, x

′
c).

Assume towards a contradiction that for all xc ∈ {0, 1}, x′c 6= xc with negligible probability;
namely x′c = xc with overwhelming probability. Then, we demonstrate below an adversarial strategy
that breaches security of Π.

Consider a scenario (say S∗) where an adversary corrupts {P2, Q} passively and honest P1

participates with input x1 = (xr, xc). We claim that the adversary can compute the output on xc
i.e. f(x′1 = (x′r, xc), x

′
2, x
′
3, x
′
4 = ⊥, x′5 = ⊥) for any choice of (x′2, x

′
3) with overwhelming probability.

This can be done by emulating Scenario 1 as follows - The adversary chooses the set of inputs x′2
and x′3 on behalf of {P2, P3} and randomness on behalf of {P2, P3, P4, P5}. Next, he fixes the
messages b11, pc11→2 and pc11→5 as received from P1 in Round 1 (on behalf of {P2, Q}). Recall
that {b11, pc11→2, pc

1
1→5} constitutes the only communication from P1 in Scenario 1. Therefore, the

adversary in S∗ can locally compute a view that is identically distributed to the view of an honest
Q in Scenario 1 w.r.t set of inputs (x1 = (xr, xc), x

′
2, x
′
3, x
′
4 = ⊥, x′5 = ⊥).

Based on our assumption, this view would allow the adversary to locally compute the output
with respect to xc i.e. f(x′1 = (x′r, xc), x

′
2 = (x02

′
, x12
′
), x′3 = (x03

′
, x13
′
),⊥,⊥) with overwhelming

probability. This breaches privacy of honest P1 in S∗, as the adversary can learn xc by setting the
chosen inputs appropriately (say, by choosing x03

′ 6= x13
′

). Note that as per the ideal realization of
f , {P2, Q} cannot infer xc from the output. Thus, we have arrived at a contradiction; completing
the proof.

The above lemma shows that there exists an x∗c such that if Scenario 1 occurs with respect to
xc = x∗c , then the output would be computed on x′c = ¬x∗c with non-negligible probability. We
use this particular x∗c in the rest of the proof, where x∗c could be either 0 or 1 and can be guessed
correctly by the adversary with probability at least 1/2.

Lemma 4.9. Π must be such that if Scenario 2 occurs and xc = x∗c , then the output obtained by
Q must be computed with respect to x′c = ¬x∗c and x3 with non-negligible probability.

28

Proof. It is easy to see that god and correctness properties imply that Q must receive an output
on honest P3’s input i.e. x3 with overwhelming probability. Next, we focus on x′c with respect to
which the output is computed.

We observe that Scenario 1 and 2 proceed identically until Round 3. The only difference is that
P2 drops its Round 3 message to Q. Thereby, we can infer that the view of Q in Scenario 2 is
subsumed by its view in Scenario 1 (refer Tables 7 - 8).

Towards a contradiction, assume Q obtains an output computed on x′c = ¬x∗c with negligible
probability, namely x′c = x∗c with overwhelming probability. Then there exists an adversarial
strategy that allows the adversary to get multiple evaluations of the function f - Consider a scenario
S′ where the adversary corrupts {P1, Q}. Suppose misbehaviour of corrupt P1 is identical to
Scenario 1 and Q is passively corrupt. Since view of Q in Scenario S′ is identically distributed to
its view in Scenario 1, he can obtain an output computed on ¬x∗c and (x2, x3) with non-negligible
probability (Lemma 4.8). Further, passive Q can emulate Scenario 2 by simply discarding the
Round 3 message from P2 in Scenario S′. This will allow the adversary to obtain the output of
Scenario 2 that is computed on x′c = x∗c with overwhelming probability (as per our assumption)
and x3 as well. This contradicts the security of Π. In particular, corrupted {P1, Q} in Scenario S′

can learn both x03 and x13 with non-negligible probability, which is not allowed as per the definition
of the function f . We can thus conclude that the output of Scenario 2 is computed on x′c = ¬x∗c
with non-negligible probability.

Lemma 4.10. Π must be such that if Scenario 3 occurs, then the output obtained by Q must be
computed on x1 and x2 with overwhelming probability.

Proof. Suppose Scenario 3 occurs. Since P1, P2 and Q are honest, it follows from properties of god
and correctness of Π that Q obtains an output computed on honest P1 and P2’s inputs i.e. x1 and
x2 with overwhelming probability.

Lemma 4.11. Π must be such that if Scenario 4 occurs with respect to xc = x∗c , then the adversary
corrupting {P1, Q} obtains multiple evaluations of f with non-negligible probability.

Proof. Suppose Scenario 4 occurs. First, we claim that Q can obtain the output of Scenario 2 that is
computed on ¬x∗c and x3 (Lemmas 4.8 - 4.9) with non-negligible probability. Note that the Round
3 messages received by Q from {P3, P4} in Scenario 4 is identically distributed to the respective
messages in Scenario 2 (as views of {P3, P4} in Scenarios 2 and 4 are identically distributed). It
is now easy to check that Q’s view in Scenario 4 subsumes its view in Scenario 2 (see Tables 8
and 10). Thus, Q must be able to learn an output computed on ¬x∗c and x3 with non-negligible
probability.

Next, we argue similarly that Q can obtain the output of Scenario 3 as well. This is because
the Round 3 messages received by Q in Scenario 4 from corrupt P1 (who pretends as if he did not
receive Round 2 message from {P3, P4}) and honest P2 (whose view is identically distributed to its
view in Scenario 3) is identically distributed to the respective messages in Scenario 3. It is now
easy to check that Q’s view in Scenario 4 subsumes its view in Scenario 3 (see Tables 9 - 10). Thus,
Q must be able to learn the output of Scenario 3 which is computed w.r.t x1 and x2 (Lemma 4.10)
with overwhelming probability.

We can thus conclude that in Scenario 4, Q can obtain an output computed on x1 = (xr, x
∗
c)

and x2 as well as another output computed on ¬x∗c and x3, with non-negligible probability.

29

According to Lemma 4.11, there exists an adversarial strategy that allows an adversary cor-
rupting {P1, Q} to obtain multiple evaluations of f , while the inputs of honest parties P2, P3 and
P4 remains fixed. Specifically, if x∗c = 0, then the adversary learns both xr ⊕ x02 and x13 with
non-negligible probability, from which x02 can be inferred (as xr is known to adversary in Scenario
4 corrupting P1). This is not allowed as per the definition of f . Similarly, if x∗c = 1, then the
adversary can learn both x12 and x03 with non-negligible probability, which is also not allowed. This
gives us the final contradiction, completing the proof of Theorem 4.7 for the setting n = 5 and
t = 2. Note that since f did not involve an input from Q (i.e. x5 = ⊥), our argument holds
irrespective of whether Q has input or not.

Lastly, we show how the above proof can be extended for 2 dn/5e ≤ t < n/2 using party
partitioning technique [Lyn96]. Assume towards a contradiction, that there exists a three-round
n-party solitary MPC Π′ that achieves god against t corruptions without using broadcast in Round
2, where 2t < n ≤ 5 bt/2c (equivalent to 2 dn/5e ≤ t < n/2 6) and t ≥ 2. Then, Π′ can be
transformed to a three-round 5-party solitary MPC protocol Π that does not use broadcast in
Round 2 and achieves god against 2 corruptions as follows: Partition the set of n parties into 5
disjoint groups, say Si (i ∈ [5]), where S1, . . . , S4 are each of size bt/2c and S5 comprises of the
remaining (n− 4 bt/2c) parties. Let Pi (i ∈ [5]) in Π emulate the steps of parties in Si during Π′.
It is easy to see that security of Π′ implies security of Π (as corruption of up to 2 parties in Π is
analogous to corruption of up to t parties in Π′). However, our proof argument above showed the
impossibility of such a three-round 5-party solitary MPC protocol Π that does not use broadcast
in Round 2 and achieves god against two corruptions. We have thus arrived at a contradiction,
completing the proof of Theorem 4.7. Note that for certain cases, such as n = 6, this range of
values of (n, t) is not meaningful. However, this is relevant for sufficiently large values of n.

4.4 Upper Bounds

In this section, we discuss how the existing results of [GLS15,ACGJ18,BJMS20,PR18] imply that
our negative results in the previous sections are tight.

Three-round solitary MPC. With respect to our three-round lower bound in Section 4.1, we
note that the existing three-round upper bounds of [GLS15,ACGJ18,BJMS20] for standard MPC
are optimal for solitary MPC as well. This holds since any standard MPC with global output (that
gives same output to all) can be transformed to one with private output (which gives private output
to selected parties, only Q in our context) [MZ13]. For the sake of completeness, we recall this
transformation: Let C denote the private-output circuit (which gives output only to Q) computing
the solitary function f(x1, . . . , xn). Then instead of evaluating C, the standard MPC protocols
of [GLS15,ACGJ18,BJMS20] can be used to evaluate a circuit C ′ (with global output) which takes
as input xi from each Pi and additionally a random pad r from Q to be used for “masking” the
output of Q. C ′ evaluates C using the received inputs to compute f(x1, . . . , xn) = y and outputs
y ⊕ r as the global output to all. This public output can be unmasked by Q to recover the desired
private output y = f(x1, . . . , xn).

Broadcast-optimal three-round MPC Next, recall that our negative results in Section 4.2
and Section 4.3 prove that when t ≥ 2, use of broadcast in both Round 1 and Round 2 are

6Note that n ≤ 5 bt/2c ⇐⇒ n/5 ≤ bt/2c ⇐⇒ dn/5e ≤ t/2 ⇐⇒ 2 dn/5e ≤ t.

30

necessary for a three-round solitary MPC with god in honest majority (in particular, when n ≥ 5
and 2 dn/5e ≤ t < n/2). This result is tight, as the last round messages of the three-round protocols
of [GLS15, ACGJ18, BJMS20] can be sent over pairwise-private channels to the output-receiving
party, to construct a solitary MPC with god in honest majority that uses broadcast only in Round
1 and Round 2.

Since standard MPC implies solitary MPC, we can infer that use of broadcast in both Round
1 and Round 2 are necessary for a three-round standard MPC with god as well, in the honest
majority setting. In order to demonstrate tightness for standard MPC, we observe that the three-
round standard MPC protocols of [GLS15,BJMS20] which use broadcast in all three rounds, would
achieve god even if the last round broadcast message of every party was instead sent via pairwise-
private channels to every other party. First, we recall the structure of the protocol in [BJMS20]
but note that the work of [GLS15] has a very similar structure. The first round involves each
party generating and broadcasting some public keys for setting up the threshold multi-key fully
homomorphic encryption (TMFHE) scheme and shares of a common reference string for a multi-
string NIZK(we refer the reader to [BJMS20] for a formal definition of both these primitives). In the
second round, each party encrypts their input using the combined FHE public key and generates a
NIZK that the ciphertext was honestly generated. The ciphertext and the NIZK is broadcasted by
every party. At the end of Round 2, every party can combine the ciphertexts locally to compute an
encryption of the evaluation of the function f on all parties’ inputs. In Round 3, parties broadcast
their partial decryptions of this evaluated ciphertext along with a NIZK proving that the partial
decryption was honestly generated. Intuitively, god holds on setting the threshold in the TMFHE
scheme to be (n2 +1) as the scheme then requires only a majority of partial decryptions to correctly
decrypt and learn the output, which is immediately ensured in the honest majority setting. We now
observe that, in Round 3, even if the partial decryptions (and associated NIZKs) were sent over
pairwise-private channels, since there is an honest majority, every honest party would receive at
least (n2 + 1) validly generated partial decryptions and can recover the output. Any invalid partial
decryption received from a corrupt party can be detected (via the NIZK) and discarded, without
affecting the output reconstruction procedure.

Special case: t = 1. Lastly, we discuss the setting of t = 1. We observe that analyzing use of
broadcast for protocols achieving god in this setting is relevant only when n = 3, as two-round
protocols achieving god in the presence of just pairwise-private channels are known when n ≥ 4
and t = 1 [IKP10, IKKP15]. For the setting of n = 3 and t = 1, three rounds are known to be
necessary and sufficient for god against single corruption [PR18] (even in the presence of CRS and
broadcast channel) and use of broadcast is necessary in Round 1 of such a three-round protocol
(Section 4.2). The necessity of broadcast in Round 1 is in fact tight even for standard MPC
(which implies solitary MPC) when n = 3; as there exists a three-Round 3-party standard MPC
protocol [PR18] that achieves god against single corruption and uses broadcast only in Round 1.
For the sake of completeness, we give a high-level sketch of their protocol, say Π. Π involves three
parallel executions of a two-round sub-protocol, say Πi (i ∈ [3]), where Pi is referred to as the
evaluator and the other two parties are referred to as the garblers. During Round 1 of Πi, each
garbler Pj (j 6= i) samples randomness and broadcasts a randomized encoding of the function to
be computed (i.e. the garbled circuit), while sharing the randomness privately with its co-garbler.
Additionally, Pi splits its input into two shares and sends one share to each garbler privately.
Each garbler verifies the garbled circuit sent by its co-garbler over broadcast channel (using the

31

randomness received privately). In Round 2, a garbler Pj sends the encoded input to Pi (over
pairwise-private channel) corresponding to its own input and the input share of Pi held by Pj . The
garbler Pj would send the encoded input for its own garbled circuit (i.e. the one for which Pj
sampled randomness) as well as for the garbled circuit of its co-garbler (if the verification passes).
The invariant maintained is that Pi either obtains the function output or identifies a corrupt party,
at the end of Πi. In the former case, Pi sends the output over private channels to the other two
parties. In the latter case, an honest Pi sends its input and the shares received in Round 1 of Πj

(j 6= i) on clear to the other honest party (can be determined by Pi as the single corrupt party
has been identified). This would enable correct output computation by honest parties. Apart from
the above communication, some additional messages are sent privately in Round 2 to enforce input
consistency in the sub-protocols. This completes the sketch of the construction of [PR18] that uses
broadcast only in Round 1; thereby demonstrating tightness of our negative result in Section 4.2.

5 With PKI and No Broadcast

In this section, we consider the setting where the parties only have access to pairwise-private
channels. In terms of setup, we assume that all parties have access to a pubic-key infrastructure
(PKI) and a common reference string (CRS). We first present a lower bound of four rounds for
solitary MPC with god. Then we present a five-round construction that works for any n and
t < n/2. Next, we elaborate on a non-constant round protocol (i.e (t + 2) rounds) that can be
derived from the protocol of [GLS15]. While the former upper bound significantly improves over
the latter for most values of (n, t), the latter achieves better round complexity for special cases of
t ≤ 2.

5.1 Necessity of Four Rounds

In this section, we assume a network setting where the parties have access to pairwise-private
channels and PKI. We show that when 3 dn/7e ≤ t < n/2, four rounds are necessary for n-party
solitary MPC with god against t corruptions. This holds irrespective of whether Q has input or
not and even if the adversary is non-rushing. However, the argument crucially relies on the fact
that t ≥ 3 (details appear at the end of this section) which leads us to conjecture that there is a
potential separation between the cases of t ≤ 2 and t ≥ 3 for solitary MPC. We investigate the
special cases of t ≤ 2 in Section 6 and Section 7. The impossibility for the general case is formally
stated below.

Theorem 5.1. Assume parties have access to CRS, PKI and pairwise-private channels. Let n, t be
positive integers such that n ≥ 7 and 3 dn/7e ≤ t < n/2. Then, there exists an solitary functionality
f such that no three-round n-party MPC protocol tolerating t corruptions can compute f with god,
even if the adversary is assumed to be non-rushing.

Proof. For simplicity, we consider the setting of n = 7 and t = 3 (extension to any 3 dn/7e ≤ t < n/2
appears later). Suppose for the sake of contradiction that there exists a three-round solitary MPC
protocol with god, say Π. Let Π compute the solitary function f(x1, , . . . , x7) among {P1, . . . , P7}
where Q = P7 denotes the output receiving party. We clarify that our lower bound argument
holds irrespective of whether f involves an input from Q. For simplicity, define f(x1, x2 = ⊥, x3 =

32

(x03, x
1
3), x4 = (x04, x

1
4), x5 = ⊥, x6 = (x06, x

1
6), x7 = ⊥) as

f(x1, . . . , x7) =

{
(x03, x

0
4, x

0
6) if x1 = 0

(x13, x
1
4, x

1
6) if x1 = 1

where x1 ∈ {0, 1} and x3, x4, x6 ∈ {0, 1}2. In the definition, x2 = x5 = x7 = ⊥ indicates that P2,
P5, P7 do not have any inputs.

Without loss of generality, we assume for simplicity that Π has the following structure: (a)
Round 3 involves only messages sent to Q (as Q is the only party supposed to receive output at the
end of Round 3). (b) Round 2 does not involve messages from Pi (i ∈ [6]) to Q (such a message is
meaningful only if Q communicates to Pi in Round 3, which is not the case as per (a)).

We consider an execution of Π with inputs (x1, . . . , x7) where xi denotes the input of Pi and
analyze four different scenarios. Before describing the scenarios, we define some useful notation.
In Rounds 1 and 2, let pcri→j where r ∈ [2], {i, j} ∈ [7] denote the pairwise-private communication

from Pi to Pj in Round r, as per an execution where everyone behaves honestly. Next, we use p̃c2i→j
to denote the messages that Pi (i ∈ [7]) is supposed to send in Round 2 to Pj (j ∈ [6] \ i) incase
Pi did not receive Round 1 message from P1. Note that this communication could be potentially
different from what Pi would send in an honest execution. Lastly, since Round 3 messages to Q
could potentially be different for each of the four scenarios, we index them additionally with `
indicating the scenario i.e pc3,`j→7 denotes Pj ’s Round 3 message to Q in Scenario ` (j ∈ [6], ` ∈ [4]).
These messages may be a function of the common reference string (denoted by crs) and the PKI
setup. Let αi denote the output of the PKI setup to party Pi. A party’s view comprises of crs, αi,
its input, randomness and incoming messages.

Due to the involved nature of the scenarios, we begin with an intuitive description. Broadly
speaking, this argument involves partitioning the parties {P1, . . . , P6} into two sets {P1, P2, P6}
and {P3, P4, P5}. Looking ahead, the final scenario (corresponding to the final contradiction) is
designed in a manner that allows a corrupt Q to obtain: (i) output with respect to some input of P1

using the communication from {P1, P2, P6} and (ii) output with respect to a different input of P1

using the communication from {P3, P4, P5}. Tracing back, we carefully design the other scenarios
which let us make the following crucial inferences - Scenario 1 and 2 let us conclude that if P1

behaves honestly only in its messages to P6, then the communication from {P3, P4, P5} to Q in
such a case must enable Q to obtain output with respect to some x∗1, which is independent of
x1, with non-negligible probability. On the other hand, Scenario 3 involves corrupt {P3, P4, P5}
who pretend to have received no message from P1; which lets us conclude that the messages from
{P1, P2, P6} in such a case must enable Q to obtain output with respect to honest input x1 of P1.
Combining the above two inferences in the final scenario lets us reach the final contradiction.

Following is a description of the scenarios. In each of these scenarios, we assume that the
adversary uses the honest input on behalf of the corrupt parties and its malicious behaviour is
limited to dropping some of the messages that were received or supposed to be sent by the actively
corrupt parties. The views of the parties across various scenarios are described in Tables 11 – 14.

Scenario 1: Adversary corrupts {P1, P6}. P1 does not communicate throughout the protocol. P6 behaves

honestly in Round 1 and Round 2 (thereby would send p̃c26→j for j ∈ [5]) and aborts (does
not communicate) in Round 3.

33

Scenario 2: Adversary corrupts {P1, P6}. P1 does not communicate throughout the protocol. P6 behaves
honestly in Round 1 and Round 2, except that P6 pretends to have received Round 1 message
from P1 (thereby would send pc26→j for j ∈ [5]). Note that it is possible for P6 to pretend in
such a manner as adversary corrupts both P1, P6. Lastly, P6 aborts in Round 3.

Scenario 3: Adversary corrupts {P3, P4, P5}. All corrupt parties behave honestly in Round 1. In Round
2, {P3, P4, P5} only communicate towards P6, towards whom they pretend that they did

not receive Round 1 message from P1 (i.e Pi sends p̃c2i→6 to P6 for i ∈ {3, 4, 5}). Lastly,
{P3, P4, P5} abort in Round 3.

Scenario 4: Adversary corrupts {P1, P2, Q} who do the following:7

Round 1: P1 behaves honestly only to {P2, P6, Q} (only P6 among the honest parties). P2 and Q
behave honestly.

Round 2: P1 behaves honestly only to {P2, P6, Q}. P2 and Q pretend towards {P3, P4, P5} as if

they did not receive Round 1 message from P1 (i.e send p̃c2i→j to Pj for i ∈ {2, 7},
j ∈ {3, 4, 5}). Towards {P1, P2, P6} (only P6 among honest parties), P2 and Q act as
if Round 1 message had been received from P1 (i.e send pc2i→j to Pj for i ∈ {2, 7},
j ∈ {1, 2, 6} \ i).

Round 3: P1 and P2 drop the Round 2 messages obtained from {P3, P4, P5} (to emulate Scenario
3) and communicate to Q accordingly.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{1,2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{1,6} {pc1j→7}j∈[7]\{1,7}

Round 2 {p̃c2j→1}j∈[7]\{1} {p̃c2j→2}j∈[7]\{1,2} {p̃c2j→3}j∈[7]\{1,3} {p̃c2j→4}j∈[7]\{1,4} {p̃c2j→5}j∈[7]\{1,5} {p̃c2j→6}j∈[7]\{1,6} –

Round 3 – – – – – – {pc3,1j→7}j∈{2,3,4,5}

Table 11: Views of {P1 . . . P7} in Scenario 1.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{1,2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{1,6} {pc1j→7}j∈[7]\{1,7}

Round 2
{p̃c2j→1}j∈{2,3,4,5,7} {p̃c2j→2}j∈{3,4,5,7} {p̃c2j→3}j∈{2,4,5,7} {p̃c2j→4}j∈{2,3,5,7} {p̃c2j→5}j∈{2,3,4,7} {p̃c2j→6}j∈{2,3,4,5,7} –

pc26→1 pc26→2 pc26→3 pc26→4 pc26→5

Round 3 – – – – – – {pc3,2j→7}j∈{2,3,4,5}

Table 12: Views of {P1 . . . P7} in Scenario 2.

7Generally, communication between corrupt parties need not be specified but we include it here for easier under-
standing of Table 14.

34

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{2} {pc1j→3}j∈[7]\{3} {pc1j→4}j∈[7]\{4} {pc1j→5}j∈[7]\{5} {pc1j→6}j∈[7]\{6} {pc1j→7}j∈[7]\{7}

Round 2
{pc2j→1}j∈{2,6,7} {pc2j→2}j∈{1,6,7} {pc2j→3}j∈{1,2,6,7} {pc2j→4}j∈{1,2,6.7} {pc2j→5}j∈{1,2,6.7} {pc2j→6}j∈{1,2,7} –

{̃pc2j→6}j∈{3,4,5}

Round 3 – – – – – – {pc3,3j→7}j∈{1,2,6}

Table 13: Views of {P1 . . . P7} in Scenario 3.

View1 View2 View3 View4 View5 View6 View7

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5) (x6, r6, crs, α6) (x7, r7, crs, α7)

Round 1 {pc1j→1}j∈[7]\{1} {pc1j→2}j∈[7]\{2} {pc1j→3}j∈[7]\{1,3} {pc1j→4}j∈[7]\{1,4} {pc1j→5}j∈[7]\{1,5} {pc1j→6}j∈[7]\{6} {pc1j→7}j∈[7]\{7}

Round 2
{p̃c2j→1}j∈{3,4,5} {p̃c2j→2}j∈{3,4,5} {p̃c2j→3}j∈{2,4,5,7} {p̃c2j→4}j∈{2,3,5,7} {p̃c2j→5}{2,3,4,7} {p̃c2j→6}j∈{3,4,5} –

{pc2j→1}j∈{2,6,7} {pc2j→2}j∈{1,6,7} pc26→3 pc26→4 pc26→5 {pc2j→6}j∈{1,2,7}

Round 3 – – – – – – {pc3,4j→7 ≡ pc3,3j→7}j∈{1,2,6}
{pc3,4j→7 ≡ pc3,2j→6}j∈{3,4,5}

Table 14: Views of {P1 . . . P7} in Scenario 4.

The proof outline is as follows. First, we show that Π must be such that if Scenario 1 occurs,
then the output obtained by Q is computed on some input x∗1 that is independent of x1 with non-
negligible probability. Next, we show this is also the case for Scenario 2. Since this inference may
appear counter-intuitive, we elaborate the argument in some detail below. Note that the difference
between Scenario 1 and 2 lies in the communication from P6 to honest parties {P2, P3, P4, P5} in
Round 2. While in the former, P6 acts as if he did not receive Round 1 message from P1; in the
latter he pretends as if he did receive Round 1 message from P1. To prove that Q obtains an output
on x∗1 that is independent of x1 with non-negligible probability, we define a sequence of hybrids
hyb0, . . . , hyb4. Specifically, hyb0 and hyb4 refer to Scenario 1 and 2 respectively and hybi is same
as hybi−1 (i ∈ {1, . . . , 4}) except that P6 acts towards Pi+1 that he did receive Round 1 message
from P1. We show that in each hybrid, the output obtained by Q is w.r.t. x∗1 with non-negligible
probability. Next, if Scenario 3 occurs, then the output obtained by Q must be computed on x1
(honest input of P1) due to correctness of Π. Lastly, we show that such a protocol Π is susceptible
to an attack by {P1, P2, Q} which allows Q to obtain both the above evaluations of f (i.e., on both
x1 and x∗1 of P1), which is a contradiction to security of Π. We now prove a sequence of lemmas to
complete our proof.

Lemma 5.2. Π must be such that if Scenario 1 occurs, then there exists x∗1 ∈ {0, 1} such that Q
obtains an output computed on x∗1 and the honest parties’ inputs with non-negligible probability.

Proof. It follows from the god and correctness properties of Π that an honest Q must receive
an output that is computed on the honest parties’ inputs with overwhelming probability. Next,
the output obtained by Q should be computed on some x′1 that is independent of x1, as the
communication throughout the protocol is independent of x1. Since there are only two possible
values for x′1, there must exist x∗1 ∈ {0, 1} such that the output is computed on x∗1 with non-
negligible probability.

35

Lemma 5.3. Π must be such that if Scenario 2 occurs, then there exists x∗1 ∈ {0, 1} such that Q
obtains an output computed on x∗1 and the honest parties’ inputs with non-negligible probability.

Proof. First, it follows from the god and correctness properties that Q must receive an output
that is computed on the honest parties’ inputs with overwhelming probability. Next, we note
that the difference between Scenario 1 and 2 lies in the communication from P6 to honest parties
{P2, P3, P4, P5} in Round 2. While in the former, P6 acts as if he did not receive Round 1 message

from P1 (sends p̃c26→j for j ∈ {2, 3, 4, 5}); in the latter he pretends as if he did receive Round 1

message from P1 (sends pc26→j for j ∈ {2, 3, 4, 5}). We prove the statement is true via the following
sequence of hybrids:

hyb0: Same as Scenario 1.

Recall that the statement is true in Scenario 1 (hyb0) by Lemma 5.2. In particular, there
exists x∗1 ∈ {0, 1} such that Q obtains an output computed on x∗1 and the honest parties’
inputs with non-negligible probability. We consider this special x∗1 in the subsequent hybrids.

hyb0,1: Same as hyb0 except that P2 is also corrupted by the adversary, who follows the protocol in
the first two rounds and aborts in Round 3.

Assume for contradiction that the statement is false in this hybrid. That is, Q obtains an
output computed on x∗1 with negligible probability. Since x1 only has two values {0, 1} and an
honest Q must receive an output by the god property, the output learned by Q must be com-
puted on ¬x∗1 with overwhelming probability. We focus on the party P3 who is honest in both
hyb0 and hyb0,1. Then Q obtains an output computed on (x∗1, x3) with non-negligible proba-
bility in hyb0, and obtains an output computed on (¬x∗1, x3) with overwhelming probability
in hyb0,1.

Now consider another scenario where the adversary corrupts {P1, P6, Q}, who behave in the
same way as in hyb0. In this scenario, Q can learn the output in hyb0 as well as in hyb0,1 (by
dropping P2’s Round 3 message). In other words, Q can learn the output computed on both
(x∗1, x3) and (¬x∗1, x3) with non-negligible probability, namely both x03 and x13, contradicting
the security of Π.

hyb0,2: Same as hyb0,1 but P6 sends pc26→2 to P2 (as opposed to p̃c26→2).

The only difference between hyb0,1 and hyb0,2 is the Round 2 message sent from P6 to P2.
Note that both parties are corrupted and the communication between them is mentioned only
for clarity. Since P2 aborts in Round 3, Q’s view in this hybrid is identical to hyb0,1, hence
the statement remains true.

hyb1: Same as hyb0 except that P6 sends pc26→2 to P2 (as opposed to p̃c26→2).

Notice that the only difference between hyb0,2 and hyb1 is whether P2 aborts in Round 3 or
not. We can argue the statement remains true in this hybrid similarly as in the argument for
hyb0,1.

hyb2: Same as hyb1, except that P6 sends pc26→3 to P3 (as opposed to p̃c26→3).

We can argue the statement remains true in the same way as from hyb0 to hyb1 via a sequence
of hybrids. The only difference is that we need to consider P4 as the common honest party
(instead of P3).

36

hyb3: Same as hyb2 except that P6 sends pc26→4 to P4 (as opposed to p̃c26→4).

We can argue the statement remains true in the same way as from hyb0 to hyb1 via a sequence
of hybrids (where we consider P3 as the common honest party).

hyb4: Same as hyb3 except that P6 sends pc26→5 to P5 (as opposed to p̃c26→5). Note that this is the
same as Scenario 2.

We can argue the statement remains true in the same way as from hyb0 to hyb1 via a sequence
of hybrids (where we consider P3 as the common honest party). This concludes the proof.

Lemma 5.4. Π must be such that if Scenario 3 occurs, then the output obtained by Q must be
computed on the honest parties’ inputs (x1, x2, x6, x7) with overwhelming probability.

Proof. This follows directly from the god and correctness properties of Π.

Claim 5.5. Π is such that the view of {P3, P4, P5} in Scenario 4 is identically distributed to their
respective views in Scenario 2.

Proof. Consider the view of Pi (i ∈ {3, 4, 5}). In both Scenario 2 and Scenario 4, Pi does not

receive communication from P1 in Round 1 and Round 2, receives pc26→i from P6 and p̃c2j→i from
j ∈ [7] \ {1, 6, i} (refer to Tables 12, 14). Thereby, the claim follows.

Claim 5.6. Π is such that the view of {P1, P2, P6} in Scenario 4 is identically distributed (or
subsumes) their respective views in Scenario 3.

Proof. Consider the view of P6. In both Scenario 3 and Scenario 4, honest P6 receives communi-

cation from P1 in Round 1 and Round 2, receives pc2j→6 for j ∈ {1, 2, 7} and receives p̃c2j→6 from
j ∈ {3, 4, 5}. Thereby, the claim holds w.r.t P6. Next, suppose the corrupt parties {P1, P2} in
Scenario 4 discard Round 2 messages from {P3, P4, P5}. Consider this updated view of P1 which
would constitute pc2j→1 for j ∈ {2, 6, 7} (in addition to Round 1 messages). It is easy to check that
this is identically distributed to view of honest P1 in Scenario 3. Similar argument can be made
w.r.t P2 (refer Tables 13, 14). Thus, the claim holds.

Now we prove the final contradiction. Consider the special x∗1 in Lemma 5.2. Suppose Scenario
4 occurs for (x1, x3, x4, x6) where x1 = ¬x∗1. We claim that Q must obtain the output computed
w.r.t x1 with overwhelming probability. Let Q locally update his view in Scenario 4 to discard the
Round 3 messages from {P3, P4, P5}. This updated view is identically distributed to the view of an
honest Q in Scenario 3. This holds since the Round 3 messages from {P1, P2, P6} are identically
distributed to those received in Scenario 3 (can be inferred from Claim 5.6). We can thus conclude
that Q can carry out output computation similar to honest Q in Scenario 3 to obtain an output
computed on (¬x∗1, x6) with overwhelming probability (Lemma 5.4).

Next, we claim that Q can obtain the output computed on x∗1 with non-negligible probability
as well. Consider a scenario related to Scenario 2 where P2 additionally aborts in Round 3. It
follows from the proof of hyb0,1 in Lemma 5.3 that Q can learn an output computed on x∗1 and the
honest parties’ inputs with non-negligible probability in this scenario. Next, let Q locally update
his view in Scenario 4 by discarding the Round 3 messages from {P1, P2, P6}. This updated view

37

is identically distributed to the view of an honest Q in the scenario mentioned above (related to
Scenario 2). This holds since Round 3 messages of {P3, P4, P5} are identically distributed to those
received by honest Q in Scenario 2 (can be inferred from Claim 5.5). Therefore, Q can learn an
output computed on (x∗1, x3, x4).

To conclude, Π is such that an adversary corrupting {P1, P2, Q} can obtain an output computed
on (¬x∗1, x6) as well as an output computed on (x∗1, x3, x4) with non-negligible probability, for any
(x3, x4, x6). This contradicts the security of Π as Q cannot learn both outputs as per the definition
of f ; completing the proof of Theorem 5.1 for the setting n = 7, t = 3.

Lastly, we show how how the above proof can be extend for any 3 dn/7e ≤ t < n/2 using party
partitioning technique. Assume towards a contradiction, that there exists a three-round n-party
solitary MPC Π′ that achieves god against t corruptions where 2t < n ≤ 7 bt/3c (equivalent to
3 dn/7e ≤ t < n/2 8) and t ≥ 3. Then, Π′ can be transformed to a three-round 7-party solitary
MPC protocol Π that achieves god against three corruptions as follows: Partition the set of n parties
into 7 disjoint groups, say Si (i ∈ [7]), where S1, . . . , S6 are each of size bt/3c and S7 comprises of
the remaining (n− 6 bt/3c) parties. Let Pi (i ∈ [7]) in Π emulate the steps of parties in Si during
Π′. It is easy to see that security of Π′ implies security of Π (as corruption of upto 3 parties in
Π is analogous to corruption of upto t parties in Π′). However, our proof argument above showed
the impossibility of such a three-round 7-party solitary MPC protocol Π that achieves god against
three corruptions. We have thus arrived at a contradiction, completing the proof of Theorem 5.1.
Note that for certain cases, such as n = 8, this range of values of (n, t) is not meaningful. However,
this generalization is relevant for sufficiently large values of n.

Before concluding the section, we briefly discuss why our proof approach of Theorem 5.1 breaks
down when t = 2 (circumventing the lower bound when t = 1 is already demonstrated by the
upper bounds of Section 6.2). Suppose the scenarios above are extended in a natural manner to
a five party setting {P1, P2, P3, P4, P5 = Q} with two corruptions where the partitions comprise
of {P1, P4} and {P2, P3} (analogous to {P1, P2, P6} and {P3, P4, P5} in the above argument). We
observe that while the inferences corresponding to Scenario 1 and 3 still hold, the proof of Lemma 5.3
breaks down as the argument involving the hybrids does not work in the case of two corruptions.
This is because the scenarios corresponding to the hybrids would already involve corruptions of
{P1, P4} (analogous to {P1, P6} in the general argument) and demand an additional corruption (i.e
the party whose message changed across the hybrids) which is not possible when t = 2. Therefore,
we cannot conclude that when Scenario 2 occurs, the output is computed on some input x∗1, that
is independent of x1, with non-negligible probability.

We believe the above insight may be useful in potentially designing a three-round upper bound
for the case of t = 2 corruptions in future. We leave open the question of designing a three-round
solitary MPC or alternately proving its impossibility for the case of t = 2 corruptions.

5.2 General Five-Round Protocol

In this section, we present a five-round solitary output MPC protocol with guaranteed output
delivery that works for any n in the presence of an honest majority - that is, any t < n/2 where
n is the number of parties and t is the number of corrupt parties. Our protocol uses the following
primitives: a (n2 + 1)-out-of-n decentralized threshold FHE scheme dTFHE = (dTFHE.DistGen,

8Note that n ≤ 7 bt/3c ⇐⇒ n/7 ≤ bt/3c ⇐⇒ dn/7e ≤ t/3 ⇐⇒ 3 dn/7e ≤ t.

38

dTFHE.Enc, dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine), a digital signature scheme (Gen,Sign,
Verify), and a simulation-extractible NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify). We
use the NIZK argument for two NP languages L1, L2 defined in Section 3.3. All of them can be
built assuming LWE [BGG+18,CCH+19,PS19]. Formally, we show the following theorem:

Theorem 5.7. Assuming LWE, protocol Π5−round described below is a five-round secure solitary
output MPC protocol with god with a PKI setup and pairwise-private channels. The protocol works
for any n, any function and is secure against a malicious rushing adversary that can corrupt any
t < n/2 parties.

Overview. Consider n parties P1, . . . , Pn who wish to evaluate function f : ({0, 1}λ)n−1 →
{0, 1}λ. We also denote Pn as the output receiving party Q. In some places, we use the notation
msgi→j to indicate that the message was sent by party Pi to Pj . At a high level, our protocol
works as follows. In Round 1, each party Pi sends to every other party a dTFHE encryption JxiK
along with a NIZK argument πi proving that the encryption is well formed. On top of that, Pi also
attaches its signature σi ← Sign(skeyi, (JxiK , πi)). In Round 2, each party sends all the messages it
received in Round 1 to Q. In Round 3, Q first initializes a string msg = ⊥ and does the following
for each i ∈ [n]: if it received a valid message from Pi in Round 1, (where valid means the signature
σi and the NIZK πi verifies successfully) it includes the message in msg and sets a value cti = JxiK.
Else, in Round 2, if a different party Pi1 , forwards a valid message (JxiKi1→n , πi1→n, σi1→n) received
from Pi in Round 1, include that in msg and set cti to be JxiKi1→n. If no such i1 exists, set cti = ⊥
and append ⊥ to msg. Then, Q sends msg and a signature on it σmsg to all parties. In Round 4,
each party sends the tuple received from Q in Round 3 to every other party. Finally, in Round 5,
each party Pi sends its partial decryption (along with a NIZK) on the homomorphically evaluated
ciphertext JyK = dTFHE.Eval(f, ct1, . . . , ctn) if: (i) in Round 3, Q sent (msg, σmsg) such that σmsg

verifies, (ii) it did not receive a different tuple (msg′, σmsg′) from another party in Round 4 such
that σmsg′ verifies, (iii) In the string msg, every tuple of the form (JxjK , πj , σj) is valid, (iv) for every
party Pk, if Pi received a valid message from Pk in Round 1, then in Q’s Round 3 message msg,
there must exist some valid tuple of the form (Jx′kK , π

′
k, σ
′
k) on behalf of Pk (not necessarily the

one Pi received in Round 1). After Round 5, Q combines all the partial decryptions (if the NIZK
verifies) to recover the output. Our protocol is formally described below. We defer the security
proof to Appendix C.

CRS: Send crs← NIZK.Setup(1λ) to every party.

PKI Setup:

• For each i ∈ [n]: sample (pki, ski)← dTFHE.DistGen(1λ, 1d, i; ri) and (vkeyi, skeyi)← Gen(1λ).

• Public key: pk = pk1‖ . . . ‖pkn and {vkeyi}i∈[n].
• Secret keys: (ski, ri, skeyi) to party Pi for each i ∈ [n].

Inputs: For each i ∈ [n], party Pi has an input xi ∈ {0, 1}λ.

Protocol:

1. Round 1: For each i ∈ [n]:

• Pi computes JxiK← dTFHE.Enc(pk, xi; ρi) using randomness ρi, πi ← NIZK.Prove(crs, sti,witi)
for sti ∈ L1 where sti = (JxiK , pk) and witi = (xi, ρi).

39

• Then, compute σi ← Sign(skeyi, (JxiK , πi)) and send (JxiK , πi, σi) to every party.

2. Round 2: For each i ∈ [n], Pi sends all the messages it received in Round 1 to party Pn(= Q).

3. Round 3: Party Pn(= Q) does the following:

• Define strings msg, ct1, . . . , ctn as ⊥.

• For each i ∈ [n], let {(JxjKi→n , πi→nj , σi→nj)}j∈[n]\{i} denote the message received from Pi

in Round 2 and (JxiKi→n , πi→ni , σi→ni) denote the message received from Pi in Round 1.

• For each j ∈ [n], do the following:

– Let {(JxjK1→n , π1→nj , σ1→nj), . . . , (JxjKn→n , πn→nj , σn→nj)} be the messages received across
both rounds on behalf of party Pj .

– Pick the lowest i1 such that Verify(vkeyj , (JxjK
i1→n , πi1→nj), σi1→nj) = 1 and NIZK.Verify(crs,

πi1→nj , stj) = 1 for stj ∈ L1 where stj = (JxjKi1→n , pk). Set ctj := JxjKi1→n and

msg := msg‖“Party j ”‖(JxjKi1→n , πi1→nj , σi1→nj).

– If no such i1 exists, set msg = msg‖“Party j ”‖⊥.

• Compute σmsg ← Sign(skeyn,msg). Send (msg, σmsg) to all parties.

• Set JyK = dTFHE.Eval(pk, f, ct1, . . . , ctn).9

4. Round 4: For each i ∈ [n − 1], Pi sends the message received from Q in Round 3 to every
party.

5. Round 5: For each i ∈ [n− 1], Pi does the following:

• Let {(msgj→i, σj→imsg)}j∈[n−1]\{i} be the messages received in Round 4 and (msgn→i, σn→imsg)
be the message from Q in Round 3.

• If Verify(vkeyn,msgn→i, σn→imsg) 6= 1 (OR) msgn→i is not of the form (“Party 1 ”‖m1‖ . . . ‖
“Party n ”‖mn), send ⊥ to Q and end the round.

• Output ⊥ to Q and end the round if there exists j 6= n such that:

– msgj→i 6= msgn→i (AND)

– Verify(vkeyn,msgj→i, σj→imsg) = 1 (AND)

– msgj→i is of the form (“Party 1 ”‖m1, . . . , ‖“Party n ”‖mn) This third check is to ensure
that a corrupt Pj doesn’t re-use a valid signature sent by Q in the first round as its
message in Round 4.

• Define strings ct1, . . . , ctn.

• Parse msgn→i as (“Party 1 ”‖m1, . . . , ‖“Party n ”‖mn).

• For each j ∈ [n], do the following:

– If in Round 1, Pi received (JxjK , πj , σj) from Pj such that Verify(vkeyj , (JxjK , πj), σj) =
1 and NIZK.Verify(πj , stj) = 1 for stj ∈ L1 where stj = (JxjK , pk), set bitj = 1. Else,
set bitj = 0.

9 Let S = {i|cti = ⊥}. Here, we actually homomorphically evaluate the residual function fS(·) that only takes as
input {xj}j /∈S and uses the default values for all indices in the set S. For ease of exposition, we skip this notation in
the rest of the protocol and proof.

40

– If mj = ⊥:

∗ If bitj = 1, send ⊥ to Q and end the round.

∗ Else, set ctj = ⊥.

– If mj = (JxjKi1→n , πi1→nj , σi1→nj):

∗ If Verify(vkeyj , (JxjK
i1→n , πi1→nj), σi1→nj) = 1 and NIZK.Verify(crs, πi1→nj , stj) = 1

for stj ∈ L1 where stj = (JxjKi1→n , pk), set ctj = JxjKi1→n.

∗ Else, send ⊥ to Q and end the round.

• Compute JyK← dTFHE.Eval(pk, f, ct1, . . . , ctn).

• Compute Jy : skiK ← dTFHE.PartialDec(ski, JyK) and πdeci ← NIZK.Prove(crs, stdeci ,witdeci)
for stdeci ∈ L2 where stdeci = (Jy : skiK , JyK , pki, i) and witdeci = (ski, ri).

• Send (Jy : skiK , πdeci) to Q.

6. Output Computation: Q does the following:

• Recall the value JyK computed in Round 3.

• For each i ∈ [n], if NIZK.Verify(crs, πdeci , stdeci) 6= 1 for stdeci ∈ L2 where stdeci = (Jy : skiK ,
JyK , pki, i), discard Jy : skiK.

• Output y ← dTFHE.Combine(pk, {Jy : skiK}i∈S) where S contains the set of non-discarded
values from the previous step.

5.3 (t+ 2) Round Protocol

In this section, we elaborate on how a (t + 2)-round protocol for solitary MPC with god, say Π′,
can be derived from the two-round protocol of [GLS15]. Recall that the two-round protocol (say Π)
of [GLS15] (that assumes a PKI setup) achieves god for standard MPC and involves communication
only via broadcast channels in both rounds. We propose the following minor modifications to Π.
First, we employ a (t+ 1)-round protocol over pairwise-private channels that realizes the broadcast
functionality [DS83] to execute Round 1 of Π. Next, the messages communicated via broadcast
in Round 2 of Π are instead communicated privately only to Q (as only Q is supposed to obtain
output) in Round (t+2) of Π′. This completes the high-level description of Π′ whose security follows
directly from security of Π. Lastly, note that this approach achieves better round complexity than
our general five-round construction from Section 5.2 only when t ≤ 2.

6 Special Case: t = 1 with PKI and no Broadcast

In this section, we consider the special case of t = 1 in the setting with a PKI setup and no
broadcast. We assume that parties can communicate only via pairwise-private channels and have
access to CRS and PKI. First, we present a lower bound that shows the necessity of three rounds
to compute a 3-party solitary functionality involving an input from Q, assuming t = 1. This proves
that the general (t+ 2)-round construction of Section 5.3 is optimal when t = 1 and Q has input.
Next, we present a two-round upper bound for the case when Q does not have an input. This
implies the tightness of the two-round lower bound of [HLP11] for the case when Q does not have
input. Our lower bound holds even in the setting of a non-rushing adversary and our upper bounds
hold even in the stronger adversarial setting of a rushing malicious adversary.

41

6.1 Necessity of Three Rounds When Q Has Input

We show that in the absence of a broadcast channel, it is impossible to design a two-round 3-party
solitary MPC protocol tolerating t = 1 corruption that achieves god, even if parties are given access
to CRS and PKI. Our lower bound holds even for non-rushing adversaries. Notably, it can also be
extended to any n ≥ 3 and n/3 ≤ t < n/2.

However, our lower bound argument crucially relies on the property that the function f to
be computed involves an input provided by Q. Infact, this lower bound of three rounds can be
circumvented when t = 1 and f does not involve an input provided by Q, as demonstrated by our
two-round solitary MPC with god in Section 6.2.1 designed for the special case of t = 1.

Theorem 6.1. Assume parties have access to CRS, PKI and pairwise-private channels. Let n and
t be positive integers such that n ≥ 3 and n/3 ≤ t < n/2. Then, there exists a solitary functionality
f (involving input from Q) such that no two-round n-party MPC protocol tolerating t corruptions
can compute f with god even against a non-rushing adversary.

Proof. We focus on the setting of n = 3 and t = 1 (which can be extended to n/3 ≤ t < n/2
using party partitioning, as elaborated in the proof of Theorem 4.1). Suppose for the sake of
contradiction that there exists a two-round solitary MPC with god, say Π which computes a three-
party solitary function f(x1, x2, x3) among {P1, P2, P3} where Q = P3 denotes the output receiving
party providing an input x3. Note that at most one of the three parties can be controlled by the
adversary. Without loss of generality, we assume that Round 2 involves messages only from P1 and
P2 to Q (as Q is the only party supposed to receive output at the end of Round 2).

Let f(x1, x2, x3) where xi ∈ {0, 1} for i ∈ [3] denotes Pi’s input be defined as

f(x1, x2, x3) =

{
x1 if x3 = 0

x2 if x3 = 1
.

The high-level structure of the proof is as follows - first, we claim that Π must be such that
even if a corrupt party (either of P1/P2) drops its Round 2 message (to Q), Q must still be able
to obtain the output. This lets us infer that Π in fact must be such that it allows a potentially
corrupt Q to obtain two distinct evaluations of f based on two distinct inputs of its choice, which
is the final contradiction. We now describe it formally.

We use the following notation: Let pcri→j denote the pairwise-private communication from Pi
to Pj in round r where r ∈ [2], {i, j} ∈ [3]. These messages may be a function of the common
reference string (denoted by crs) and the PKI setup. Let αi denote the output of the PKI setup to
party Pi. A party’s view comprises of crs, αi, its input, randomness and incoming messages.

Lemma 6.2. Π must be such that an honest Q is able to compute the output with respect to its
input (say x3) with overwhelming probability, even if one among P1 and P2 aborts in Round 2.

Proof. The proof is straightforward - Suppose adversary corrupts one among P1 and P2, say P1

who aborts in Round 2 (i.e. does not send pc21→3). From the security of Π (guaranteed output
delivery), it follows that an honest Q must still be able to obtain the correct output (even without
pc21→3) with respect to its input (say x3) with overwhelming probability.

Lemma 6.3. Π is such that it is possible for a potentially corrupt Q to obtain evaluations of f on
x′3 as well as x̃3 with overwhelming probability, for any choice of x′3 and x̃3.

42

Proof. Consider a scenario where the adversary corrupts Q actively who does the following - in
Round 1, Q behaves as per the protocol but using inputs x′3 and x̃3 to send messages to P2 and
P1 respectively. Note that this communication is over private channels in accordance with our
network model. In Round 2, Q does not send any messages as per our assumption regarding the
protocol design. We first claim that Q can obtain the output of f computed on x′3 as follows - Q
discards the Round 2 message from P1 (i.e pc21→3). It is easy to see that this updated view of Q
(after discarding the Round 2 private message from P1) is identically distributed to the scenario
of Lemma 6.2 where an honest Q used input x3 = x′3 and P1 aborted in Round 2. It thus follows
from Lemma 6.2 that this view should enable Q to compute the output with respect to x′3 with
overwhelming probability. Specifically, if x′3 = 1, this would allow the adversary to learn x2 (i.e.
the honest P2’s input). Similarly, we can argue that by discarding the Round 2 private message
from P2, Q is also able to learn the output with respect to x̃3 with overwhelming probability. This
is because his updated view (after discarding the Round 2 private message from P1) is identically
distributed to the scenario of Lemma 6.2 where an honest Q used input x3 = x̃3 and P2 aborted
in Round 2. Specifically, if x̃3 = 0, this would allow the adversary to learn x1 (i.e. the honest P1’s
input). This completes the proof of the lemma that the adversary obtains multiple evaluations of
f .

We can thus conclude from Lemma 6.3 that protocol Π is such that a corrupt Q can obtain
two distinct evaluations of the function with respect to two choices of inputs x′3 and x̃3 (where
x′3 6= x̃3), while the inputs of honest parties remain fixed. As elaborated above, if the adversary
chooses x′3 = 1 and x̃3 = 0, then he learns both x2 and x1 with overwhelming probability which
breaches security of Π. We have thus arrived at a contradiction to our assumption of Π being
secure; thereby completing the proof of Theorem 6.1.

Circumvention of the lower bound. First, we note that for scenarios where Q has input, the
argument of multiple evaluations of f , holds only if at least one other party (different from Q) also
has input (which constitutes the non-trivial case, else Q could compute the output locally using
just its input). Next, we point out that Lemma 6.3 is meaningful only when Q has input, thereby
our lower bound argument holds only in such a case. This is demonstrated by our 2-round upper
bound in Section 6.2.1 when Q does not have an input (for the special case of t = 1).

6.2 Protocols

For single corruption t = 1, we present a two-round protocol when Q does not have input in
Section 6.2.1 and a three-round protocol when Q has input in Section 6.2.2.

6.2.1 Two-Round Protocol When Q Has No Input

In this section, we present a two-round protocol for the setting where the receiving party Q does not
have input and there is at most one corrupted party. Our protocol will utilize the following prim-
itives: a 2-out-of-n decentralized threshold FHE scheme dTFHE = (dTFHE.DistGen, dTFHE.Enc,
dTFHE.PartialDec, dTFHE.Eval, dTFHE.Combine), a digital signature scheme (Gen,Sign,Verify), and
a simulation-extractible NIZK argument (NIZK.Setup,NIZK.Prove,NIZK.Verify). We use the NIZK
argument for two NP languages L1, L2 defined in Section 3.3.2. All of them can be built assuming
LWE [BGG+18,CCH+19,PS19]. Formally, we show the following:

43

Theorem 6.4. Assuming LWE, the two-round protocol described below achieves solitary output
MPC with god with a PKI setup and pairwise-private channels. The protocol works for any n, any
function where the receiving party Q does not have input and is secure against a malicious rushing
adversary that can corrupt any one party.

We consider n parties P1, . . . , Pn who wish to evaluate function f : ({0, 1}λ)n−1 → {0, 1}λ. We
also denote Pn as the output receiving party Q. At a high level, our protocol works as follows. In
Round 1, each party Pi sends to every other party a dTFHE encryption JxiK along with a NIZK
argument proving that the encryption is well formed. On top of that, Pi also attaches its signature
on the message. In Round 2, if party Pi detects dishonest behavior of another party in Round
1 (e.g., party Pj didn’t communicate to Pi, or the message received from Pj does not contain a
valid NIZK or signature), then it must be the case that Q is honest, so Pi sends xi directly to Q.
Here, we crucially rely on the fact that t = 1. Otherwise, Pi must have a valid set of ciphertexts
Jx1K , . . . , Jxn−1K. Pi can homomorphically compute the function f on the ciphertexts to obtain
an encryption of the output JyK and a partial decryption Jy : skiK. Pi sends all the ciphertexts
and Jy : skiK (with NIZKs and signatures) to Q. Finally, Q either receives at least one set of valid
ciphertexts along with a valid partial decryption, or receives at least n− 2 inputs. In the first case,
Q can compute a partial decryption of Jy : sknK by itself and combine the two partial decryptions
to recover y. In the second case, Q can compute the output directly. Our protocol is formally
described below. We defer the proof of security to Appendix D.

CRS: Let crs← NIZK.Setup(1λ) be the common reference string.

PKI Setup:

• For each i ∈ [n], generate (pki, ski)← dTFHE.DistGen(1λ, 1d, i; ri), (vkeyi, skeyi)← Gen(1λ).

• Public keys: pk = (pk1‖ . . . ‖pkn) and {vkeyi}i∈[n].
• Secret keys: (ski, ri, skeyi) for party Pi.

Inputs: For each i ∈ [n− 1], party Pi has an input xi ∈ {0, 1}λ.

Protocol:

• Round 1: For each i ∈ [n− 1], party Pi does the following:

1. Compute JxiK← dTFHE.Enc(pk, xi; ρi).

2. Compute πi ← NIZK.Prove(crs, sti,witi) for sti ∈ L1 where sti = (JxiK , pk) and witi =
(xi, ρi).

3. Compute σi ← Sign(skeyi, (JxiK , πi)).
4. Send (JxiK , πi, σi) to every party Pj where j ∈ [n− 1] \ {i}.

• Round 2: For each i ∈ [n− 1], party Pi does the following:

1. For each j ∈ [n− 1] \ {i}, verify the following:

– Pi received (JxjK , πj , σj) from party Pj in Round 1.

– NIZK.Verify(crs, πj , stj) = 1.

– Verify(vkeyj , (JxjK , πj), σj) = 1.

2. If any of the above isn’t true, then send xi to Q. Otherwise,

(a) Compute JyK← dTFHE.Eval(pk, f, Jx1K , . . . , Jxn−1K).

44

(b) Compute Jy : skiK← dTFHE.PartialDec(ski, JyK).
(c) Compute πdeci ← NIZK.Prove(crs, stdeci ,witdeci) for stdeci ∈ L2 where stdeci = (Jy : skiK ,

JyK , pki, i) and witdeci = (ski, ri).

(d) Send
(
{(JxjK , πj , σj)}j∈[n−1], JyK , Jy : skiK , πdeci

)
to Q.

• Output Computation: Q does the following:

1. For each i ∈ [n− 1], verify the following:

– Q received
(
{(JxjK , πj , σj)}j∈[n−1], JyK , Jy : skiK , πdeci

)
from party Pi in Round 2.

– NIZK.Verify(crs, πj , stj) = 1 and Verify(vkeyj , (JxjK , πj), σj) = 1 for all j ∈ [n− 1].

– JyK = dTFHE.Eval(pk, f, Jx1K , . . . , Jxn−1K).
– NIZK.Verify(crs, πdeci , stdeci) = 1.

2. If the above is true for any i ∈ [n− 1] (if it holds for multiple parties, pick the smallest i),
then

(a) Let
(
{(JxjK , πj , σj)}j∈[n−1], JyK , Jy : skiK , πdeci

)
be the message Q received from Pi in

Round 2.

(b) Compute Jy : sknK← dTFHE.PartialDec(skn, JyK).
(c) Compute y ← dTFHE.Combine(pk, {Jy : skiK , Jy : sknK}) and output y.

3. Otherwise, Q must have received xi from Pi for at least n− 2 parties.

– If Q received xi from Pi for all i ∈ [n− 1], then output f(x1, . . . , xn−1).

– Otherwise, Q did not receive the input from Pj , then output f(x1, . . . , xj−1, x̂j , xj+1,
. . . , xn−1), where x̂j is the default input for Pj .

6.2.2 Three-Round Protocol When Q Has Input

We note that for this special case of t = 1 when Q has input, the general (t+2)-round construction
of Section 5.3 yields a three-round protocol with god.

7 Special Case: t = 2 with PKI and no Broadcast

In this section, we consider the special case of t = 2 in the setting with a PKI setup and no broadcast.
Once again, we assume that parties can communicate only via pairwise-private channels and have
access to CRS and PKI. Our lower bound holds even in the setting of a non-rushing adversary and
our upper bounds hold even in the stronger adversarial setting of a rushing malicious adversary.

7.1 Necessity of Three Rounds

In this section, we show that three rounds are necessary for 5-party solitary MPC with god against
t = 2 corruptions, even when Q has no input. This is in contrast to the case of t = 1 for which two
rounds are sufficient when Q has no input (Section 6.2.1). Interestingly, this lower bound of three
rounds can be extended to any n ≥ 5 and 2 dn/5e ≤ t < n/2. We state the formal theorem below.

Theorem 7.1. Assume parties have access to CRS, PKI and pairwise-private channels. Let n
and t be positive integers such that n ≥ 5 and 2 dn/5e ≤ t < n/2. Then, there exists a solitary
functionality f such that no two-round n-party MPC protocol tolerating t corruptions can compute
f with god, even against a non-rushing adversary.

45

Proof. We focus on the setting n = 5, t = 2 (which can be extended to 2 dn/5e ≤ t < n/2 using
party partitioning, as elaborated in the proof of Theorem 4.7). Suppose for the sake of contradiction
that there exists a two-round five-party solitary MPC with god, say Π which is secure against t = 2
corruptions. Let Π compute the solitary function f(x1, x2, x3, x4, x5) among {P1, P2, P3, P4, P5}
where Q = P5 denotes the output receiving party. We clarify that our argument holds irrespective
of whether f involves an input from Q. For simplicity, let f(x1, x2 = (x02, x

1
2), x3 = ⊥, x4 =

(x04, x
1
4), x5 = ⊥) be defined as

f(x1, . . . , x5) =

{
(x02, x

0
4) if x1 = 0

(x12, x
1
4) if x1 = 1

where x1 ∈ {0, 1} and x2, x4 ∈ {0, 1}2.
We consider an execution of Π with inputs (x1, x2, x3, x4, x5) and analyze three different sce-

narios. Similar to Section 6.1, we assume that Round 2 involves only messages sent to Q (as Q is
the only party supposed to receive output at the end of Round 2).

In each of these scenarios, we assume that the adversary uses the honest input on behalf of the
corrupt parties and its malicious behaviour is limited to dropping some of the messages supposed
to be sent by the corrupt parties. Following is a description of the scenarios:

Scenario 1: Adversary corrupts {P2, P3} who behave honestly in Round 1 and simply abort (do not
communicate) in Round 2.

Scenario 2: Adversary corrupts {P1, P4}. P1 does not communicate throughout the protocol. P4 behaves
honestly in Round 1 and aborts in Round 2.

Scenario 3: Adversary corrupts {P1, Q}. P1 communicates as per protocol steps only to P4, Q in Round
1 (drops its private messages to P2, P3). In Round 2, P1 behaves honestly i.e. communicates
privately towards Q as per protocol steps.10 Q behaves honestly throughout.

At a high-level, we first show that Π must be such that if Scenario 1 occurs, it must result in
Q obtaining the correct output with respect to the input of honest P1 i.e. x1 with overwhelming
probability. Next, we show that if Scenario 2 occurs, the output obtained by Q must be with
respect to some x∗1, that is independent of x1, with non-negligible probability. Building on these
properties of Π, we show that Π is such that an adversary corrupting {P1, Q} can in fact get
multiple evaluations of f , which is the final contradiction.

We present the views of the parties corresponding to each of these scenarios in Tables 15-16.
Let pcri→j denote the pairwise communication from Pi to Pj in Round r where r ∈ [2], {i, j} ∈ [5].
These messages may be a function of the common reference string (denoted by crs) and the PKI
setup. Let αi denote the output of the PKI setup to party Pi. Viewi denotes the view of party
Pi which comprises of crs, αi, its input, randomness and incoming messages. The messages that
P2, P3 are supposed to send in Round 2 to Q, when they did not receive any communication from
P1 in Round 1 (which could potentially be different from their communication in an all honest

execution), are marked with ∼ (such as p̃c22→5).

10In general, private communication between corrupt parties need not be specified. We mention this communication
between corrupt parties only for clarity.

46

Scenario 1 Scenario 2

View1 View2 View3 View4 View5 View1 View2 View3 View4 View5

Initial Input
(x1, r1, (x2, r2, (x3, r3 (x4, r4, (x5, r5, (x1, r1, (x1, r2, (x3, r3, (x4, r4, (x5, r5,
crs, α1) crs, α2) crs, α3) crs, α4) crs, α5) crs, α1) crs, α2) crs, α3) crs, α4) crs, α5)

Round 1

pc12→1, pc11→2, pc11→3, pc11→4, pc11→5, pc12→1, –, –, –, –,
pc13→1, pc13→2, pc12→3, pc12→4, pc12→5, pc13→1, pc13→2, pc12→3, pc12→4, pc12→5,
pc14→1, pc14→2, pc14→3, pc13→4, pc13→5, pc14→1, pc14→2, pc14→3, pc13→4, pc13→5,
pc15→1 pc15→2 pc15→3 pc15→4 pc4→5 pc15→1 pc15→2 pc15→3 pc15→4 pc4→5

Round 2
– – – – pc21→5, – – – – p̃c22→5,

– – – – pc24→5 – – – – p̃c23→5

Table 15: Views of P1, P2, P3, P4, Q in Scenario 1 & 2.

Scenario 3

View1 View2 View3 View4 View5

Initial Input (x1, r1, crs, α1) (x2, r2, crs, α2) (x3, r3, crs, α3) (x4, r4, crs, α4) (x5, r5, crs, α5)

Round 1
pc12→1, pc

1
3→1, –, pc13→2, –, pc12→3, pc11→4, pc

1
2→4, pc11→5, pc

1
2→5,

pc14→1, pc
1
5→1 pc14→2, pc

1
5→2 pc14→3, pc

1
5→3 pc13→4, pc

1
5→4 pc13→5, pc

1
4→5

Round 2
– – – – p̃c22→5, p̃c

2
3→5,

– – – – pc21→5, pc
2
4→5

Table 16: Views of P1, P2, P3, P4, Q in Scenario 3.

We now present a sequence of lemmas:

Lemma 7.2. Π is such that if Scenario 1 occurs, then Q obtains an output computed w.r.t. (x1, x4),
with all but negligible probability.

Proof. It follows from the security (in particular, correctness and god) of Π that Q obtains an
output that is computed on the honest parties’ inputs with all but negligible probability.

Lemma 7.3. Π is such that if Scenario 2 occurs, then there exists x∗1 ∈ {0, 1} such that Q obtains
an output computed w.r.t. x∗1 and x2 with non-negligible probability.

Proof. First, it follows from security of Π that Q must obtain and output computed on honest P2’s
input x2, with all but negligible probability. Next, we note that Scenario 2 does not involve any
communication from P1, hence the output obtained by Q should be computed on some x′1 that is
independent of x1. Since there are only two possible values for x′1, there must exist x∗1 ∈ {0, 1}
such that the output is computed on x∗1 with non-negligible probability.

Now we prove the final contradiction. Consider the special x∗1 in Lemma 7.3, which can be
guessed by the adversary by probability at least 1/2. Suppose Scenario 3 occurs for (x1, x2, x4)
where x1 = ¬x∗1. First, we claim that Q can obtain the output of Scenario 1. Suppose Q discards

47

the Round 2 messages from P2 and P3 (i.e discards p̃c22→5 and p̃c23→5 from its view). Then, note
that this updated view of Q is identically distributed to its view in Scenario 1 (refer Tables 15 - 16).
Thus, from Lemma 7.2, Q learns the output based on ¬x∗1 and x4 with non-negligible probability.
Next, we argue similarly that Q can obtain output of Scenario 2 as well. Suppose Q discards the
Round 2 messages from P1 and P4 (i.e discards pc21→5 and pc24→5 from its view). Then, note that
this updated view of Q is identically distributed to its view in Scenario 2 (refer Tables 15 - 16).
From Lemma 7.3, Q learns output computed based on x∗1 and x2.

To conclude, Π is such that an adversary corrupting {P1, Q} can obtain an output computed
on (¬x∗1, x4) as well as an output computed on (x∗1, x2) with non-negligible probability, for any
(x2, x4). In particular, if x∗1 = 0, then the adversary can learn both x14 and x02 with non-negligible
probability, which is not allowed as per the definition of f ; similarly, if x∗1 = 1, then the adversary
can learn both x04 and x12 with non-negligible probability, which is also not allowed by f . This
contradicts the security of Π; completing the proof of Theorem 7.1.

Circumvention of the Lower Bound. We point that the above lower bound can be circum-
vented if f involves only a single input. This is because multiple evaluations of f with respect to
two different inputs of P1 (or any party other than Q) leaks more information than Q is supposed
to know only if the function involves at least two inputs (among parties excluding Q). In fact, if
this is not the case i.e. only one party among the set of parties excluding Q has an input (say
Pi), then a two-round protocol with god can be derived using a two-party non-interactive secure
computation protocol (between Pi and Q) as elaborated at the end of Section 4.1.

7.2 Four-Round Protocol

We note that for this special case of t = 2, the general (t + 2)-round construction of Section 5.3
yields a four-round protocol with god.

References

[ABMO15] Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete char-
acterization of fairness in secure two-party computation of boolean functions. In TCC,
2015.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-
optimal secure multiparty computation with honest majority. CRYPTO, 2018.

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. CRYPTO, 2017.

[ACOS20] Bar Alon, Ran Cohen, Eran Omri, and Tom Suad. On the power of an honest majority
in three-party computation without broadcast. In TCC, 2020.

[ADD+19] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Syn-

chronous byzantine agreement with expected O(1) rounds, expected o(n2) communi-
cation, and optimal resilience. In Financial Cryptography and Data Security (FC),
2019.

48

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. EUROCRYPT, 2012.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure
computation based on cut-and-choose. EUROCRYPT, 2014.

[BBG+20] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana
Raykova. Secure single-server aggregation with (poly)logarithmic overhead. In CCS,
pages 1253–1269. ACM, 2020.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R.
Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomor-
phic encryption. CRYPTO, 2018.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia.
Two-message witness indistinguishability and secure computation in the plain model
from new assumptions. ASIACRYPT, 2017.

[BGJ+17] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit
Sahai. Round optimal concurrent mpc via strong simulation. In TCC, 2017.

[BGJ+18] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita
Khurana, and Amit Sahai. Promise zero knowledge and its applications to round
optimal MPC. CRYPTO, 2018.

[BHP17] Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure compu-
tation without setup. TCC, 2017.

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure
aggregation for privacy-preserving machine learning. In CCS, 2017.

[BJMS20] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Threshold
multi-key fhe and applications to round-optimal mpc. In ASIACRYPT, 2020.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532.
Springer, Heidelberg, April / May 2018.

[BLPV18] Fabrice Benhamouda, Huijia Lin, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Two-round adaptively secure multiparty computation from stan-
dard assumptions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I,
volume 11239 of LNCS, pages 175–205. Springer, Heidelberg, November 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In STOC, 1990.

49

[CCG+20] Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostro-
vsky. Round optimal secure multiparty computation from minimal assumptions. In
TCC, 2020.

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In STOC, 2019.

[CGZ20] Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal two-round MPC. In
Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106
of LNCS, pages 828–858. Springer, Heidelberg, May 2020.

[CHOR16] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of secure
multiparty computation without broadcast. In Eyal Kushilevitz and Tal Malkin, edi-
tors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 596–616. Springer, Heidelberg,
January 2016.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a
global random oracle. CCS, 2014.

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure
multiparty computation. ASIACRYPT, 2014.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty
(extended abstract). In STOC, 1986.

[CMS89] Benny Chor, Michael Merritt, and David B. Shmoys. Simple constant-time consensus
protocols in realistic failure models. J. ACM, 1989.

[COSV17] Michele Ciampi, Rafail Ostrovsky, Siniscalchi, and Ivan Visconti. Round-optimal secure
two-party computation from trapdoor permutations. In TCC, 2017.

[CPS20] T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Sublinear-round byzantine agreement
under corrupt majority. PKC, 2020.

[DMSY20] Ivan Damg̊ard, Bernardo Magri, Luisa Siniscalchi, and Sophia Yakoubov. Broadcast-
optimal two round MPC with an honest majority. IACR Cryptol. ePrint Arch.,
2020:1254, 2020.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM Journal on Computing, 1983.

[FG03] Matthias Fitzi and Juan A. Garay. Efficient player-optimal protocols for strong and
differential consensus. In Elizabeth Borowsky and Sergio Rajsbaum, editors, 22nd ACM
PODC, pages 211–220. ACM, July 2003.

[FGMO01] Matthias Fitzi, Juan A. Garay, Ueli M. Maurer, and Rafail Ostrovsky. Minimal com-
plete primitives for secure multi-party computation, 2001.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time to assure interactive
consistency. Inf. Process. Lett., 1982.

50

[FM89] Paul Feldman and Silvio Micali. An optimal probabilistic algorithm for synchronous
byzantine agreement. ICALP, 1989.

[FN09] Matthias Fitzi and Jesper Buus Nielsen. On the number of synchronous rounds suffi-
cient for authenticated byzantine agreement. DISC, 2009.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 74–94. Springer, Heidelberg, February 2014.

[GGJ19] Sanjam Garg, Aarushi Goel, and Abhishek Jain. The broadcast message complexity of
secure multiparty computation. ASIACRYPT, 2019.

[GHKL11] S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete fairness
in secure two-party computation. J. ACM, 58(6):24:1–24:37, 2011.

[GIKR01] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity
of verifiable secret sharing and secure multicast. In STOC, 2001.

[GIKR02] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure
multiparty computation. In CRYPTO, 2002.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round com-
plexity of authenticated broadcast with a dishonest majority. In 48th FOCS, pages
658–668. IEEE Computer Society Press, October 2007.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agree-
ment. J. Cryptology, 2005.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In CRYPTO, 2015.

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. EUROCRYPT, 2016.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In STOC, 1987.

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
STOC, 2011.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from
bilinear maps. In Chris Umans, editor, 58th FOCS, pages 588–599. IEEE Computer
Society Press, October 2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg,
April / May 2018.

51

[HHPV18] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venki-
tasubramaniam. Round-optimal secure multi-party computation. CRYPTO, 2018.

[HIK+19] Shai Halevi, Yuval Ishai, Eyal Kushilevitz, Nikolaos Makriyannis, and Tal Rabin. On
fully secure MPC with solitary output. In TCC, 2019.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. CRYPTO, 2011.

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure
computation with minimal interaction, revisited. CRYPTO, 2015.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai.
Efficient non-interactive secure computation. EUROCRYPT, 2011.

[IKP10] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with
minimal interaction. CRYPTO, 2010.

[KK09] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzan-
tine agreement. J. Comput. Syst. Sci., 2009.

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In CRYPTO, 2004.

[KOS03] Jonathan Katz, Rafail Ostrovsky, and Adam D. Smith. Round efficiency of multi-party
computation with a dishonest majority. In EUROCRYPT, 2003.

[KY86] Anna Karlin and Andrew Yao. Probabilistic lower bounds for byzantine agreement.
Unpublished document, 1986.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[MR17] Payman Mohassel and Mike Rosulek. Non-interactive secure 2pc in the offline/online
and batch settings. EUROCRYPT, 2017.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. EUROCRYPT, 2016.

[MZ13] Ueli Maurer and Vassilis Zikas. Information-theoretic secure multiparty computation.
Secure Multi-Party Computation, Cryptology and Information Security Series, 2013.

[MZ17] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In IEEE S & P, 2017.

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party
computation. CRYPTO, 2018.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In CRYPTO, 2019.

52

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the
presence of faults. J. ACM, 1980.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In FOCS, 2010.

[WXSD20] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. Expected constant round
byzantine broadcast under dishonest majority. In TCC, 2020.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
FOCS, 1986.

53

A Literature Survey

In this section, we discuss some additional related work relevant to our problem. We categorize
them according to the security guarantee (god, fairness, with abort etc.), setup assumption (plain,
CRS or PKI), type of communication channels used (pairwise-private or broadcast), number of
allowed corruption (honest majority or not).

Round complexity of MPC has been explored copiously in the past in different settings as
demonstrated by a plethora of works, e.g. [BMR90,GIKR02,KOS03,KO04,Wee10,Goy11,AJL+12,
GGHR14, GLS15, GMPP16, MW16, BHP17, ACJ17, COSV17, BGJ+17, GS17, HHPV18, BGJ+18,
GS18, BLPV18, BL18, ACGJ18, BJMS20, CCG+20, CGZ20]). This long line of works culminated
recently with round optimal (two in CRS or PKI, four in the plain model) protocols from minimal
assumptions [GS18,BL18,CCG+20].

Gennaro et al. [GIKR02] showed a necessity of three rounds for fair MPC in the CRS model,
when the number of corruptions is at least 2 (i.e. t ≥ 2). This result holds irrespective of the total
number of parties (n) and assumes parties have access to a broadcast channel (and pairwise-private
channels). Recently, Patra and Ravi [PR18] complement this (necessity of three rounds) for any
t ≥ n/3 (including t = 1). Gordon et al. [GLS15] showed a necessity of three rounds for fairness
in CRS model assuming only broadcast channels (no pairwise-private channels). In the honest
majority setting, the same work proposed a three round (optimal) MPC protocol achieving god in
the CRS model. Assuming PKI setup, their protocol can be collapsed to two rounds matching the
lower bound of [HLP11]. Recently, a couple of works [BJMS20,ACGJ18] improved this state-of-art
by constructing three round protocols in the plain model. It is easy to see that a standard MPC
protocol implies a protocol for solitary MPC (Section 4.4). Therefore, these results directly provide
an upper bound of three rounds in our setting. In this paper we prove that this is in fact tight
(Theorem 4.1). For a small number of parties, round optimal MPC protocols with god appear
in [IKP10, IKKP15,PR18].

The above feasibility results on round-optimal MPC with god assume broadcast channels as
the default mode of communication. However, broadcast channels are expensive [FL82, DS83]
to implement in practice. This motivated works like [CHOR16] to characterize MPC without
broadcast (or PKI). A recent work by Cohen et al. [CGZ20] explored the (im)possibility of two
round (optimal) standard MPC protocols with minimal use of broadcast in the dishonest majority
setting guaranteeing security with (different types of) abort, a weaker guarantee than god. Our
setting is different from theirs as we focus on solitary MPC with god and therefore require honest
majority [HIK+19]. The work of Damg̊ard et al. [DMSY20] studies broadcast optimal two-round
standard MPC in honest majority setting, assuming correlated randomness (such as PKI). This is
in contrast to our work that assumes either broadcast or PKI (but not both) in addition to CRS.

The study of solitary MPC was recently initiated by Halevi et al. [HIK+19]. Standard MPC with
god in the presence of a dishonest majority was already shown to be impossible [Cle86]. Their work
focuses on constructing solitary MPC with god without honest majority. They show that computing
arbitrary solitary functionalities is impossible too and provide positive results for various interesting
classes of solitary functionalities such as private set intersection (PSI). Inspired by their work, we
look into the complementary direction of building generic solitary MPC in the honest majority
setting with a focus on round complexity. Another recent work [ACOS20] studied fully secure
solitary MPC without broadcast (or PKI), in that they necessarily (due to the aforementioned
impossibility) focus on restricted classes of functionality.

Even assuming PKI, achieving standard MPC (with god) requires (t+ 1) rounds [DS83] deter-

54

ministically. We note that a separate line of research [GKKO07,FN09,CPS20,WXSD20] bypasses
the (t+ 1) bound for broadcast by requiring standard MPC protocols to run in expected constant
rounds – however, it is not true that the protocol terminates in constant rounds with non-negligible
probability. In contrast, our focus is on designing protocols that successfully terminate in constant
rounds (with probability one).

B Necessity of Broadcast/PKI

In this section, we sketch a proof that solitary MPC with god cannot be achieved by pairwise-private
channels alone even in the CRS model assuming honest majority. In particular, when n/3 ≤ t < n/2
(where n is the total number of parties and t is the number of corrupted parties), there exist
certain functions with solitary output that cannot be securely computed with god. Therefore, a
broadcast channel or PKI setup is necessary. A similar argument was presented in [FGMO01] for
the functionality of converge-cast, which only works for information theoretic security. A recent
work of Alon et al. [ACOS20] studies which functions can be computed by a 3-party MPC protocol
with god in the plain model with no broadcast channel and no PKI setup, and shows a specific
solitary functionality that cannot be computed. Both arguments also work in our setting even in
the presence of a CRS. For for sake of completeness we present the proof below.

We first consider the special case of n = 3 and t = 1, and then reduce the general case of n ≥ 3
and t ≥ n/3 to this special case.

Lemma B.1. Let n = 3. There exist functions with solitary output that cannot be securely computed
with god given pairwise-private channels even in the CRS model when t = 1.

Proof. Suppose, for the sake of contradiction, that there is a protocol Π that can securely compute
any function with god for three parties P1, P2, Q where Q is the party receiving the output, even if
one of the parties is maliciously corrupted.

P1

P ∗1

P ∗2

P2

Q∗Q

Figure 1: Rearrangement of parties.

Let P ∗1 , P
∗
2 , Q

∗ be identical copies of P1, P2, Q, respec-
tively. We build a network involving all six parties by
arranging them in a circle as shown in Figure 1. Each
party communicates with their adjacent parties following
the protocol Π.

We claim that for every pair of adjacent parties in the
circle, their common view can be thought of as the view of
two honest parties in Π with respect to a malicious adver-
sary that corrupts the remaining party. For example, the
view of (P1, P

∗
2) in the new system is the same as the view

of honest (P1, P2) against a malicious Q where Q’s strat-
egy is to “split” itself into Q and Q∗ and then simulate the
communication between P1 and Q as well as between P ∗2
and Q∗.

For an arbitrary function f , let P1, P2, Q, P
∗
1 , P

∗
2 , Q

∗

hold inputs x1, x2, x3, x
∗
1, x
∗
2, x
∗
3, respectively. If we consider the pair of parties (P1, Q) in the circle,

then their view is the same as the two honest parties against a malicious P2. By the god property
of the protocol Π, Q should output f(x1, x

′
2, x3) computed on P1 and Q’s honest inputs and some

x′2. On the other hand, if we consider the pair of parties (P ∗2 , Q
∗) in the circle, then their view is

55

the same as the two honest parties against a malicious P1. By the god property of Π, Q∗ should
output f(x′1, x

∗
2, x
∗
3) computed on honest inputs of P ∗2 and Q∗ and on some x′1.

Now consider the pair of parties (P1, P
∗
2) in the circle, their view is the same as the two honest

parties (P1, P
∗
2) with inputs (x1, x

∗
2) against a malicious Q. If the adversary splits itself into Q

and Q∗ and then simulates the communication in the circle, then it learns both f(x1, x
′
2, x3) and

f(x′1, x
∗
2, x
∗
3).

Consider a function f(x1, x2, x3) defined as follows:

f(x1, x2, x3) =

{
x1 if x3 = 0
x2 if x3 = 1

where x1, x2, x3 ∈ {0, 1}. A malicious party Q can learn both x1 and x∗2 by setting x3 = 0 and
x∗3 = 1, which violates the security guarantees resulting in a contradiction.

Theorem B.2. Let n ≥ 3. There exist functions with solitary output that cannot be securely
computed with god given pairwise-private channels even in the CRS model if t ≥ n/3.

Proof. Suppose, for the sake of contradiction, that there is a protocol Π that can securely compute
any function with god for n parties where t ≥ n/3 parties are maliciously corrupted.

Then we can let three parties P1, P2, Q each simulate up to dn/3e of the parties in Π, with the
receiving party simulated by Q. Thus, the new protocol among parties P1, P2, Q achieves secure
MPC with god against one corrupted party because it simulates at most dn/3e parties in Π, which
is tolerated by assumption. Since this contradicts Lemma B.1, the theorem follows.

C Security Proof For Five-Round Protocol

In this section, we formally prove Theorem 5.7. Let NIZK.Sim = (NIZK.Sim.Setup,NIZK.Sim.Prove,
NIZK.Sim.Ext) denote the straight-line simulator for the simulation-extractible NIZK argument.
Consider a malicious adversary A that corrupts a set of t parties where t < n/2. Let H denote the
set of honest parties and S∗ the set of corrupt parties.

Simulation Strategy. We now describe the strategy of the simulator Sim.

CRS: Compute (simcrs, td)← NIZK.Sim.Setup(1λ). Send simcrs to A for every corrupt party Pi.

PKI Setup:

• For each i ∈ [n], sample (pki, ski)← dTFHE.DistGen(1λ, 1d, i; ri) and (vkeyi, skeyi)← Gen(1λ).

• Public key: pk = pk1‖ . . . ‖pkn and {vkeyi}i∈[n].
• Secret keys: (ski, ri, skeyi) for party Pi for each i ∈ [n].

• Send the public key and corresponding secret keys to A for every corrupt party Pi.

We consider two cases of the corrupted parties. In the first case Q is honest and in the second case
Q is corrupted.

Case 1: Honest Q. We now describe the simulator’s strategy if the output receiving party
Pn = Q is honest.

1. Round 1: For each honest party Pi ∈ H:

56

• Compute J0iK ← dTFHE.Enc(pk, 0λ) using fresh randomness, πi ← NIZK.Sim.Prove(td, sti)
for sti ∈ L1 where sti = (J0iK , pk).

• Compute σi ← Sign(skeyi, (J0iK , πi)). Send (J0iK , πi, σi) to A for every corrupt party.

• Receive a message (JxjKj→i , π
j→i
j , σj→ij) from A for every corrupt party Pj .

2. Round 2: From A, for every corrupt Pj , receive {(JxkKj→n , πj→nk , σj→nk)}k∈[n]\{j}. Also, for
ease of notation, let’s assume that each honest party Pi sends the messages it received from
A in Round 1 to Q. Let’s denote this by {(JxjKi→n , πi→nj , σi→nj)}Pj∈S∗

3. Round 3: For party Pn(= Q), do following:

• Define strings msg, ct1, . . . , ctn as ⊥.

• Also, define strings {inpj}Pj∈S∗ .

• For each corrupt party Pj , do the following:

– Let {(JxjK1→n , π1→nj , σ2→nj), . . . , (JxjKn→n , πn→nj , σn→nj)} be the message received across
both rounds on behalf of party Pj . This includes messages sent by A in Round 1 from
Pj to every honest party (that was assumed to be forwarded to Q in Round 2 for ease
of notation) and the messages sent by A from other corrupt parties to Q in Round 2.

– Pick the smallest index i1 such that Verify(vkeyj , (JxjK
i1→n , πi1→nj), σi1→nj) = 1 and

NIZK.Verify(simcrs, πi1→nj , stj) = 1 for stj ∈ L1 where stj = (JxjKi1→n , pk). Then,:

∗ Input Extraction and ZK Abort: Let (inpj , ρj) ← NIZK.Sim.Ext(td, πi1→nj , stj).
Output “ZK Abort” if NIZK.Sim.Ext(·) outputs ⊥.

∗ Set msg := msg‖“Party j ”‖(JxjKi1→n , πi1→nj , σi1→nj). Also, set ctj := JxjKi1→n.

– If no such i1 exists, set msg := msg‖“Party j ”‖⊥ and inpj = x̂j
11.

• For each honest party Pi ∈ H, do the following:

– Set msg := msg‖“Party i ”‖(J0iK , πi, σi) where (J0iK , πi, σi) is the tuple output in Round
1.

– Also, set cti = J0iK.

• Compute σmsg ← Sign(skeyn,msg). Send (msg, σmsg) to A for every corrupt party.

• Set JyK = dTFHE.Eval(pk, f, ct1, . . . , ctn).

4. Round 4: For each honest party Pi ∈ H, for every corrupt party Pj ∈ S∗:

• Send the same message as in Round 3 to A.

• Receive (msgj→i, σj→imsg) from A.

• Signature Abort: Output “Signature Abort” if :

– msgj→i 6= msg (AND)

– msgj→i is of the form (“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn) (AND)

– Verify(vkeyn,msgj→i, σj→imsg) = 1

5. Round 5: From A, for every corrupt party Pj , receive (Jy : skjK , πdecj).

11This denotes the default input for Pj

57

6. Query to Ideal Functionality F :

• ZK Abort: Output “ZK Abort” if NIZK.Verify(simcrs, πdecj , stdecj) = 1 (AND)

NIZK.Sim.Ext(td, πdecj , stdecj) = ⊥ for any j where stdecj = (Jy : skjK , JyK , pkj , j).

• Send {inpj}Pj∈S∗ to F .

Case 2: Corrupt Q. We now describe the simulator’s strategy if the output receiving party
Pn = Q is corrupt.

1. Round 1: Same as Round 1 when Q is honest. That is, for each honest party Pi ∈ H, for
every corrupt party Pj , send (J0iK , πi, σi) to A and receive (JxjKj→i , π

j→i
j , σj→ij).

2. Round 2: For each honest party Pi ∈ H, send the following to A for corrupt party Q:

• The set of messages received from A to Pi in Round 1: {(JxjKj→i , πj→ij , σj→ij)}Pj∈S∗ .

• The set of messages {(J0kK , πk, σk)}Pk∈H generated in Round 1.

3. Round 3: For each honest party Pi ∈ H, receive (msgn→i, σn→imsg) from A for party Q.

4. Round 4: For each honest party Pi ∈ H, for every corrupt party Pj , send the message

received in Round 3 - (msgn→i, σn→imsg) to A and receive (msgj→i, σj→imsg).

5. Round 5:

• Define set H1 = H to be the set of parties that would send valid partial decryptions.

• Pruning down H1: For each Pi ∈ H1, do the following:

– Let {(msgn→k, σn→kmsg)}k∈H be the Round 3 messages from A and {(msgj→i, σj→imsg)}j∈S∗
be the message from A to Pi in Round 4.

– If Verify(vkeyn,msgn→i, σn→imsg) 6= 1 (OR) msgn→i is not of the form (“Party 1 ”‖m1‖ . . .
‖“Party n ”‖mn), send ⊥ to A from Pi (for party Q) and remove Pi from H1.

– Send ⊥ to A from Pi (for party Q) and remove Pi from H1 if there exists k 6= i ∈ H
such that:

∗ msgn→k 6= msgn→i (AND)

∗ Verify(vkeyn,msgn→k, σn→kmsg) = 1 (AND)

∗ msgn→k is of the form (“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn).

– Send ⊥ to A from Pi (for party Q) and remove Pi from H1 if there exists j 6= n ∈ S∗
such that:

∗ msgj→i 6= msgn→i (AND)

∗ Verify(vkeyn,msgj→i, σj→imsg) = 1 (AND)

∗ msgj→i is of the form (“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn).

• Define strings ct1, . . . , ctn, {inpj}Pj∈S∗ to be ⊥.

• Let (msg, σmsg) be the unique Round 3 message received by all honest parties from A where
msg is of the form (“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn).

• Query to Ideal Functionality F . If H1 6= ∅, do:

– For each honest party Pi ∈ H, let mi = (ai, bi, ci).

58

∗ Signature Abort: Output “Signature Abort” if (ai, bi) 6= (J0iK , πi) (AND) Verify
(vkeyi, (ai, bi), ci) = 1.

∗ If (ai, bi) 6= (J0iK , πi) or Verify(vkeyi, (ai, bi), ci) 6= 1, send ⊥ to A from all parties
in H1 and end the round.

∗ Else, set cti = J0iK.
– For each corrupt party Pj ∈ S∗ with mj = ⊥:

∗ Pruning H1 - Part Two: If there exists Pi ∈ H such that Verify(vkeyj , (JxjK
j→i ,

πj→ij), σj→ij) = 1 and NIZK.Verify(πj→ij , stj) = 1 for stj ∈ L1 where stj = (JxjKj→i , pk),

send ⊥ to A from party Pi and remove Pi fromH1. Here, recall that (JxjKj→i , π
j→i
j ,

σj→ij) is the message from A to Pi in Round 1.

∗ Else, set (ctj , inpj) = (⊥, x̂j).
– For each corrupt party Pj ∈ S∗ with mj = (JxjK , πj , σj):
∗ If Verify(vkeyj , (JxjK , πj), σj) 6= 1 (or) NIZK.Verify(crs, πj , stj) 6= 1 for stj ∈ L1

where stj = (JxjK , pk), send ⊥ to A from all parties in H1 and end the round.

∗ Input Extraction and ZK Abort: Let (inpj , rj) ← NIZK.Sim.Ext(td, πj , stj).
Output “ZK Abort” if NIZK.Sim.Ext(·) outputs ⊥.

∗ Set ctj = JxjK.
– Send {inpj}Pj∈S∗ to F and receive output y.

• Compute {Jy : skiK}Pi∈H ← dTFHE.Sim(f, y, ct1, . . . , ctn, {skj}j∈S∗)
• For each honest party Pi ∈ H1 (the ones that did not output ⊥):

– Compute πdeci ← NIZK.Sim.Prove(td, stdeci) for stdeci ∈ L2 where stdeci = (Jy : skiK , JyK , pki, i),
JyK = dTFHE.Eval(pk, f, ct1, . . . , ctn).

– Send (Jy : skiK , πdeci) to Q.

Hybrids. We now show that the above simulation strategy is successful via a series of compu-
tationally indistinguishable hybrids where the first hybrid hyb0 corresponds to the real world and
the last hybrid hyb10 corresponds to the ideal world.

• hyb0 - Real World. In this hybrid, consider a simulator Sim.hyb that plays the role of the
honest parties as in the real world.

• hyb1 - Simulate ZK. In this hybrid, Sim.hyb first generates a simulated CRS in the setup
phase: (simcrs, td) ← NIZK.Sim.Setup(1λ). Then, in Round 1 of both cases, it computes
simulated ZK proofs: πi ← NIZK.Sim.Prove(td, sti). Finally, Sim.hyb also computes simulated
ZK proofs in Round 5 when Q is corrupt: πdeci ← NIZK.Sim.Prove(td, stdeci).

• hyb2 - Case 1: Signature Abort. In this hybrid, when Q is honest, in Round 4, on behalf
of every honest party Pi, Sim.hyb runs the “Signature Abort” step as done by Sim. That is,
output “Signature Abort” if the adversary is able to forge a valid signature on behalf of honest
party Q.

• hyb3 - Case 1: Input Extraction and ZK Abort. In this hybrid, when Q is honest, in
Round 3, Sim.hyb runs the input extraction and ZK Abort step as done by Sim in the ideal
world. Sim.hyb also runs the “ZK Abort” step in Round 5 as done by Sim. That is, in both
steps, output “ZK Abort” if NIZK.Sim.Ext(·) outputs ⊥.

59

• hyb4 - Case 1: Query to ideal functionality. In this hybrid, Sim.hyb sends the values
{inpj}Pj∈S∗ extracted by running NIZK.Sim.Ext(·) in Round 3 to F . Further, F delivers
output to honest Q.

• hyb5 - Case 2: Pruning down H1. In this hybrid, when Q is corrupt, in Round 5, Sim.hyb
runs the pruning down H1 step as done by Sim in the ideal world. That is, send ⊥ in Round
5 on behalf of corresponding honest parties that detect inconsistent signatures from Q across
rounds 3 and 4.

• hyb6 - Case 2: Signature Abort. In this hybrid, when Q is corrupt, in Round 5, Sim.hyb
runs the “Signature Abort” step as done by Sim. That is, output “Signature Abort” if the
adversary is able to forge a valid signature on behalf of any honest party.

• hyb7 - Case 2: Pruning H1 - Part Two. In this hybrid, when Q is corrupt, in Round
5, Sim.hyb runs the second part of pruning down H1 step as done by Sim in the ideal world.
That is, send ⊥ in Round 5 on behalf of honest parties that detect a missing ciphertext in
the message sent by Q for which they had received a valid ciphertext in round one.

• hyb8 - Case 2: Input Extraction, ZK Abort and Query to ideal functionality. In
this hybrid, when Q is corrupt, in Round 5, Sim.hyb computes (inpj , ctj) as done by Sim in
the ideal world. To do so, Sim.hyb also runs the “ZK Abort” step - that is, output “ZK Abort”
if NIZK.Sim.Ext(·) outputs ⊥. Finally, queries F with {inpj}Pj∈S∗ and receive output y.

• hyb9 - Case 2: Simulate Partial Decryptions. In this hybrid, whenQ is corrupt, in Round
5, Sim.hyb simulates the partial decryptions generated by the honest parties as done in the
ideal world. That is, compute {Jy : skiK}Pi∈H ← dTFHE.Sim(f, y, ct1, . . . , ctn, {skj}j∈S∗).

• hyb10 - Switch Encryptions. Finally, in this hybrid, in both cases, in Round 1, on behalf of
every honest party Pi, Sim.hyb now computes J0iK← dTFHE.Enc(pk, 0λ) instead of encrypting
the honest party’s input. This corresponds to the ideal world.

We now show that every pair of consecutive hybrids is computationally indistinguishable.

Lemma C.1. Assuming the zero knowledge property of the NIZK, hyb0 is computationally indis-
tinguishable from hyb1.

Proof. The only difference between the two hybrids is that in hyb0, the simulator Sim.hyb generates
the NIZK proofs in rounds one and five on behalf of the honest parties (and the CRS) as in
the real world by running the honest prover algorithm while in hyb1, the proofs are simulated
using the NIZK simulator NIZK.Sim.Prove(·) (and the simulated CRS simcrs is generated using the
simulator NIZK.Sim.Setup(·)). It is easy to observe that if there exists an adversary A that can
distinguish between these two hybrids with some non-negligible probability ε, we can come up with
a reduction ANIZK that can break the zero knowledge property of the NIZK argument which is a
contradiction.

Lemma C.2. Assuming the security of the signature scheme, hyb1 is computationally indistin-
guishable from hyb2.

Proof. The only difference between the two hybrids is if Sim.hyb outputs “Signature Abort” in
Round 4 of hyb2 with non-negligible probability which doesn’t happen in hyb1. This can happen
if, with non-negligible probability, in Round 4, on behalf of some corrupt party, A sends a valid

60

message-signature pair of the right form that was not the one received from honest Q in Round
3. In more detail, this happens if, with non-negligible probability, A sends a tuple (msgj→i, σj→imsg)
from corrupt party Pj to honest party Pi in Round 4 such that:

• msgj→i 6= msg (AND)

• msgj→i of the form (“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn) (AND)

• Verify(vkeyn, (msgj→i, σj→imsg)) = 1

However, if this happens, we can build a reduction ASign that breaks the unforgeability of the
signature scheme which is a contradiction.

Lemma C.3. Assuming the simulation-extractibility property of the NIZK, hyb2 is computationally
indistinguishable from hyb3.

Proof. The only difference between the two hybrids is if Sim.hyb outputs “ZK Abort” in Round 3
or 5 of hyb3 with non-negligible probability. This happens if, on behalf of some corrupt party Pj :

• In Round 1, A sends (JxjK , πj , σj) such that the signature verifies, NIZK.Verify(simcrs, πj , stj) =
1 but NIZK.Sim.Ext(td, πj , stj) = ⊥ where stj = (JxjK , pk) (OR)

• In Round 5, A sends (Jy : skjK , πdecj) such that NIZK.Verify(simcrs, πdecj , stdecj) = 1 but

NIZK.Sim.Ext(td, πdecj , stdecj) = ⊥ where stj = (Jy : skjK , JyK , pkj , j).

However, from the security of the UC-secure NIZK, we have:

Pr[π ← A(simcrs, st); (simcrs, td)← NIZK.Sim.Setup(1λ) s.t.

NIZK.Verify(crs, π, x) = 1 (AND) NIZK.Sim.Ext(td, π, st)⊥] ≤ negl(λ)

Thus, if there exists such an adversary that can cause this bad event to occur with non-negligible
probability, we can build a reduction ANIZK that breaks the simulation-extractibility property of
the NIZK argument which is a contradiction.

Lemma C.4. Assuming the correctness of the threshold FHE scheme and the NIZK, hyb3 is com-
putationally indistinguishable from hyb4.

Proof. The only difference between the two hybrids is the manner in which honest Q learns the
output. In hyb4, Q learns output y = f(inp1, . . . , inpn) from the ideal functionality F where
inpi = xi for every honest party Pi ∈ H and inpj = xj (or) x̂j for every corrupt party Pj ∈ S∗.
From the correctness of the extractor NIZK.Sim.Ext, we know that if NIZK.Sim.Ext(·) output inpj ,
then indeed inpj = xj . Also, if inpj is set to x̂j , then this is because Sim.hyb detected no valid tuple
(J0jK , πj , σj) on behalf of party Pj .

In hyb3, Q computes the output as in the real world by following the protocol. Observe that
due to the presence of an honest majority, from the correctness of the threshold FHE scheme, Q
does recover output y′ = f(inp′1, . . . , inp

′
n). For every honest party Pi ∈ H, it is easy to observe

that inp′i = xi. For every corrupt party Pj ∈ S∗, as in hyb4, from the protocol description in Round
3, observe that inpj = x̂j , if Q detects no valid tuple (J0jK , πj , σj) on behalf of party Pj . Hence the
two hybrids are computationally indistinguishable.

61

Lemma C.5. hyb4 is identically distributed to hyb5.

Proof. Observe that in Round 5 of the simulation, the list of steps performed in the “pruning
down H1” part are in fact identical to the steps performed by all honest parties in the real world
to check that they received one single valid (msg, σmsg) from Q in Round 3. Thus, the two hybrids
are identical.

Lemma C.6. Assuming the security of the signature scheme, hyb5 is computationally indistin-
guishable from hyb6.

Proof. The only difference between the two hybrids is if Sim.hyb outputs “Signature Abort” in
Round 5 of hyb6 with non-negligible probability. This can happen if, with non-negligible proba-
bility, in Round 3, on behalf of corrupt party Q, the tuple that A sends includes a valid message-
signature pair for some honest party Pi that was not the pair sent by Pi in Round 1. In more
detail, for every honest party Pi ∈ H, let (J0iK , πi, σi) be the message sent in Round 1. The bad
event happens if, with non-negligible probability, in Round 3, A sends (msg, σmsg) to every honest
party where Verify(vkeyn,msg, σmsg) = 1, msg of the form (“Party 1 ”‖m1‖ . . . ‖“Party n ”‖mn) and
there exists honest party Pi ∈ H such that: mi = (ai, bi, ci) (AND) (ai, bi) 6= (J0iK , πi) (AND)
Verify(vkeyi, (ai, bi), ci) = 1.

However, if this happens, we can build a reduction ASign that breaks the unforgeability of the
signature scheme which is a contradiction.

Lemma C.7. hyb6 is identically distributed to hyb7.

Proof. Observe that in Round 5 of the simulation, the list of steps performed in the “second part
of pruning down H1” are in fact identical to the step performed by all honest parties Pi in the real
world to check that Q did not fail to include a ciphertext on behalf of some party Pk if the honest
party did receive a valid ciphertext from Pk in Round one. Thus, the two hybrids are identical.

Lemma C.8. Assuming the simulation-extractibility property of the NIZK, hyb7 is computationally
indistinguishable from hyb8.

Proof. This is identical to the proof of Lemma C.3.

Lemma C.9. Assuming the simulation security of the threshold FHE scheme, hyb8 is computa-
tionally indistinguishable from hyb9.

Proof. The only difference between the two hybrids is that in hyb8, the simulator Sim.hyb generates
the partial decryptions of the threshold FHE scheme on behalf of the honest parties as in the real
world while in hyb9, they are simulated by running the simulator dTFHE.Sim. It is easy to observe
that if there exists an adversary A that can distinguish between these two hybrids with some non-
negligible probability ε, we can come up with a reduction AdTFHE that can break the simulation
security of the threshold FHE scheme which is a contradiction.

Lemma C.10. Assuming the semantic security of the threshold FHE scheme, hyb9 is computa-
tionally indistinguishable from hyb10.

62

Proof. The only difference between the two hybrids is that in hyb9, the simulator Sim.hyb generates
the encryptions of the threshold FHE scheme on behalf of the honest parties as in the real world
while in hyb10, they are generated as encryptions of 0. It is easy to observe that if there exists an
adversary A that can distinguish between these two hybrids with some non-negligible probability
ε, we can come up with a reduction AdTFHE that can break the semantic security of the threshold
FHE scheme which is a contradiction.

D Security Proof for t = 1 When Q Has No Input

We now prove Theorem 6.4. Let NIZK.Sim = (NIZK.Sim.Setup,NIZK.Sim.Prove,NIZK.Sim.Ext) de-
note the straight-line simulator for the simulation-extractible NIZK argument. Consider a malicious
adversary A that corrupts a single party Pc. We construct an ideal-world PPT simulator Sim that
interacts with A as follows.

In the setup phase, Sim generates (simcrs, td)← NIZK.Sim.Setup(1λ) and follows the PKI setup
honestly to generate the public and secret keys. Sim first invokes A with the simulated CRS simcrs,
public keys (pk, {vkeyi}i∈[n]), and secret keys (skc, rc, skeyc). We consider two cases of the corrupted
party. In the first case Q is honest and in the second case Q is corrupted.

Case 1: Q is honest. The corrupted party is Pc where c ∈ [n − 1]. The strategy of Sim is
described as follows:

• Let x̃ := ⊥ and k :=∞.

• Round 1: For each i ∈ [n− 1] \ {c}, do the following:

– Compute the following:

J0iK← dTFHE.Enc(pk, 0i).
πi ← NIZK.Sim.Prove(td, sti) for sti ∈ L1 where sti = (J0iK , pk).
σi ← Sign(skeyi, (J0iK , πi)).

– Send (J0iK , πi, σi) to A on behalf of party Pi.

– Receive (JxcKc→i , πc→ic , σc→ic) from A on behalf of party Pi.

– If i < k, NIZK.Verify(simcrs, πc→ic , stc→ic) = 1 for stc→ic ∈ L1 where stc→ic = (JxcKc→i , pk),
and Verify(vkeyc, (JxcK

c→i , πc→ic), σc→ic) = 1, then

∗ Decrypt JxcKc→i by running algorithms dTFHE.PartialDec(·), dTFHE.Combine(·) us-
ing dTFHE secret keys to obtain xc→ic .

∗ Let x̃ := xc→ic and k := i.

• Round 2:

If Sim receives xc→nc from A on behalf of Q, then let x̃ := xc→nc if k =∞.

If Sim receives
(
{(JxjKc→n , πc→nj , σc→nj)}j∈[n−1], JyK , Jy : skcK , πdecc

)
from A on behalf of Q,

then verify the following:

– NIZK.Verify(simcrs, πc→nj , stc→nj) = 1 for stc→nj ∈ L1 where stc→nj = (JxjKc→n , pk) for all
j ∈ [n− 1].

– Verify(vkeyj , (JxjK
c→n , πc→nj), σc→nj) = 1 for all j ∈ [n− 1].

– JyK = dTFHE.Eval(pk, f, Jx1Kc→n , . . . , Jxn−1Kc→n).

– NIZK.Verify(simcrs, πdecc , stdecc) = 1.

63

If all the above is true, then

– Decrypt JxcKc→n by dTFHE secret keys to obtain xc→nc .

– Let x̃ := xc→nc if c < k.

• Finally, send x̃ to the ideal functionality.

Hybrid argument. Now we show that A and Q’s output in the real world is computationally
indistinguishable from Sim and Q’s output in the ideal world.

• hyb0: A and Q’s output in the real world.

• hyb1: First generate (simcrs, td) ← NIZK.Sim.Setup(1λ) and give simcrs to A as the CRS. In
Round 1, for each i ∈ [n − 1] \ {c}, replace πi sent to A by a simulated NIZK argument
NIZK.Sim.Prove(td, sti).

By the zero-knowledge property of NIZK, A cannot distinguish between hyb0 and hyb1.

• hyb2: If Q receives a valid tuple
(
{(JxjK , πj , σj)}j∈[n−1], JyK , Jy : skiK , πdeci

)
from party Pi in

Round 2 (if it holds for multiple parties, then pick the smallest i), then decrypt {JxjK}j∈[n−1]
by dTFHE secret keys to obtain (x̃1, . . . , x̃n−1). If the decryption fails, then abort.

We argue that the probability of abort is negligible. First we know that {JxjK}j∈[n−1]\{c}
are all well-formed encryptions. By the simulation-extractability of NIZK for L1, we can
run (x̂c, ρ̂c)← NIZK.Sim.Ext(td, πc, stc) to extract (x̂c, ρ̂c) with all but negligible probability,
hence JxcK is also a well-formed encryption. By the correctness of dTFHE, all the ciphertexts
{JxjK}j∈[n−1] can be decrypted with all but negligible probability.

• hyb3: Same as hyb2 except that after obtaining (x̃1, . . . , x̃n−1) from dTFHE decryption, Q
outputs f(x̃1, . . . , x̃n−1).

By the simulation-extractability of NIZK for L2, we can extract (ŝkc, r̂c)← NIZK.Sim.Ext(td,
πdecc , stdecc) with all but negligible probability, hence Jy : skcK is correctly computed partial
decryption. By the evaluation correctness of dTFHE, the output of Q is computationally
indistinguishable from hyb2.

• hyb4: If Q receives a valid tuple
(
{(JxjK , πj , σj)}j∈[n−1], JyK , Jy : skiK , πdeci

)
from party Pi in

Round 2 (if it holds for multiple parties, then pick the smallest i), then decrypt JxcK by
dTFHE secret keys to obtain x̃ and output f(x1, . . . , xc−1, x̃, xc+1, . . . , xn−1).

There are two cases of the chosen party Pi: (a) Pi is honest, and (b) Pi is corrupted.

– If Pi is honest, then {JxjK}j∈[n−1]\{c} are correctly generated ciphertexts of {xj}j∈[n−1]\{c}.
– If Pi is corrupted, namely Pi = Pc, then we claim that for each j ∈ [n− 1] \ {c}, JxjK is

the same as what Pj sends to Pc in Round 1. If they are different for any j∗, then we
can use the adversary A to forge a signature for Pj∗ .

In particular, we construct a PPT B to break the unforgeability of the signature scheme
as follows. B first gets a verification key vkey from the challenger. Then B generates
the simulated CRS simcrs and all the public and secret keys except (vkeyj∗ , skeyj∗), and
sets vkeyj∗ := vkey. B invokes A with simcrs, public keys (pk, {vkeyi}i∈[n]), and secret
keys (skc, rc, skeyc). B follows the protocol as in hyb4 except that when computing σj∗

in Round 1, it queries the challenger on message (Jxj∗K , πj∗) to obtain a signature σj∗ .

64

Next in Round 2, B receives a valid tuple (Jxj∗K′ , π′j∗ , σ
′
j∗) from A where Jxj∗K′ 6= Jxj∗K.

B can then output the forged signature σ′j∗ on message (Jxj∗K′ , π′j∗).
By the unforgeability of the signature scheme, JxjK is the same as what Pj sends to
Pc in Round 1 for all j ∈ [n − 1] \ {c}, hence {JxjK}j∈[n−1]\{c} are correctly generated
ciphertexts of {xj}j∈[n−1]\{c}.

By the correctness of dTFHE, {xj}j∈[n−1]\{c} are computationally indistinguishable from
{x̃j}j∈[n−1]\{c} computed in hyb3. Thus Q’s output in this hybrid is computationally in-
distinguishable from its output in hyb3.

• hyb5: If the party Pi picked in hyb4 is an honest party, then Pi must be the party with the
smallest index that receives a valid tuple (JxcK , πc, σc) from A in Round 1. Decrypt JxcK by
dTFHE secret keys to obtain x̃ and output f(x1, . . . , xc−1, x̃, xc+1, . . . , xn−1).

This hybrid is identical to hyb4 because an honest Pi forwards (JxcK , πc, σc) to Q in Round 2.

• hyb6: If Q doesn’t receive a valid tuple
(
{(JxjK , πj , σj)}j∈[n−1], JyK , Jy : skiK , πdeci

)
from any

party Pi in Round 2, then it outputs f(x1, . . . , xc−1, x̃, xc+1, . . . , xn−1) if A sends x̃ to Q in
Round 2, or f(x1, . . . , xc−1, x̂c, xc+1, . . . , xn−1) otherwise, where x̂c is the default input of
party Pc.

This hybrid is identical to hyb5 because an honest party either sends a valid tuple in Round
2, or sends its input in the clear. If Q doesn’t receive any valid tuple, then it must have
received all the honest parties’ inputs and will compute the output accordingly.

• hyb7: In Round 1, for each i ∈ [n− 1] \ {c}, replace JxiK sent to A by J0iK.

By the semantic security of dTFHE, A cannot distinguish between hyb6 and hyb7.

The last hybrid gives the output of Sim and Q in the ideal world.

Case 2: Q is corrupted. Sim directly receives an output y from the ideal functionality (recall
that Q has no input). The strategy of Sim is described as follows:

• For each i ∈ [n− 1], compute the following:

J0iK← dTFHE.Enc(pk, 0i).

πi ← NIZK.Sim.Prove(td, sti) for sti ∈ L1 where sti = (J0iK , pk).

σi ← Sign(skeyi, (J0iK , πi)).

• Compute JỹK← dTFHE.Eval(pk, f, J01K , . . . , J0n−1K).
Compute {Jỹ : skiK}i∈[n−1] ← dTFHE.Sim(f, y, J01K , . . . , J0n−1K , skn).

• For each i ∈ [n− 1], do the following:

– Compute πdeci ← NIZK.Sim.Prove(td, stdeci) for stdeci ∈ L2 where stdeci = (Jỹ : skiK , JỹK ,
pki, i).

– Send
(
{(J0jK , πj , σj)}j∈[n−1], JỹK , Jỹ : skiK , πdeci

)
to A on behalf of party Pi in Round 2.

• Finally, output whatever A outputs.

Hybrid argument. Now we show that A’s output in the real world is computationally indistin-
guishable from Sim’s output in the ideal world.

65

• hyb0: A’s output in the real world.

• hyb1: First generate (simcrs, td)← NIZK.Sim.Setup(1λ) and give simcrs to A as the CRS. For
each i ∈ [n − 1], replace πi by a simulated NIZK argument NIZK.Sim.Prove(td, sti) and πdeci

by NIZK.Sim.Prove(td, stdeci).

By the zero-knowledge property of NIZK, A cannot distinguish between hyb0 and hyb1.

• hyb2: Compute {Jy : skiK}i∈[n−1] by dTFHE.Sim(f, y, Jx1K , . . . , Jxn−1K , skn).

By the simulation security of dTFHE, this hybrid is computationally indistinguishable from
hyb1.

• hyb3: Sim’s output in the ideal world. The only difference between this hybrid and hyb2 is
that JxiK is replaced by J0iK for each i ∈ [n− 1]. Because of the semantic security of dTFHE,
hyb2 and hyb3 are computationally indistinguishable to A.

66

	Introduction
	Our Results
	Roadmap

	Technical Overview
	Overview of Upper Bounds
	Overview of Lower Bounds

	Preliminaries
	Notation and Setting
	Security Model
	Cryptographic Primitives

	With Broadcast and No PKI
	Necessity of Three Rounds
	Necessity of Broadcast in Round 1
	Necessity of Broadcast in Round 2
	Upper Bounds

	With PKI and No Broadcast
	Necessity of Four Rounds
	General Five-Round Protocol
	(t + 2) Round Protocol

	Special Case: t=1 with PKI and no Broadcast
	Necessity of Three Rounds When Q Has Input
	Protocols

	Special Case: t=2 with PKI and no Broadcast
	Necessity of Three Rounds
	Four-Round Protocol

	Literature Survey
	Necessity of Broadcast/PKI
	Security Proof For Five-Round Protocol
	Security Proof for t=1 When Q Has No Input

